SlideShare ist ein Scribd-Unternehmen logo
1 von 4
Downloaden Sie, um offline zu lesen
CHIN. PHYS. LETT. Vol. 28, No. 10 (2011) 104205
Simulation and Analysis of Multisoliton Generation Using a PANDA Ring
Resonator System
I. S. Amiri*
, A. Afroozeh, M. Bahadoran
Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran
(Received 8 July 2011)
A novel system of multisoliton generation using nonlinear equations of the propagating signals is presented. This
system uses a PANDA ring resonator incorporated with an add/drop filter system. Using resonant conditions,
the intense optical fields known as multisolitons can be generated and propagated within a Kerr-type nonlinear
medium. The present simulation results show that multisolitons can be controlled by using additional Gaussian
pulses input into the add port of the PANDA system. For the soliton pulse in the microring device, a balance
should be achieved between dispersion and nonlinear lengths. Chaotic output signals from the PANDA ring
resonator are input into the add/drop filter system. Chaotic signals can be filtered by using the add/drop filter
system, in which multi dark and bright solitons can be generated. In this work multi dark and bright solitons
with an FWHM and an FSR of 425 pm and 1.145 nm are generated, respectively, where the Gaussian pulse with
a central wavelength of 1.55 µm and power of 600 mW is input into the system.
PACS: 42.65.Tg DOI: 10.1088/0256-307X/28/10/104205
The generation of multisolitons becomes an inter-
esting subject when it is used to enlarge the capacity of
communication channels.[1]
The high optical output of
the ring resonator system is of benefit to long distance
communication links.[2]
Two techniques can be used to
generate soliton pulses. First, soliton pulses can be ob-
tained using a ring resonator system where large am-
plified signals are achieved. Second, a Gaussian soliton
can be generated in a simple system arrangement.[3]
This application becomes an attractive tool in the area
of photonics for soliton generation and investigation.
The advantage of using pumped solitons or Gaussian
solitons is that an intensive input light can be gener-
ated. There are many ways to achieve powerful light,
for instance, using a high-power light source or reduc-
ing the radius of the ring resonator.[4]
However, there are many research works report-
ing both theories and experiments using a common
Gaussian pulse for soliton studies.[5]
In practice, in-
tensive pulses can be obtained by using erbium-doped
fibers (EDFs) and semiconductor amplifiers incorpo-
rated with the experimental setup.[6]
A Gaussian pulse
is used to form a multi soliton using a ring resonator.[7]
In this work, a laser source such as a Gaussian
pulse with a central wavelength of 1.55 µm is used. A
nonlinear ring resonator system can be used to gen-
erate multiple soliton channels. We propose a mod-
ified add/drop optical filter called the PANDA sys-
tem, which consists of one centered ring resonator con-
nected to two smaller ring resonators on the right and
left sides.[8]
To form the multifunction operations of
the PANDA system, for instance, to control, tune and
amplify an additional Gaussian pulse is introduced
into the add port of the system. By controlling some
suitable parameters of the add optical pulse, the gen-
erated result within a ring resonator system can be
controlled. Therefore, a PANDA ring resonator can
be connected to an add/drop filter system in order to
filter noisy and chaotic signals. The nonlinear equa-
tions of the system due to the Kerr effect nonlinearity
type can be analyzed and simulated.
The proposed system consists of a PANDA ring
resonator connected to an add/drop filter system, as
shown in Fig. 1. The laser Gaussian pulse input prop-
agates inside the ring resonator system, which is in-
troduced by the nonlinear Kerr effect. The Kerr effect
causes the refractive index 𝑛 of the medium, expressed
by
𝑛 = 𝑛0 + 𝑛2 𝐼 = 𝑛0 +
𝑛2
𝐴eff
𝑃, (1)
where 𝑛0 and 𝑛2 are the linear and nonlinear refractive
indexes, respectively. 𝐼 and 𝑃 are the optical intensity
and the power, respectively. 𝐴eff is the effective mode
core area of the device.[9]
For an add/drop optical fil-
ter design, the effective mode core areas range from
0.50 to 0.10 µm2
. The parameters were obtained by
using the practical parameters of the materials used
(InGaAsP/InP).[10,11]
Input optical fields of the Gaus-
sian pulses at the input and add ports of the system
are given by[12]
𝐸𝑖1(𝑡) = 𝐸𝑖2(𝑡) = 𝐸𝑖0 exp
[︁(︁ 𝑧
2𝐿 𝐷
)︁
− 𝑖𝜔0 𝑡
]︁
, (2)
where 𝐸𝑖0 and 𝑧 are the optical field amplitude and
propagation distance respectively. 𝐿D is the disper-
sion length of the soliton pulse, where 𝑡 is the soli-
ton phase shift time, and the carrier frequency of
the signal is 𝜔0.[13]
The nonlinear condition of the
medium causes the gaussian beam to propagate as
*Corresponding author. Email: isafiz@yahoo.com
c○ 2011 Chinese Physical Society and IOP Publishing Ltd
104205-1
CHIN. PHYS. LETT. Vol. 28, No. 10 (2011) 104205
soliton pulses while its temporal and spatial width in-
variances are retained, which explains why it is called
a temporal and spatial soliton. Soliton pulses prop-
agate within the microring device when the balance
between the dispersion length (𝐿D) and the nonlin-
ear length (𝐿NL = 1/Γ 𝜑NL) is achieved. Therefore
𝐿D = 𝐿NL, where Γ = 𝑛2 × 𝑘0 is the length scale
over which dispersive or nonlinear effects make the
beam become wider or narrower.[14]
For the PANDA
ring resonator, the output signals inside the system
are given as follows:[15,16]
𝐸1 =
√︀
1 − 𝛾1(
√
1 − 𝜅1 𝐸4 + 𝑗
√
𝜅1 𝐸𝑖1), (3)
𝐸2 = 𝐸0 𝐸1 𝑒− 𝛼
2
𝐿
2 −𝑗𝑘 𝑛
𝐿
2 , (4)
where 𝜅1, 𝛾1 and 𝛼 are the intensity coupling coeffi-
cient, fractional coupler intensity loss and attenuation
coefficient, respectively, 𝑘 𝑛 = 2𝜋
𝜆 is the wave propaga-
tion number, 𝜆 is the input wavelength light field and
𝐿 = 2𝜋𝑅PANDA where, 𝑅PANDA is the radius of the
PANDA system, which is 300 nm. The electric field of
the small ring at the right side of the PANDA ring
system is given as
𝐸0 = 𝐸1
√︀
(1 − 𝛾)(1 − 𝜅0) − (1 − 𝛾)𝑒− 𝛼
2 𝐿1−𝑗𝑘 𝑛 𝐿1
1 −
√
1 − 𝛾
√
1 − 𝜅0 𝑒− 𝛼
2 𝐿1−𝑗𝑘 𝑛 𝐿1
,
(5)
where 𝐿1 = 2𝜋 𝑅 𝑟 and 𝑅 𝑟 is the radius of the right
ring. The light fields of the left side of PANDA ring
resonator can be expressed as
𝐸3 =
√︀
1 − 𝛾2[
√
1 − 𝜅2 𝐸2 + 𝑗
√
𝜅2 𝐸𝑖2], (6)
𝐸4 = 𝐸0𝐿 𝐸3 𝑒− 𝛼
2
𝐿
2 −𝑗𝑘 𝑛
𝐿
2 , (7)
where,
𝐸0𝐿 = 𝐸3
√︀
(1 − 𝛾)(1 − 𝜅3) − (1 − 𝛾)𝑒− 𝛼
2 𝐿2−𝑗𝑘 𝑛 𝐿2
1 −
√
1 − 𝛾
√
1 − 𝜅3 𝑒− 𝛼
2 𝐿2−𝑗𝑘 𝑛 𝐿2
,
(8)
where 𝐿2 = 2𝜋𝑅 𝐿 and 𝑅 𝐿 is the left ring radius. In
order to simplify these equations, the parameters of
𝑥1, 𝑥2, 𝑦1 and 𝑦2 are defined as
𝑥1 = (1 − 𝛾1)
1
2 , 𝑥2 = (1 − 𝛾2)
1
2 ,
𝑦1 = (1 − 𝜅1)
1
2 , 𝑦2 = (1 − 𝜅2)
1
2 .
Therefore,
𝐸1 =
𝑗𝑥1
√
𝜅1 𝐸𝑖1 + 𝑗𝑥1 𝑥2 𝑦1
√
𝜅2 𝐸0𝐿 𝐸𝑖2 𝑒− 𝛼
2
𝐿
2 −𝑗𝑘 𝑛
𝐿
2
1 − 𝑥1 𝑥2 𝑦1 𝑦2 𝐸0 𝐸0𝐿 𝑒− 𝛼
2 𝐿−𝑗𝑘 𝑛 𝐿
,
(9)
𝐸3 = 𝑥2 𝑦2 𝐸0 𝐸1 𝑒− 𝛼
2
𝐿
2 −𝑗𝑘 𝑛
𝐿
2 + 𝑗𝑥2
√
𝜅2 𝐸𝑖2, (10)
𝐸4 = 𝑥2 𝑦2 𝐸0 𝐸0𝐿 𝐸1 𝑒− 𝛼
2 𝐿−𝑗𝑘 𝑛 𝐿
+ 𝑗𝑥2
√
𝜅2 𝐸0𝐿 𝐸𝑖2 𝑒− 𝛼
2
𝐿
2 −𝑗𝑘 𝑛
𝐿
2 . (11)
Therefore, the output powers through and drop ports
of the PANDA ring resonator can be expressed as
𝐸 𝑡1and 𝐸 𝑡2 and are given as
𝐸 𝑡1 = 𝐴𝐸𝑖1 − 𝐵𝐸𝑖2 𝑒− 𝛼
2
𝐿
2 −𝑗𝑘 𝑛
𝐿
2 [
𝐶𝐸𝑖1 𝐺2
+ 𝐷𝐸𝑖2 𝐺3
1 − 𝐹 𝐺2
],
(12)
𝐸 𝑡2 = 𝑥2 𝑦2 𝐸𝑖2[
𝐴
√
𝜅1 𝜅2 𝐸0 𝐸𝑖1 𝐺 + 𝐷
𝑥1
√
𝜅1 𝐸0𝐿
𝐸𝑖2 𝐺2
1 − 𝐹 𝐺2
],
(13)
where 𝐴 = 𝑥1 𝑥2,𝐵 = 𝑥1 𝑥2 𝑦2
√
𝜅1 𝐸0 𝐿, 𝐶 =
𝑥2
1 𝑥2 𝜅1
√
𝜅2 𝐸0 𝐸0 𝐿, 𝐷 = (𝑥1 𝑥2)2
𝑦1 𝑦2
√
𝜅1 𝜅2 𝐸0 𝐸2
0 𝐿,
𝐺 =
(︁
𝑒− 𝛼
2
𝐿
2 −𝑗𝑘 𝑛
𝐿
2
)︁
and 𝐹 = 𝑥1 𝑥2 𝑦1 𝑦2 𝐸0 𝐸0 𝐿.
𝐸 𝑡1 output from the PANDA system can be input
into the add/drop filter system which is made of a ring
resonator coupled to two fiber waveguides with proper
parameters.[17]
The light fields inside the add/drop fil-
ter system are given as
𝐸 𝑎 =
𝐸 𝑡1 𝑗
√
𝜅4
1 −
√
1 − 𝜅4
√
1 − 𝜅5 𝑒
−𝛼
2 𝐿 𝑎𝑑−𝑗𝑘 𝑛 𝐿 𝑎𝑑
,
(14)
𝐸 𝑏 =
𝐸 𝑡1 𝑗
√
𝜅4
1 −
√
1 − 𝜅4
√
1 − 𝜅5 𝑒
−𝛼
2 𝐿 𝑎𝑑−𝑗𝑘 𝑛 𝐿 𝑎𝑑
·
√
1 − 𝜅5 𝑒
−𝛼
2
𝐿 𝑎𝑑
2 −𝑗𝑘 𝑛
𝐿 𝑎𝑑
2 , (15)
where 𝜅4 and 𝜅5 are the coupling coefficients of the
add/drop filter system, 𝐿 𝑎𝑑 = 2𝜋 𝑅 𝑎𝑑 and 𝑅 𝑎𝑑 is the
radius of the add/drop system. The output powers
from the add/drop filter system are given by Eqs. (16)
and (17), where 𝐸 𝑡3 and 𝐸 𝑡4 are the electric field out-
puts of the through and drop ports of the system,
respectively.
𝐼 𝑡3
𝐼 𝑡1
=
⃒
⃒
⃒
⃒
𝐸 𝑡3
𝐸 𝑡1
⃒
⃒
⃒
⃒
2
=
[︁
1 − 𝜅4 − 2
√
1 − 𝜅4
√
1 − 𝜅5 𝑒
−𝛼
2 𝐿 𝑎𝑑
cos(𝑘 𝑛 𝐿 𝑎𝑑)
+ (1 − 𝜅5)𝑒−𝛼𝐿 𝑎𝑑
1 + (1 − 𝜅4)(1 − 𝜅5)𝑒−𝛼𝐿 𝑎𝑑
− 2
√
1 − 𝜅4
√
1 − 𝜅5 𝑒
−𝛼
2 𝐿 𝑎𝑑
cos(𝑘 𝑛 𝐿 𝑎𝑑)
]︁−1
,
(16)
𝐼 𝑡4
𝐼 𝑡1
=
⃒
⃒
⃒
⃒
𝐸 𝑡4
𝐸 𝑡1
⃒
⃒
⃒
⃒
2
=
[︁
𝜅4 𝜅5 𝑒
−𝛼
2 𝐿 𝑎𝑑
1 + (1 − 𝜅4)(1 − 𝜅5)𝑒−𝛼𝐿 𝑎𝑑
− 2
√
1 − 𝜅4
√
1 − 𝜅5 𝑒
−𝛼
2 𝐿 𝑎𝑑
cos(𝑘 𝑛 𝐿 𝑎𝑑)
]︁
.
(17)
These nonlinear equations of the output powers can be
simulated in which the dark and bright multisolitons
can be generated.[18]
Gaussian beams with central wavelength of
1.55 µm and power of 600 mW are introduced into the
add and input ports of the PANDA ring resonator.
The simulated result, based on solution of the nonlin-
ear equations for the input power, propagating inside
the fiber system has been shown in Fig. 2. The fiber
system has nonlinearity of the Kerr effect type, where
104205-2
CHIN. PHYS. LETT. Vol. 28, No. 10 (2011) 104205
the linear and nonlinear refractive indices of the sys-
tem are 𝑛0 = 3.34 and 𝑛2 = 3.2 × 10−17
, respectively.
In Fig. 2, the coupling coefficients of the PANDA ring
resonator are given as 𝜅0=0.2, 𝜅1=0.35, 𝜅2=0.1 and
𝜅3=0.95, respectively, and 𝛾 = 𝛾1 = 𝛾2 = 0.1. The
radius of the centered ring of the PANDA system
has been chosen as 𝑅PANDA = 300 nm, where the
radii of the right and left rings are 𝑅 𝑟 = 180 nm and
𝑅 𝐿 = 200 nm, respectively. The output soliton sig-
nals are amplified and tuned using the add port of
the system. Figures 2(a) and 2(b) show the powers in
the form of chaotic signals before entering the right
ring of the PANDA system and the amplification of
signals during propagation of light inside right ring,
respectively, where Figs. 2(c) and 2(d) show the pow-
ers before entering the left ring and the amplification
of signals within the right ring, respectively. We find
that the signals are stable and seen within the system
where the chaotic signals are generated at the through
port shown in Fig. 2(e).
Add-drop filter
RL
Rr
PANDA
Et1
EL
Ea
Eb
Multi Soliton, Et3
Input Gaussian
Beam, Ei1 at input port
Input Gaussian beam, Ei2
at addport
E1
E0
E2E3
E4
K4K1
K3
K0
K2
K5
Et2 (Output)
Et4 (Output)
Right ringLeft ring
Fig. 1. Schematic diagram of a PANDA ring resonator
connected to an add/drop filter system.
0
0.5
1
1.5
|E1|2(W)|E3|2(W)
|E2|2(W)|E4|2(W)
0
1
2
3
4
5
1.5 1.52 1.54 1.56 1.58 1.6
0
0.5
1
1.5
1.5 1.52 1.54 1.56 1.58 1.6
0
0.5
1
1.5
2
2.5
1.53 1.535 1.54 1.545 1.55 1.555 1.56 1.565 1.57
0
1
2
3
4
5
Wavelength (mm)
Throughput|Et1|2(W)
(c) (d)
(b)(a)
(e)
Fig. 2. Multisoliton signal generation using the PANDA
ring resonator system, where (a), (b), (c) and (d) are pow-
ers inside the PANDA system and (e) is the output power
from the throughput.
Chaotic signals can be used in secured optical com-
munication in which the information is input into
the signals. In order to retrieve the information from
the chaotic signals, an add/drop filter system is used.
This system filters the chaotic signals and generates
a multi-optical soliton, which is used to improve the
capacity of the system, making it applicable to long
distance communication. In order to generate a multi-
optical soliton, the chaotic signals from the PANDA
ring resonator are input into the add/drop filter sys-
tem. Therefore the proposed system is suitable to en-
hance both the security and the capacity of optical sig-
nals. Figures 3(a) and 3(b) show the generation of mul-
tisolitons in the form of dark solitons and the expan-
sion of the through port signals, respectively, where
Figs. 3(c) and 3(d) represent multisolitons in the form
of bright solitons and the expansion of the drop port
signals, respectively. The coupling coefficients of the
add/drop filter system are given as 𝜅4 = 0.9, 𝜅5 = 0.5,
where the radius of the ring is 𝑅 𝑎𝑑 = 100 µm.
(a) (b)
(c) (d)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Ethrough(W)EDrop(W)
1.5 1.52 1.54 1.56 1.58 1.6
0.4
0.5
0.6
0.7
0.8
Wavelength (mm)
1.547 1.549 1.551 1.553
Wavelength (mm)
FWHM=425 pm
FSR=1.145 nm
Fig. 3. Output multisoliton signal generation using an
add/drop filter system: (a) dark soliton at the through
port, (b) expansion of a multi dark soliton, (c) bright
soliton at tge drop port, and (d) expansion of a multi
bright soliton with an FWHM and an FSR of 425 pm and
1.145 nm, respectively.
Increases in the communication channel and net-
work capacity can be achieved by using different soli-
ton bands or central wavelengths, as shown in Fig. 3.
Apart from communication applications, the idea of
a personnel wavelength (network) is practical for the
large demand user due to un-limited wavelength dis-
crepancy, whereas a specific soliton band can be gener-
ated using the proposed system. There is potential for
soliton bands to be generated and used in many appli-
cations, such as multi color holography, medical tools,
security imaging and transparent holography and de-
tection.
In conclusion, extensive chaotic signals can be
formed by using a PANDA ring resonator system. This
system is connected to an add/drop filter system in
order to generate a multi optical soliton. Gaussian
beams with central wavelength of 1.55 µm are intro-
duced into the input and add ports of the PANDA
system, which are sufficient to generate a high ca-
pacity soliton. In this case, the interior signals of the
104205-3
CHIN. PHYS. LETT. Vol. 28, No. 10 (2011) 104205
PANDA system can be controlled and tuned. Gener-
ated chaotic signals from the PANDA system can be
input into the add/drop filter system. The add/drop
system will filter the chaotic signals in which a multi-
soliton with FWHM and FSR of 425 pm and 1.145 nm
can be generated.
The authors would like to thank KMITL, Thai-
land and UTM for providing the research facilities.
The authors acknowledge the IDF financial support
from UTM.
References
[1] Jukgoljun B, Pipatsart S, Jalil M A, Yupapin P P and Ali
J 2011 Optik 122 1492
[2] Yuan Y, Cai Y, Qu J, Eyyuboˇgu H T, Baykal Y and Ko-
rotkova O 2009 Opt. Express 17 17344
[3] Pornsuwancharoen N, Fujii Y, Srinuanjan K and Yupapin
P P 2010 Optik 121 1863
[4] Jiang H B 1991 Appl. Phys. B Photophys. Laser Chem. 53
(5-6) 347
[5] Deng D and Guo Q 2007 Opt. Lett. 32 3206
[6] Liaw S K, Hsieh Y S, Cheng W L, Chang C L and Ting H
F 2008 J. Opt. Network. 7 662
[7] Yupapin P P and Vanishkorn B 2011 Appl. Math. Model.
35 1729
[8] Mitatha S, Piyatamrong B, Yupapin P P, Knobnob B and
Chaiyasoonthorn S 2011 J. Nonlin. Opt. Phys. Mater. 20
85
[9] Su Y, Liu F and Li Q 2007 Proc. SPIE 6783 68732P
[10] Fietz C and Shvets G 2007 Opt Lett. 32 1683
[11] Kokubun Y, Hatakeyama Y, Ogata M, Suzuki S and Zaizen
N 2007 IEEE J. Sel. Top. Quantum Electron. 11 4
[12] Jukgoljun B, Suwanpayak N, Teeka C and Yupapin P P
2010 Opt. Engin. 49 12
[13] Agarwal G P 2007 Nonlinear Fiber Optics 4th edn (New
York: Academic)
[14] Tasakorn M, Teeka C, Jomtarak R and Yupapin P P 2010
Opt. Engin. 49 075002
[15] Uomwech K, Sarapat K and Yupapin P P 2010 Microwave
Opt. Technol. Lett. 52 1818
[16] Phatharaworamet T, Teeka C, Jomtarak R, Mitatha S and
Yupapin P P 2010 J. Lightwave Technol. 28 2804
[17] Phattaraworamet T, Jomtarak R, Mitatha S and Yupapin
P P 2011 Microwave Opt. Technol. Lett. 53 516
[18] Srinuanjan K, Kamoldilok S, Tipaphong W and Yupapin P
P 2011 Optik (in press)
104205-4

Weitere ähnliche Inhalte

Was ist angesagt?

Entangled photon encoding using trapping of picoseconds soliton pulse
Entangled photon encoding using trapping of picoseconds soliton pulseEntangled photon encoding using trapping of picoseconds soliton pulse
Entangled photon encoding using trapping of picoseconds soliton pulse
University of Malaya (UM)
 
Long distance communication using localized optical soliton via entangled photon
Long distance communication using localized optical soliton via entangled photonLong distance communication using localized optical soliton via entangled photon
Long distance communication using localized optical soliton via entangled photon
University of Malaya (UM)
 
Analytical approach to polarisation nonreciprocity of Sagnac fibre ring inter...
Analytical approach to polarisation nonreciprocity of Sagnac fibre ring inter...Analytical approach to polarisation nonreciprocity of Sagnac fibre ring inter...
Analytical approach to polarisation nonreciprocity of Sagnac fibre ring inter...
Kurbatov Roman
 
RF and Optical Realizations of Chaotic Dynamics
RF and Optical Realizations of Chaotic DynamicsRF and Optical Realizations of Chaotic Dynamics
RF and Optical Realizations of Chaotic Dynamics
Emeka Ikpeazu
 

Was ist angesagt? (17)

Entangled photon encoding using trapping of picoseconds soliton pulse
Entangled photon encoding using trapping of picoseconds soliton pulseEntangled photon encoding using trapping of picoseconds soliton pulse
Entangled photon encoding using trapping of picoseconds soliton pulse
 
Long distance communication using localized optical soliton via entangled photon
Long distance communication using localized optical soliton via entangled photonLong distance communication using localized optical soliton via entangled photon
Long distance communication using localized optical soliton via entangled photon
 
Determination of fwhm for soliton trapping
Determination of fwhm for soliton trappingDetermination of fwhm for soliton trapping
Determination of fwhm for soliton trapping
 
Generation of Quantum Photon Information Using Extremely Narrow Optical Tweez...
Generation of Quantum Photon Information Using Extremely Narrow Optical Tweez...Generation of Quantum Photon Information Using Extremely Narrow Optical Tweez...
Generation of Quantum Photon Information Using Extremely Narrow Optical Tweez...
 
A Combined Voice Activity Detector Based On Singular Value Decomposition and ...
A Combined Voice Activity Detector Based On Singular Value Decomposition and ...A Combined Voice Activity Detector Based On Singular Value Decomposition and ...
A Combined Voice Activity Detector Based On Singular Value Decomposition and ...
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
Model Order Reduction of an ISLANDED MICROGRID using Single Perturbation, Dir...
Model Order Reduction of an ISLANDED MICROGRID using Single Perturbation, Dir...Model Order Reduction of an ISLANDED MICROGRID using Single Perturbation, Dir...
Model Order Reduction of an ISLANDED MICROGRID using Single Perturbation, Dir...
 
MARKET ANALYSIS OF FINANCIAL INSTITUTIONS AND ENTREPRENEURSHIP IN INDIA
MARKET ANALYSIS OF FINANCIAL INSTITUTIONS AND ENTREPRENEURSHIP IN INDIAMARKET ANALYSIS OF FINANCIAL INSTITUTIONS AND ENTREPRENEURSHIP IN INDIA
MARKET ANALYSIS OF FINANCIAL INSTITUTIONS AND ENTREPRENEURSHIP IN INDIA
 
Analytical approach to polarisation nonreciprocity of Sagnac fibre ring inter...
Analytical approach to polarisation nonreciprocity of Sagnac fibre ring inter...Analytical approach to polarisation nonreciprocity of Sagnac fibre ring inter...
Analytical approach to polarisation nonreciprocity of Sagnac fibre ring inter...
 
Improving the Efficiency of Spectral Subtraction Method by Combining it with ...
Improving the Efficiency of Spectral Subtraction Method by Combining it with ...Improving the Efficiency of Spectral Subtraction Method by Combining it with ...
Improving the Efficiency of Spectral Subtraction Method by Combining it with ...
 
RF and Optical Realizations of Chaotic Dynamics
RF and Optical Realizations of Chaotic DynamicsRF and Optical Realizations of Chaotic Dynamics
RF and Optical Realizations of Chaotic Dynamics
 
Destructive Fermi Resonance in 2D Harmoinc Oscillator
Destructive Fermi Resonance in 2D Harmoinc OscillatorDestructive Fermi Resonance in 2D Harmoinc Oscillator
Destructive Fermi Resonance in 2D Harmoinc Oscillator
 
476 293
476 293476 293
476 293
 
Controlling Nonlinear Behavior of a SMRR for Network System Engineering
Controlling Nonlinear Behavior of a SMRR for Network System EngineeringControlling Nonlinear Behavior of a SMRR for Network System Engineering
Controlling Nonlinear Behavior of a SMRR for Network System Engineering
 
Homeworks
HomeworksHomeworks
Homeworks
 
Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63
 
Paper id 27201423
Paper id 27201423Paper id 27201423
Paper id 27201423
 

Ähnlich wie Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonator System

Secured transportation of quantum codes using integrated panda adddrop and td...
Secured transportation of quantum codes using integrated panda adddrop and td...Secured transportation of quantum codes using integrated panda adddrop and td...
Secured transportation of quantum codes using integrated panda adddrop and td...
University of Malaya (UM)
 
Decimal convertor application for optical wireless communication by generatin...
Decimal convertor application for optical wireless communication by generatin...Decimal convertor application for optical wireless communication by generatin...
Decimal convertor application for optical wireless communication by generatin...
University of Malaya (UM)
 
Dark bright solitons conversion system for secured and long distance optical ...
Dark bright solitons conversion system for secured and long distance optical ...Dark bright solitons conversion system for secured and long distance optical ...
Dark bright solitons conversion system for secured and long distance optical ...
University of Malaya (UM)
 
All-Optical OFDM Generation for IEEE802.11a Based on Soliton Carriers Using M...
All-Optical OFDM Generation for IEEE802.11a Based on Soliton Carriers Using M...All-Optical OFDM Generation for IEEE802.11a Based on Soliton Carriers Using M...
All-Optical OFDM Generation for IEEE802.11a Based on Soliton Carriers Using M...
University of Malaya (UM)
 
Frequency wavelength trapping by integrated ring resonators for secured netwo...
Frequency wavelength trapping by integrated ring resonators for secured netwo...Frequency wavelength trapping by integrated ring resonators for secured netwo...
Frequency wavelength trapping by integrated ring resonators for secured netwo...
University of Malaya (UM)
 
New system of chaotic signal generation based on coupling coefficients applie...
New system of chaotic signal generation based on coupling coefficients applie...New system of chaotic signal generation based on coupling coefficients applie...
New system of chaotic signal generation based on coupling coefficients applie...
University of Malaya (UM)
 

Ähnlich wie Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonator System (20)

Secured Transportation of Quantum Codes Using Integrated PANDA-Add/drop and T...
Secured Transportation of Quantum Codes Using Integrated PANDA-Add/drop and T...Secured Transportation of Quantum Codes Using Integrated PANDA-Add/drop and T...
Secured Transportation of Quantum Codes Using Integrated PANDA-Add/drop and T...
 
Secured transportation of quantum codes using integrated panda adddrop and td...
Secured transportation of quantum codes using integrated panda adddrop and td...Secured transportation of quantum codes using integrated panda adddrop and td...
Secured transportation of quantum codes using integrated panda adddrop and td...
 
Ultra-short Multi Soliton Generation for Application in Long Distance Commun...
Ultra-short Multi Soliton Generation for Application in Long Distance  Commun...Ultra-short Multi Soliton Generation for Application in Long Distance  Commun...
Ultra-short Multi Soliton Generation for Application in Long Distance Commun...
 
Decimal Convertor Application for Optical Wireless Communication by Generatin...
Decimal Convertor Application for Optical Wireless Communication by Generatin...Decimal Convertor Application for Optical Wireless Communication by Generatin...
Decimal Convertor Application for Optical Wireless Communication by Generatin...
 
Decimal convertor application for optical wireless communication by generatin...
Decimal convertor application for optical wireless communication by generatin...Decimal convertor application for optical wireless communication by generatin...
Decimal convertor application for optical wireless communication by generatin...
 
Entangled Photon Encoding Using Trapping of Picoseconds Soliton pulse
Entangled Photon Encoding Using Trapping of Picoseconds Soliton pulseEntangled Photon Encoding Using Trapping of Picoseconds Soliton pulse
Entangled Photon Encoding Using Trapping of Picoseconds Soliton pulse
 
Signal processing with frequency and phase shift keying modulation in telecom...
Signal processing with frequency and phase shift keying modulation in telecom...Signal processing with frequency and phase shift keying modulation in telecom...
Signal processing with frequency and phase shift keying modulation in telecom...
 
Dark-Bright Solitons Conversion System for Secured and Long Distance Optical ...
Dark-Bright Solitons Conversion System for Secured and Long Distance Optical ...Dark-Bright Solitons Conversion System for Secured and Long Distance Optical ...
Dark-Bright Solitons Conversion System for Secured and Long Distance Optical ...
 
Dark bright solitons conversion system for secured and long distance optical ...
Dark bright solitons conversion system for secured and long distance optical ...Dark bright solitons conversion system for secured and long distance optical ...
Dark bright solitons conversion system for secured and long distance optical ...
 
Cryptography Scheme of an Optical Switching System Using Pico/Femto Second So...
Cryptography Scheme of an Optical Switching System Using Pico/Femto Second So...Cryptography Scheme of an Optical Switching System Using Pico/Femto Second So...
Cryptography Scheme of an Optical Switching System Using Pico/Femto Second So...
 
Long Distance Communication Using Localized Optical Soliton via Entangled Ph...
Long Distance Communication Using Localized Optical Soliton  via Entangled Ph...Long Distance Communication Using Localized Optical Soliton  via Entangled Ph...
Long Distance Communication Using Localized Optical Soliton via Entangled Ph...
 
All-Optical OFDM Generation for IEEE802.11a Based on Soliton Carriers Using M...
All-Optical OFDM Generation for IEEE802.11a Based on Soliton Carriers Using M...All-Optical OFDM Generation for IEEE802.11a Based on Soliton Carriers Using M...
All-Optical OFDM Generation for IEEE802.11a Based on Soliton Carriers Using M...
 
Generation of dsa for security application
Generation of dsa for security applicationGeneration of dsa for security application
Generation of dsa for security application
 
A New Method for a Nonlinear Acoustic Echo Cancellation System
A New Method for a Nonlinear Acoustic Echo Cancellation SystemA New Method for a Nonlinear Acoustic Echo Cancellation System
A New Method for a Nonlinear Acoustic Echo Cancellation System
 
Generation of Nanometer Optical Tweezers Used for Optical Communication Netw...
Generation of Nanometer Optical Tweezers Used  for Optical Communication Netw...Generation of Nanometer Optical Tweezers Used  for Optical Communication Netw...
Generation of Nanometer Optical Tweezers Used for Optical Communication Netw...
 
Frequency-Wavelength Trapping by Integrated Ring Resonators For Secured Netwo...
Frequency-Wavelength Trapping by Integrated Ring Resonators For Secured Netwo...Frequency-Wavelength Trapping by Integrated Ring Resonators For Secured Netwo...
Frequency-Wavelength Trapping by Integrated Ring Resonators For Secured Netwo...
 
Frequency wavelength trapping by integrated ring resonators for secured netwo...
Frequency wavelength trapping by integrated ring resonators for secured netwo...Frequency wavelength trapping by integrated ring resonators for secured netwo...
Frequency wavelength trapping by integrated ring resonators for secured netwo...
 
ADC Lab Analysis
ADC Lab AnalysisADC Lab Analysis
ADC Lab Analysis
 
Analysis on the performance of pointing error effects for RIS-aided FSO link ...
Analysis on the performance of pointing error effects for RIS-aided FSO link ...Analysis on the performance of pointing error effects for RIS-aided FSO link ...
Analysis on the performance of pointing error effects for RIS-aided FSO link ...
 
New system of chaotic signal generation based on coupling coefficients applie...
New system of chaotic signal generation based on coupling coefficients applie...New system of chaotic signal generation based on coupling coefficients applie...
New system of chaotic signal generation based on coupling coefficients applie...
 

Mehr von University of Malaya (UM)

Characterisation of bifurcation and chaos in silicon microring resonator
Characterisation of bifurcation and chaos in silicon microring resonatorCharacterisation of bifurcation and chaos in silicon microring resonator
Characterisation of bifurcation and chaos in silicon microring resonator
University of Malaya (UM)
 
Transmission of data with orthogonal frequency division multiplexing techniqu...
Transmission of data with orthogonal frequency division multiplexing techniqu...Transmission of data with orthogonal frequency division multiplexing techniqu...
Transmission of data with orthogonal frequency division multiplexing techniqu...
University of Malaya (UM)
 

Mehr von University of Malaya (UM) (19)

Tunable and Storage Potential Wells using Microring Resonator System for Bioc...
Tunable and Storage Potential Wells using Microring Resonator System for Bioc...Tunable and Storage Potential Wells using Microring Resonator System for Bioc...
Tunable and Storage Potential Wells using Microring Resonator System for Bioc...
 
ASK-to-PSK Generation based on Nonlinear Microring Resonators Coupled to One ...
ASK-to-PSK Generation based on Nonlinear Microring Resonators Coupled to One ...ASK-to-PSK Generation based on Nonlinear Microring Resonators Coupled to One ...
ASK-to-PSK Generation based on Nonlinear Microring Resonators Coupled to One ...
 
All-optical logic XOR/XNOR gate operation using microring and nanoring reson...
All-optical logic XOR/XNOR gate operation using microring and  nanoring reson...All-optical logic XOR/XNOR gate operation using microring and  nanoring reson...
All-optical logic XOR/XNOR gate operation using microring and nanoring reson...
 
Characterisation of bifurcation and chaos in silicon microring resonator
Characterisation of bifurcation and chaos in silicon microring resonatorCharacterisation of bifurcation and chaos in silicon microring resonator
Characterisation of bifurcation and chaos in silicon microring resonator
 
Determination Of Fwhm For Solition Trapping
Determination Of Fwhm For Solition TrappingDetermination Of Fwhm For Solition Trapping
Determination Of Fwhm For Solition Trapping
 
A Study oF Dynamic Optical Tweezers Generation For Communication Networks
A Study oF Dynamic Optical Tweezers Generation For Communication NetworksA Study oF Dynamic Optical Tweezers Generation For Communication Networks
A Study oF Dynamic Optical Tweezers Generation For Communication Networks
 
15
1515
15
 
Optical Wired/Wireless Communication Using Soliton Optical Tweezers
Optical Wired/Wireless Communication Using Soliton Optical TweezersOptical Wired/Wireless Communication Using Soliton Optical Tweezers
Optical Wired/Wireless Communication Using Soliton Optical Tweezers
 
Single Soliton Bandwidth Generation and Manipulation by Microring Resonator
Single Soliton Bandwidth Generation and Manipulation by Microring ResonatorSingle Soliton Bandwidth Generation and Manipulation by Microring Resonator
Single Soliton Bandwidth Generation and Manipulation by Microring Resonator
 
NEW SYSTEM OF CHAOTIC SIGNAL GENERATION BASED ON COUPLING COEFFICIENTS APPLI...
NEW SYSTEM OF CHAOTIC SIGNAL GENERATION BASED ON  COUPLING COEFFICIENTS APPLI...NEW SYSTEM OF CHAOTIC SIGNAL GENERATION BASED ON  COUPLING COEFFICIENTS APPLI...
NEW SYSTEM OF CHAOTIC SIGNAL GENERATION BASED ON COUPLING COEFFICIENTS APPLI...
 
Chaotic Signal Generation and Trapping Using an Optical Transmission Link
Chaotic Signal Generation and Trapping Using an Optical Transmission LinkChaotic Signal Generation and Trapping Using an Optical Transmission Link
Chaotic Signal Generation and Trapping Using an Optical Transmission Link
 
LOGIC CODES GENERATION AND TRANSMISSION USING AN ENCODING-DECODING SYSTEM
LOGIC CODES GENERATION AND TRANSMISSION USING AN ENCODING-DECODING SYSTEMLOGIC CODES GENERATION AND TRANSMISSION USING AN ENCODING-DECODING SYSTEM
LOGIC CODES GENERATION AND TRANSMISSION USING AN ENCODING-DECODING SYSTEM
 
Quantum Transmission of Optical Tweezers Via Fiber Optic Using Half-Panda Sys...
Quantum Transmission of Optical Tweezers Via Fiber Optic Using Half-Panda Sys...Quantum Transmission of Optical Tweezers Via Fiber Optic Using Half-Panda Sys...
Quantum Transmission of Optical Tweezers Via Fiber Optic Using Half-Panda Sys...
 
Nonlinear Chaotic Signals Generation and Transmission within an Optical Fiber...
Nonlinear Chaotic Signals Generation and Transmission within an Optical Fiber...Nonlinear Chaotic Signals Generation and Transmission within an Optical Fiber...
Nonlinear Chaotic Signals Generation and Transmission within an Optical Fiber...
 
IEEE 802.15.3c WPAN Standard Using Millimeter Optical Soliton Pulse Generated...
IEEE 802.15.3c WPAN Standard Using Millimeter Optical Soliton Pulse Generated...IEEE 802.15.3c WPAN Standard Using Millimeter Optical Soliton Pulse Generated...
IEEE 802.15.3c WPAN Standard Using Millimeter Optical Soliton Pulse Generated...
 
Generation and wired/wireless transmission of IEEE802.16m signal using solito...
Generation and wired/wireless transmission of IEEE802.16m signal using solito...Generation and wired/wireless transmission of IEEE802.16m signal using solito...
Generation and wired/wireless transmission of IEEE802.16m signal using solito...
 
Transmission of data with orthogonal frequency division multiplexing techniqu...
Transmission of data with orthogonal frequency division multiplexing techniqu...Transmission of data with orthogonal frequency division multiplexing techniqu...
Transmission of data with orthogonal frequency division multiplexing techniqu...
 
Generating of 57-61 GHz Frequency Band Using a Panda Ring Resonator
Generating of 57-61 GHz Frequency Band Using a Panda Ring ResonatorGenerating of 57-61 GHz Frequency Band Using a Panda Ring Resonator
Generating of 57-61 GHz Frequency Band Using a Panda Ring Resonator
 
Characterization of Optical Bistability in a Fiber Optic Ring Resonator
Characterization of Optical Bistability in a Fiber Optic Ring ResonatorCharacterization of Optical Bistability in a Fiber Optic Ring Resonator
Characterization of Optical Bistability in a Fiber Optic Ring Resonator
 

Kürzlich hochgeladen

(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Silpa
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 

Kürzlich hochgeladen (20)

(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curve
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
Velocity and Acceleration PowerPoint.ppt
Velocity and Acceleration PowerPoint.pptVelocity and Acceleration PowerPoint.ppt
Velocity and Acceleration PowerPoint.ppt
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Exploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdfExploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdf
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 

Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonator System

  • 1. CHIN. PHYS. LETT. Vol. 28, No. 10 (2011) 104205 Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonator System I. S. Amiri* , A. Afroozeh, M. Bahadoran Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran (Received 8 July 2011) A novel system of multisoliton generation using nonlinear equations of the propagating signals is presented. This system uses a PANDA ring resonator incorporated with an add/drop filter system. Using resonant conditions, the intense optical fields known as multisolitons can be generated and propagated within a Kerr-type nonlinear medium. The present simulation results show that multisolitons can be controlled by using additional Gaussian pulses input into the add port of the PANDA system. For the soliton pulse in the microring device, a balance should be achieved between dispersion and nonlinear lengths. Chaotic output signals from the PANDA ring resonator are input into the add/drop filter system. Chaotic signals can be filtered by using the add/drop filter system, in which multi dark and bright solitons can be generated. In this work multi dark and bright solitons with an FWHM and an FSR of 425 pm and 1.145 nm are generated, respectively, where the Gaussian pulse with a central wavelength of 1.55 µm and power of 600 mW is input into the system. PACS: 42.65.Tg DOI: 10.1088/0256-307X/28/10/104205 The generation of multisolitons becomes an inter- esting subject when it is used to enlarge the capacity of communication channels.[1] The high optical output of the ring resonator system is of benefit to long distance communication links.[2] Two techniques can be used to generate soliton pulses. First, soliton pulses can be ob- tained using a ring resonator system where large am- plified signals are achieved. Second, a Gaussian soliton can be generated in a simple system arrangement.[3] This application becomes an attractive tool in the area of photonics for soliton generation and investigation. The advantage of using pumped solitons or Gaussian solitons is that an intensive input light can be gener- ated. There are many ways to achieve powerful light, for instance, using a high-power light source or reduc- ing the radius of the ring resonator.[4] However, there are many research works report- ing both theories and experiments using a common Gaussian pulse for soliton studies.[5] In practice, in- tensive pulses can be obtained by using erbium-doped fibers (EDFs) and semiconductor amplifiers incorpo- rated with the experimental setup.[6] A Gaussian pulse is used to form a multi soliton using a ring resonator.[7] In this work, a laser source such as a Gaussian pulse with a central wavelength of 1.55 µm is used. A nonlinear ring resonator system can be used to gen- erate multiple soliton channels. We propose a mod- ified add/drop optical filter called the PANDA sys- tem, which consists of one centered ring resonator con- nected to two smaller ring resonators on the right and left sides.[8] To form the multifunction operations of the PANDA system, for instance, to control, tune and amplify an additional Gaussian pulse is introduced into the add port of the system. By controlling some suitable parameters of the add optical pulse, the gen- erated result within a ring resonator system can be controlled. Therefore, a PANDA ring resonator can be connected to an add/drop filter system in order to filter noisy and chaotic signals. The nonlinear equa- tions of the system due to the Kerr effect nonlinearity type can be analyzed and simulated. The proposed system consists of a PANDA ring resonator connected to an add/drop filter system, as shown in Fig. 1. The laser Gaussian pulse input prop- agates inside the ring resonator system, which is in- troduced by the nonlinear Kerr effect. The Kerr effect causes the refractive index 𝑛 of the medium, expressed by 𝑛 = 𝑛0 + 𝑛2 𝐼 = 𝑛0 + 𝑛2 𝐴eff 𝑃, (1) where 𝑛0 and 𝑛2 are the linear and nonlinear refractive indexes, respectively. 𝐼 and 𝑃 are the optical intensity and the power, respectively. 𝐴eff is the effective mode core area of the device.[9] For an add/drop optical fil- ter design, the effective mode core areas range from 0.50 to 0.10 µm2 . The parameters were obtained by using the practical parameters of the materials used (InGaAsP/InP).[10,11] Input optical fields of the Gaus- sian pulses at the input and add ports of the system are given by[12] 𝐸𝑖1(𝑡) = 𝐸𝑖2(𝑡) = 𝐸𝑖0 exp [︁(︁ 𝑧 2𝐿 𝐷 )︁ − 𝑖𝜔0 𝑡 ]︁ , (2) where 𝐸𝑖0 and 𝑧 are the optical field amplitude and propagation distance respectively. 𝐿D is the disper- sion length of the soliton pulse, where 𝑡 is the soli- ton phase shift time, and the carrier frequency of the signal is 𝜔0.[13] The nonlinear condition of the medium causes the gaussian beam to propagate as *Corresponding author. Email: isafiz@yahoo.com c○ 2011 Chinese Physical Society and IOP Publishing Ltd 104205-1
  • 2. CHIN. PHYS. LETT. Vol. 28, No. 10 (2011) 104205 soliton pulses while its temporal and spatial width in- variances are retained, which explains why it is called a temporal and spatial soliton. Soliton pulses prop- agate within the microring device when the balance between the dispersion length (𝐿D) and the nonlin- ear length (𝐿NL = 1/Γ 𝜑NL) is achieved. Therefore 𝐿D = 𝐿NL, where Γ = 𝑛2 × 𝑘0 is the length scale over which dispersive or nonlinear effects make the beam become wider or narrower.[14] For the PANDA ring resonator, the output signals inside the system are given as follows:[15,16] 𝐸1 = √︀ 1 − 𝛾1( √ 1 − 𝜅1 𝐸4 + 𝑗 √ 𝜅1 𝐸𝑖1), (3) 𝐸2 = 𝐸0 𝐸1 𝑒− 𝛼 2 𝐿 2 −𝑗𝑘 𝑛 𝐿 2 , (4) where 𝜅1, 𝛾1 and 𝛼 are the intensity coupling coeffi- cient, fractional coupler intensity loss and attenuation coefficient, respectively, 𝑘 𝑛 = 2𝜋 𝜆 is the wave propaga- tion number, 𝜆 is the input wavelength light field and 𝐿 = 2𝜋𝑅PANDA where, 𝑅PANDA is the radius of the PANDA system, which is 300 nm. The electric field of the small ring at the right side of the PANDA ring system is given as 𝐸0 = 𝐸1 √︀ (1 − 𝛾)(1 − 𝜅0) − (1 − 𝛾)𝑒− 𝛼 2 𝐿1−𝑗𝑘 𝑛 𝐿1 1 − √ 1 − 𝛾 √ 1 − 𝜅0 𝑒− 𝛼 2 𝐿1−𝑗𝑘 𝑛 𝐿1 , (5) where 𝐿1 = 2𝜋 𝑅 𝑟 and 𝑅 𝑟 is the radius of the right ring. The light fields of the left side of PANDA ring resonator can be expressed as 𝐸3 = √︀ 1 − 𝛾2[ √ 1 − 𝜅2 𝐸2 + 𝑗 √ 𝜅2 𝐸𝑖2], (6) 𝐸4 = 𝐸0𝐿 𝐸3 𝑒− 𝛼 2 𝐿 2 −𝑗𝑘 𝑛 𝐿 2 , (7) where, 𝐸0𝐿 = 𝐸3 √︀ (1 − 𝛾)(1 − 𝜅3) − (1 − 𝛾)𝑒− 𝛼 2 𝐿2−𝑗𝑘 𝑛 𝐿2 1 − √ 1 − 𝛾 √ 1 − 𝜅3 𝑒− 𝛼 2 𝐿2−𝑗𝑘 𝑛 𝐿2 , (8) where 𝐿2 = 2𝜋𝑅 𝐿 and 𝑅 𝐿 is the left ring radius. In order to simplify these equations, the parameters of 𝑥1, 𝑥2, 𝑦1 and 𝑦2 are defined as 𝑥1 = (1 − 𝛾1) 1 2 , 𝑥2 = (1 − 𝛾2) 1 2 , 𝑦1 = (1 − 𝜅1) 1 2 , 𝑦2 = (1 − 𝜅2) 1 2 . Therefore, 𝐸1 = 𝑗𝑥1 √ 𝜅1 𝐸𝑖1 + 𝑗𝑥1 𝑥2 𝑦1 √ 𝜅2 𝐸0𝐿 𝐸𝑖2 𝑒− 𝛼 2 𝐿 2 −𝑗𝑘 𝑛 𝐿 2 1 − 𝑥1 𝑥2 𝑦1 𝑦2 𝐸0 𝐸0𝐿 𝑒− 𝛼 2 𝐿−𝑗𝑘 𝑛 𝐿 , (9) 𝐸3 = 𝑥2 𝑦2 𝐸0 𝐸1 𝑒− 𝛼 2 𝐿 2 −𝑗𝑘 𝑛 𝐿 2 + 𝑗𝑥2 √ 𝜅2 𝐸𝑖2, (10) 𝐸4 = 𝑥2 𝑦2 𝐸0 𝐸0𝐿 𝐸1 𝑒− 𝛼 2 𝐿−𝑗𝑘 𝑛 𝐿 + 𝑗𝑥2 √ 𝜅2 𝐸0𝐿 𝐸𝑖2 𝑒− 𝛼 2 𝐿 2 −𝑗𝑘 𝑛 𝐿 2 . (11) Therefore, the output powers through and drop ports of the PANDA ring resonator can be expressed as 𝐸 𝑡1and 𝐸 𝑡2 and are given as 𝐸 𝑡1 = 𝐴𝐸𝑖1 − 𝐵𝐸𝑖2 𝑒− 𝛼 2 𝐿 2 −𝑗𝑘 𝑛 𝐿 2 [ 𝐶𝐸𝑖1 𝐺2 + 𝐷𝐸𝑖2 𝐺3 1 − 𝐹 𝐺2 ], (12) 𝐸 𝑡2 = 𝑥2 𝑦2 𝐸𝑖2[ 𝐴 √ 𝜅1 𝜅2 𝐸0 𝐸𝑖1 𝐺 + 𝐷 𝑥1 √ 𝜅1 𝐸0𝐿 𝐸𝑖2 𝐺2 1 − 𝐹 𝐺2 ], (13) where 𝐴 = 𝑥1 𝑥2,𝐵 = 𝑥1 𝑥2 𝑦2 √ 𝜅1 𝐸0 𝐿, 𝐶 = 𝑥2 1 𝑥2 𝜅1 √ 𝜅2 𝐸0 𝐸0 𝐿, 𝐷 = (𝑥1 𝑥2)2 𝑦1 𝑦2 √ 𝜅1 𝜅2 𝐸0 𝐸2 0 𝐿, 𝐺 = (︁ 𝑒− 𝛼 2 𝐿 2 −𝑗𝑘 𝑛 𝐿 2 )︁ and 𝐹 = 𝑥1 𝑥2 𝑦1 𝑦2 𝐸0 𝐸0 𝐿. 𝐸 𝑡1 output from the PANDA system can be input into the add/drop filter system which is made of a ring resonator coupled to two fiber waveguides with proper parameters.[17] The light fields inside the add/drop fil- ter system are given as 𝐸 𝑎 = 𝐸 𝑡1 𝑗 √ 𝜅4 1 − √ 1 − 𝜅4 √ 1 − 𝜅5 𝑒 −𝛼 2 𝐿 𝑎𝑑−𝑗𝑘 𝑛 𝐿 𝑎𝑑 , (14) 𝐸 𝑏 = 𝐸 𝑡1 𝑗 √ 𝜅4 1 − √ 1 − 𝜅4 √ 1 − 𝜅5 𝑒 −𝛼 2 𝐿 𝑎𝑑−𝑗𝑘 𝑛 𝐿 𝑎𝑑 · √ 1 − 𝜅5 𝑒 −𝛼 2 𝐿 𝑎𝑑 2 −𝑗𝑘 𝑛 𝐿 𝑎𝑑 2 , (15) where 𝜅4 and 𝜅5 are the coupling coefficients of the add/drop filter system, 𝐿 𝑎𝑑 = 2𝜋 𝑅 𝑎𝑑 and 𝑅 𝑎𝑑 is the radius of the add/drop system. The output powers from the add/drop filter system are given by Eqs. (16) and (17), where 𝐸 𝑡3 and 𝐸 𝑡4 are the electric field out- puts of the through and drop ports of the system, respectively. 𝐼 𝑡3 𝐼 𝑡1 = ⃒ ⃒ ⃒ ⃒ 𝐸 𝑡3 𝐸 𝑡1 ⃒ ⃒ ⃒ ⃒ 2 = [︁ 1 − 𝜅4 − 2 √ 1 − 𝜅4 √ 1 − 𝜅5 𝑒 −𝛼 2 𝐿 𝑎𝑑 cos(𝑘 𝑛 𝐿 𝑎𝑑) + (1 − 𝜅5)𝑒−𝛼𝐿 𝑎𝑑 1 + (1 − 𝜅4)(1 − 𝜅5)𝑒−𝛼𝐿 𝑎𝑑 − 2 √ 1 − 𝜅4 √ 1 − 𝜅5 𝑒 −𝛼 2 𝐿 𝑎𝑑 cos(𝑘 𝑛 𝐿 𝑎𝑑) ]︁−1 , (16) 𝐼 𝑡4 𝐼 𝑡1 = ⃒ ⃒ ⃒ ⃒ 𝐸 𝑡4 𝐸 𝑡1 ⃒ ⃒ ⃒ ⃒ 2 = [︁ 𝜅4 𝜅5 𝑒 −𝛼 2 𝐿 𝑎𝑑 1 + (1 − 𝜅4)(1 − 𝜅5)𝑒−𝛼𝐿 𝑎𝑑 − 2 √ 1 − 𝜅4 √ 1 − 𝜅5 𝑒 −𝛼 2 𝐿 𝑎𝑑 cos(𝑘 𝑛 𝐿 𝑎𝑑) ]︁ . (17) These nonlinear equations of the output powers can be simulated in which the dark and bright multisolitons can be generated.[18] Gaussian beams with central wavelength of 1.55 µm and power of 600 mW are introduced into the add and input ports of the PANDA ring resonator. The simulated result, based on solution of the nonlin- ear equations for the input power, propagating inside the fiber system has been shown in Fig. 2. The fiber system has nonlinearity of the Kerr effect type, where 104205-2
  • 3. CHIN. PHYS. LETT. Vol. 28, No. 10 (2011) 104205 the linear and nonlinear refractive indices of the sys- tem are 𝑛0 = 3.34 and 𝑛2 = 3.2 × 10−17 , respectively. In Fig. 2, the coupling coefficients of the PANDA ring resonator are given as 𝜅0=0.2, 𝜅1=0.35, 𝜅2=0.1 and 𝜅3=0.95, respectively, and 𝛾 = 𝛾1 = 𝛾2 = 0.1. The radius of the centered ring of the PANDA system has been chosen as 𝑅PANDA = 300 nm, where the radii of the right and left rings are 𝑅 𝑟 = 180 nm and 𝑅 𝐿 = 200 nm, respectively. The output soliton sig- nals are amplified and tuned using the add port of the system. Figures 2(a) and 2(b) show the powers in the form of chaotic signals before entering the right ring of the PANDA system and the amplification of signals during propagation of light inside right ring, respectively, where Figs. 2(c) and 2(d) show the pow- ers before entering the left ring and the amplification of signals within the right ring, respectively. We find that the signals are stable and seen within the system where the chaotic signals are generated at the through port shown in Fig. 2(e). Add-drop filter RL Rr PANDA Et1 EL Ea Eb Multi Soliton, Et3 Input Gaussian Beam, Ei1 at input port Input Gaussian beam, Ei2 at addport E1 E0 E2E3 E4 K4K1 K3 K0 K2 K5 Et2 (Output) Et4 (Output) Right ringLeft ring Fig. 1. Schematic diagram of a PANDA ring resonator connected to an add/drop filter system. 0 0.5 1 1.5 |E1|2(W)|E3|2(W) |E2|2(W)|E4|2(W) 0 1 2 3 4 5 1.5 1.52 1.54 1.56 1.58 1.6 0 0.5 1 1.5 1.5 1.52 1.54 1.56 1.58 1.6 0 0.5 1 1.5 2 2.5 1.53 1.535 1.54 1.545 1.55 1.555 1.56 1.565 1.57 0 1 2 3 4 5 Wavelength (mm) Throughput|Et1|2(W) (c) (d) (b)(a) (e) Fig. 2. Multisoliton signal generation using the PANDA ring resonator system, where (a), (b), (c) and (d) are pow- ers inside the PANDA system and (e) is the output power from the throughput. Chaotic signals can be used in secured optical com- munication in which the information is input into the signals. In order to retrieve the information from the chaotic signals, an add/drop filter system is used. This system filters the chaotic signals and generates a multi-optical soliton, which is used to improve the capacity of the system, making it applicable to long distance communication. In order to generate a multi- optical soliton, the chaotic signals from the PANDA ring resonator are input into the add/drop filter sys- tem. Therefore the proposed system is suitable to en- hance both the security and the capacity of optical sig- nals. Figures 3(a) and 3(b) show the generation of mul- tisolitons in the form of dark solitons and the expan- sion of the through port signals, respectively, where Figs. 3(c) and 3(d) represent multisolitons in the form of bright solitons and the expansion of the drop port signals, respectively. The coupling coefficients of the add/drop filter system are given as 𝜅4 = 0.9, 𝜅5 = 0.5, where the radius of the ring is 𝑅 𝑎𝑑 = 100 µm. (a) (b) (c) (d) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Ethrough(W)EDrop(W) 1.5 1.52 1.54 1.56 1.58 1.6 0.4 0.5 0.6 0.7 0.8 Wavelength (mm) 1.547 1.549 1.551 1.553 Wavelength (mm) FWHM=425 pm FSR=1.145 nm Fig. 3. Output multisoliton signal generation using an add/drop filter system: (a) dark soliton at the through port, (b) expansion of a multi dark soliton, (c) bright soliton at tge drop port, and (d) expansion of a multi bright soliton with an FWHM and an FSR of 425 pm and 1.145 nm, respectively. Increases in the communication channel and net- work capacity can be achieved by using different soli- ton bands or central wavelengths, as shown in Fig. 3. Apart from communication applications, the idea of a personnel wavelength (network) is practical for the large demand user due to un-limited wavelength dis- crepancy, whereas a specific soliton band can be gener- ated using the proposed system. There is potential for soliton bands to be generated and used in many appli- cations, such as multi color holography, medical tools, security imaging and transparent holography and de- tection. In conclusion, extensive chaotic signals can be formed by using a PANDA ring resonator system. This system is connected to an add/drop filter system in order to generate a multi optical soliton. Gaussian beams with central wavelength of 1.55 µm are intro- duced into the input and add ports of the PANDA system, which are sufficient to generate a high ca- pacity soliton. In this case, the interior signals of the 104205-3
  • 4. CHIN. PHYS. LETT. Vol. 28, No. 10 (2011) 104205 PANDA system can be controlled and tuned. Gener- ated chaotic signals from the PANDA system can be input into the add/drop filter system. The add/drop system will filter the chaotic signals in which a multi- soliton with FWHM and FSR of 425 pm and 1.145 nm can be generated. The authors would like to thank KMITL, Thai- land and UTM for providing the research facilities. The authors acknowledge the IDF financial support from UTM. References [1] Jukgoljun B, Pipatsart S, Jalil M A, Yupapin P P and Ali J 2011 Optik 122 1492 [2] Yuan Y, Cai Y, Qu J, Eyyuboˇgu H T, Baykal Y and Ko- rotkova O 2009 Opt. Express 17 17344 [3] Pornsuwancharoen N, Fujii Y, Srinuanjan K and Yupapin P P 2010 Optik 121 1863 [4] Jiang H B 1991 Appl. Phys. B Photophys. Laser Chem. 53 (5-6) 347 [5] Deng D and Guo Q 2007 Opt. Lett. 32 3206 [6] Liaw S K, Hsieh Y S, Cheng W L, Chang C L and Ting H F 2008 J. Opt. Network. 7 662 [7] Yupapin P P and Vanishkorn B 2011 Appl. Math. Model. 35 1729 [8] Mitatha S, Piyatamrong B, Yupapin P P, Knobnob B and Chaiyasoonthorn S 2011 J. Nonlin. Opt. Phys. Mater. 20 85 [9] Su Y, Liu F and Li Q 2007 Proc. SPIE 6783 68732P [10] Fietz C and Shvets G 2007 Opt Lett. 32 1683 [11] Kokubun Y, Hatakeyama Y, Ogata M, Suzuki S and Zaizen N 2007 IEEE J. Sel. Top. Quantum Electron. 11 4 [12] Jukgoljun B, Suwanpayak N, Teeka C and Yupapin P P 2010 Opt. Engin. 49 12 [13] Agarwal G P 2007 Nonlinear Fiber Optics 4th edn (New York: Academic) [14] Tasakorn M, Teeka C, Jomtarak R and Yupapin P P 2010 Opt. Engin. 49 075002 [15] Uomwech K, Sarapat K and Yupapin P P 2010 Microwave Opt. Technol. Lett. 52 1818 [16] Phatharaworamet T, Teeka C, Jomtarak R, Mitatha S and Yupapin P P 2010 J. Lightwave Technol. 28 2804 [17] Phattaraworamet T, Jomtarak R, Mitatha S and Yupapin P P 2011 Microwave Opt. Technol. Lett. 53 516 [18] Srinuanjan K, Kamoldilok S, Tipaphong W and Yupapin P P 2011 Optik (in press) 104205-4