SlideShare ist ein Scribd-Unternehmen logo
1 von 13
Downloaden Sie, um offline zu lesen
Section 1 
NERVE PHYSIOLOGY 
1.1  Membrane Structures 
All cells are surrounded by membranes, and the membranes for nerve and muscle fibers have 
unique properties that allow the selective passage of ions that are key elements in the ability of 
these cells to generate action potentials.  The surrounding membrane is composed of lipids and 
is impenetrable to ions, and thus separates intracellular and extracellular ionic environments. 
However, the membrane contains protein channels or pores that allow ions to pass across the 
membrane (Figure 1.01).  Channels are complex structures made up of multiple subunits that 
function together. 
Membrane channels are selective for which ions can pass through. Some channels are always 
open, but are selective (Figure 1.02).  Selectivity can be based on ion size (which includes the 
size of the hydration sphere) or ion charge (Figure 1.01).  Other channels open after undergoing 
conformational changes.  Conformational changes can occur in response to changes in voltage 
across the membrane (depolarization or hyperpolarization) – voltage gated channels.  Channels 
can serve as receptors, and change conformation after a neurotransmitter attaches to them – 
ligand gated channels (Figure 1.02). 
1.2  Membrane Biophysics 
Extracelular and intracellular ionic environments differ.  The selective permeability of the 
channels leads to a potential difference across the membrane, the inside negative with respect to 
the outside.  In the resting state, ions flow down their respective concentration gradients, with 
positive sodium charges moving in and positive potassium charges moving out through their 
respective channels.  Ionic flow down concentration gradients is impeded by intracellular 
electrostatic charges due to large negatively charged proteins that can not pass through the 
channels.  Chloride ions flow freely across the membrane (Figure 1.03).  Overall, these forces 
lead to a net distribution of ionic charges across nerve and muscle membranes, and a resting 
membrane potential that is  –70 to ­90 mV inside with respect to the outside. 
The flow of ions across the membrane would, in time, lead to a reduction of charge separation 
and a lower membrane potential.  There is an energy­dependent (ATP) pump that maintains the 
concentrations of sodium and potassium (Figure 1.04).  Actually, two sodium ions are removed 
for every potassium ion returned, and the pump contributes to a small degree to the resting 
membrane potential. 
1.3  Passive Membrane Properties 
Passive membrane properties govern how action potentials are propagated down axons and 
along muscle fibers.  The separation of charges on either side of the membrane also results in 
positive ions lining the inside and negative changes lining the outside of the membrane. 
Accordingly, the membrane forms a capacitor (Figure 1.05).  Intracellular ions offer resistance or 
impedence to the flow of additional ions along the length of the fiber. The amount of charge able 
to flow down a fiber represents current (Figure 1.05).  A high fiber resistance will impede current 
flow, with less charge flowing down the fiber and a short membrane length constant.  .As an 
action potential travels down an axon or muscle fiber, a high membrane capacitance will take 
time to charge, leading to a long membrane time constant.
1.4  Ionic and Capacitive Currents 
Ionic currents represent the flow of ions across a membrane or down a fiber.  Current can cross a 
membrane by two mechanisms, capacitive and resistive flow.  Capacitive currents represent the 
accumulation of ions along one side of a membrane and release of similar ions from the other 
side of the membrane, and thus no ions actually flow across the membrane (Figure 1.05). 
Resistive flow of ionic current across the membrane occurs through voltage­gated channels. 
Both types of current flow across a membrane are important, and are usually interconnected 
during the generation of action potentials. 
Ion flow down a fiber meets resistance from intracellular ions (Figure 1.05).  As ions flow, those 
near the inner side of the membrane also participate in charging the capacitor, further reducing 
the number able to move down the fiber. 
It can be useful to view resistance and capacitance as equivalent electronic circuits (Figure 
1.05).  The potential flow of ions from an action potential can be viewed as a battery.  Flow of 
positive sodium ions is resisted by flow through channels and the need to charge the 
membrane’s capacitance.  Internal flow is resisted by intracellular ions. 
1.5  Physiologic Adaptations to Enhance Current Flow 
It is clear that current flow can be “used up” by high membrane capacitance and high internal 
resistance.  It also takes time to add charge to the membrane capacitor. These factors can lead 
to insufficient flow of ions down the fiber.  However, there are several of physiological 
adaptations that have evolved that reduce capacitance and resistance and lead to reliable and 
rapid conduction along fibers. 
Capacitance can be reduced by increasing the thickness of the membrane.  This has been 
accomplished by adding myelin wrappings to axons, thus reducing capacitance 100 fold (Figure 
1.6).  This in turn increases conduction velocity along myelinated fibers 50 fold (~50 m/s) 
compared to unmyelinated fibers (~ 1 m/s). 
Resistance can be reduced by increasing fiber diameter.  Myelinated axons are larger (up to 12 
microns) compared to unmyelinated axons (up to 1 micron) (Figure 1.6). 
1.6  Action Potentials 
Action potentials are the basic bioelectric signals recorded in electrodiagnostic studies.  Nerve 
fiber action potentials are directly recorded in sensory nerve conduction studies.   Muscle fiber 
action potentials are directly recorded in motor nerve conduction studies and the needle EMG, 
but are initiated by nerve fiber action potentials. 
1.7  Nerve Fiber Action Potentials 
Action potentials represent transient reversals of the voltage across the membrane 
(transmembrane potential).  Action potentials are initiated by an intracellular depolarization that 
opens voltage­gated ion channels. The rapid opening of sodium channels allows sodium to flow 
down its concentration gradient, causing a reversal of the transmembrane potential with the 
inside of the fiber becoming positive (Figure 1.07).  There is also a rapid opening of potassium 
channels that allows potassium to leave the fiber, thus returning the transmembrane potential so 
that the inside becoming negative.  However, the potassium channels remain open longer, 
resulting in a transient greater degree of intracellular negativity (hyperpolarization).   Even 
though an action potential results in a reversal of the membrane potential, this is accomplished 
by relatively few ions moving back and forth across the membrane.
1.8  Continuous Conduction Along Unmyelinated Fibers 
There is an even distribution of voltage­gated sodium and potassium channels along the fiber in 
unmyelinated nerve fibers.  The action potential travels down the fiber in a self­regenerating 
manner by continuously depolarizing the membrane ahead.  Similarly, there is a following 
repolarizating process.  The distance along the nerve between the leading depolarization that 
initiates the action potential and the following repolarization depends upon the passive 
membrane properties, with fiber diameter being the largest determinant.  In unmyelinated fibers, 
the distance is approximately 20 mm long.  Conduction in unmyelinated fibers is slow, < 1 m/sec 
because of the time needed to charge the membrane capacitance and depolarize the membrane 
(Figure 1.08). 
Conduction speed can be increased by reducing the internal resistance of the nerve fiber.  Low 
resistance allows greater ionic current to reach resting membrane along the fiber.  This can be 
accomplished by increasing the diameter of the nerve fiber.  However, there are limitations on 
the size of an axon.  Another approach is to reduce membrane capacitance.  Low capacitance 
allows less ionic current to be used to charge the capacitor and more charge can be used to 
depolarize the membrane. 
1.9  Saltatory Conduction Along Myelinated Fibers 
Both approaches are used in myelinated fibers were axon diameters are up to 10x larger than 
unmyelinated fibers (Figure 1.06).  However, the greatest increase in action potential conduction 
velocity is achieved by decreasing capacitance through increasing the effective membrane 
thickness with layers of myelin.  Myelin wrappings are elongations of Schwann cell membrane 
and are arranged in segments along the nerve fiber.  The myelin wrappings of Schwann cells do 
not abut against each other, and there is are spaces between them called nodes of Ranvier. 
Internode lengths vary in a linear fashion with the diameter of the fiber, and range between 0.5 
and 1.0 mm long.   There is a high concentration of voltage­gated sodium channels under the 
nodes of Ranvier (Figure 1.09).  Since capacitance is low along the internode region, very little 
ionic current generated by an action potential is lost charging the capacitance, and the ionic 
current travels quickly to the next nodal region.  At the node, the degree of depolarization is 
sufficient to open the sodium channels and slightly later the potassium channels, and the action 
potential is regenerated.  Thus, the action potential currents “jump” from node to node at 
conduction velocities of 50­60 m/s, in contrast to continuous conduction of the action potential 
along unmyelinated fibers at conduction velocities up to 1 m/s.  However, it should be 
understood that although the action potential ionic currents are regenerated at the internodes, the 
total wave of depolarization and repolarization moves down the fiber in a continuous manner. 
The wave length includes the time sodium and potassium channels remain open, and spans the 
length of 30­60 internodes (Figure 1.10). 
1.10  Conduction Along Whole Nerves 
Thus far, the propagation of action potentials considered above represents conduction in single 
unmyelinated and myelinated nerve fibers.  Routine nerve conduction studies involve the 
summated potential from all fibers of a whole nerve.  Unmyelinated fibers are much more 
numerous than myelinated fibers (Figure 1.06), but they contribute little to the compound action 
potential.  This is due to their very small individual fiber action potential amplitudes and the fact 
that very slow conduction velocities places them behind the arrival of the high amplitude 
myelinated fiber action potentials. 
1.11  Sensory Nerve Action Potential 
With sensory nerve recordings, the whole nerve is electrically activated and the compound 
action potential represents the sum of 2000+ nerve fiber action potentials, and is called the
sensory nerve action potential (SNAP) (Figure 1.12).  Since each nerve fiber potential is small in 
amplitude, the sum is in the microvolt (µV) range. 
1.12  Compound Muscle Action Potential 
With motor nerve recordings, the whole motor nerve is also electrically activated, but the 
recorded response represents the muscle fiber action potentials.  There are 100+ nerve fibers 
innervating a muscle, and each motor axon branches within muscle and innervates 100 to 1000+ 
muscle fibers.  Thus, the compound action potential represents the sum of 10,000 to 100,000+ 
muscle fibers action potentials, and is called the compound muscle action potential (CMAP) 
(Figure 1.13).  Action potentials from muscle fibers are larger in amplitude, and the sum is in the 
millivolt (mV) range. 
1.13  Temporal Dispersion 
Myelinated fibers have a range of fiber diameters reflected in a range of conduction velocities, 
and hence the arrival of individual nerve fiber action potentials at the recording electrode will be 
spread over time.   This is represented in nerve conduction studies as temporal dispersion of the 
SNAP and CMAP waveforms.  A helpful analogy is to consider action potentials as a group of 
runners that includes fast 6­minute milers, slow 7­ minute milers, and a range of runner running 
at speeds in between.  Thus, in a 1­mile race there will be a 1­minute temporal dispersion of the 
group crossing the finish line, and in a 10­mile race there will be a 10­minute dispersion at the 
finish line. 
1.14  SNAP Temporal Dispersion 
The duration of a single nerve fiber action potential is short (approximately 1 msec) and the 
range of conduction velocities is fairly broad (approximately 25 m/s).  The negative peak voltage 
of late arriving action potentials will occur well after the negative peak of the early arriving action 
potentials, and phase cancellation will reduce the amplitude of the summed SNAP (Figure 1.14). 
The effects of temporal dispersion will be magnified with conduction over greater distances.  For 
the SNAP, the effects of temporal dispersion over routine distances will reduce the amplitude by 
50% or more. 
1.15  CMAP Temporal Dispersion 
In motor nerve conduction studies, the duration of a motor unit action potential is long 
(approximately 4 ms) and the range of conduction velocities of the nerve fibers is short 
(approximately 13 m/s).  The negative peak voltage of the late arriving action potentials will 
occur close to the negative peak of the early arriving action potentials, and phase cancellation 
will reduce the amplitude of the summated CMAP to a relatively little degree (Figure 1.15).  The 
effects of temporal dispersion will be relatively little affected by conduction over greater 
distances.  For the CMAP, the effects of temporal dispersion over routine distances will reduce 
the amplitude by less than 10%.
Section 1 
NERVE PHYSIOLOGY 
(Figures) 
Figure 1.01 
Composite figure illustrating several aspects of membrane function.  A: Representation of lipid 
bilayer membrane with ion channels piercing membrane.  B: Protein subunits that make up ion 
channel and aspects of pore selectively based on hydrated ion size.   C: Effect of membrane 
impermeability separating ionic charges, with inside negative. 
Figure 1.02 
Mechanisms of altering ion channel permeability.  A: Permeability based on hydrated ion size. 
B: Permeability based on change in transmembrane potential leading to change in conformation 
or charge within the channel (voltage­gated channel).  C: Permeability based on ligand 
interaction causing conformational change within the channel (ligand­gated channel).
Figure 1.03 
Diagram showing effects of selective membrane ion permeability and distribution of ions 
influenced by their concentration gradients and electrostatic forces.  Outward potassium (K + 
) ion 
movement down its concentration gradient countered by electrostatic forces from large 
impermeable protein cations (A + 
).  Sodium (Na + 
) ions restricted by size.  Membrane freely 
permeable to chloride (Cl + 
) ions.  Net effect is intracellular negativity. 
Figure 1.04 
Equivalent membrane circuit.  Top: Ion channels and sodium­potassium pump.  Bottom: Driving 
force (battery) and channel permeability (resistance) for sodium, chloride and potassium, and the 
pump.
Figure 1.05 
Composite figure showing passive membrane properties and equivalent membrane circuit.  Top: 
Injection of current at left depolarizes inside of nerve fiber.  There is a distribution of positive 
charges along the inner membrane surface due to capacitance, liberating positive charges along 
the outer membrane surface (capacitive current).  Positive charges used locally for capacitive 
current results in fewer charges available farther along the fiber.  There is resistance to flow of 
charge down the middle of the fiber (axial resistance).  Bottom: Equivalent circuit showing 
parallel membrane resistance and capacitance and series axial resistance.
Figure 1.06 
Composite figure showing photomicrograph of myelinated fibers and clusters of unmyelinated 
fibers, and histogram of the relative numbers and diameter distributions of myelinated (dark 
lines) and unmyelinated fibers (lighter lines).
Figure 1.07 
Ionic currents and membrane potential changes during the action potential.  A: Top curves show 
initial inward depolarizing sodium current and later outward repolarizing potassium current. 
Bottom shows opening of individual channels and summed opening of several channels that lead 
to the net inward currents.  B: Net sodium and potassium currents as they produce the action 
potential (dashed lines). 
Figure 1.08 
Action potential waveform propagating along unmyelinated fiber showing long wavelength. 
DIFFERENT LABEL
Figure 1.09 
Distribution of sodium channels (gNa) which are high at nodes of Ranvies and potassium (gK) 
channels which are high at internodes and sodium currents along a myelinated axon. 
Figure 1.10 
Action potential waveform propagating along a myelinated fiber showing long wavelength.
Figure 1.11 
Montague showing how a single nerve fiber action potentials (A) can be modeled to form the 
compound nerve action potential.  A: Single action potential.  B: Nerve fiber diameter histogram. 
C: Model of single fiber action potentials (inset) summed based on their conduction velocities.
Figure 1.12 
Model of individual sensory nerve fiber action potentials summating to form sensory nerve action 
potential (SNAP).
Figure 1.13 
Model of individual muscle nerve fiber action potentials activating muscle fiber action potentials 
summating to form compound motor action potential (CMAP).

Weitere ähnliche Inhalte

Was ist angesagt? (10)

Transport through cell membrane
Transport through cell membrane Transport through cell membrane
Transport through cell membrane
 
cell and its organelles
cell and its organellescell and its organelles
cell and its organelles
 
ion channel and carrier protein By KK Sahu Sir
ion channel and carrier protein By KK Sahu Sirion channel and carrier protein By KK Sahu Sir
ion channel and carrier protein By KK Sahu Sir
 
The Cell
The CellThe Cell
The Cell
 
Dr. B Ch 03_lecture_presentation
Dr. B Ch 03_lecture_presentationDr. B Ch 03_lecture_presentation
Dr. B Ch 03_lecture_presentation
 
Biological Membrane
Biological MembraneBiological Membrane
Biological Membrane
 
1.3 Cell Membrane
1.3 Cell Membrane1.3 Cell Membrane
1.3 Cell Membrane
 
2.4 membranes
2.4 membranes2.4 membranes
2.4 membranes
 
1.2 Obj Notes and Practice
1.2 Obj Notes and Practice1.2 Obj Notes and Practice
1.2 Obj Notes and Practice
 
CELL TRANSPORT PROCESS
CELL TRANSPORT PROCESSCELL TRANSPORT PROCESS
CELL TRANSPORT PROCESS
 

Andere mochten auch (6)

Sse Designing Int Str Group6
Sse Designing Int Str Group6Sse Designing Int Str Group6
Sse Designing Int Str Group6
 
Hereg 2
Hereg 2Hereg 2
Hereg 2
 
Ia mo july-august
Ia mo july-augustIa mo july-august
Ia mo july-august
 
Sse Vw Pestel Group6
Sse Vw Pestel Group6Sse Vw Pestel Group6
Sse Vw Pestel Group6
 
Anatomy and physiology article nerve signals around body speeds 12 / 20 /12 ...
Anatomy and physiology article nerve signals around body speeds 12 / 20 /12  ...Anatomy and physiology article nerve signals around body speeds 12 / 20 /12  ...
Anatomy and physiology article nerve signals around body speeds 12 / 20 /12 ...
 
Sse Cola Wars Group6
Sse Cola Wars Group6Sse Cola Wars Group6
Sse Cola Wars Group6
 

Ähnlich wie Section 1 nerve physiology

3. Cellular Organelles and Membrane Trafficking.pptx
3. Cellular Organelles and Membrane Trafficking.pptx3. Cellular Organelles and Membrane Trafficking.pptx
3. Cellular Organelles and Membrane Trafficking.pptx
NkosinathiManana2
 
Script for
Script forScript for
Script for
waqasuk
 

Ähnlich wie Section 1 nerve physiology (20)

Ion channels
Ion channelsIon channels
Ion channels
 
Channels
ChannelsChannels
Channels
 
Cell Junctions & Transport Through Cell Membranes
Cell Junctions & Transport Through Cell MembranesCell Junctions & Transport Through Cell Membranes
Cell Junctions & Transport Through Cell Membranes
 
Cell d pharma 1st year Human anatomy and physiology
Cell d pharma 1st year Human anatomy and physiologyCell d pharma 1st year Human anatomy and physiology
Cell d pharma 1st year Human anatomy and physiology
 
Resting membrane potential
Resting membrane potentialResting membrane potential
Resting membrane potential
 
Cell membrane ppt
Cell membrane pptCell membrane ppt
Cell membrane ppt
 
3. cellular organelles and membrane trafficking
3. cellular organelles and membrane trafficking3. cellular organelles and membrane trafficking
3. cellular organelles and membrane trafficking
 
3. Cellular Organelles and Membrane Trafficking.pptx
3. Cellular Organelles and Membrane Trafficking.pptx3. Cellular Organelles and Membrane Trafficking.pptx
3. Cellular Organelles and Membrane Trafficking.pptx
 
Lecture 6 Biological Membranes.pptx
Lecture 6 Biological Membranes.pptxLecture 6 Biological Membranes.pptx
Lecture 6 Biological Membranes.pptx
 
Cell Bio101
Cell Bio101 Cell Bio101
Cell Bio101
 
Membranes
MembranesMembranes
Membranes
 
Membranes
MembranesMembranes
Membranes
 
3-1-Membrane Structure.pptx
3-1-Membrane Structure.pptx3-1-Membrane Structure.pptx
3-1-Membrane Structure.pptx
 
Ion gating plants
Ion gating plantsIon gating plants
Ion gating plants
 
Script for
Script forScript for
Script for
 
shubham2-171117094952 (1).pdf
shubham2-171117094952 (1).pdfshubham2-171117094952 (1).pdf
shubham2-171117094952 (1).pdf
 
AS Biology - CELL MEMBRANES
AS Biology - CELL MEMBRANESAS Biology - CELL MEMBRANES
AS Biology - CELL MEMBRANES
 
An Organelle That
An Organelle ThatAn Organelle That
An Organelle That
 
14211507 014
14211507 01414211507 014
14211507 014
 
Endoplasmic reticulam
Endoplasmic reticulamEndoplasmic reticulam
Endoplasmic reticulam
 

Kürzlich hochgeladen

Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
daisycvs
 
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan CytotecJual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
ZurliaSoop
 
Challenges and Opportunities: A Qualitative Study on Tax Compliance in Pakistan
Challenges and Opportunities: A Qualitative Study on Tax Compliance in PakistanChallenges and Opportunities: A Qualitative Study on Tax Compliance in Pakistan
Challenges and Opportunities: A Qualitative Study on Tax Compliance in Pakistan
vineshkumarsajnani12
 

Kürzlich hochgeladen (20)

WheelTug Short Pitch Deck 2024 | Byond Insights
WheelTug Short Pitch Deck 2024 | Byond InsightsWheelTug Short Pitch Deck 2024 | Byond Insights
WheelTug Short Pitch Deck 2024 | Byond Insights
 
Berhampur Call Girl Just Call 8084732287 Top Class Call Girl Service Available
Berhampur Call Girl Just Call 8084732287 Top Class Call Girl Service AvailableBerhampur Call Girl Just Call 8084732287 Top Class Call Girl Service Available
Berhampur Call Girl Just Call 8084732287 Top Class Call Girl Service Available
 
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
 
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan CytotecJual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan Cytotec
 
PHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation FinalPHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation Final
 
QSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptx
QSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptxQSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptx
QSM Chap 10 Service Culture in Tourism and Hospitality Industry.pptx
 
Falcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business Growth
 
HomeRoots Pitch Deck | Investor Insights | April 2024
HomeRoots Pitch Deck | Investor Insights | April 2024HomeRoots Pitch Deck | Investor Insights | April 2024
HomeRoots Pitch Deck | Investor Insights | April 2024
 
joint cost.pptx COST ACCOUNTING Sixteenth Edition ...
joint cost.pptx  COST ACCOUNTING  Sixteenth Edition                          ...joint cost.pptx  COST ACCOUNTING  Sixteenth Edition                          ...
joint cost.pptx COST ACCOUNTING Sixteenth Edition ...
 
Challenges and Opportunities: A Qualitative Study on Tax Compliance in Pakistan
Challenges and Opportunities: A Qualitative Study on Tax Compliance in PakistanChallenges and Opportunities: A Qualitative Study on Tax Compliance in Pakistan
Challenges and Opportunities: A Qualitative Study on Tax Compliance in Pakistan
 
Call 7737669865 Vadodara Call Girls Service at your Door Step Available All Time
Call 7737669865 Vadodara Call Girls Service at your Door Step Available All TimeCall 7737669865 Vadodara Call Girls Service at your Door Step Available All Time
Call 7737669865 Vadodara Call Girls Service at your Door Step Available All Time
 
Falcon Invoice Discounting: The best investment platform in india for investors
Falcon Invoice Discounting: The best investment platform in india for investorsFalcon Invoice Discounting: The best investment platform in india for investors
Falcon Invoice Discounting: The best investment platform in india for investors
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
Ooty Call Gril 80022//12248 Only For Sex And High Profile Best Gril Sex Avail...
Ooty Call Gril 80022//12248 Only For Sex And High Profile Best Gril Sex Avail...Ooty Call Gril 80022//12248 Only For Sex And High Profile Best Gril Sex Avail...
Ooty Call Gril 80022//12248 Only For Sex And High Profile Best Gril Sex Avail...
 
Buy gmail accounts.pdf buy Old Gmail Accounts
Buy gmail accounts.pdf buy Old Gmail AccountsBuy gmail accounts.pdf buy Old Gmail Accounts
Buy gmail accounts.pdf buy Old Gmail Accounts
 
Escorts in Nungambakkam Phone 8250092165 Enjoy 24/7 Escort Service Enjoy Your...
Escorts in Nungambakkam Phone 8250092165 Enjoy 24/7 Escort Service Enjoy Your...Escorts in Nungambakkam Phone 8250092165 Enjoy 24/7 Escort Service Enjoy Your...
Escorts in Nungambakkam Phone 8250092165 Enjoy 24/7 Escort Service Enjoy Your...
 
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60% in 6 Months
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60%  in 6 MonthsSEO Case Study: How I Increased SEO Traffic & Ranking by 50-60%  in 6 Months
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60% in 6 Months
 
PARK STREET 💋 Call Girl 9827461493 Call Girls in Escort service book now
PARK STREET 💋 Call Girl 9827461493 Call Girls in  Escort service book nowPARK STREET 💋 Call Girl 9827461493 Call Girls in  Escort service book now
PARK STREET 💋 Call Girl 9827461493 Call Girls in Escort service book now
 
Kalyan Call Girl 98350*37198 Call Girls in Escort service book now
Kalyan Call Girl 98350*37198 Call Girls in Escort service book nowKalyan Call Girl 98350*37198 Call Girls in Escort service book now
Kalyan Call Girl 98350*37198 Call Girls in Escort service book now
 
GUWAHATI 💋 Call Girl 9827461493 Call Girls in Escort service book now
GUWAHATI 💋 Call Girl 9827461493 Call Girls in  Escort service book nowGUWAHATI 💋 Call Girl 9827461493 Call Girls in  Escort service book now
GUWAHATI 💋 Call Girl 9827461493 Call Girls in Escort service book now
 

Section 1 nerve physiology