SlideShare ist ein Scribd-Unternehmen logo
1 von 43
Downloaden Sie, um offline zu lesen
Sizing of relief valves for
supercritical fluids
March 23rd, 2011
Alexis Torreele
Overview
Jacobs – Introduction
Relief Valve Study – An Engineering Approach
Relief Calculation for Supercritical Fluids
− Introduction
− Theoretical Background
− Example Case
− Discussion & Evaluation
Jacobs
Introduction
Jacobs – Introduction: Who Are We
Committed to BeyondZero® Safety as safety is our #1
priority
Relationship based company
Global resource base – 57.500 employees in 25
countries on 4 continents
Fortune 500 #1 Engineering & Construction Company
Publicly traded on NYSE
Net income $65,8 Million 1Q FY11 ($246 Million – FY10)
Revenues $2,4 Billion 1Q FY11 ($9,9 Billion – FY10)
Backlog $13 Billion – FY11
In business since 1947
Jacobs – Introduction: Worldwide offices
Jacobs – Introduction: Europe
Jacobs – Introduction: Belgium
Oil & Gas
(Refining)
30
Others
12
Chemicals &
Polymers
45
Pharma
& Bio
13
Process, 52
Engineering &
Design, 316
Project Mgt., 48
G&A, 31
Constr. Mgt, 26
Project Serv. &
Admin., 82
Procurement,
14
Civil, 44
Mechanical, 31
Instrumentation,
88
Piping, 127
Electrical, 26
CAD/IT, 18
Jacobs – Introduction: Clients
Yara
Total
Solvay
Shell
SABIC
Client
30-60
40-80
20-80
15-60
15-60
Workload
/ People
2004
1985
2003
2004
2002
2003
Since
15-20GSK
200515-60ExxonMob
il
200315-60Dow
200115-30BP
Chembel
200725-50Borealis
200430-50BASF
SinceWorkload
/ People
Client
Relief Valve Study
An Engineering Approach
Relief Valve Study – An Engineering Approach
Gather info:
− P&ID’s
− Equipment data
− Etc.
Define relief scenario’s:
− E.g.: External fire, Blocked outlet, etc.
− Use list API 521 as guidance
− Use tools as HAZOP, PLANOP, client specific methods
to determine applicable scenarios
Relief Valve Study – An Engineering Approach
Calculate relief scenario’s
− Relief load
− Relief valve orifice size
Determine governing case
− General approach:
Scenario requiring the largest orifice size
=
Governing case
Relief Valve Study – An Engineering Approach
Verify inlet and outlet conditions
− Pressure drop over inlet (< 3% of set pressure)
− Pressure at outlet (backpressure):
Superimposed backpressure: static pressure (if variable:
NO conventional type valve)
Built-up backpressure: pressure increase as result of relief
flow (< 10% for conventional, < ca. 50% for balanced & >
50% for pilot operated type valves)
Relief Valve Study – An Engineering Approach
Determine safety valve type:
− Conventional spring-loaded
− Balanced bellows
− Pilot operated
Mechanical stress analysis
Flare network study
Relief Calculation for
Supercritical Fluids
Introduction
Objective:
Calculate mass relief flow, volume relief flow and required orifice
size of heat-input driven relief cases on systems with supercritical
relief temperature and/or pressure.
Examples:
− Fire case for a Vessel
− Blocked-in Heat Exchanger
References:
R. Ouderkirk, “Rigorously Size Relief Valves for Supercritical Fluids,”
CEP magazine, pp. 34-43 (Aug. 2002).
L. L. Simpson, “Estimate Two-Phase Flow in Safety Devices,” Chem.
Eng., pp. 98-102, (Aug. 1991).
Theoretical Background
Definition of enthalpy:
H = U + pV (1)
dH = dU + Vdp + pdV (2)
dU = δQ – pdV (3)
Combining (2) & (3)
dH = δQ + Vdp (4)
p is constant during relief; hence,
∆H = Q (5)
And,
∆∆∆∆H/∆∆∆∆t = Q (6)
Theoretical Background
Heat input = Enthalpy change
Hi (∆H)p Hi+1
∆t * Q
Vi ∆t Vi+1
∆∆∆∆V////∆∆∆∆t
H: Specific enthalpy
V: Specific volume
Q: Heat input
t: Time
Example Case – Information
Fire case for a Vessel
Process Data (normal operation):
− Content: Methane
Crit. Temp. -82,7 °C
Crit. Press. 45,96 bara
− Level: 60% Liquid
− Pressure: 10 barg
− Temperature: -122 °C
− Volume: 10 m³
− Area: 25 m²
Qfire
SP
50barg
Example Case – Relief Process Overview
1 → 2 Heating before Relief: ‘Isochoric’ process
No volume or mass change (no relief)
2 → 3 Relief: Isentropic flash
Adiabatic & frictionless flow through relief valve
2 → 2’ Relief Progression: Isobaric process
System at constant pressure (i.e. relief pressure)
P-E Diagram of Methane
0.1
1
10
100
-100 100 300 500 700 900 1100 1300 1500
Enthalpy (kJ/kg)
Pressure(bar)
δ = 1kg/m3
δ = 0,1kg/m3
δ = 10kg/m3
δ = 100kg/m3
T=100K
T=200K
T=150K
T=300K
T=400K
T=500K
1
2 2'
3 3'
+ Qfire
+ Qfire
Density [kg/m³] - Temperature [K] - Entropy [kJ/(kgK)]
δ = 400kg/m3
Relief
Press.
Example Case – Calculation Steps
Step 1: Select Property Method
Step 2: Gather Relief Case Information
Step 3: Determine Heat Input
Step 4: Calculate Physical Properties
Step 5: Calculate Relief Flow Rate
Step 6: Determine Isentropic Choked Nozzle Flux
Step 7: Determine Required Orifice Size
Example Case – Step 1
Select Property Method
Requirements:
− Suitable for respective component(s)
− Accurate for the relevant pressure and temperature range
(Pr > 1 // Tr > 1)
− Accurate for both liquid and gas properties
Important:
Always verify property method with empirical property data!
Example Case – Step 1
Selected Method: Lee Kesler
− Fit for light hydrocarbons
− Application range
Pr : 0 to 10 (up to ca. 460 bara)
Tr : 0,3 to 4 (ca. -216 to 485 °C)
− One correlation for both liquid as well as vapor phase
→ No distinguishable transition from supercritical ‘liquid’ to
supercritical ‘vapor’
− Integration of the thermal properties with the other
physical properties
→ Thermodynamic cohesiveness
Example Case – Step 2
Gather Relief Case Information
Relief pressure:
PSV set press.: 50 barg
Fire case relief press.: 121 % of set pressure
Relief press.: 61,5 bara (Pr = 1,3)
Initial relief temperature:
Considering an isochoric process:
(Tini(pini))ρini → (Trlf (prlf))ρini
(Tini(10barg))ρini → (Trlf(61,5barg))ρini
-122°C → -77°C
Example Case – Step 3
Determine Heat Input
API 521 – external pool fire, heat absorption for liquids:
Qfire = 43.200 * f * αααα0,82
With f = 1 (no fireproof insulation / bare metal vessel)
α = 25 m²
Qfire = 605,05 kW
= 2.178.196 kJ/h
αααα: Wetted surface [m²]
f: Environment factor [-]
Q: Heat input [W]
Example Case – Step 4
Calculate Physical Properties
Determine the specific volume (V), specific enthalpy (H) & entropy (S)
at initial relief conditions:
− Applying property method correlations in Excel spreadsheets
− Using property models in Simulation Tools (Pro/II, Aspen Plus, etc.)
Reiterate at increasing temperatures:
− At relief pressure
− Step size: ca. 3°C
− # iterations: see later
P-E Diagram Methane
0.1
1
10
100
-100 100 300 500 700 900 1100 1300 1500
Etnhalpy (kJ/kg)
Pressure(bar)
δ = 1kg/m3
δ = 0,1kg/m3
δ = 10kg/m3
δ = 100kg/m3
T=100K
T=200K
T=150K
T=300K
T=400K
T=500K
1
2 2'
3 3'
+ Qfire
+ Qfire
Density [kg/m³] - Temperature [K] - Entropy [kJ/(kgK)]
δ = 400kg/m3
Example Case – Step 4
0,01459-8,710,079-38
0,01414-18,710,036-41
0,01303-43,79,927-47
0,01259-53,79,882-50
0,01193-68,79,814-53
0,01127-83,79,746-56
0,01062-98,79,676-59
0,00978-118,79,582-62
0,00896-138,79,487-65
0,00781-168,79,341-68
0,00662-203,79,169-71
0,00527-253,78,920-74
0,00455-288,78,742-77
V, m3/kgH, kJ/kgS, kJ/(kg.K)T, °C
Example Case – Step 5
Calculate Relief Flow Rate
Volumetric flow rate:
Mass flow rate:
H
V
QV
∆
∆
= &&
V
V
m
&
& =
H: Specific enthalpy [kJ/kg]
V: Specific volume [m³/kg]
V: Volume flow [m³/s]
m: Mass [kg]
m: Mass flow [kg/s]
Q: Heat input [kW]
Example Case – Step 5
-
1,899
2,061
2,124
2,232
2,340
2,448
2,588
2,714
2,849
2,891
2,710
2,389
m, kg/s
0,01459
0,01414
0,01303
0,01259
0,01193
0,01127
0,01062
0,00978
0,00896
0,00781
0,00662
0,00527
0,00455
V, m3/kg
-
0,02686
0,02687
0,02674
0,02662
0,02638
0,02602
0,02532
0,02432
0,02227
0,01916
0,01427
0,01088
V, m3/s
-8,710,079-38
-18,710,036-41
Max. volume flow-43,79,927-47
-53,79,882-50
-68,79,814-53
-83,79,746-56
-98,79,676-59
-118,79,582-62
-138,79,487-65
-168,79,341-68
Max. mass flow-203,79,169-71
-253,78,920-74
-288,78,742-77
H, kJ/kgS, kJ/(kg.K)T, °C
Example Case – Step 6
Determine Isentropic Choked Nozzle Flux
For ‘each’ relief temperature calculate the choked
nozzle flux:
− Iteratively, at decreasing
outlet pressure:
− And, along isentropic path:
− Max. flux = Choked flux
( )
b
b0
V
HH2
G
−
=
b0 SS =
H: Specific enthalpy [J/kg]
V: Specific volume [m³/kg]
G: Mass flux [kg/(m².s)]
S: Entropy [kJ/(kg.K)]
0: Inlet condition
b: Outlet condition
P-E Diagram Methane
0.1
1
10
100
-100 100 300 500 700 900 1100 1300 1500
Etnhalpy (kJ/kg)
Pressure(bar)
δ = 1kg/m3
δ = 0,1kg/m3
δ = 10kg/m3
δ = 100kg/m3
T=100K
T=200K
T=150K
T=300K
T=400K
T=500K
1
2 2'
3 3'
+ Qfire
+ Qfire
Density [kg/m³] - Temperature [K] - Entropy [kJ/(kgK)]
δ = 400kg/m3
Example Case – Step 6
Relief temperature: -68 °C
17479
17931
18058
16496
14009
10248
-
G, kg/(m².s)
T0, p0:
-185,00,0130934,5-92
-179,50,0113439,0-88
: GChoked
-174,70,0098843,5-85
-170,40,0092448,0-80
-166,40,0087852,5-76
-162,50,0084057,0-72
-158,80,0080861,5-68
Hb, kJ/kgVb, m³/kgpb, baraTb, °C
Example Case – Step 6
Iteration = time consuming process!!
Alternative method: use simplified correlations to
determine isentropic choked flux
− J.C. Leung, “A Generalized Correlation for One-component
Homogeneous Equilibrium Flashing Choked Flow,” AIChE Journal,
pp. 1743-1746 (Oct. 1986).
−
0
0
choked
V
p
G
⋅
=
ω
η
ATTENTION: 2-phase flow
Relief of supercritical fluids can lead to 2-phase flow!
Homogenous Equilibrium Model (HEM)
Assumptions
1. Velocities of phases are equal
2. Phases are at thermodynamic equilibrium
Formula applies:
And H = xL.HL + (1-xL).HG
V = xL.VL + (1-xL).VG
( )
b
b0
V
HH2
G
−
= H: Specific enthalpy [J/kg]
V: Specific volume [m³/kg]
G: Mass flux [kg/(m².s)]
0: Inlet condition
b: Outlet condition
L: Liquid phase
G: Gas phase
Example Case – Step 7
Determine Required Orifice Size
• API 521:
With backpressure correction, Kb = 1 (backpressure << 10%)
combination correction, Kc = 1 (no rupture disk)
discharge coefficient, Kd = 0,975 (assuming vapor)
viscosity correction, Kv = 1
vdcbchoked KKKKG
m
A
&
=
A: Effective orifice area [m²]
m: Mass flow [kg/s]
Gchoked: Choked mass flux [kg/(m².s)]
Example Case – Step 7
-
1,899
2,061
2,124
2,232
2,340
2,448
2,588
2,714
2,849
2,891
2,710
2,389
m, kg/s
-
-
-
141
-
-
-
-
152
155
153
-
96
A, mm²
0,01459
0,01414
0,01303
0,01259
0,01193
0,01127
0,01062
0,00978
0,00896
0,00781
0,00662
0,00527
0,00455
V, m3/kg
-
0,02686
0,02687
0,02674
0,02662
0,02638
0,02602
0,02532
0,02432
0,02227
0,01916
0,01427
0,01088
V, m3/s
-8,710,079-38
-18,710,036-41
-43,79,927-47
-53,79,882-50
-68,79,814-53
-83,79,746-56
-98,79,676-59
-118,79,582-62
-138,79,487-65
Req. Nozzle Size-168,79,341-68
-203,79,169-71
-253,78,920-74
-288,78,742-77
H, kJ/kgS, kJ/(kg.K)T, °C
Calculation Results
40%
50%
60%
70%
80%
90%
100%
200 210 220 230 240 250
Temperature (K)
Orifice Area
Volume Relief Rate
Mass Relief Rate
Example Case – Results
When all values (relief volume flow, mass flow and nozzle size)
decrease with increasing relief temperature: stop iterations.
Determine selected effective orifice (API 526) based on maximum
calculated nozzle size value:
− Max. nozzle size value: 155 mm²
− Selected standard orifice: 198 mm² (‘F’ - orifice)
Calculate pressure drop over inlet and discharge
Determine safety valve type (conventional, balanced bellows, pilot
operated…)
…
Example Case – Conclusions
Specific calculation method is required:
− Fluids that are below critical conditions in normal operation
can have super critical relief
− Max. mass flow ≠ Max. volume flow ≠ Min. required nozzle
size
− Required nozzle size determined using a simplified method
(API 521 §5.15.2.2.2): 254 mm² vs. 155 mm²
Extra Slides
Safety Valve Types
Bellows
Pilot
Conventional Balanced
Bellows
Pilot Operated
General flux equation
( )( )
( ) 























−+⋅





−+
−+−
=
∫
t
2
2
f
g
P
P
fg
2
x1xSv)x1(
S
xv
dpv)x1xv2
G
t
r

Weitere ähnliche Inhalte

Was ist angesagt?

Overpressure scenarios overview final
Overpressure scenarios overview finalOverpressure scenarios overview final
Overpressure scenarios overview final
Rajiv Natkar
 
Ai Ch E Overpressure Protection Training
Ai Ch E Overpressure Protection TrainingAi Ch E Overpressure Protection Training
Ai Ch E Overpressure Protection Training
ernestvictor
 
Pressure Relief Devices_Presenation
Pressure Relief Devices_PresenationPressure Relief Devices_Presenation
Pressure Relief Devices_Presenation
sumit handa
 
Pressure Reliveing Devices1
Pressure Reliveing Devices1Pressure Reliveing Devices1
Pressure Reliveing Devices1
Om Pratap Singh
 

Was ist angesagt? (20)

Pressure Relief valve sizing and design
Pressure Relief valve sizing and designPressure Relief valve sizing and design
Pressure Relief valve sizing and design
 
Centrifugal Compressor System Design & Simulation
Centrifugal Compressor System Design & SimulationCentrifugal Compressor System Design & Simulation
Centrifugal Compressor System Design & Simulation
 
Overpressure scenarios overview final
Overpressure scenarios overview finalOverpressure scenarios overview final
Overpressure scenarios overview final
 
Ai Ch E Overpressure Protection Training
Ai Ch E Overpressure Protection TrainingAi Ch E Overpressure Protection Training
Ai Ch E Overpressure Protection Training
 
Basics of two phase flow (gas-liquid) line sizing
Basics of two phase flow (gas-liquid) line sizingBasics of two phase flow (gas-liquid) line sizing
Basics of two phase flow (gas-liquid) line sizing
 
Pressure Safety Valve Sizing - API 520/521/526
Pressure Safety Valve Sizing - API 520/521/526Pressure Safety Valve Sizing - API 520/521/526
Pressure Safety Valve Sizing - API 520/521/526
 
Gas Compression Stages – Process Design & Optimization
Gas Compression Stages – Process Design & OptimizationGas Compression Stages – Process Design & Optimization
Gas Compression Stages – Process Design & Optimization
 
Pressure Relief Devices_Presenation
Pressure Relief Devices_PresenationPressure Relief Devices_Presenation
Pressure Relief Devices_Presenation
 
API STD 521
API STD 521API STD 521
API STD 521
 
Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)
Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)
Two-phase fluid flow: Guideline to Pipe Sizing for Two-Phase (Liquid-Gas)
 
PSV Sizing - API Based
PSV Sizing - API BasedPSV Sizing - API Based
PSV Sizing - API Based
 
Accumulation and Over-pressure: difference between accumulation and overpressure
Accumulation and Over-pressure: difference between accumulation and overpressureAccumulation and Over-pressure: difference between accumulation and overpressure
Accumulation and Over-pressure: difference between accumulation and overpressure
 
Overpressure protection
Overpressure protectionOverpressure protection
Overpressure protection
 
Pressure Reliveing Devices1
Pressure Reliveing Devices1Pressure Reliveing Devices1
Pressure Reliveing Devices1
 
Line sizing
Line sizingLine sizing
Line sizing
 
Design and Rating of Trayed Distillation Columns
Design and Rating  of Trayed Distillation ColumnsDesign and Rating  of Trayed Distillation Columns
Design and Rating of Trayed Distillation Columns
 
HTRI PRESENTATION.pdf
HTRI PRESENTATION.pdfHTRI PRESENTATION.pdf
HTRI PRESENTATION.pdf
 
Single phase flow line sizing
Single phase flow line sizingSingle phase flow line sizing
Single phase flow line sizing
 
The Design and Layout of Vertical Thermosyphon Reboilers
The Design and Layout of Vertical Thermosyphon ReboilersThe Design and Layout of Vertical Thermosyphon Reboilers
The Design and Layout of Vertical Thermosyphon Reboilers
 
Rupture Disks for Process Engineers
Rupture Disks for Process EngineersRupture Disks for Process Engineers
Rupture Disks for Process Engineers
 

Ähnlich wie Sizing of relief valves for supercritical fluids

Thermodynamics Examples and Class test
Thermodynamics Examples and Class testThermodynamics Examples and Class test
Thermodynamics Examples and Class test
VJTI Production
 
New ton presentation_c
New ton  presentation_cNew ton  presentation_c
New ton presentation_c
EUROPAGES
 

Ähnlich wie Sizing of relief valves for supercritical fluids (20)

Energy Efficiency in Thermal System - Case Studies from Nepal
Energy Efficiency in Thermal System - Case Studies from NepalEnergy Efficiency in Thermal System - Case Studies from Nepal
Energy Efficiency in Thermal System - Case Studies from Nepal
 
4.4.heat exchanger
4.4.heat exchanger4.4.heat exchanger
4.4.heat exchanger
 
Cryogenic air separation plant design
Cryogenic air separation plant designCryogenic air separation plant design
Cryogenic air separation plant design
 
M2tempyleyestermo.pdf
M2tempyleyestermo.pdfM2tempyleyestermo.pdf
M2tempyleyestermo.pdf
 
Thermodynamics Examples and Class test
Thermodynamics Examples and Class testThermodynamics Examples and Class test
Thermodynamics Examples and Class test
 
Process Calculation - simple distillation
Process Calculation - simple distillationProcess Calculation - simple distillation
Process Calculation - simple distillation
 
Lecture28
Lecture28Lecture28
Lecture28
 
Lecture28
Lecture28Lecture28
Lecture28
 
Chapter 5 gen chem
Chapter 5 gen chemChapter 5 gen chem
Chapter 5 gen chem
 
Thermodynamic, examples a
Thermodynamic, examples aThermodynamic, examples a
Thermodynamic, examples a
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquid
 
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar ThermalLecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
 
New ton presentation_c
New ton  presentation_cNew ton  presentation_c
New ton presentation_c
 
An Investigation in Performance Enhancement of Induced Draft Counter Flow Wet...
An Investigation in Performance Enhancement of Induced Draft Counter Flow Wet...An Investigation in Performance Enhancement of Induced Draft Counter Flow Wet...
An Investigation in Performance Enhancement of Induced Draft Counter Flow Wet...
 
study material on shell and tube heat exchagers.pdf
study material on shell and tube heat exchagers.pdfstudy material on shell and tube heat exchagers.pdf
study material on shell and tube heat exchagers.pdf
 
مبدل های حرارتی
مبدل های حرارتیمبدل های حرارتی
مبدل های حرارتی
 
High Pressure Die Casting Cooling calculation with application of Thermodynamics
High Pressure Die Casting Cooling calculation with application of ThermodynamicsHigh Pressure Die Casting Cooling calculation with application of Thermodynamics
High Pressure Die Casting Cooling calculation with application of Thermodynamics
 
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptGas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.ppt
 
Ch18 ssm
Ch18 ssmCh18 ssm
Ch18 ssm
 

Kürzlich hochgeladen

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 

Kürzlich hochgeladen (20)

Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 

Sizing of relief valves for supercritical fluids

  • 1. Sizing of relief valves for supercritical fluids March 23rd, 2011 Alexis Torreele
  • 2. Overview Jacobs – Introduction Relief Valve Study – An Engineering Approach Relief Calculation for Supercritical Fluids − Introduction − Theoretical Background − Example Case − Discussion & Evaluation
  • 4. Jacobs – Introduction: Who Are We Committed to BeyondZero® Safety as safety is our #1 priority Relationship based company Global resource base – 57.500 employees in 25 countries on 4 continents Fortune 500 #1 Engineering & Construction Company Publicly traded on NYSE Net income $65,8 Million 1Q FY11 ($246 Million – FY10) Revenues $2,4 Billion 1Q FY11 ($9,9 Billion – FY10) Backlog $13 Billion – FY11 In business since 1947
  • 5. Jacobs – Introduction: Worldwide offices
  • 7. Jacobs – Introduction: Belgium Oil & Gas (Refining) 30 Others 12 Chemicals & Polymers 45 Pharma & Bio 13 Process, 52 Engineering & Design, 316 Project Mgt., 48 G&A, 31 Constr. Mgt, 26 Project Serv. & Admin., 82 Procurement, 14 Civil, 44 Mechanical, 31 Instrumentation, 88 Piping, 127 Electrical, 26 CAD/IT, 18
  • 8. Jacobs – Introduction: Clients Yara Total Solvay Shell SABIC Client 30-60 40-80 20-80 15-60 15-60 Workload / People 2004 1985 2003 2004 2002 2003 Since 15-20GSK 200515-60ExxonMob il 200315-60Dow 200115-30BP Chembel 200725-50Borealis 200430-50BASF SinceWorkload / People Client
  • 9. Relief Valve Study An Engineering Approach
  • 10. Relief Valve Study – An Engineering Approach Gather info: − P&ID’s − Equipment data − Etc. Define relief scenario’s: − E.g.: External fire, Blocked outlet, etc. − Use list API 521 as guidance − Use tools as HAZOP, PLANOP, client specific methods to determine applicable scenarios
  • 11. Relief Valve Study – An Engineering Approach Calculate relief scenario’s − Relief load − Relief valve orifice size Determine governing case − General approach: Scenario requiring the largest orifice size = Governing case
  • 12. Relief Valve Study – An Engineering Approach Verify inlet and outlet conditions − Pressure drop over inlet (< 3% of set pressure) − Pressure at outlet (backpressure): Superimposed backpressure: static pressure (if variable: NO conventional type valve) Built-up backpressure: pressure increase as result of relief flow (< 10% for conventional, < ca. 50% for balanced & > 50% for pilot operated type valves)
  • 13. Relief Valve Study – An Engineering Approach Determine safety valve type: − Conventional spring-loaded − Balanced bellows − Pilot operated Mechanical stress analysis Flare network study
  • 15. Introduction Objective: Calculate mass relief flow, volume relief flow and required orifice size of heat-input driven relief cases on systems with supercritical relief temperature and/or pressure. Examples: − Fire case for a Vessel − Blocked-in Heat Exchanger References: R. Ouderkirk, “Rigorously Size Relief Valves for Supercritical Fluids,” CEP magazine, pp. 34-43 (Aug. 2002). L. L. Simpson, “Estimate Two-Phase Flow in Safety Devices,” Chem. Eng., pp. 98-102, (Aug. 1991).
  • 16. Theoretical Background Definition of enthalpy: H = U + pV (1) dH = dU + Vdp + pdV (2) dU = δQ – pdV (3) Combining (2) & (3) dH = δQ + Vdp (4) p is constant during relief; hence, ∆H = Q (5) And, ∆∆∆∆H/∆∆∆∆t = Q (6)
  • 17. Theoretical Background Heat input = Enthalpy change Hi (∆H)p Hi+1 ∆t * Q Vi ∆t Vi+1 ∆∆∆∆V////∆∆∆∆t H: Specific enthalpy V: Specific volume Q: Heat input t: Time
  • 18. Example Case – Information Fire case for a Vessel Process Data (normal operation): − Content: Methane Crit. Temp. -82,7 °C Crit. Press. 45,96 bara − Level: 60% Liquid − Pressure: 10 barg − Temperature: -122 °C − Volume: 10 m³ − Area: 25 m² Qfire SP 50barg
  • 19. Example Case – Relief Process Overview 1 → 2 Heating before Relief: ‘Isochoric’ process No volume or mass change (no relief) 2 → 3 Relief: Isentropic flash Adiabatic & frictionless flow through relief valve 2 → 2’ Relief Progression: Isobaric process System at constant pressure (i.e. relief pressure)
  • 20. P-E Diagram of Methane 0.1 1 10 100 -100 100 300 500 700 900 1100 1300 1500 Enthalpy (kJ/kg) Pressure(bar) δ = 1kg/m3 δ = 0,1kg/m3 δ = 10kg/m3 δ = 100kg/m3 T=100K T=200K T=150K T=300K T=400K T=500K 1 2 2' 3 3' + Qfire + Qfire Density [kg/m³] - Temperature [K] - Entropy [kJ/(kgK)] δ = 400kg/m3 Relief Press.
  • 21. Example Case – Calculation Steps Step 1: Select Property Method Step 2: Gather Relief Case Information Step 3: Determine Heat Input Step 4: Calculate Physical Properties Step 5: Calculate Relief Flow Rate Step 6: Determine Isentropic Choked Nozzle Flux Step 7: Determine Required Orifice Size
  • 22. Example Case – Step 1 Select Property Method Requirements: − Suitable for respective component(s) − Accurate for the relevant pressure and temperature range (Pr > 1 // Tr > 1) − Accurate for both liquid and gas properties Important: Always verify property method with empirical property data!
  • 23. Example Case – Step 1 Selected Method: Lee Kesler − Fit for light hydrocarbons − Application range Pr : 0 to 10 (up to ca. 460 bara) Tr : 0,3 to 4 (ca. -216 to 485 °C) − One correlation for both liquid as well as vapor phase → No distinguishable transition from supercritical ‘liquid’ to supercritical ‘vapor’ − Integration of the thermal properties with the other physical properties → Thermodynamic cohesiveness
  • 24. Example Case – Step 2 Gather Relief Case Information Relief pressure: PSV set press.: 50 barg Fire case relief press.: 121 % of set pressure Relief press.: 61,5 bara (Pr = 1,3) Initial relief temperature: Considering an isochoric process: (Tini(pini))ρini → (Trlf (prlf))ρini (Tini(10barg))ρini → (Trlf(61,5barg))ρini -122°C → -77°C
  • 25. Example Case – Step 3 Determine Heat Input API 521 – external pool fire, heat absorption for liquids: Qfire = 43.200 * f * αααα0,82 With f = 1 (no fireproof insulation / bare metal vessel) α = 25 m² Qfire = 605,05 kW = 2.178.196 kJ/h αααα: Wetted surface [m²] f: Environment factor [-] Q: Heat input [W]
  • 26. Example Case – Step 4 Calculate Physical Properties Determine the specific volume (V), specific enthalpy (H) & entropy (S) at initial relief conditions: − Applying property method correlations in Excel spreadsheets − Using property models in Simulation Tools (Pro/II, Aspen Plus, etc.) Reiterate at increasing temperatures: − At relief pressure − Step size: ca. 3°C − # iterations: see later
  • 27. P-E Diagram Methane 0.1 1 10 100 -100 100 300 500 700 900 1100 1300 1500 Etnhalpy (kJ/kg) Pressure(bar) δ = 1kg/m3 δ = 0,1kg/m3 δ = 10kg/m3 δ = 100kg/m3 T=100K T=200K T=150K T=300K T=400K T=500K 1 2 2' 3 3' + Qfire + Qfire Density [kg/m³] - Temperature [K] - Entropy [kJ/(kgK)] δ = 400kg/m3
  • 28. Example Case – Step 4 0,01459-8,710,079-38 0,01414-18,710,036-41 0,01303-43,79,927-47 0,01259-53,79,882-50 0,01193-68,79,814-53 0,01127-83,79,746-56 0,01062-98,79,676-59 0,00978-118,79,582-62 0,00896-138,79,487-65 0,00781-168,79,341-68 0,00662-203,79,169-71 0,00527-253,78,920-74 0,00455-288,78,742-77 V, m3/kgH, kJ/kgS, kJ/(kg.K)T, °C
  • 29. Example Case – Step 5 Calculate Relief Flow Rate Volumetric flow rate: Mass flow rate: H V QV ∆ ∆ = && V V m & & = H: Specific enthalpy [kJ/kg] V: Specific volume [m³/kg] V: Volume flow [m³/s] m: Mass [kg] m: Mass flow [kg/s] Q: Heat input [kW]
  • 30. Example Case – Step 5 - 1,899 2,061 2,124 2,232 2,340 2,448 2,588 2,714 2,849 2,891 2,710 2,389 m, kg/s 0,01459 0,01414 0,01303 0,01259 0,01193 0,01127 0,01062 0,00978 0,00896 0,00781 0,00662 0,00527 0,00455 V, m3/kg - 0,02686 0,02687 0,02674 0,02662 0,02638 0,02602 0,02532 0,02432 0,02227 0,01916 0,01427 0,01088 V, m3/s -8,710,079-38 -18,710,036-41 Max. volume flow-43,79,927-47 -53,79,882-50 -68,79,814-53 -83,79,746-56 -98,79,676-59 -118,79,582-62 -138,79,487-65 -168,79,341-68 Max. mass flow-203,79,169-71 -253,78,920-74 -288,78,742-77 H, kJ/kgS, kJ/(kg.K)T, °C
  • 31. Example Case – Step 6 Determine Isentropic Choked Nozzle Flux For ‘each’ relief temperature calculate the choked nozzle flux: − Iteratively, at decreasing outlet pressure: − And, along isentropic path: − Max. flux = Choked flux ( ) b b0 V HH2 G − = b0 SS = H: Specific enthalpy [J/kg] V: Specific volume [m³/kg] G: Mass flux [kg/(m².s)] S: Entropy [kJ/(kg.K)] 0: Inlet condition b: Outlet condition
  • 32. P-E Diagram Methane 0.1 1 10 100 -100 100 300 500 700 900 1100 1300 1500 Etnhalpy (kJ/kg) Pressure(bar) δ = 1kg/m3 δ = 0,1kg/m3 δ = 10kg/m3 δ = 100kg/m3 T=100K T=200K T=150K T=300K T=400K T=500K 1 2 2' 3 3' + Qfire + Qfire Density [kg/m³] - Temperature [K] - Entropy [kJ/(kgK)] δ = 400kg/m3
  • 33. Example Case – Step 6 Relief temperature: -68 °C 17479 17931 18058 16496 14009 10248 - G, kg/(m².s) T0, p0: -185,00,0130934,5-92 -179,50,0113439,0-88 : GChoked -174,70,0098843,5-85 -170,40,0092448,0-80 -166,40,0087852,5-76 -162,50,0084057,0-72 -158,80,0080861,5-68 Hb, kJ/kgVb, m³/kgpb, baraTb, °C
  • 34. Example Case – Step 6 Iteration = time consuming process!! Alternative method: use simplified correlations to determine isentropic choked flux − J.C. Leung, “A Generalized Correlation for One-component Homogeneous Equilibrium Flashing Choked Flow,” AIChE Journal, pp. 1743-1746 (Oct. 1986). − 0 0 choked V p G ⋅ = ω η
  • 35. ATTENTION: 2-phase flow Relief of supercritical fluids can lead to 2-phase flow! Homogenous Equilibrium Model (HEM) Assumptions 1. Velocities of phases are equal 2. Phases are at thermodynamic equilibrium Formula applies: And H = xL.HL + (1-xL).HG V = xL.VL + (1-xL).VG ( ) b b0 V HH2 G − = H: Specific enthalpy [J/kg] V: Specific volume [m³/kg] G: Mass flux [kg/(m².s)] 0: Inlet condition b: Outlet condition L: Liquid phase G: Gas phase
  • 36. Example Case – Step 7 Determine Required Orifice Size • API 521: With backpressure correction, Kb = 1 (backpressure << 10%) combination correction, Kc = 1 (no rupture disk) discharge coefficient, Kd = 0,975 (assuming vapor) viscosity correction, Kv = 1 vdcbchoked KKKKG m A & = A: Effective orifice area [m²] m: Mass flow [kg/s] Gchoked: Choked mass flux [kg/(m².s)]
  • 37. Example Case – Step 7 - 1,899 2,061 2,124 2,232 2,340 2,448 2,588 2,714 2,849 2,891 2,710 2,389 m, kg/s - - - 141 - - - - 152 155 153 - 96 A, mm² 0,01459 0,01414 0,01303 0,01259 0,01193 0,01127 0,01062 0,00978 0,00896 0,00781 0,00662 0,00527 0,00455 V, m3/kg - 0,02686 0,02687 0,02674 0,02662 0,02638 0,02602 0,02532 0,02432 0,02227 0,01916 0,01427 0,01088 V, m3/s -8,710,079-38 -18,710,036-41 -43,79,927-47 -53,79,882-50 -68,79,814-53 -83,79,746-56 -98,79,676-59 -118,79,582-62 -138,79,487-65 Req. Nozzle Size-168,79,341-68 -203,79,169-71 -253,78,920-74 -288,78,742-77 H, kJ/kgS, kJ/(kg.K)T, °C
  • 38. Calculation Results 40% 50% 60% 70% 80% 90% 100% 200 210 220 230 240 250 Temperature (K) Orifice Area Volume Relief Rate Mass Relief Rate
  • 39. Example Case – Results When all values (relief volume flow, mass flow and nozzle size) decrease with increasing relief temperature: stop iterations. Determine selected effective orifice (API 526) based on maximum calculated nozzle size value: − Max. nozzle size value: 155 mm² − Selected standard orifice: 198 mm² (‘F’ - orifice) Calculate pressure drop over inlet and discharge Determine safety valve type (conventional, balanced bellows, pilot operated…) …
  • 40. Example Case – Conclusions Specific calculation method is required: − Fluids that are below critical conditions in normal operation can have super critical relief − Max. mass flow ≠ Max. volume flow ≠ Min. required nozzle size − Required nozzle size determined using a simplified method (API 521 §5.15.2.2.2): 254 mm² vs. 155 mm²
  • 42. Safety Valve Types Bellows Pilot Conventional Balanced Bellows Pilot Operated
  • 43. General flux equation ( )( ) ( )                         −+⋅      −+ −+− = ∫ t 2 2 f g P P fg 2 x1xSv)x1( S xv dpv)x1xv2 G t r