SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Downloaden Sie, um offline zu lesen
Phase-locked loop (PLL)
                  By:
    Loren Schwappach & Crystal Brandy

              Prepared for:
               Dr. Jing Guo

    CTU – EE443 – Communications 1
            September 2010
Overview
•   What is a PLL?
•   Modeling a PLL
•   Properties of PLLs
•   Simulating and Testing a PLL
•   Other Applications of PLLs
•   Questions
•   References
What is a phase-locked loop?

• A negative feedback control system whose
  operation is closely linked to frequency
  modulation (FM).

• Automatically adjusts the frequency, and phase of
  a control signal to match a reference signal.

• Commonly used for carrier synchronization and
  indirect frequency demodulation.
What is a phase-locked loop? Continued...

• A change in the input signal shows up as a change
  in phase between the input signal and the VCO
  frequency.

• Consists of 3 major components
  – Voltage-controlled oscillator (VCO)
     • Performs frequency modulation on its own carrier signal
  – Phase Detector
     • Multiplies an incoming FM wave by the output of the VCO
  – Loop filter
     • Removes the high-frequency components contained in the
       multiplier’s output.
Modeling a PLL:
                                                        Phase-Locked Loop (PLL) for FM Demodulation:

                  FM                                               ed(t)                           ef(t)
                 wave                      Phase Detector                       Loop Filter                   Loop Amplifier      v(t)
                  s(t)


                                                      eo(t)
                                                                              Voltage Controlled            ev(t)
                                                                               Oscillator (VCO)
                                                                              Voltage Controlled
                                                                                  Oscillator

  s t = ������������ cos 2πfc t+ φ1 (t)
                            ������                                                                  • The error signal produced is proportional to
                                                                Phase Detector:
     ������1 ������ = 2������������������            ������ ������                                                          phase error.
                          0                             s(t)                         ed(t)

������������ ������ = ������������ ������������������ 2������������ ������ + ������2 (������)
                          ������
                                                                                                • The error signal also represents whether the
                                                                                                correction should increase or decrease the
                              ������                                      eo(t)
      ������2 ������ = 2������������������             ������ ������                                                        VCO frequency.
                           0


                                                      high-frequency component                  low-frequency component
                                                   1                                          1
                                       ������������ ������ =     ������������ ������������ ������������ sin 4πfc t+φ1 (t)+φ2 (t) + ������������ ������������ ������������ sin φ1 (t)-φ2 (t)
                                                   2                                          2
                                                                             1
                                                                 ������������ ������ ≈     ������ ������ ������ sin φ1 (t)-φ2 (t)
                                                                             2 ������ ������ ������
Modeling a PLL: Continued...
Why use a VCO?:
A VCO produces an output whose
                                           ������������������������������������������������������ = ������������ sin ������������ ������ + ������������
frequency deviation depends upon the
input voltage.                                     ������������(������)
                                                            = 2������������������ ������������ (������)
                                                     ������������
What does that sound like?
                                                                      ������
                                               ������(������) = 2������������������            ������������ (������) ������������
That’s right.. An FM signal. So you can                             0
model a VCO the same.
          Example of a commonly used VCO
                                              VCO’s can be implemented in
                                              numerous ways. Crystal
                                              Oscillators, RLC oscillators, etc
                                              are just the beginning.

                                                VCO time-domain equation:
                                                ftuning(t) = Kv * vin(t)
Modeling a PLL: Continued...
Non-Linear Mathematical Model of PLL:
                                                                                  ed(t)                        ef(t)
     ������1 ������                                                      1
                         ∑     Sin(α)                              ������ ������ ������                 Loop Filter
                                                                 2 ������ ������ ������

                                        ������                    ev(t)
               ������2 ������        2������������������         (������) ������������                                    Loop Amplifier
                                        0




 Assume PLL is locked, then: ������������ ������ = (������1 ������ − ������2 ������ ) = 0
 Now we can use a linearized model.


 Linearized Mathematical Model of PLL (Locked PLL): ������������ ������ = (������1 ������ − ������2 ������ ) = 0
      ������1 ������                                            1                 ed(t)                                   ef(t)
                         ∑                                ������ ������ ������                         Loop Filter, h(t)
                                                        2 ������ ������ ������

                                             ������                ev(t)
                ������2 ������        2������������������             (������) ������������                                Loop Amplifier
                                            0




                                                                      Demodulated             ������������1 (������)   ������������2 (������)
                                                                                                         =
                                                                         signal                  ������������         ������������
                                                                                          2������������������ ������������ ������ = 2������������������ ������ ������
Properties of phase-locked loops:

• Step response: ability to phase/frequency step on its
  input.

• Setting Time: amount of time needed to lock-on
  after receiving an input.

• Phase Jitter: Short-term frequency instability causing
  small, rapid movements in phase. Often referred to
  as phase noise.
Simulating and Testing a PLL...
Testing a simple PLL Design (Using Simulink):
Suppose we are given a composite sinusoidal wave:
       s t = 5 cos 36 × 2πt + 2sin⁡    (180 × 2πt)
 And we would like to frequency modulate and demodulate this wave
with a 10kHz carrier, using a Phase-locked loop feed back system for
demodulation. The transmission bandwidth (BT) is not allowed to exceed
3 kHz.
Design Considerations:
                                                                  ∆������ = ������������ × ������������
Carrier frequency (fc) = 10e3 (Hz),
BT < 3e3 (Hz) so kf < 132 (Hz/V) {using max values},                        ∆������
Let kf = 1e2 (Hz/V) then Beta = approx 5.5 (wideband)                 ������ =
                                                                            ������
                                                                             ������
Let LP filter cutoff at approx 1e4 (Hz)
Things to test:                                                  ������������ = 2 × ∆������ + 2 × ������
                                                                                       ������

1. Initial Design                                             ������������ = 2 × ������������ × ������������ + 2 × ������
                                                                                            ������
2. What happens when kf << 1e2 (smaller bandwidth)
3. What happens when kf >> 1e2 (larger bandwidth)                              ������ × ������������
                                                                      ������������ =
4. What happens when LP Filter cutoff is < 1e4 (Hz)                               ������������
5. What happens when LP Filter cutoff is > 1e4 (Hz)
6. What happens when we use a 1st order Butterworth.
Simulating and Testing a PLL...
Test #1: Initial PLL Design
Simulating and Testing a PLL...
   Test #1: Initial PLL Design
Observations:
A: It worked! The FM signal was
successfully demodulated using phase-
locked loop feedback.

B: The kf value of 1e2 (Hz/V) provided
enough sensitivity to accurately reproduce
the message while keeping the BT < 3e3 (Hz).

C: The Loop Filter produced a clean output
signal and removed the high frequency
component produced by the phase detector
(multiplier).
Simulating and Testing a PLL...
Test #2: kf << 1e2
Simulating and Testing a PLL...
  Test #2: kf << 1e2
Observations:
A: It failed! The FM signal was not
successfully demodulated.

B: The kf value of 1e1 (Hz/V) (B < .1), was
not sensitive enough to accurately
reproduce the message signal in the time
domain. Furthermore, the second message
component (180 Hz) displayed major
attenuation compared to the first message
component (36 Hz). (See previous slide for
comparison).

C: The Loop Filter produced a clean output
signal and removed the high frequency
components produced by the phase
detector (multiplier).
Simulating and Testing a PLL...
Test #3: kf >> 1e2
Simulating and Testing a PLL...
  Test #3: kf >> 1e2
Observations:
A: It failed! The FM signal was not
successfully demodulated.

B: The kf value of 1e3 (Hz/V) (B > 50), was
sensitive enough to accurately reproduce
the message signal in the time domain.
However, the increased value of kf pushed
the transmission bandwidth way above the
carrier frequency and exceeding our
bandwidth requirement.

C: The Loop Filter would need to be
adjusted (If the BT didn’t exceed the carrier,
which it did) to account for the increased
frequency components.
Simulating and Testing a PLL...
Test #4: Cutoff frequency < 1e4
Simulating and Testing a PLL...
   Test #4: Cutoff frequency < 1e4

Observations:
A: It failed! The FM signal was not
successfully demodulated.

B: The kf value of 1e2 (Hz/V) provided
enough sensitivity to accurately reproduce
the message while keeping the BT < 3e3 (Hz).

C: The Loop Filter failed! The LP cutoff
frequency of 1 kHz was to low and removed
several of the pieces (starting at the carrier)
needed to accurately represent the
message.
Simulating and Testing a PLL...
Test #5: Cutoff frequency > 1e4
Simulating and Testing a PLL...
   Test #5: Cutoff frequency > 1e4

Observations:
A: It failed! The FM signal was not
successfully (cleanly) demodulated.

B: The kf value of 1e2 (Hz/V) provided
enough sensitivity to accurately reproduce
the message while keeping the BT < 3e3 (Hz).

C: The Loop Filter failed! The LP cutoff
frequency of 1.5 kHz was to high and
allowed several of the unwanted high
frequency components into the system.
Simulating and Testing a PLL...
Test #6: Using a 1st order Butterworth
Simulating and Testing a PLL...
  Test #6: Using a 1st order Butterworth
Observations:
A: It failed! The FM signal was not
successfully (cleanly) demodulated.

B: The kf value of 1e2 (Hz/V) provided
enough sensitivity to accurately reproduce
the message while keeping the BT < 3e3 (Hz).

C: The Loop Filter failed! The first order
Butterworth filter allowed several of the
unwanted high frequency components into
the system.
Other Applications of PLLs:

•   Control Systems
•   Frequency Synthesizers
•   Jitter reducers
•   Digital PLLs
•   Clock Generation
•   Zero Delay Buffers
•   Spread Spectrum Frequency Synthesizers
•   Demodulators (QPSK, QAM, FM, FSK, SSB)
Conclusion:
A phase locked loop is a negative feedback control system whose operation
can be used to demodulate an FM signal.

The phase-locked loop will automatically adjust it’s frequency and phase
based on an input error voltage and attempt to lock onto a reference signal.

Commonly used for carrier synchronization, indirect frequency demodulation,
clocking, buffering, and jitter removal.

Finally: If you would like to further enhance your understanding of phase-
locked loops, there is an excellent YouTube video by Professor Surendra
Prasad, Department of Electrical Engineering ,IIT Delhi. You can find it at:
http://www.youtube.com/watch?v=NeRdsWYqWFU
Questions:
References:

Haykin, S., “Analog and Digital Communications 2nd Edition” John
Wiley & Sons, Haboken, NJ, 2007.

Truxal, J. G., Automatic Feedback Control System Synthesis,
McGraw-Hill, New York, 1955.

Gardner, F. M., Phase Lock Techniques, Wiley, New York, Second
Edition, 1967.

Weitere ähnliche Inhalte

Was ist angesagt?

ATPG Methods and Algorithms
ATPG Methods and AlgorithmsATPG Methods and Algorithms
ATPG Methods and Algorithms
Deiptii Das
 

Was ist angesagt? (20)

Driving large capacitive loads
Driving large capacitive loadsDriving large capacitive loads
Driving large capacitive loads
 
ATPG Methods and Algorithms
ATPG Methods and AlgorithmsATPG Methods and Algorithms
ATPG Methods and Algorithms
 
Phase Locked Loop (PLL)
Phase Locked Loop (PLL)Phase Locked Loop (PLL)
Phase Locked Loop (PLL)
 
Divide by N clock
Divide by N clockDivide by N clock
Divide by N clock
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Tuned amplifire
Tuned amplifireTuned amplifire
Tuned amplifire
 
Oscillatorsppt
OscillatorspptOscillatorsppt
Oscillatorsppt
 
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 1
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 1EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 1
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 1
 
Time domain response in rc &amp; rl circuits
Time domain response in rc &amp; rl circuitsTime domain response in rc &amp; rl circuits
Time domain response in rc &amp; rl circuits
 
555 TIMER IC & its APPLICATION
555 TIMER IC & its APPLICATION555 TIMER IC & its APPLICATION
555 TIMER IC & its APPLICATION
 
Introduction to pll
Introduction to pllIntroduction to pll
Introduction to pll
 
Op amp
Op ampOp amp
Op amp
 
Vlsi design notes
Vlsi design notesVlsi design notes
Vlsi design notes
 
Pll and vco
Pll and vcoPll and vco
Pll and vco
 
LINEAR INTEGRATED CIRCUITS
LINEAR INTEGRATED CIRCUITSLINEAR INTEGRATED CIRCUITS
LINEAR INTEGRATED CIRCUITS
 
Oscillators
OscillatorsOscillators
Oscillators
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
Eye diagram in Communication
Eye diagram in CommunicationEye diagram in Communication
Eye diagram in Communication
 
19EEC03 Linear Integrated Circuits and its Applications
19EEC03 Linear Integrated Circuits and its Applications19EEC03 Linear Integrated Circuits and its Applications
19EEC03 Linear Integrated Circuits and its Applications
 
Low Power VLSI Design
Low Power VLSI DesignLow Power VLSI Design
Low Power VLSI Design
 

Ähnlich wie Ee443 phase locked loop - presentation - schwappach and brandy (20)

Tele3113 tut3
Tele3113 tut3Tele3113 tut3
Tele3113 tut3
 
Quadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitter
 
Wavelet transform and its applications in data analysis and signal and image ...
Wavelet transform and its applications in data analysis and signal and image ...Wavelet transform and its applications in data analysis and signal and image ...
Wavelet transform and its applications in data analysis and signal and image ...
 
Fourier Analysis
Fourier AnalysisFourier Analysis
Fourier Analysis
 
Fourier Analysis
Fourier AnalysisFourier Analysis
Fourier Analysis
 
Fourier analysis of signals and systems
Fourier analysis of signals and systemsFourier analysis of signals and systems
Fourier analysis of signals and systems
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
00e isi
00e isi00e isi
00e isi
 
Solved problems
Solved problemsSolved problems
Solved problems
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Signals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and TransformSignals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and Transform
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
z transforms
z transformsz transforms
z transforms
 
lecture_16.ppt
lecture_16.pptlecture_16.ppt
lecture_16.ppt
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wed
 
Muri
MuriMuri
Muri
 
SP_BEE2143_C1.pptx
SP_BEE2143_C1.pptxSP_BEE2143_C1.pptx
SP_BEE2143_C1.pptx
 

Mehr von Loren Schwappach

EE312 Embedded Microcontrollers Lab
EE312 Embedded Microcontrollers LabEE312 Embedded Microcontrollers Lab
EE312 Embedded Microcontrollers Lab
Loren Schwappach
 
Ee325 cmos design lab 7 report - loren k schwappach
Ee325 cmos design   lab 7 report - loren k schwappachEe325 cmos design   lab 7 report - loren k schwappach
Ee325 cmos design lab 7 report - loren k schwappach
Loren Schwappach
 
Ee325 cmos design lab 6 report - loren k schwappach
Ee325 cmos design   lab 6 report - loren k schwappachEe325 cmos design   lab 6 report - loren k schwappach
Ee325 cmos design lab 6 report - loren k schwappach
Loren Schwappach
 
Ee325 cmos design lab 5 report - loren k schwappach
Ee325 cmos design   lab 5 report - loren k schwappachEe325 cmos design   lab 5 report - loren k schwappach
Ee325 cmos design lab 5 report - loren k schwappach
Loren Schwappach
 
Ee325 cmos design lab 4 report - loren k schwappach
Ee325 cmos design   lab 4 report - loren k schwappachEe325 cmos design   lab 4 report - loren k schwappach
Ee325 cmos design lab 4 report - loren k schwappach
Loren Schwappach
 
Ee325 cmos design lab 3 report - loren k schwappach
Ee325 cmos design   lab 3 report - loren k schwappachEe325 cmos design   lab 3 report - loren k schwappach
Ee325 cmos design lab 3 report - loren k schwappach
Loren Schwappach
 
Loren k. schwappach ee331 - lab 4
Loren k. schwappach   ee331 - lab 4Loren k. schwappach   ee331 - lab 4
Loren k. schwappach ee331 - lab 4
Loren Schwappach
 
Loren k. schwappach ee331 - lab 3
Loren k. schwappach   ee331 - lab 3Loren k. schwappach   ee331 - lab 3
Loren k. schwappach ee331 - lab 3
Loren Schwappach
 
Ee343 signals and systems - lab 2 - loren schwappach
Ee343   signals and systems - lab 2 - loren schwappachEe343   signals and systems - lab 2 - loren schwappach
Ee343 signals and systems - lab 2 - loren schwappach
Loren Schwappach
 
Ee343 signals and systems - lab 1 - loren schwappach
Ee343   signals and systems - lab 1 - loren schwappachEe343   signals and systems - lab 1 - loren schwappach
Ee343 signals and systems - lab 1 - loren schwappach
Loren Schwappach
 
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
Loren Schwappach
 
EE375 Electronics 1: lab 3
EE375   Electronics 1: lab 3EE375   Electronics 1: lab 3
EE375 Electronics 1: lab 3
Loren Schwappach
 
EE375 Electronics 1: lab 1
EE375   Electronics 1: lab 1EE375   Electronics 1: lab 1
EE375 Electronics 1: lab 1
Loren Schwappach
 
Ee395 lab 2 - loren - victor - taylor
Ee395   lab 2 - loren - victor - taylorEe395   lab 2 - loren - victor - taylor
Ee395 lab 2 - loren - victor - taylor
Loren Schwappach
 
Ee395 lab 1 - bjt - loren - victor - taylor
Ee395   lab 1 - bjt - loren - victor - taylorEe395   lab 1 - bjt - loren - victor - taylor
Ee395 lab 1 - bjt - loren - victor - taylor
Loren Schwappach
 
5 ee415 - adv electronics - presentation - schwappach
5   ee415 - adv electronics - presentation - schwappach5   ee415 - adv electronics - presentation - schwappach
5 ee415 - adv electronics - presentation - schwappach
Loren Schwappach
 
4 ee414 - adv electroncs - lab 3 - loren schwappach
4   ee414 - adv electroncs - lab 3 - loren schwappach4   ee414 - adv electroncs - lab 3 - loren schwappach
4 ee414 - adv electroncs - lab 3 - loren schwappach
Loren Schwappach
 
3 ee414 - adv electroncs - lab 2 - loren schwappach
3   ee414 - adv electroncs - lab 2 - loren schwappach3   ee414 - adv electroncs - lab 2 - loren schwappach
3 ee414 - adv electroncs - lab 2 - loren schwappach
Loren Schwappach
 
2 ee414 - adv electroncs - lab 1 - loren schwappach
2   ee414 - adv electroncs - lab 1 - loren schwappach2   ee414 - adv electroncs - lab 1 - loren schwappach
2 ee414 - adv electroncs - lab 1 - loren schwappach
Loren Schwappach
 

Mehr von Loren Schwappach (20)

Ubuntu OS Presentation
Ubuntu OS PresentationUbuntu OS Presentation
Ubuntu OS Presentation
 
EE312 Embedded Microcontrollers Lab
EE312 Embedded Microcontrollers LabEE312 Embedded Microcontrollers Lab
EE312 Embedded Microcontrollers Lab
 
Ee325 cmos design lab 7 report - loren k schwappach
Ee325 cmos design   lab 7 report - loren k schwappachEe325 cmos design   lab 7 report - loren k schwappach
Ee325 cmos design lab 7 report - loren k schwappach
 
Ee325 cmos design lab 6 report - loren k schwappach
Ee325 cmos design   lab 6 report - loren k schwappachEe325 cmos design   lab 6 report - loren k schwappach
Ee325 cmos design lab 6 report - loren k schwappach
 
Ee325 cmos design lab 5 report - loren k schwappach
Ee325 cmos design   lab 5 report - loren k schwappachEe325 cmos design   lab 5 report - loren k schwappach
Ee325 cmos design lab 5 report - loren k schwappach
 
Ee325 cmos design lab 4 report - loren k schwappach
Ee325 cmos design   lab 4 report - loren k schwappachEe325 cmos design   lab 4 report - loren k schwappach
Ee325 cmos design lab 4 report - loren k schwappach
 
Ee325 cmos design lab 3 report - loren k schwappach
Ee325 cmos design   lab 3 report - loren k schwappachEe325 cmos design   lab 3 report - loren k schwappach
Ee325 cmos design lab 3 report - loren k schwappach
 
Loren k. schwappach ee331 - lab 4
Loren k. schwappach   ee331 - lab 4Loren k. schwappach   ee331 - lab 4
Loren k. schwappach ee331 - lab 4
 
Loren k. schwappach ee331 - lab 3
Loren k. schwappach   ee331 - lab 3Loren k. schwappach   ee331 - lab 3
Loren k. schwappach ee331 - lab 3
 
Ee343 signals and systems - lab 2 - loren schwappach
Ee343   signals and systems - lab 2 - loren schwappachEe343   signals and systems - lab 2 - loren schwappach
Ee343 signals and systems - lab 2 - loren schwappach
 
Ee343 signals and systems - lab 1 - loren schwappach
Ee343   signals and systems - lab 1 - loren schwappachEe343   signals and systems - lab 1 - loren schwappach
Ee343 signals and systems - lab 1 - loren schwappach
 
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09Ee 352   lab 1 (tutorial) - schwappach - 15 oct 09
Ee 352 lab 1 (tutorial) - schwappach - 15 oct 09
 
EE375 Electronics 1: lab 3
EE375   Electronics 1: lab 3EE375   Electronics 1: lab 3
EE375 Electronics 1: lab 3
 
EE375 Electronics 1: lab 1
EE375   Electronics 1: lab 1EE375   Electronics 1: lab 1
EE375 Electronics 1: lab 1
 
Ee395 lab 2 - loren - victor - taylor
Ee395   lab 2 - loren - victor - taylorEe395   lab 2 - loren - victor - taylor
Ee395 lab 2 - loren - victor - taylor
 
Ee395 lab 1 - bjt - loren - victor - taylor
Ee395   lab 1 - bjt - loren - victor - taylorEe395   lab 1 - bjt - loren - victor - taylor
Ee395 lab 1 - bjt - loren - victor - taylor
 
5 ee415 - adv electronics - presentation - schwappach
5   ee415 - adv electronics - presentation - schwappach5   ee415 - adv electronics - presentation - schwappach
5 ee415 - adv electronics - presentation - schwappach
 
4 ee414 - adv electroncs - lab 3 - loren schwappach
4   ee414 - adv electroncs - lab 3 - loren schwappach4   ee414 - adv electroncs - lab 3 - loren schwappach
4 ee414 - adv electroncs - lab 3 - loren schwappach
 
3 ee414 - adv electroncs - lab 2 - loren schwappach
3   ee414 - adv electroncs - lab 2 - loren schwappach3   ee414 - adv electroncs - lab 2 - loren schwappach
3 ee414 - adv electroncs - lab 2 - loren schwappach
 
2 ee414 - adv electroncs - lab 1 - loren schwappach
2   ee414 - adv electroncs - lab 1 - loren schwappach2   ee414 - adv electroncs - lab 1 - loren schwappach
2 ee414 - adv electroncs - lab 1 - loren schwappach
 

Kürzlich hochgeladen

Structuring and Writing DRL Mckinsey (1).pdf
Structuring and Writing DRL Mckinsey (1).pdfStructuring and Writing DRL Mckinsey (1).pdf
Structuring and Writing DRL Mckinsey (1).pdf
laloo_007
 
!~+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUD...
!~+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUD...!~+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUD...
!~+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUD...
DUBAI (+971)581248768 BUY ABORTION PILLS IN ABU dhabi...Qatar
 
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
Abortion pills in Kuwait Cytotec pills in Kuwait
 
Mifepristone Available in Muscat +918761049707^^ €€ Buy Abortion Pills in Oman
Mifepristone Available in Muscat +918761049707^^ €€ Buy Abortion Pills in OmanMifepristone Available in Muscat +918761049707^^ €€ Buy Abortion Pills in Oman
Mifepristone Available in Muscat +918761049707^^ €€ Buy Abortion Pills in Oman
instagramfab782445
 

Kürzlich hochgeladen (20)

Lucknow Housewife Escorts by Sexy Bhabhi Service 8250092165
Lucknow Housewife Escorts  by Sexy Bhabhi Service 8250092165Lucknow Housewife Escorts  by Sexy Bhabhi Service 8250092165
Lucknow Housewife Escorts by Sexy Bhabhi Service 8250092165
 
Power point presentation on enterprise performance management
Power point presentation on enterprise performance managementPower point presentation on enterprise performance management
Power point presentation on enterprise performance management
 
PHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation FinalPHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation Final
 
Structuring and Writing DRL Mckinsey (1).pdf
Structuring and Writing DRL Mckinsey (1).pdfStructuring and Writing DRL Mckinsey (1).pdf
Structuring and Writing DRL Mckinsey (1).pdf
 
joint cost.pptx COST ACCOUNTING Sixteenth Edition ...
joint cost.pptx  COST ACCOUNTING  Sixteenth Edition                          ...joint cost.pptx  COST ACCOUNTING  Sixteenth Edition                          ...
joint cost.pptx COST ACCOUNTING Sixteenth Edition ...
 
!~+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUD...
!~+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUD...!~+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUD...
!~+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUD...
 
Over the Top (OTT) Market Size & Growth Outlook 2024-2030
Over the Top (OTT) Market Size & Growth Outlook 2024-2030Over the Top (OTT) Market Size & Growth Outlook 2024-2030
Over the Top (OTT) Market Size & Growth Outlook 2024-2030
 
New 2024 Cannabis Edibles Investor Pitch Deck Template
New 2024 Cannabis Edibles Investor Pitch Deck TemplateNew 2024 Cannabis Edibles Investor Pitch Deck Template
New 2024 Cannabis Edibles Investor Pitch Deck Template
 
Falcon Invoice Discounting: Unlock Your Business Potential
Falcon Invoice Discounting: Unlock Your Business PotentialFalcon Invoice Discounting: Unlock Your Business Potential
Falcon Invoice Discounting: Unlock Your Business Potential
 
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
 
Arti Languages Pre Seed Teaser Deck 2024.pdf
Arti Languages Pre Seed Teaser Deck 2024.pdfArti Languages Pre Seed Teaser Deck 2024.pdf
Arti Languages Pre Seed Teaser Deck 2024.pdf
 
Phases of Negotiation .pptx
 Phases of Negotiation .pptx Phases of Negotiation .pptx
Phases of Negotiation .pptx
 
Call 7737669865 Vadodara Call Girls Service at your Door Step Available All Time
Call 7737669865 Vadodara Call Girls Service at your Door Step Available All TimeCall 7737669865 Vadodara Call Girls Service at your Door Step Available All Time
Call 7737669865 Vadodara Call Girls Service at your Door Step Available All Time
 
Pre Engineered Building Manufacturers Hyderabad.pptx
Pre Engineered  Building Manufacturers Hyderabad.pptxPre Engineered  Building Manufacturers Hyderabad.pptx
Pre Engineered Building Manufacturers Hyderabad.pptx
 
Getting Real with AI - Columbus DAW - May 2024 - Nick Woo from AlignAI
Getting Real with AI - Columbus DAW - May 2024 - Nick Woo from AlignAIGetting Real with AI - Columbus DAW - May 2024 - Nick Woo from AlignAI
Getting Real with AI - Columbus DAW - May 2024 - Nick Woo from AlignAI
 
HomeRoots Pitch Deck | Investor Insights | April 2024
HomeRoots Pitch Deck | Investor Insights | April 2024HomeRoots Pitch Deck | Investor Insights | April 2024
HomeRoots Pitch Deck | Investor Insights | April 2024
 
Paradip CALL GIRL❤7091819311❤CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDING
Paradip CALL GIRL❤7091819311❤CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDINGParadip CALL GIRL❤7091819311❤CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDING
Paradip CALL GIRL❤7091819311❤CALL GIRLS IN ESCORT SERVICE WE ARE PROVIDING
 
Escorts in Nungambakkam Phone 8250092165 Enjoy 24/7 Escort Service Enjoy Your...
Escorts in Nungambakkam Phone 8250092165 Enjoy 24/7 Escort Service Enjoy Your...Escorts in Nungambakkam Phone 8250092165 Enjoy 24/7 Escort Service Enjoy Your...
Escorts in Nungambakkam Phone 8250092165 Enjoy 24/7 Escort Service Enjoy Your...
 
Horngren’s Cost Accounting A Managerial Emphasis, Canadian 9th edition soluti...
Horngren’s Cost Accounting A Managerial Emphasis, Canadian 9th edition soluti...Horngren’s Cost Accounting A Managerial Emphasis, Canadian 9th edition soluti...
Horngren’s Cost Accounting A Managerial Emphasis, Canadian 9th edition soluti...
 
Mifepristone Available in Muscat +918761049707^^ €€ Buy Abortion Pills in Oman
Mifepristone Available in Muscat +918761049707^^ €€ Buy Abortion Pills in OmanMifepristone Available in Muscat +918761049707^^ €€ Buy Abortion Pills in Oman
Mifepristone Available in Muscat +918761049707^^ €€ Buy Abortion Pills in Oman
 

Ee443 phase locked loop - presentation - schwappach and brandy

  • 1. Phase-locked loop (PLL) By: Loren Schwappach & Crystal Brandy Prepared for: Dr. Jing Guo CTU – EE443 – Communications 1 September 2010
  • 2. Overview • What is a PLL? • Modeling a PLL • Properties of PLLs • Simulating and Testing a PLL • Other Applications of PLLs • Questions • References
  • 3. What is a phase-locked loop? • A negative feedback control system whose operation is closely linked to frequency modulation (FM). • Automatically adjusts the frequency, and phase of a control signal to match a reference signal. • Commonly used for carrier synchronization and indirect frequency demodulation.
  • 4. What is a phase-locked loop? Continued... • A change in the input signal shows up as a change in phase between the input signal and the VCO frequency. • Consists of 3 major components – Voltage-controlled oscillator (VCO) • Performs frequency modulation on its own carrier signal – Phase Detector • Multiplies an incoming FM wave by the output of the VCO – Loop filter • Removes the high-frequency components contained in the multiplier’s output.
  • 5. Modeling a PLL: Phase-Locked Loop (PLL) for FM Demodulation: FM ed(t) ef(t) wave Phase Detector Loop Filter Loop Amplifier v(t) s(t) eo(t) Voltage Controlled ev(t) Oscillator (VCO) Voltage Controlled Oscillator s t = ������������ cos 2πfc t+ φ1 (t) ������ • The error signal produced is proportional to Phase Detector: ������1 ������ = 2������������������ ������ ������ phase error. 0 s(t) ed(t) ������������ ������ = ������������ ������������������ 2������������ ������ + ������2 (������) ������ • The error signal also represents whether the correction should increase or decrease the ������ eo(t) ������2 ������ = 2������������������ ������ ������ VCO frequency. 0 high-frequency component low-frequency component 1 1 ������������ ������ = ������������ ������������ ������������ sin 4πfc t+φ1 (t)+φ2 (t) + ������������ ������������ ������������ sin φ1 (t)-φ2 (t) 2 2 1 ������������ ������ ≈ ������ ������ ������ sin φ1 (t)-φ2 (t) 2 ������ ������ ������
  • 6. Modeling a PLL: Continued... Why use a VCO?: A VCO produces an output whose ������������������������������������������������������ = ������������ sin ������������ ������ + ������������ frequency deviation depends upon the input voltage. ������������(������) = 2������������������ ������������ (������) ������������ What does that sound like? ������ ������(������) = 2������������������ ������������ (������) ������������ That’s right.. An FM signal. So you can 0 model a VCO the same. Example of a commonly used VCO VCO’s can be implemented in numerous ways. Crystal Oscillators, RLC oscillators, etc are just the beginning. VCO time-domain equation: ftuning(t) = Kv * vin(t)
  • 7. Modeling a PLL: Continued... Non-Linear Mathematical Model of PLL: ed(t) ef(t) ������1 ������ 1 ∑ Sin(α) ������ ������ ������ Loop Filter 2 ������ ������ ������ ������ ev(t) ������2 ������ 2������������������ (������) ������������ Loop Amplifier 0 Assume PLL is locked, then: ������������ ������ = (������1 ������ − ������2 ������ ) = 0 Now we can use a linearized model. Linearized Mathematical Model of PLL (Locked PLL): ������������ ������ = (������1 ������ − ������2 ������ ) = 0 ������1 ������ 1 ed(t) ef(t) ∑ ������ ������ ������ Loop Filter, h(t) 2 ������ ������ ������ ������ ev(t) ������2 ������ 2������������������ (������) ������������ Loop Amplifier 0 Demodulated ������������1 (������) ������������2 (������) = signal ������������ ������������ 2������������������ ������������ ������ = 2������������������ ������ ������
  • 8. Properties of phase-locked loops: • Step response: ability to phase/frequency step on its input. • Setting Time: amount of time needed to lock-on after receiving an input. • Phase Jitter: Short-term frequency instability causing small, rapid movements in phase. Often referred to as phase noise.
  • 9. Simulating and Testing a PLL... Testing a simple PLL Design (Using Simulink): Suppose we are given a composite sinusoidal wave: s t = 5 cos 36 × 2πt + 2sin⁡ (180 × 2πt) And we would like to frequency modulate and demodulate this wave with a 10kHz carrier, using a Phase-locked loop feed back system for demodulation. The transmission bandwidth (BT) is not allowed to exceed 3 kHz. Design Considerations: ∆������ = ������������ × ������������ Carrier frequency (fc) = 10e3 (Hz), BT < 3e3 (Hz) so kf < 132 (Hz/V) {using max values}, ∆������ Let kf = 1e2 (Hz/V) then Beta = approx 5.5 (wideband) ������ = ������ ������ Let LP filter cutoff at approx 1e4 (Hz) Things to test: ������������ = 2 × ∆������ + 2 × ������ ������ 1. Initial Design ������������ = 2 × ������������ × ������������ + 2 × ������ ������ 2. What happens when kf << 1e2 (smaller bandwidth) 3. What happens when kf >> 1e2 (larger bandwidth) ������ × ������������ ������������ = 4. What happens when LP Filter cutoff is < 1e4 (Hz) ������������ 5. What happens when LP Filter cutoff is > 1e4 (Hz) 6. What happens when we use a 1st order Butterworth.
  • 10. Simulating and Testing a PLL... Test #1: Initial PLL Design
  • 11. Simulating and Testing a PLL... Test #1: Initial PLL Design Observations: A: It worked! The FM signal was successfully demodulated using phase- locked loop feedback. B: The kf value of 1e2 (Hz/V) provided enough sensitivity to accurately reproduce the message while keeping the BT < 3e3 (Hz). C: The Loop Filter produced a clean output signal and removed the high frequency component produced by the phase detector (multiplier).
  • 12. Simulating and Testing a PLL... Test #2: kf << 1e2
  • 13. Simulating and Testing a PLL... Test #2: kf << 1e2 Observations: A: It failed! The FM signal was not successfully demodulated. B: The kf value of 1e1 (Hz/V) (B < .1), was not sensitive enough to accurately reproduce the message signal in the time domain. Furthermore, the second message component (180 Hz) displayed major attenuation compared to the first message component (36 Hz). (See previous slide for comparison). C: The Loop Filter produced a clean output signal and removed the high frequency components produced by the phase detector (multiplier).
  • 14. Simulating and Testing a PLL... Test #3: kf >> 1e2
  • 15. Simulating and Testing a PLL... Test #3: kf >> 1e2 Observations: A: It failed! The FM signal was not successfully demodulated. B: The kf value of 1e3 (Hz/V) (B > 50), was sensitive enough to accurately reproduce the message signal in the time domain. However, the increased value of kf pushed the transmission bandwidth way above the carrier frequency and exceeding our bandwidth requirement. C: The Loop Filter would need to be adjusted (If the BT didn’t exceed the carrier, which it did) to account for the increased frequency components.
  • 16. Simulating and Testing a PLL... Test #4: Cutoff frequency < 1e4
  • 17. Simulating and Testing a PLL... Test #4: Cutoff frequency < 1e4 Observations: A: It failed! The FM signal was not successfully demodulated. B: The kf value of 1e2 (Hz/V) provided enough sensitivity to accurately reproduce the message while keeping the BT < 3e3 (Hz). C: The Loop Filter failed! The LP cutoff frequency of 1 kHz was to low and removed several of the pieces (starting at the carrier) needed to accurately represent the message.
  • 18. Simulating and Testing a PLL... Test #5: Cutoff frequency > 1e4
  • 19. Simulating and Testing a PLL... Test #5: Cutoff frequency > 1e4 Observations: A: It failed! The FM signal was not successfully (cleanly) demodulated. B: The kf value of 1e2 (Hz/V) provided enough sensitivity to accurately reproduce the message while keeping the BT < 3e3 (Hz). C: The Loop Filter failed! The LP cutoff frequency of 1.5 kHz was to high and allowed several of the unwanted high frequency components into the system.
  • 20. Simulating and Testing a PLL... Test #6: Using a 1st order Butterworth
  • 21. Simulating and Testing a PLL... Test #6: Using a 1st order Butterworth Observations: A: It failed! The FM signal was not successfully (cleanly) demodulated. B: The kf value of 1e2 (Hz/V) provided enough sensitivity to accurately reproduce the message while keeping the BT < 3e3 (Hz). C: The Loop Filter failed! The first order Butterworth filter allowed several of the unwanted high frequency components into the system.
  • 22. Other Applications of PLLs: • Control Systems • Frequency Synthesizers • Jitter reducers • Digital PLLs • Clock Generation • Zero Delay Buffers • Spread Spectrum Frequency Synthesizers • Demodulators (QPSK, QAM, FM, FSK, SSB)
  • 23. Conclusion: A phase locked loop is a negative feedback control system whose operation can be used to demodulate an FM signal. The phase-locked loop will automatically adjust it’s frequency and phase based on an input error voltage and attempt to lock onto a reference signal. Commonly used for carrier synchronization, indirect frequency demodulation, clocking, buffering, and jitter removal. Finally: If you would like to further enhance your understanding of phase- locked loops, there is an excellent YouTube video by Professor Surendra Prasad, Department of Electrical Engineering ,IIT Delhi. You can find it at: http://www.youtube.com/watch?v=NeRdsWYqWFU
  • 25. References: Haykin, S., “Analog and Digital Communications 2nd Edition” John Wiley & Sons, Haboken, NJ, 2007. Truxal, J. G., Automatic Feedback Control System Synthesis, McGraw-Hill, New York, 1955. Gardner, F. M., Phase Lock Techniques, Wiley, New York, Second Edition, 1967.