SlideShare ist ein Scribd-Unternehmen logo
1 von 49
Downloaden Sie, um offline zu lesen
Alan Courtay
October 29, 2015
Paris Saber Seminar, La Defense
Modeling of PMSM Motor Drive
Multi Time Scale Analysis with Saber
© 2015 Synopsys, Inc. 2
Simplified Electric Vehicle Powertrain
Modeled after Market Available Electric Vehicle
Published
PMSM Electric Motor Max power / torque: 80 kW / 280 Nm
Li-Ion Battery
Total energy: 24 kWh
Max power > 90 kW
Number of cells: 192 (2 parallel, 96 series)
Cell voltage: 3.8 V
Nominal system voltage: 364.8 V
Gear Ratio 1/7.94
Curb Weight 1521 kg
0-100 km/h ~ 10 sec
Drag Coefficient 0.28
Inverter Frequency 5 kHz
Assumed
PMSM Electric Motor Max power / torque: 100 kW / 178 Nm, 8 poles
Inverter Efficiency 90%
Gear Efficiency 97%
Wheel Radius 0.3 m
© 2015 Synopsys, Inc. 3
Simplified Electric Vehicle Powertrain
Modeled after Market Available Electric Vehicle
Published
PMSM Electric Motor Max power / torque: 80 kW / 280 Nm
Li-Ion Battery
Total energy: 24 kWh
Max power > 90 kW
Number of cells: 192 (2 parallel, 96 series)
Cell voltage: 3.8 V
Nominal system voltage: 364.8 V
Gear Ratio 1/7.94
Curb Weight 1521 kg
0-100 km/h ~ 10 sec
Drag Coefficient 0.28
Inverter Frequency 5 kHz
Assumed
PMSM Electric Motor Max power / torque: 100 kW / 178 Nm, 8 poles
Inverter Efficiency 90%
Gear Efficiency 97%
Wheel Radius 0.3 m
IPMSM model from
JMAG-RT Motor Model
Library
© 2015 Synopsys, Inc. 4
1
2
3
4• Level 1
– Behavioral Li-Ion battery
– Dynamic thermal dq inverter and PMSM
– Thermal network
• Level 2
– Average/non-switching inverter /w TLU losses
– LdLq or detailed FEA-based PMSM
• Level 3
– Ideal switch inverter /w TLU losses
• Level 4
– Improved datasheet-driven IGBT1
Abstraction Levels
© 2015 Synopsys, Inc. 5
1
© 2015 Synopsys, Inc. 6
1Simplified Vehicle Dynamics
© 2015 Synopsys, Inc. 7
1
ia,va
ib,vb
ic,vc
a
b
c
Sinusoidal currents and switching/PWM voltages are abstracted to only
retain phase and amplitude of signals in synchronous reference frame
iq
id
vq
vd
i
v
© 2015 Synopsys, Inc. 8
1
FEA-based look-up tables used for
flux saturation Ld(id) and Lq(iq), and
speed/current dependent iron loss
© 2015 Synopsys, Inc. 9
1Reactance Torque
© 2015 Synopsys, Inc. 10
1
NS
Reactance Torque
© 2015 Synopsys, Inc. 11
1Reactance Torque
angle
torque
90o
© 2015 Synopsys, Inc. 12
1Reluctance Torque
Br
Hc
m
The permanent magnets have low
permeability / high reluctance (~ air
gap). The rotor orients itself in the
position of least flux resistance.
© 2015 Synopsys, Inc. 13
1
Average Inverter Model
including Efficiency Map
© 2015 Synopsys, Inc. 14
Switching Losses
1
≈ 𝛼 ∙ 𝒗 𝒐𝒇𝒇 ∙ 𝒊 𝒐𝒏
on+off
𝑷 𝒔𝒘 = 𝑬 𝒔𝒘 ∙ 𝒇 𝒔
= 𝑬 𝒔𝒘 (𝒗 𝒐𝒇𝒇, 𝒊 𝒐𝒏)
rec+
𝒊 𝒐𝒏 (𝑨) 𝒗 𝒐𝒇𝒇 (𝑽)
𝑬 𝒔𝒘 (𝑱)
© 2015 Synopsys, Inc. 15
v
i
one 1D look-up table: 𝑃 𝑐(𝑖) = 𝑖. 𝑣(𝑖)
Conduction Losses
1
© 2015 Synopsys, Inc. 16
1
Field Oriented Control
Vector Control
© 2015 Synopsys, Inc. 17
1
𝑖∗2
= 𝑖 𝑑
∗2
+ 𝑖 𝑞
∗2
𝜕𝑇
𝜕𝑖∗ = 0
𝑖 𝑑
∗
=
𝜑 𝑚 − 𝜑 𝑚
2 + 8 𝐿 𝑞 − 𝐿 𝑑
2
𝑖∗2
4 𝐿 𝑞 − 𝐿 𝑑
𝑖 𝑞
∗
= 𝑠𝑔𝑛(𝑖∗) 𝑖∗2
− 𝑖 𝑑
∗2
Maximum Torque Per Amp
𝑖 𝑑
∗
𝑖 𝑞
∗
𝑖∗
Field Oriented ControlField Oriented Control
MTPA 𝑖∗
𝑖 𝑑
∗
𝜃𝑖
𝑖 𝑞
∗
𝑖 𝑑
𝑖 𝑞
© 2015 Synopsys, Inc. 18
1Flux Weakening
𝑖 𝑑
∗
𝑖 𝑞
∗
𝑖 𝑑
𝑖 𝑞
Field Oriented Control
© 2015 Synopsys, Inc. 19
1Flux Weakening
𝑖 𝑑
∗
𝑖 𝑞
∗
𝑖 𝑑
𝑖 𝑞
Field Oriented Control
𝑉𝑞 = 𝑅𝑖 𝑞 + 𝐿 𝑞
𝑑𝑖 𝑞
𝑑𝑡
+ 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚
𝑉𝑑 = 𝑅𝑖 𝑑 + 𝐿 𝑑
𝑑𝑖 𝑑
𝑑𝑡
− 𝜔𝐿 𝑞 𝑖 𝑞
𝑇 =
3
4
𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞
R neglected,
steady-state
© 2015 Synopsys, Inc. 20
1Flux Weakening
𝑖 𝑑
∗
𝑖 𝑞
∗
𝑖 𝑑
𝑖 𝑞
Field Oriented Control
𝑉𝑞 = 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚
𝑉𝑑 = −𝜔𝐿 𝑞 𝑖 𝑞
𝑇 =
3
4
𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞
At high speed, back-EMF
exceeds DC link voltage
© 2015 Synopsys, Inc. 21
1Flux Weakening
𝑖 𝑑
∗
𝑖 𝑞
∗
𝑖 𝑑
𝑖 𝑞
Field Oriented Control
𝑉𝑞 = 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚
𝑉𝑑 = −𝜔𝐿 𝑞 𝑖 𝑞
𝑇 =
3
4
𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞
Increase current angle (negative
component of id) to “weaken”
magnet flux and reduce back-EMF
© 2015 Synopsys, Inc. 22
𝑖 𝑑
∗
𝑖 𝑞
∗
𝑖 𝑑
𝑖 𝑞
Field Oriented Control
MTPA 𝑖
−
𝜑 𝑚
𝐿 𝑑
𝜑 𝑚
𝐿 𝑞 − 𝐿 𝑑
𝑖 𝑞
𝑖 𝑑
1Flux Weakening
𝑉𝑞 = 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚
𝑉𝑑 = −𝜔𝐿 𝑞 𝑖 𝑞
𝑇 =
3
4
𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞
Increase current angle (negative
component of id) to “weaken”
magnet flux and reduce back-EMF
𝑣2
= 𝑣 𝑑
2
+ 𝑣 𝑞
2
Voltage Limit Ellipse
𝑣2
𝜔2
= 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚
2
+ 𝐿 𝑞
2
𝑖 𝑞
2
𝜃𝑖
© 2015 Synopsys, Inc. 23
𝑖 𝑑
∗
𝑖 𝑞
∗
𝑖 𝑑
𝑖 𝑞
Field Oriented Control
MTPA
𝑖
−
𝜑 𝑚
𝐿 𝑑
𝜑 𝑚
𝐿 𝑞 − 𝐿 𝑑
Increasing Speed
𝑖 𝑞
𝑖 𝑑
1Flux Weakening
𝑉𝑞 = 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚
𝑉𝑑 = −𝜔𝐿 𝑞 𝑖 𝑞
𝑇 =
3
4
𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞
Increase current angle (negative
component of id) to “weaken”
magnet flux and reduce back-EMF
𝜃𝑖
𝑣2
= 𝑣 𝑑
2
+ 𝑣 𝑞
2
Voltage Limit Ellipse
𝑣2
𝜔2
= 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚
2
+ 𝐿 𝑞
2
𝑖 𝑞
2
© 2015 Synopsys, Inc. 24
1
Field Oriented Control
𝑉𝑞 = 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚
𝑉𝑑 = −𝜔𝐿 𝑞 𝑖 𝑞
𝑇 =
3
4
𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞
Feedforward Compensation
© 2015 Synopsys, Inc. 25
1• Analyze system efficiency over long driving cycles
• Evaluate energy flow in critical regimes
(deceleration, braking)
• Handle power dissipation and cooling
• Design stable motor control (e.g. FOC)
© 2015 Synopsys, Inc. 26
1• Analyze system efficiency over long driving cycles
• Evaluate energy flow in critical regimes
(deceleration, braking)
• Handle power dissipation and cooling
• Design stable motor control (e.g. FOC)
© 2015 Synopsys, Inc. 27
1
2
Sinusoidal currents and voltages (no switching)
© 2015 Synopsys, Inc. 28
1
2
a
b
c
𝜃 𝑚
𝜃𝑖
i
Accounts for
1. Mutual coupling between phases
2. Flux saturation
3. Spatial harmonics
© 2015 Synopsys, Inc. 29
1
2
• Analyze system dynamics
• Evaluate energy flow in critical regimes
(deceleration, braking)
• Design stable motor control (e.g. FOC)
• Evaluate torque ripples
Motor
Torque
Regenerative
Braking
Sloped Terrain Startup
© 2015 Synopsys, Inc. 30
1
2
• Analyze system dynamics
• Evaluate energy flow in critical regimes
(deceleration, braking)
• Design stable motor control (e.g. FOC)
• Evaluate torque ripples
Torque ripples due to
spatial harmonics
© 2015 Synopsys, Inc. 31
1
2
3
• Design PWM control (e.g. compensate dead time distortion)
• Mitigate faults in critical regimes (e.g. in flux weakening mode)
Dead time distortion
(corrected and uncorrected)
© 2015 Synopsys, Inc. 32
1
2
3
4
• Optimize gate drive tradeoff losses vs. EMI noise
• Control current/voltage overshoot
• Prevent accidental turn-on
𝑖 = 𝐶𝑐𝑔 ∙
𝑑𝑉𝑐𝑒
𝑑𝑡
≫ 1
Vg < Vge(th)
Rg
Vgei > Vge(th)
c
e
𝑉 = 𝐿 𝑒 ∙
𝑑𝑖 𝑐
𝑑𝑡
≪ −1
Accidental turn-on
mechanisms
© 2015 Synopsys, Inc. 33
2016.03 IGBT Tool
• Improved matching of transient
characteristics
– Cge made non-linear
– Control of turn-off voltage oscillations
– Decoupling between turn-on and turn-off
• Easier characterization
– Optimizer at most steps, including
transient characteristics
– Turn-on and turn-off characteristics
combined in one view
– Improved DC anchor points
– Library of pre-characterized components
– Numerous bug fixes
© 2015 Synopsys, Inc. 34
IGBT Principle
Collector/Anode
Emitter/Cathode
P+ Emitter
Gate
P
N- Base
P+
N+
• Two junctions
– J1 space charge region develops
when Vce < 0
– J2 space charge region develops
when Vce > 0 and Vge < Vge(th)
– Wide and low doped N- base region
→ large blocking voltage
• BJT+MOSFET
– Insulated gate → voltage control
– Holes injected from P+ emitter →
conductivity modulation
– High forward conduction current
density: 𝑖 𝑐 = 𝑖 𝑚𝑜𝑠 + 𝑖 𝑝
• Slow removal of carriers in the
base → longer switching time
during turn-off and tail current
J1
J2
+
+
© 2015 Synopsys, Inc. 35
IGBT Principle
Collector/Anode
Emitter/Cathode
P+ Emitter
Gate
P
N- Base
Rb
PNP
N-MOS
P+
N+
imos ip
(𝛽)
++
+
holes
electrons
• Two junctions
– J1 space charge region develops
when Vce < 0
– J2 space charge region develops
when Vce > 0 and Vge < Vge(th)
– Wide and low doped N- base region
→ large blocking voltage
• BJT+MOSFET
– Insulated gate → voltage control
– Holes injected from P+ emitter →
conductivity modulation
– High forward conduction current
density: 𝑖 𝑐 = 𝑖 𝑚𝑜𝑠 + 𝑖 𝑝
• Slow removal of carriers in the
base → longer switching time
during turn-off and tail current
© 2015 Synopsys, Inc. 36
IGBT Principle
Collector/Anode
Emitter/Cathode
P+ Emitter
Gate
P
N- Base
P+
N+
imos ip+
+
• Two junctions
– J1 space charge region develops
when Vce < 0
– J2 space charge region develops
when Vce > 0 and Vge < Vge(th)
– Wide and low doped N- base region
→ large blocking voltage
• BJT+MOSFET
– Insulated gate → voltage control
– Holes injected from P+ emitter →
conductivity modulation
– High forward conduction current
density: 𝑖 𝑐 = 𝑖 𝑚𝑜𝑠 + 𝑖 𝑝
• Slow removal of carriers in the
base → longer switching time
during turn-off and tail current
© 2015 Synopsys, Inc. 37
IGBT Principle
Collector/Anode
Emitter/Cathode
P+ Emitter
Gate
P
N- Base
P+
N+
+• Two junctions
– J1 space charge region develops
when Vce < 0
– J2 space charge region develops
when Vce > 0 and Vge < Vge(th)
– Wide and low doped N- base region
→ large blocking voltage
• BJT+MOSFET
– Insulated gate → voltage control
– Holes injected from P+ emitter →
conductivity modulation
– High forward conduction current
density: 𝑖 𝑐 = 𝑖 𝑚𝑜𝑠 + 𝑖 𝑝
• Slow removal of carriers in the
base → longer switching time
during turn-off and tail current
© 2015 Synopsys, Inc. 38
© 2015 Synopsys, Inc. 39
IKW75N65EL5
Static Characteristics
© 2015 Synopsys, Inc. 40
Quasi-Static Characteristics
IKW75N65EL5
© 2015 Synopsys, Inc. 41
IKW75N65EL5
Quasi-Static Characteristics
© 2015 Synopsys, Inc. 42
Ic
Vcc
Inductive Clamp Test Circuit
Vcc
Rg(off)
Vg(on)
Vg(off)
Lp
DUT
(IGBT)
-15V
Ic
DUT
(Diode)
Rg(on)
Vg(on)
© 2015 Synopsys, Inc. 43
11
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
𝐶𝑟𝑒𝑠 = 𝐶𝑔𝑐
𝐶𝑖𝑒𝑠 = 𝐶𝑔𝑐 + 𝐶𝑔𝑒
𝐶𝑜𝑒𝑠 = 𝐶𝑔𝑐 + 𝐶𝑐𝑒
© 2015 Synopsys, Inc. 44
𝐶𝑟𝑒𝑠 = 𝐶𝑔𝑐
𝐶𝑖𝑒𝑠 = 𝐶𝑔𝑐 + 𝐶𝑔𝑒
𝐶𝑜𝑒𝑠 = 𝐶𝑔𝑐 + 𝐶𝑐𝑒
Cies = dQg / dVgs
Miller plateau Vgs
~1.2nF
~1.2nF
© 2015 Synopsys, Inc. 45
IKW75N65EL5
Non Quasi-Static Characteristics
© 2015 Synopsys, Inc. 46
IKW75N65EL5
Non Quasi-Static Characteristics
© 2015 Synopsys, Inc. 47
IKW75N65EL5
Non Quasi-Static Characteristics
© 2015 Synopsys, Inc. 48
IKW75N65EL5
Thermal Characteristics
Cauer networkFoster network
Duty cycle zero
sufficient to match
the other curvesOnly physical if
connected to
temperature source
© 2015 Synopsys, Inc. 49
Future Work
• Merging of MOSFET and IGBT
tools
• Improve DC characteristics for
SiC MOSFET’s
• sw1_l4 and pwld with accurate
switching losses (TLU)
• Battery characterization tool
(with enhanced model)
NXP TrenchMOS BUK9640-100A

Weitere ähnliche Inhalte

Was ist angesagt?

Direct torque control of induction motor using space vector modulation
Direct torque control of induction motor using space vector modulationDirect torque control of induction motor using space vector modulation
Direct torque control of induction motor using space vector modulation
IAEME Publication
 
Permanent magnet Synchronous machines
Permanent magnet Synchronous machinesPermanent magnet Synchronous machines
Permanent magnet Synchronous machines
Rajeev Kumar
 
Vector Control of AC Induction Motors
Vector Control of AC Induction MotorsVector Control of AC Induction Motors
Vector Control of AC Induction Motors
Pranjal Barman
 

Was ist angesagt? (20)

Direct torque control method
Direct torque control methodDirect torque control method
Direct torque control method
 
PMSM
PMSMPMSM
PMSM
 
Speed Control of Synchronous Motor
Speed Control of Synchronous Motor Speed Control of Synchronous Motor
Speed Control of Synchronous Motor
 
Electrical drives and_controls
Electrical drives and_controlsElectrical drives and_controls
Electrical drives and_controls
 
POWER HARMONICS- SOURCES, ISSUES AND MITIGATION
POWER HARMONICS- SOURCES, ISSUES AND MITIGATIONPOWER HARMONICS- SOURCES, ISSUES AND MITIGATION
POWER HARMONICS- SOURCES, ISSUES AND MITIGATION
 
SINGULAR POINT IN NON-LINEAR SYSTEM
SINGULAR POINT IN NON-LINEAR SYSTEM SINGULAR POINT IN NON-LINEAR SYSTEM
SINGULAR POINT IN NON-LINEAR SYSTEM
 
Direct torque control of induction motor using space vector modulation
Direct torque control of induction motor using space vector modulationDirect torque control of induction motor using space vector modulation
Direct torque control of induction motor using space vector modulation
 
Electric Drive Chapter 1
Electric Drive Chapter 1Electric Drive Chapter 1
Electric Drive Chapter 1
 
Unit 3
Unit 3Unit 3
Unit 3
 
DC Motors
DC MotorsDC Motors
DC Motors
 
Power system stability
Power system stabilityPower system stability
Power system stability
 
Svpwm
SvpwmSvpwm
Svpwm
 
Dynamic voltage restorer
Dynamic voltage restorerDynamic voltage restorer
Dynamic voltage restorer
 
Electrical Power Systems Synchronous Generator
Electrical Power Systems Synchronous GeneratorElectrical Power Systems Synchronous Generator
Electrical Power Systems Synchronous Generator
 
Dc motor drive
Dc motor driveDc motor drive
Dc motor drive
 
Permanent magnet Synchronous machines
Permanent magnet Synchronous machinesPermanent magnet Synchronous machines
Permanent magnet Synchronous machines
 
Vector Speed Control of Induction motor
 Vector Speed Control of Induction motor Vector Speed Control of Induction motor
Vector Speed Control of Induction motor
 
Vector Control of AC Induction Motors
Vector Control of AC Induction MotorsVector Control of AC Induction Motors
Vector Control of AC Induction Motors
 
Space vector PWM
Space vector PWMSpace vector PWM
Space vector PWM
 
Pmsg
PmsgPmsg
Pmsg
 

Andere mochten auch (7)

Saber Functional Safety / Fault Tool
Saber Functional Safety / Fault ToolSaber Functional Safety / Fault Tool
Saber Functional Safety / Fault Tool
 
Simulation of a_pmsm_motor_control_system
Simulation of a_pmsm_motor_control_systemSimulation of a_pmsm_motor_control_system
Simulation of a_pmsm_motor_control_system
 
Miracle on the Willamette
Miracle on the WillametteMiracle on the Willamette
Miracle on the Willamette
 
Modeling and simulation of pmsm
Modeling and simulation of pmsmModeling and simulation of pmsm
Modeling and simulation of pmsm
 
Industrial motor c ontrol part 2 not sure if got use or not freescale
Industrial motor c ontrol part 2   not sure if got use or not freescaleIndustrial motor c ontrol part 2   not sure if got use or not freescale
Industrial motor c ontrol part 2 not sure if got use or not freescale
 
speed control of three phase induction motor
speed control of three phase induction motorspeed control of three phase induction motor
speed control of three phase induction motor
 
3 ph induction motor ppt
3 ph induction motor ppt3 ph induction motor ppt
3 ph induction motor ppt
 

Ähnlich wie EV Powertrain Simulations in Saber

Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
aicdesign
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_Mappus
Steve Mappus
 
H2PToday1201_design_IR
H2PToday1201_design_IRH2PToday1201_design_IR
H2PToday1201_design_IR
Parviz Parto
 
Lecture note macine & drives (power electronic converter)
Lecture note macine & drives (power electronic converter)Lecture note macine & drives (power electronic converter)
Lecture note macine & drives (power electronic converter)
Faiz Mansur
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
aicdesign
 

Ähnlich wie EV Powertrain Simulations in Saber (20)

Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
SOLID STATE TRANSFORMER - USING FLYBACK CONVERTER
SOLID STATE TRANSFORMER - USING FLYBACK CONVERTERSOLID STATE TRANSFORMER - USING FLYBACK CONVERTER
SOLID STATE TRANSFORMER - USING FLYBACK CONVERTER
 
Neil Kirby: VSC HVDC Transmission and Emerging Technologies in DC Grids
Neil Kirby: VSC HVDC Transmission and Emerging Technologies in DC GridsNeil Kirby: VSC HVDC Transmission and Emerging Technologies in DC Grids
Neil Kirby: VSC HVDC Transmission and Emerging Technologies in DC Grids
 
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
 
Webinar: Desmistificando projetos de fontes chaveadas
Webinar: Desmistificando projetos de fontes chaveadasWebinar: Desmistificando projetos de fontes chaveadas
Webinar: Desmistificando projetos de fontes chaveadas
 
Advanced motion controls 10a8
Advanced motion controls 10a8Advanced motion controls 10a8
Advanced motion controls 10a8
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
 
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
motor_2.ppt
motor_2.pptmotor_2.ppt
motor_2.ppt
 
chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.ppt
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_Mappus
 
Ppt iitr
Ppt iitrPpt iitr
Ppt iitr
 
SAIKAT-VECC final
SAIKAT-VECC finalSAIKAT-VECC final
SAIKAT-VECC final
 
IRJET- Tap Changing using Solid State Devices for Single Phase Transformer
IRJET- Tap Changing using Solid State Devices for Single Phase TransformerIRJET- Tap Changing using Solid State Devices for Single Phase Transformer
IRJET- Tap Changing using Solid State Devices for Single Phase Transformer
 
H2PToday1201_design_IR
H2PToday1201_design_IRH2PToday1201_design_IR
H2PToday1201_design_IR
 
Lecture note macine & drives (power electronic converter)
Lecture note macine & drives (power electronic converter)Lecture note macine & drives (power electronic converter)
Lecture note macine & drives (power electronic converter)
 
Lect2 up310 (100328)
Lect2 up310 (100328)Lect2 up310 (100328)
Lect2 up310 (100328)
 
Principles Control & Protection of HVDC Schemes
Principles Control & Protection of HVDC SchemesPrinciples Control & Protection of HVDC Schemes
Principles Control & Protection of HVDC Schemes
 
LOW CAPACITANCE CASCADED H BRIDGE MULTILEVEL BASED STATCOM
LOW CAPACITANCE CASCADED H BRIDGE MULTILEVEL BASED STATCOMLOW CAPACITANCE CASCADED H BRIDGE MULTILEVEL BASED STATCOM
LOW CAPACITANCE CASCADED H BRIDGE MULTILEVEL BASED STATCOM
 

Kürzlich hochgeladen

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 

Kürzlich hochgeladen (20)

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 

EV Powertrain Simulations in Saber

  • 1. Alan Courtay October 29, 2015 Paris Saber Seminar, La Defense Modeling of PMSM Motor Drive Multi Time Scale Analysis with Saber
  • 2. © 2015 Synopsys, Inc. 2 Simplified Electric Vehicle Powertrain Modeled after Market Available Electric Vehicle Published PMSM Electric Motor Max power / torque: 80 kW / 280 Nm Li-Ion Battery Total energy: 24 kWh Max power > 90 kW Number of cells: 192 (2 parallel, 96 series) Cell voltage: 3.8 V Nominal system voltage: 364.8 V Gear Ratio 1/7.94 Curb Weight 1521 kg 0-100 km/h ~ 10 sec Drag Coefficient 0.28 Inverter Frequency 5 kHz Assumed PMSM Electric Motor Max power / torque: 100 kW / 178 Nm, 8 poles Inverter Efficiency 90% Gear Efficiency 97% Wheel Radius 0.3 m
  • 3. © 2015 Synopsys, Inc. 3 Simplified Electric Vehicle Powertrain Modeled after Market Available Electric Vehicle Published PMSM Electric Motor Max power / torque: 80 kW / 280 Nm Li-Ion Battery Total energy: 24 kWh Max power > 90 kW Number of cells: 192 (2 parallel, 96 series) Cell voltage: 3.8 V Nominal system voltage: 364.8 V Gear Ratio 1/7.94 Curb Weight 1521 kg 0-100 km/h ~ 10 sec Drag Coefficient 0.28 Inverter Frequency 5 kHz Assumed PMSM Electric Motor Max power / torque: 100 kW / 178 Nm, 8 poles Inverter Efficiency 90% Gear Efficiency 97% Wheel Radius 0.3 m IPMSM model from JMAG-RT Motor Model Library
  • 4. © 2015 Synopsys, Inc. 4 1 2 3 4• Level 1 – Behavioral Li-Ion battery – Dynamic thermal dq inverter and PMSM – Thermal network • Level 2 – Average/non-switching inverter /w TLU losses – LdLq or detailed FEA-based PMSM • Level 3 – Ideal switch inverter /w TLU losses • Level 4 – Improved datasheet-driven IGBT1 Abstraction Levels
  • 5. © 2015 Synopsys, Inc. 5 1
  • 6. © 2015 Synopsys, Inc. 6 1Simplified Vehicle Dynamics
  • 7. © 2015 Synopsys, Inc. 7 1 ia,va ib,vb ic,vc a b c Sinusoidal currents and switching/PWM voltages are abstracted to only retain phase and amplitude of signals in synchronous reference frame iq id vq vd i v
  • 8. © 2015 Synopsys, Inc. 8 1 FEA-based look-up tables used for flux saturation Ld(id) and Lq(iq), and speed/current dependent iron loss
  • 9. © 2015 Synopsys, Inc. 9 1Reactance Torque
  • 10. © 2015 Synopsys, Inc. 10 1 NS Reactance Torque
  • 11. © 2015 Synopsys, Inc. 11 1Reactance Torque angle torque 90o
  • 12. © 2015 Synopsys, Inc. 12 1Reluctance Torque Br Hc m The permanent magnets have low permeability / high reluctance (~ air gap). The rotor orients itself in the position of least flux resistance.
  • 13. © 2015 Synopsys, Inc. 13 1 Average Inverter Model including Efficiency Map
  • 14. © 2015 Synopsys, Inc. 14 Switching Losses 1 ≈ 𝛼 ∙ 𝒗 𝒐𝒇𝒇 ∙ 𝒊 𝒐𝒏 on+off 𝑷 𝒔𝒘 = 𝑬 𝒔𝒘 ∙ 𝒇 𝒔 = 𝑬 𝒔𝒘 (𝒗 𝒐𝒇𝒇, 𝒊 𝒐𝒏) rec+ 𝒊 𝒐𝒏 (𝑨) 𝒗 𝒐𝒇𝒇 (𝑽) 𝑬 𝒔𝒘 (𝑱)
  • 15. © 2015 Synopsys, Inc. 15 v i one 1D look-up table: 𝑃 𝑐(𝑖) = 𝑖. 𝑣(𝑖) Conduction Losses 1
  • 16. © 2015 Synopsys, Inc. 16 1 Field Oriented Control Vector Control
  • 17. © 2015 Synopsys, Inc. 17 1 𝑖∗2 = 𝑖 𝑑 ∗2 + 𝑖 𝑞 ∗2 𝜕𝑇 𝜕𝑖∗ = 0 𝑖 𝑑 ∗ = 𝜑 𝑚 − 𝜑 𝑚 2 + 8 𝐿 𝑞 − 𝐿 𝑑 2 𝑖∗2 4 𝐿 𝑞 − 𝐿 𝑑 𝑖 𝑞 ∗ = 𝑠𝑔𝑛(𝑖∗) 𝑖∗2 − 𝑖 𝑑 ∗2 Maximum Torque Per Amp 𝑖 𝑑 ∗ 𝑖 𝑞 ∗ 𝑖∗ Field Oriented ControlField Oriented Control MTPA 𝑖∗ 𝑖 𝑑 ∗ 𝜃𝑖 𝑖 𝑞 ∗ 𝑖 𝑑 𝑖 𝑞
  • 18. © 2015 Synopsys, Inc. 18 1Flux Weakening 𝑖 𝑑 ∗ 𝑖 𝑞 ∗ 𝑖 𝑑 𝑖 𝑞 Field Oriented Control
  • 19. © 2015 Synopsys, Inc. 19 1Flux Weakening 𝑖 𝑑 ∗ 𝑖 𝑞 ∗ 𝑖 𝑑 𝑖 𝑞 Field Oriented Control 𝑉𝑞 = 𝑅𝑖 𝑞 + 𝐿 𝑞 𝑑𝑖 𝑞 𝑑𝑡 + 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚 𝑉𝑑 = 𝑅𝑖 𝑑 + 𝐿 𝑑 𝑑𝑖 𝑑 𝑑𝑡 − 𝜔𝐿 𝑞 𝑖 𝑞 𝑇 = 3 4 𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞 R neglected, steady-state
  • 20. © 2015 Synopsys, Inc. 20 1Flux Weakening 𝑖 𝑑 ∗ 𝑖 𝑞 ∗ 𝑖 𝑑 𝑖 𝑞 Field Oriented Control 𝑉𝑞 = 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚 𝑉𝑑 = −𝜔𝐿 𝑞 𝑖 𝑞 𝑇 = 3 4 𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞 At high speed, back-EMF exceeds DC link voltage
  • 21. © 2015 Synopsys, Inc. 21 1Flux Weakening 𝑖 𝑑 ∗ 𝑖 𝑞 ∗ 𝑖 𝑑 𝑖 𝑞 Field Oriented Control 𝑉𝑞 = 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚 𝑉𝑑 = −𝜔𝐿 𝑞 𝑖 𝑞 𝑇 = 3 4 𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞 Increase current angle (negative component of id) to “weaken” magnet flux and reduce back-EMF
  • 22. © 2015 Synopsys, Inc. 22 𝑖 𝑑 ∗ 𝑖 𝑞 ∗ 𝑖 𝑑 𝑖 𝑞 Field Oriented Control MTPA 𝑖 − 𝜑 𝑚 𝐿 𝑑 𝜑 𝑚 𝐿 𝑞 − 𝐿 𝑑 𝑖 𝑞 𝑖 𝑑 1Flux Weakening 𝑉𝑞 = 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚 𝑉𝑑 = −𝜔𝐿 𝑞 𝑖 𝑞 𝑇 = 3 4 𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞 Increase current angle (negative component of id) to “weaken” magnet flux and reduce back-EMF 𝑣2 = 𝑣 𝑑 2 + 𝑣 𝑞 2 Voltage Limit Ellipse 𝑣2 𝜔2 = 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚 2 + 𝐿 𝑞 2 𝑖 𝑞 2 𝜃𝑖
  • 23. © 2015 Synopsys, Inc. 23 𝑖 𝑑 ∗ 𝑖 𝑞 ∗ 𝑖 𝑑 𝑖 𝑞 Field Oriented Control MTPA 𝑖 − 𝜑 𝑚 𝐿 𝑑 𝜑 𝑚 𝐿 𝑞 − 𝐿 𝑑 Increasing Speed 𝑖 𝑞 𝑖 𝑑 1Flux Weakening 𝑉𝑞 = 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚 𝑉𝑑 = −𝜔𝐿 𝑞 𝑖 𝑞 𝑇 = 3 4 𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞 Increase current angle (negative component of id) to “weaken” magnet flux and reduce back-EMF 𝜃𝑖 𝑣2 = 𝑣 𝑑 2 + 𝑣 𝑞 2 Voltage Limit Ellipse 𝑣2 𝜔2 = 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚 2 + 𝐿 𝑞 2 𝑖 𝑞 2
  • 24. © 2015 Synopsys, Inc. 24 1 Field Oriented Control 𝑉𝑞 = 𝜔 𝐿 𝑑 𝑖 𝑑 + 𝜑 𝑚 𝑉𝑑 = −𝜔𝐿 𝑞 𝑖 𝑞 𝑇 = 3 4 𝑝 𝜑 𝑚 𝑖 𝑞 + 𝐿 𝑑 − 𝐿 𝑞 𝑖 𝑑 𝑖 𝑞 Feedforward Compensation
  • 25. © 2015 Synopsys, Inc. 25 1• Analyze system efficiency over long driving cycles • Evaluate energy flow in critical regimes (deceleration, braking) • Handle power dissipation and cooling • Design stable motor control (e.g. FOC)
  • 26. © 2015 Synopsys, Inc. 26 1• Analyze system efficiency over long driving cycles • Evaluate energy flow in critical regimes (deceleration, braking) • Handle power dissipation and cooling • Design stable motor control (e.g. FOC)
  • 27. © 2015 Synopsys, Inc. 27 1 2 Sinusoidal currents and voltages (no switching)
  • 28. © 2015 Synopsys, Inc. 28 1 2 a b c 𝜃 𝑚 𝜃𝑖 i Accounts for 1. Mutual coupling between phases 2. Flux saturation 3. Spatial harmonics
  • 29. © 2015 Synopsys, Inc. 29 1 2 • Analyze system dynamics • Evaluate energy flow in critical regimes (deceleration, braking) • Design stable motor control (e.g. FOC) • Evaluate torque ripples Motor Torque Regenerative Braking Sloped Terrain Startup
  • 30. © 2015 Synopsys, Inc. 30 1 2 • Analyze system dynamics • Evaluate energy flow in critical regimes (deceleration, braking) • Design stable motor control (e.g. FOC) • Evaluate torque ripples Torque ripples due to spatial harmonics
  • 31. © 2015 Synopsys, Inc. 31 1 2 3 • Design PWM control (e.g. compensate dead time distortion) • Mitigate faults in critical regimes (e.g. in flux weakening mode) Dead time distortion (corrected and uncorrected)
  • 32. © 2015 Synopsys, Inc. 32 1 2 3 4 • Optimize gate drive tradeoff losses vs. EMI noise • Control current/voltage overshoot • Prevent accidental turn-on 𝑖 = 𝐶𝑐𝑔 ∙ 𝑑𝑉𝑐𝑒 𝑑𝑡 ≫ 1 Vg < Vge(th) Rg Vgei > Vge(th) c e 𝑉 = 𝐿 𝑒 ∙ 𝑑𝑖 𝑐 𝑑𝑡 ≪ −1 Accidental turn-on mechanisms
  • 33. © 2015 Synopsys, Inc. 33 2016.03 IGBT Tool • Improved matching of transient characteristics – Cge made non-linear – Control of turn-off voltage oscillations – Decoupling between turn-on and turn-off • Easier characterization – Optimizer at most steps, including transient characteristics – Turn-on and turn-off characteristics combined in one view – Improved DC anchor points – Library of pre-characterized components – Numerous bug fixes
  • 34. © 2015 Synopsys, Inc. 34 IGBT Principle Collector/Anode Emitter/Cathode P+ Emitter Gate P N- Base P+ N+ • Two junctions – J1 space charge region develops when Vce < 0 – J2 space charge region develops when Vce > 0 and Vge < Vge(th) – Wide and low doped N- base region → large blocking voltage • BJT+MOSFET – Insulated gate → voltage control – Holes injected from P+ emitter → conductivity modulation – High forward conduction current density: 𝑖 𝑐 = 𝑖 𝑚𝑜𝑠 + 𝑖 𝑝 • Slow removal of carriers in the base → longer switching time during turn-off and tail current J1 J2 + +
  • 35. © 2015 Synopsys, Inc. 35 IGBT Principle Collector/Anode Emitter/Cathode P+ Emitter Gate P N- Base Rb PNP N-MOS P+ N+ imos ip (𝛽) ++ + holes electrons • Two junctions – J1 space charge region develops when Vce < 0 – J2 space charge region develops when Vce > 0 and Vge < Vge(th) – Wide and low doped N- base region → large blocking voltage • BJT+MOSFET – Insulated gate → voltage control – Holes injected from P+ emitter → conductivity modulation – High forward conduction current density: 𝑖 𝑐 = 𝑖 𝑚𝑜𝑠 + 𝑖 𝑝 • Slow removal of carriers in the base → longer switching time during turn-off and tail current
  • 36. © 2015 Synopsys, Inc. 36 IGBT Principle Collector/Anode Emitter/Cathode P+ Emitter Gate P N- Base P+ N+ imos ip+ + • Two junctions – J1 space charge region develops when Vce < 0 – J2 space charge region develops when Vce > 0 and Vge < Vge(th) – Wide and low doped N- base region → large blocking voltage • BJT+MOSFET – Insulated gate → voltage control – Holes injected from P+ emitter → conductivity modulation – High forward conduction current density: 𝑖 𝑐 = 𝑖 𝑚𝑜𝑠 + 𝑖 𝑝 • Slow removal of carriers in the base → longer switching time during turn-off and tail current
  • 37. © 2015 Synopsys, Inc. 37 IGBT Principle Collector/Anode Emitter/Cathode P+ Emitter Gate P N- Base P+ N+ +• Two junctions – J1 space charge region develops when Vce < 0 – J2 space charge region develops when Vce > 0 and Vge < Vge(th) – Wide and low doped N- base region → large blocking voltage • BJT+MOSFET – Insulated gate → voltage control – Holes injected from P+ emitter → conductivity modulation – High forward conduction current density: 𝑖 𝑐 = 𝑖 𝑚𝑜𝑠 + 𝑖 𝑝 • Slow removal of carriers in the base → longer switching time during turn-off and tail current
  • 38. © 2015 Synopsys, Inc. 38
  • 39. © 2015 Synopsys, Inc. 39 IKW75N65EL5 Static Characteristics
  • 40. © 2015 Synopsys, Inc. 40 Quasi-Static Characteristics IKW75N65EL5
  • 41. © 2015 Synopsys, Inc. 41 IKW75N65EL5 Quasi-Static Characteristics
  • 42. © 2015 Synopsys, Inc. 42 Ic Vcc Inductive Clamp Test Circuit Vcc Rg(off) Vg(on) Vg(off) Lp DUT (IGBT) -15V Ic DUT (Diode) Rg(on) Vg(on)
  • 43. © 2015 Synopsys, Inc. 43 11 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 𝐶𝑟𝑒𝑠 = 𝐶𝑔𝑐 𝐶𝑖𝑒𝑠 = 𝐶𝑔𝑐 + 𝐶𝑔𝑒 𝐶𝑜𝑒𝑠 = 𝐶𝑔𝑐 + 𝐶𝑐𝑒
  • 44. © 2015 Synopsys, Inc. 44 𝐶𝑟𝑒𝑠 = 𝐶𝑔𝑐 𝐶𝑖𝑒𝑠 = 𝐶𝑔𝑐 + 𝐶𝑔𝑒 𝐶𝑜𝑒𝑠 = 𝐶𝑔𝑐 + 𝐶𝑐𝑒 Cies = dQg / dVgs Miller plateau Vgs ~1.2nF ~1.2nF
  • 45. © 2015 Synopsys, Inc. 45 IKW75N65EL5 Non Quasi-Static Characteristics
  • 46. © 2015 Synopsys, Inc. 46 IKW75N65EL5 Non Quasi-Static Characteristics
  • 47. © 2015 Synopsys, Inc. 47 IKW75N65EL5 Non Quasi-Static Characteristics
  • 48. © 2015 Synopsys, Inc. 48 IKW75N65EL5 Thermal Characteristics Cauer networkFoster network Duty cycle zero sufficient to match the other curvesOnly physical if connected to temperature source
  • 49. © 2015 Synopsys, Inc. 49 Future Work • Merging of MOSFET and IGBT tools • Improve DC characteristics for SiC MOSFET’s • sw1_l4 and pwld with accurate switching losses (TLU) • Battery characterization tool (with enhanced model) NXP TrenchMOS BUK9640-100A