SlideShare ist ein Scribd-Unternehmen logo
1 von 50
Some definition:
Qualitative analysis:the chemical analysisthatdetectthe presence of substance inasample
Quantitative analysis:isthe chemical analysisthatdeterminesthe concentrationof asubstance ina
sample
Volumetricanalysis(titrimetricanalysis):isthe quantitative chemical analysiscarriedoutby
determiningthe volumeof asolutionof accuratelyknownconcentrationwhichisrequiredtoreact
quantitativelywithameasuredvolume of asolutionof the substance tobe determined
GravimetricAnalysisisaquantitativeanalysisisbasedonthe measurementof the weightof asubstance
of preciselyknowncompositionthatischemicallyrelatedtothe analyte.Mostoftenthe unknownis
precipitatedfromsolutionbyareagentand,afterseparationanddrying,isweighed
Instrumental analysisisafieldof Analyticalchemistrywhichinvestigatesthe analyte viadevicesor
machinerytechniques.Like atomicabsorption
Redox titration(Oxidation-Reductiontitration)isatitrationinwhichthe reactionbetweenthe analyte
and titrantisan oxidation/reductionreaction
Redox reaction(oxidation-reductionreaction) isareactionthat involvestransferof electronsfromone
substance toanother
Complexometrictitrationisatitrationinwhichthe reactionbetweenthe analyte andtitrantisa
complexationreaction
Precipitationtitrationisatitrationinwhichthe reactionbetweenthe analyte andtitrantinvolvesa
precipitation
Concentrationisageneral measurementunitstatingthe amountof solute presentinaknownamount
of solution
Solutionisahomogeneousmixture of twoormore substances
Solute isa minorspeciesinasolution
Solventisthe mostabundantcomponentinasolution
Standardsolutionisthe solutionof accuratelyknownconcentration
Molarity(M) isthe numberof molesof solute perliterof solution
Normality(N) isthe numberof equivalentsof solute perliterof solution
Molality(m) isthe numberof molesof solute perkilogramof solvent
Strengthof solution(S) isthe numberof gramsof solute perone literof solution
Weightpercent(%w/w) isthe numberof gramsof solute per100 g of solution
Volume percent(%v/v) isthe numberof millilitersof solute per100 ml of solution
Weight-to-volume percent(%w/v) isthe numberof gramsof solute per100 ml of solution
Part permillion(ppm) isthe numberof microgramsof solute pergramof solution;foraqueoussolutions
the unitsare oftenexpressedasthe numberof milligramsof solute perliterof solution
Part perbillion(ppb) isthe numberof nanogramsof solute pergramof solution;foraqueoussolutions
the unitsare oftenexpressedasthe numberof microgramsof solute perliterof solution
Mole Is Avogadro'snumberof particles(atoms.molecules,ions,oranythingelse
Molecularweightisthe sumof the atomicweightsof atomsinthe molecularformula
Equivalentweightisthe atomicweightof anelementorradical dividedbyitsvalence;the molecular
weightof a compounddividedbyitscombiningpowerinaspecificreaction
Gram-equivalentweightisthe equivalentweightof anelementorcompoundexpressedingrams
Dilutionthe processof preparingalessconcentratedsolutionfromamore concentratedsolution
Molar solutionisthe solutionthatcon¬tains one mole of solute ineachone literof it
Normal solutionisthe solutionthatcon¬tainsone gramequivalentof solute ineachone literof it
Molal solutionisthe solutionthatcon¬tainsone mole of solute dissolvedineachone kilogramof
solvent
Titrationisa procedure inwhicha solutionof accuratelyknownconcentration(titrant) isadded
graduallyaddedtoanothersolutionof unknownconcentration(analyte) until the chemical reaction
betweenthe twosolutionsiscomplete
Analyte isa constituent of the sample whichistobe studiedbyquantitative measurementsoridentified
qualitatively
Titrant isthe substance thatquantitativelyreactswiththe analyte inatitration.The titrantisusuallya
standardsolutionaddedcarefullytothe analyte until the reactioniscomplete.The amountof analyte is
calculatedfromthe volume of titrantrequiredforcompletereaction
Back titrationisa titrationinwhichwe add a knownexcessof one standardreagenttothe analyte.Then
we titrate the excessreagentwithasecondstandardreagent.A back titrationisuseful whenitsend
pointisclearerthan the endpointof the directtitrationor whenan excessof the firstreagentis
requiredforcomplete reactionwithanalyte
Blanktitrationisa titrationin whichwe carry out the same procedure withoutanalyte
End pointisthe pointat whichthe indicatorchangescolor.It isthe experimental estimate of the
equivalence pointinatitration
equivalence point:the momentatwhich;the Rx is completelyandstoichiometric between indicator&
unknown
example:all molesHCl reactedwithsame molesof NaOH as Rx. ratio is 1:1
NaOH + HClNaCl+H2O
Indicatorisa coloredcompoundwhose change incolorindicatesthe endpointof a titration
Titrationcurve isa graphshowingthe progressof a titrationas a functionof the volume of titrantadded
NeutralizationTitrations(acid–base titration) A titrationinwhichthe reactionbetweenthe analyteand
titrantis an acid–base reaction
Acid
Arrhenius:a compoundwhichreleaseshydrogenions(H+) insolution
Bronsted-Lowry:a compoundcontainingdetachable hydrogenions
Lewis: a compoundthatcan accepta pairof electronsfromabase
Base
.Arrhenius:a compoundthat produceshydroxideionsinaqueoussolution
Bronsted-Lowry:a molecule orionthatcaptureshydrogenions
Lewis: a molecule orionthatdonatesan electronpairtoform a chemical bond
Strongacid isan acidthat completelydissociatesintohydrogenionsandanionsinsolution
Strongbase isa base that completelydissociatesintoionsinsolution
Acid-base indicator(Neutralizationindicator) isaweakacid or a weakbase.The undissociatedformof
the indicatorhas a colordifferentfromthe colorof itsionizedpart.These substanceschange theircolor
accordingto variationof pH of medium
External indicator:it's detectionof the endpointoutsideconical flask
pH is the negative logarithmof the H+ concentration
Oxidationisthe lossof electronsoranincrease inoxidationstate byamolecule,atom, orion
Reductionisthe gainof electronsora decrease inoxidationstate bya molecule,atom, orion
Oxidizingagentisa substance whichoxidize othersubstance anditself isreduced. - e.g.KMnO4,
K2Cr2O7 and I2
Reducingagentisa substance whichreduce othersubstance anditself isoxidized. - e.g.C2O2H4, FeSO4
and Na2S2O3
Redox indicatorsare highlycoloreddyesthatare weakreducingoroxidizingagentsthatcanbe
ox¬idizedorreduced;the colorsof the oxidizedandreducedformsare different
Self indicatoristhe indicatorinwhichthe titrantor analyte itself actasindicator(i.e.change theircolor
at endpoint
IodimetrydirecttitrationswithI2
Iodometrytitrationof iodineproducedfromchemicalreaction
Buffersolution:a solutionwhichresistance change inpH
SolubilityProduct:it'sthe productof the ionconcentrationof a sparinglysoluble electrolyte
PostPrecipitation:secondaryprecipitationof aforeignsubstance onthe particlesof the primary
precipitation
Co-Precipitation:Contaminationof the precipitate withsubstance whichare normallysoluble underthe
precipitationcondition,due toadsorptionorocclusion
MaskingProcess: maskingagentisreagentthat protectsome components
Adsorption:a phenomenawhichformswhenagasor vapor isbroughtin contact withan evacuated
solid
Double Salt: twosimple salthave apropertiesinaquasstate and have anotherpropertiesinsolidstate
Formulaweight:No.of atomswhichexistinthe compound
MolecularWeight: it'ssum of all atomicweightsof atomsof compound
Hydrolysis:reactionof substance withwateror it'sions
Mole fraction: the numberof molesof a componentof a mixture dividedbythe total numberof moles
inmixture
Co-ordinationbond:transferof lone pairof electronsfromnonmetal atom( ligand) to metal atom
Co-ordinationnumber:the numberof Co-ordinationbondaroundthe central metal inCo-ordination
sphere
Ligand: anionor natural molecule whichcontainunpairedelectrons
Orderof reaction: it'ssum of all powerof the conc. of the reactant
rate of reaction: decrease of concentrationperunittime of one of the reactant
Kc : an equilibriumconst.intermsof molarconcentration
Kp : an equilibriumconst.intermsof partial pressure
Ka( acid ionizationconst.) :is equilibriumconst.of chemical reactioninvolvingweakacidinaqueous
solution
Ksp( solubilityproductconst.) : isthe equilibriumconst.fora solidsubstance dissolvinginaqueous
solution
viscosity:resistance of flowof liquiddue topowerbetweenthe layerof liquid
Titration& Typesof Titration
 Titrationisa procedure inwhicha solutionof accuratelyknownconcentration(titrant) isadded
graduallyaddedtoanothersolutionof unknownconcentration(analyte) until the chemical
reactionbetweenthe twosolutionsiscomplete
 Analyte isa constituentof the sample whichistobe studiedbyquantitative measurementsor
identifiedqualitatively
 Titrant isthe substance thatquantitativelyreactswiththe analyte in atitration.The titrantis
usuallyastandard solutionaddedcarefullytothe analyte until the reactioniscomplete.The
amountof analyte iscalculatedfromthe volume of titrantrequiredforcomplete reaction
Typesof titration
1. Acid–base titration:
2. Oxidation –reduction(Redox) titration:
3. Precipitiontitration:
4. Complexometrictitration:.
1. Acid–base titration:
 Acid-base indicator(Neutralizationindicator) isaweakacid or a weakbase.The undissociated
formof the indicatorhasa colordifferentfromthe colorof itsionizedpart.These substances
change theircoloraccording to variationof pH of medium
 NeutralizationTitrations(acid–base titration) A titrationinwhichthe reactionbetweenthe
analyte andtitrantis an acid–base reaction
 Whenwe titrate the sample bystandardsoln.of base inburrete iscalled(aciditytest)
 Whenwe titrate the sample bystandardsoln.of acid inburrete iscalled(alkalinitytest)
 End pointisthe pointat whichthe indicatorchangescolor.It isthe experimental estimate of the
equivalence pointinatitration
 Indicatorisa coloredcompoundwhose change incolorindicatesthe endpointof a titration
 ph.ph.isindicatorintitrationof strongalkaliesagainststrongorweakacids
 Methyleorange .isindicatorintitrationof strongacidsagainststrongor weakalkalies
 No indicatorgivescorrectresultinthe titrationof weakacidsagainstweakacidsagainstbases
 Strongacid isan acidthat completelydissociatesintohydrogenionsandanions insolution
 Strongbase isa base that completelydissociatesintoionsinsolution
1. . Oxidation –reduction(Redox) titration:
 Basedon oxidationreduction reaction
 The chemical Rx,inwhichoccurtransferof electron(lossorgainof electrons)amongthe reacting
ionsinaqeoussoln.
 Some these titrationsare namedafter the reagentusedas(permanganate KMnO4,dichromate
K2Cr2O7,iodimetricbyI2,iodometricbyNa2S2O3)
 Oxidationisthe lossof electronsoranincrease inoxidationstate byamolecule,atom,orion
 Reductionisthe gainof electronsora decrease inoxidationstate bya molecule,atom, orion
 Oxidizingagentisa substance whichoxidize othersubstance anditself isreduced. - e.g.KMnO4,
K2Cr2O7 and I2
 Reducingagentisa substance whichreduce othersubstance anditself isoxidized. - e.g.
C2O2H4, FeSO4and(sodiumthiosulphate ) Na2S2O3
 Redox indicatorsare highlycoloreddyesthatare weakreducingoroxidizingagentsthatcanbe
oxidizedorreduced;the colorsof the oxidizedandreducedformsare different
 Q:What the differencebetween iodimetric&iodometric?????
 IodimetrydirecttitrationswithI2
 Iodometrytitrationof iodineproducedfromchemicalreaction
1. Precipitiontitration:
 Basedon formationof insoluble ppt,whensoln.of 2 reactingsubstancesare contact witheach
other.
 AgNo3+NaCl =AgCl+NaNo3
 WhenAgNo3is reactedwithNaCl;thusWhite ppt. of AgCl isformed
 Such titrationsinvolvesAgNo3are called(Argentometric)
1. Complexometrictitration
 Undissociated complex isformedatthe equivalence point
 These titrationsare superiortoprecipitationtitrationsasthere isNoerror due to co-
precipitations(Co-Precipitation:Contaminationof the precipitate withsubstance whichare
normallysolubleunderthe precipitationcondition,due toadsorptionorocclusion)
 EDTA(ethylene diaminetetraaceticacid) isuseful reagentthatformscomplexeswithmetals
 In the formof disodiumsalt;itsusedtoestimate Ca ions&Mg ions inpresence of (Eriochrome
black-T)(EBT)indicator.
 EDTA is consideredasaLigand: anionor natural molecule whichcontainunpairedelectrons
 Co-ordinationbond:transferof lone pairof electronsfromnonmetal atom( ligand) to metal
atom
 Co-ordinationnumber:the numberof Co-ordinationbondaroundthe central metal inCo-
ordinationsphere
NOTES:
Q: WHAT the difference between endpoint&equivalence point??
 End pointisthe pointat whichthe indicatorchangescolor.It isthe experimental estimate of the
equivalence pointinatitration
 equivalence point:the momentatwhich;the Rx is completelyand
stoichiometric between indicator&unknown
example:all molesHCl reactedwithsame molesof NaOH as Rx.ratio is 1:1
NaOH + HCl = NaCl+ H2O
 Back titrationisa titrationinwhichwe add a knownexcessof one standardreagenttothe
analyte.Thenwe titrate the excessreagentwithasecondstandardreagent.A backtitrationis
useful whenitsendpointisclearerthanthe endpointof the directtitrationorwhenan excess
of the firstreagentisrequiredforcomplete reactionwithanalyte
 Blanktitrationisa titrationinwhichwe carry out the same procedure withoutanalyte
 Titrationcurve isa graphshowingthe progressof a titrationas a functionof the volume of
titrantadded
 Indicatorisa coloredcompoundwhose change incolorindicatesthe endpointof a titration
 Disadvantagesof indicators:
1-visual error
2-eachindicatorhas specificPHrange
3-inturbidsoln.&colouredsoln.;the change incolour incolour isn’tobvious.
*Acid
Arrhenius:a compoundwhichreleaseshydrogenions(H+) insolution
Bronsted-Lowry:a compoundcontainingdetachable hydrogenions
Lewis: a compoundthatcan accepta pairof electronsfromabase
*Base
Arrhenius:a compoundthat produceshydroxideionsinaqueoussolution
Bronsted-Lowry:a molecule orionthatcaptureshydrogenions
Lewis: a molecule orionthatdonatesan electronpairtoform a chemical bond
The electriccell :
 In presence of resistance wire ;electronpassfromcathode toanode & electriccurrentfrom
anode to cathode .
 In absence of resistance wire ;we replace itbyliquidsoln.thatiscalledelectrolyte thathave 2
types:
 Strongelectrolyte:the soln.have completelyionized.e.g:HCLthat dissociatedintoH+
&CL-
ions
 Weakelectrolyte: the soln.have partiallyionized.e.g:NH4OH that dissociatedintoNH4
+
&
OH-
ions
 The resistance inresisrance wire dependonlength &areasurface.
 The resistance inelectrolyte soln.dependonionsmovementthatopposite toeachotheras +ve
ions go to –ve electrode andthe –ve ionsgoto +ve electrode .thus+ve ionswill face –ve ions
thusoccur resistance toeachother.
 In presence of electrolyte;ionscarryelectronsfrom+ve electrode to–ve electrode;
Firstly,CL-
ions around +ve electrode (Anode)to give electrons into this electrode by(Redox)to go
to the cathode electrode and CL-
ions turns into CL-
ions turns into CL2 gas in the soln. by loss of
electrons that is carried on ions , then H+
ions around the –ve electrode cathode to gain
electronsfromthe cathode byredox andturn intoH2 gas
PHmeter:
 Use formeasuringthe PH that iseitherthe conc.or activityof H+ ionsin aqueoussoln.
 PH indicate if the soln.is acidicor basic; but isn’ta measure of acidityor alkalinity.
 PH meterconsistsof glasselectrode connectedtoelectronicmeterthatmeasure the PH
reading.
NOTE:
 Glasselectrode:iselectrodecontainreferenceelectrode &workingelectrodeinthe
same set.
 PH of wateris(5-7) at 250
C
 PH=-log{H+
}
Q: Why waterisacidic ??
Because waterhave Ca+2
,Mg+2
ions thatmake waterhardness;where the Ca+2
ionsattract the Oxygen
fromH2 to make strong &nearthusoccur small bondbetween(Ca&O)butmake the bond of Owitheach
H atom is long&weak,thus eachH ionswill be free inthe mediumthusthe waterbecome acidic.
Conductivitymeter:
 To determine conc.of substance bymeasuringitsconductance.
 R=(P*L)/A itsunit is (Ohm) ; P=specificresistance(resistance of 1cm3
of electrolyte);L=length
of wire ;A= area surface ; R=resistance
 G=1/R its unit is (Semens)or(S)or(Ohm-1
) ;G = conductivity(itsabilityof electrolyte to
conduct electriccurrent)
 Conductivityof waterat250
C is1.3
 Factors on conducitivity:
1) Numberof ions.
2) Mobilityof ions.
 Typesof conductivity:
a) Specificconductivity:conductance of 1cm3
of soln.
b) Molar conductivity:conductance of 1 mole of soln.
c) Equivalentconductivity:conductance of 1gm equivalent of soln.
Potentiometer:
 To determine conc.of substance bymeasuringelectrode potential of soln.incondition(No
currentflow)
 End pointisreachedwhensuddenlychange inpotentialof workingelectrode.
 Combinedelectrode :e.g:glasselectrode. iselectrode containreference electrode&working
electrode inthe same set.
 Reference electrode;hasconst. potential orzero; don’tdependonconc.of analyte.Like SHE,
Calomicelectrode ,Ag/AgCL
 Workingelectrode :itspotential dependonconc.of analyte or metal ion.
 Ecell=Eworking-Ereference
 Nernestequation:Ecell= E0
+((R*T)/(n*F))*lna
 E0
= standardelectrode potential;n=numberof electrons;R=gasconst.,T=temp.,F=Faraday
const.,a=activity(a=conc.*activitycoefficient)
Gravimetric analysis
Its quantitive technique involves the conversion of element to be determined fromsolubleform
to insoluble formand isolated it by filteration ,then weighting it .
1. Precipitation
2. Digestion
3. Filteration&washing
4. Drying,ignition&weighting
5. Calculation
1-precipition:
Properties of good precipitate
1. Have good physicalform
2. Have definite chemical composition
3. Must be pure or extrapure
Contamination of precipitation
a) Co-precipition:its contamination of ppt by another element present in the mother liquid
b) Past-precipition:its contamination involves precipition of second ppt. on surfaceof firstp
Q:How reducecontamination?
1) Recrystallization(smalcrystals converts to large crystals)
2) Removal of interfering ions
3) Fastisolation or filteration for the formed ppt.
2-Digestion:leaving the ppt in contact with the mother soln. of period of time
3-Filteration:isolation of ppt fromthe mother soln. by (ashless filter paper – Buchner system)
4-Washing:process aims to removalof surfaceadsorbed ions
5-Drying:occur atlow temp. Iginition:occur at high temp.
Drying&Iginition areused to determine the analyte
Note:
Dessicator(dry box)
-dessicator is covered glass container for storageof objects in dry atmosphere
-it is charger with drying agent as silica gel or anhydrous Caso4&anhydrousCaCL2
LOSS ONDyring test:
a) Weigt the dryied empty petridish(tare wt)w1
b) Then put (1gm)of sampleon thisthe dryied empty petridish(w2=1gm)
c) Then put this petridish onto oven at 105c
d) Out the petridish to cool at the dessicator
e) Weight this petridish (w3)then calculate by (w4=w3-w1)
W3=weightof drying sample………..W(H2O)=W4-W2
LOSS ONDrying=( W(H2O)/W2)*100
Sulphated Ash test :
a) Weight the dryied empty crucible (tare wt)(Ec)
b) Then put (1gm)of sampleon empty crucible (Sw)
c) Then add 1ml H2SO4 Conc.
d) Put this crucible at flame to heat till No longer white fumes
e) Then put this crucible onto the muffle at 850Cfor certain period time(acc.
to pharmaceopia)
f) Out the crucible to cool at the dessicator
g) Weight the crucible (Ac);then calculate: Aw=Ac-Ec
h) Repeat this test 3 times then take average
Aw:ashwt from(Aw=Ac-Ec)………………,Ac:(ash+crucible)wt………….Ec:empty
crucible wt………………Sw:sampleweightas (1gm)
%Ash=(Aw/Sw)*100
Question:What is the difference between Sulfatedash & Residue on
iginition?
H2SO4conc. is used in Sulfated ash test ;H2SO4conc.is not used inResidue
on iginition
 Chromatographytheory:solutes tobe separateddependondistributionbetween2phases
(mobile phase &stationaryphase)
For Example inHPLC;sample iscomplex mix.Of organiccompoundthatisdissolvedinorganicsolventby
HPLC that make separation&determinationof thismix.quantitativeorqualitatitve
 Chromatogram:it’sa graphical representation(plot)of chromatographicseparationprocessin
whichthe conc. isplottedagainstthe time
 Injectionpoint:pointatchromatogramthatindicate thatthe sample injectedincolumn
 Retentiontime:
-time elapsedbetweeninjectionpoint&maximiumpeakof the solute
- is the time that eachcomponenttakestocome off the column
- can be usedtohelpidentifycomponents
 Typesof resolution:
1. Base line resolution:occurcomplete separation(eachcomponenthave apeakrefersto
indicate it)
2. Partial resolution:(eachpeakof eachcomponentisverynearlytoeachother)
3. Zeroresolution:(eachpeakof eachcomponentisfoundinone peakinthe chromatogram)
 Columnof st.phase have large numberof separate layersthatcalledtheoretical plates(when
no.of the theoretical platesincrease;there occurperfectefficiencyof chromatography)
 The Theoretical plates(N):
1. To measure columnefficiency
2. To measure of peaksharpnesswhichisimportant fordetectionof trace component
 peaksharpnessispreferredthanpeakbroadeningdue tooccur overlappingof peakbroadening
thuspeaksharpnessisapprear fast
 typesof liquidchromatography:(NPLC,RPLC)
1. NPLC:Normal Phase LiquidChromatography(polarst.phase assilicaparticles&non
polarm.phase as hexane)
2. RPLC: ReversedPhase LiquidChromatography(polarm.phase assilicaparticles&non
polarst.phase as hexane)
 Displacementer:
 The substance that foundinm.phase ;andhave the abilitytoreact withst.phase than
all typesof solutes
 It replace the solute thatfoundincolumn;whereasone componentwhichhasweaker
interactionwithcolumnandstronginteractionwithm.phase while elute firstly,while
one componentwhichhasstronginteractionwithcolumnandweakinteractionwith
m.phase will be elutedlater
 Disadvantage of displacementer;there isprobleminanalytical scale ;because No
complete elutionof eachcomponentof mix (presence of mixedzones) thatcalled Tail
region{itsconc.containmix of 2 adjacentsolutescomponents}
 Tail region: (if there ispeakA & peakB , the peakA may be mixedwithpeakB;
because there are remainamountof peakA But B>A )
 Frontal analysis:inwhich;dilute soln.of mix.(m.phase)iscontinuouslyaddedonone
column;solutesgetoutfromthat have st.phase basedon interactionbetweensolutes
&st.phase
 Elutiontypes
a) Isocreaticeution.(compositionof m.phase doesn’tchange duringone separation
process)
i. Stepwise m.phase(inwhich;differentm.phaseare usedatdifferenttimes)
ii. Onlyone m.phase(used,not changedincompositionduringprocess)
b) Gradientelution(compositionof m.phase change duringone separationprocess,can
changingfrompolar tonon polaror opposite isright)
 Shapesof st.phase:
A. Column- chromatography (st.phase isinside atube;andm.phase movesthroughthe
columnbyinfluence of gravityorpressure )
i. Packed column(st.phase issolid;itcompletelypackedincolumnandm.phase is
as inertmatter)
ii. Opentubular column (st.phase coatsinside the wall inthe tube leavingempty
path form.phase)
B. Planar- chromatography (st.phase isinsideaplatTLC or paper;andm.phasemoves
throughthe plate or paperby influenceof capillaryaction throughthe plate orpaper
by influence of capillary action;Examples:paperchromatography;TLCthinlayer
chromatographyplate )
 Separation mechanismtypes:
1. Affinitychromatography
 Separationdependon interactionbetweensolute&st.phase
2. Ion-exchange chromatography
 Separationdependon difference inthe charge of solute
 St.phase isresignsorpolymerwith acidorbasic group
3. Chiral chromatography
 Is usedforseparationof chiral compounds
 If solutes&st.phaseare chiral compoundsandm.phaseisn’tchiral compound
 If solutes&st.phasearen’t chiral compoundsandm.phaseischiral compound
 St.phase iscellulose ,amaylase derivatives,protiens,peptids,cyclodextrin
4. Size exclusionchromatography:Ex: (LSC)LiquidSolidChromatography
 Separationdependsondifference insizeof the solute(small sizegetoutdown;butlarge
size remains)
 Examples;(gel filteration):aqueousliquidm.phase-gel permation):organicliquid
m.phase
 St.phase ispolymerorporoussilica
5. Adsorptionchromatography:Ex: (LSC)LiquidSolidChromatography
 Separationdependsondifference in adsorptionaffinitiesof mix.componentsto
st.phase
 St.phase issilica
6. Partition chromatography:Ex: (LLC)LiquidLiquidChromatography
 Separationdependsondifference indistributionof mix.components between2liquid
phases(liquidm.phase&liquidst.phase )
 Paper chromatography ;TLC thin layer chromatography plate
 Paper chromatography: istechnique of separation&identificationof compoundsby
movingsolvent(onsheetsorstripsof filterpaper)
 TLC thinlayer chromatography plate:is technique of separation&identificationof
compoundsbymovingsolvent(onthinlayerplate assilicagel coatedonplasticplate)
 Advantages of TLC over Paper chromatography; TLC isbetterthan paperinresolution
(as give sharpestpeakthaninpaper)inquantification&inTLC use corrosive agent
 Types ofpaperchromatography:
i. Ascendingchromatography:(inwhich,solventtravelsfrom downtoup through
filterpaperorTLC by capillaryaction)
ii. Descendingchromatography:(inwhich,solventtravelsfrom uptodown
throughfilterpaperorTLC by capillaryaction;tere are volatile substances,to
overcome itbygravity;DescendingisfastthanAscending)
iii. One dimensionchromatography:(onlyone solventisapplied)
iv. Two dimensionchromatography:(inwhich2solventsatrightangle are
applied;wemake rightangle toavoidoverlapping)
 TLC Method:
 You put alittle spotof standard&testsoln.bymicropipette onTLCplate;you
put TLC plate intothe TLC jarthat have m.phase;waitalittle bitform.phase to
travel upwards;pull itoutof the chamber;thenusingdetectionsoln.thatwas
preparedandput iton the plate theneither(use uv-lamptosee whatspotsare
there)or(use the ovenat105 C at certainperiodof time tosee whatspotsare
there)andthentrytocompare than2spots intermsof polarityandcalculate
(RF) value
 Mechanismof TLC =Paper chromatography:
 Is resultof 2 forces
1) Propellingforce:thatdependonsolventflow,solubility…whenRF
value increase
2) Retardingforce : that dependonpartition, adsorption…….whenRF
value decrease
 RF(RetentionFactor)
o RF=propellingforce +retardingforce
o RF isquantitative indicationof how fara particularcompoundtravelsin
particularsolvent
o RF value isgoodindicatorof unknowncompounds&knowncompound
o When2 compoundsare likelysimilaroridentical;the RFvalue for
unknowncompoundisclosedorsame to knowncompound
o RF =D1/D2 where ;
D1= distance thatcolor traveled,measuredfromcenterof the bandof
colorto another centerof the endpoint
D2=total distance thatsolventtraveled
o If RF=1; indicate polaritysolvent(propellingforce >retardingforce)thus
solute islessresistance tomove
o If RF=zero; indicate Nopolarsolvent(propellingforce <retardingforce)
thussolute ismore resistance tomove
o If RF=0.3or 0.7 or any numberbetween(zerotoone ) may be also
soluble
HPLC(High Pressure LiquidChromatography)
 It is used for
1) For separating mixtures either to analyze the mix. or to separate a required
product from others in a reaction mixture
2) To find the relative amounts of different components in a mixture.
 In which; how fast each one moves depends on its relative affinity for the m.phase in
the st.phase ;or example , if m.phase is more polar than st.phase ;the more polar
components of mix. will tend to move more quickely than the less polar ones
 Components of HPLC :(mobile phase,pump. Injection port or autosampler,column,
detector,display,waste bottles)
 There are pumps; they produce a pressure 150 times that of the atmosphere ,hence the
name high pressure liquid chromatography
 If single sample is to be run, it is injected into the solvent stream, here in the injection
port via a hypodermic syringe
 If several samples can be run by loading them into autosamplers that will run them in
order without any human intervention.
 The pumps force the mixed solvents through the column. The solvent emerging from
the column & carrying the separated components of the mix. passes into the detector .
 By the detector; electromagnetic reaction between st.phase& solutes by moving
m.phase acc. to polarity
 Parameter for HPLC : temp.,pressure,wave length, flow rate (ml. per min. )
 Types of column :
1) Length 150 mm ,diameter 4.6 mm , pore size 5 micro meter
2) Length 250 mm ,diameter 4.6 mm , pore size 5 micro meter
3) Length 300 mm ,diameter 4.6 mm , pore size 5 micro meter
 Types of st.phase in the column
1) L1: C18
2) L7:C8
3) L10:CN
 Factors on retention time :
1) Length of column :( when length of column increase; the retention time
increase )
2) Flow rate: (when flow rate increase ; the retention time decrease )
 NOTE: buffer soln. are used to prevent crystllisation of salts
 Some troubleshooting are : temp.,flow rate, PH, degassing m.phase, mixing m.phase ,
column fouling ,sample injection overloading acc. to number of volume
 factors of choice for separation&quantitationbycolumnchromatography:
1. stationaryphase
a. cross sectionshape &size
b. length
c. morphologyof stationaryphase
d. material composition
2. mobile phase
a. composition
b. flowrate
3. temp.
4. detector
5. sample size(volume,concentration)
 General Factors Increasing Resolution
Increase column length
Decrease column diameter
Decrease flow-rate
Pack column uniformly
Use uniform stationary phase (packing material)
Decrease sample size
Select proper stationary phase
Select proper mobile phase
Use properpressure
Use gradient elution
Solubility:
 1gm in 1ml=verysoluble
 1gm in 10ml=free soluble
 1gm in 30ml= soluble
 1gm in 100ml=slightlysoluble
 1gm in 300ml=spraingly soluble
 1gm in 10,000ml=very slightlysoluble
 1gm in 100,000ml=practically insoluble
Polarimeter:
 Principle of polarimeter:
 It measure the optical rotation angle of polarizedlight asit passesthroughanoptically
active fluid.
 The measuredrotationcan be usedto calculatedthe value of soln.conc.
 Light isin all direction&introduce intothe polarizer(filter-like) thatpolarize the light groupin
one direction only . sogive us plane –polarizedlight enter the sample tube show us…if the
molecule hasstereochemistry involvedor not :
 Once the light come throughthe sample tube inthe organic compoundsthatwas up , down
in& basicallystill up,downinthe end.(soNorotation of light,molecule don’thave Dextroor
Levo;these molecules are achiral )
 Once the lightcome throughthe sample tube inthe organic compoundsthat was up ,downin
but changing as rotates;it will be suchas like right –handrotated;(moleculesdorotationof
light, moleculeshave Dextro,Levo;these moleculesare chiral compoundasrotatedlefthandor
righthand rotated)
 Polarimeteradvantages:
 It isused for analysisof optically,active fluidslike sugars,lacticacid,tartaric.
 Thismethodgivesinformationonchemical structure ,chirality,andconc.of sample by
measuringthe analyte through aray of ploarisedlight
 Applicationof polarimeter:
 Sugar industry
 Food,drink&agriculture
 Pharmaceutical industry
 Chemical industry
 Optical rotation=angle rotation/lengthof sample tube
 SpecificOptical rotation=angle rotation/(lengthof sample tube*conc.)
Where :conc.=Wt(gm)/(Vml)
‫ا‬ UV
 Ultraviolet-visiblespectrometrytellusaboutelectronictransitioninatoms&molecules
 Compoundsthatabsorbin the visible region(400-800 nm) such as some transitionmetal compoundsand
organicdyesare colouredbutothersthatabsorb onlyinthe UV-region(200-400 nm) are colourless.
 Inside UV-Visible spectrometer;
1) There are 2 lightsources, (tungstenlamp) likeacar headlampbulbfor givingoutvisible light&
(Deuteriumlamp) givesoutUV-light.
2) The source produces white light thatinclude all wave lengths,all colours;thenlight goto(wave length
selector)thatcontainsdiffractiongratingthatsplitsthe light into itsconstituentwave lengths.
3) The single wave length passto(half silveredmirrorsynchronized)whereasitcutsthe lightinto2 beams;
one beampass throughthe sample cell While otherpassthroughthe reference cell ;
Q: compare between doublebeam&single beam??
-double beam :measure blank&testin one time
-single beam:measure blank&test separately
4) Both sample &reference beamare directedtoanotherhalf silveredmirrorsynchronizedthento
photomultiplier(thatconvertlightphotoninto light current)
5) From photomultiplertodetectorthatcomparestheirintensitiesandsedsingle proportionaltothe ratio
of their intensitiesto the computer that controlsthe instrument.The logarithumof thisratiogives
quantitycalled(absorbance)(thatismeasure how muchlightisbeingabsorbedbythe sample that
particularwavelength)
NOTES:
 UV-Visible are runonsolution,lightdoesn’t normallypassthrough solidsamples
 To run the spectrumwe place some of the solventinasample cuvette to act as a blank, a reference
.(there are 2 cuvettestype )
-glassor plasticcuvettes isrequiredforworkinthe visibleregionof the spectrum.
-Quartzcuvettesare neededforworkinthe UV-range region.
 Strongpeak(fundamental strangerpeak):
The electronstransferfrom r0of groundstate to r0 of excitedstate ....(A)
 Weakpeak(overtone peak):
The electronstransferfrom r0 of ground state to r1 of excitedstate....(B)
 Sharp peak:electrontransferfromr3 groundstate to r3 excitedstate butwhenitback occur at
one step.
 Broad peak:electrontransferfromr3 ground state to r3 excitedstate butwhenitbackoccur at
more step.
Karl-Fischer
 To determine trace amountsof waterin sample.
 Technique basedonareagent that react withthe waterina sample & convertsthe waterintonon-conductive
chemical.
 Reagentiscomposedof (CO2+Pyridine+Iodine)
Water tests:
1. Appearance:
Clear,colourlessliquidbyvisually
2. Conductivity:
Result:1.3S at 250
C
3. PH:
Result:(5-7) at250
C
4. Total organic carbon:
Result:lessorequal 0.5 mg/ml
5. Acidity/alkalinity:
Method: 10 ml boiledthencooledthen0.05ml of methyl redsoln.
Result:soln.isnotredcolor
Method:10 ml boiledthencooledthen0.1ml of bromothymol blue soln.
Result:soln.isnotblue colour
6. Oxidizable test:
Method:100ml of sample thenadd10 ml H2SO4(1M) thenadd0.1ml of (0.02M) KMnO4 then
boil for 5min.
Result: the soln.remainingfaintlypink.
7. Nitrate test:
Method:
I. Prepare 2 tubes(testtube & STD tube )
II. Add4.5 ml purifiedwaterSTD in the STD tube
III. Add5 ml of sample inthe testtube
IV. Add0.4 ml KCL10% at each tube
V. Add0.5 ml Nitrate STD 2ppm at STD tube
VI. Add5 ml of H2SO4 conc. At eachtube
VII. Add0.1 ml diphenylamineateachtube
Result: blue colourat STD tube &colourlessattesttube .
8. Ammoniumtest:
Method:
I. Prepare 20 ml of sample thenadd1ml of potassiumtetraiodomercurateintube (A)
II. Prepare 4ml of NH4 (1ppmSTD)+16ml of ammonium -free water+1ml of potassium
tetraiodomercurate in tube (B)
Result: (A) tube isnot more intenselycolouredthantube (B)
9. Heavy metal:
Method:
I. Heat 20ml to evaourate till volumereachto20 ml
II. Prepare 4 tubes(testtube,STDtube,blanktube,anothertube)respectively.
III. Put 12ml of testsoln.inthe testtube.
IV. Put 2ml of testsoln.inthe testtube + 10ml of standardlead(10ppm) in STD tube
V. Put 2ml of testsoln.inthe testtube+10 ml of H2O in blanktube
VI. Put 5ml of (heavymetal mix.Reagent)thatistoAdd1 mL of a mixture of 15 mL of 1M
sodiumhydroxide,5mL of water and20 mL of glycerol (85%) , heatina waterbath for
20 seconds,cool anduse immediately.+1ml of thioacetamide reagentinthe another
tube.
VII. Thenadd 2 ml of (bufferPH3.5) inthe first3tubes
VIII. Add1ml fromtube 4 in eachfirst3 tubes
Result:the STDtube ismore than testtube inbrowncolour.
10. Calcium& magnesium:
Method: 10ml sample thenadd2ml ammoniumchloridebuffersoln.(PH10)thenadd50mg of
EBT indicatorthenadd0.5ml of( 0.01M) EDTA
Result: pure blue colour
11. Residue on evapouration:
Method:
i. Evapourate 100ml on waterbath and dry
ii. Bringa beakerandwt itemptydreied,then put100 ml of sample anevapourate thuswt
thissame beaker aftercooledinthe dessicator.
iii. Residue watersoluble =Grosswt - Tare wt
iv. Tare wt=wtof emptydriedbeaker
v. Gross wt = wt of thisbeakerafterevapourationof itssample.
Result: Maximum0.001%
12. Chloride:
Method: 10ml of sample thenadd1ml (2N) HNO3 then0.2 ml AgNO3in testtube
Result: No change at 15min
13. Sulphate:
Method: 10ml of sample thenadd0.1ml HCL(1N) thenadd0.1ml (BaCL2)
Result: Nochange at least1hour
14. Iron test:
Method:
i. Prepare 2 Nesslertubes(testtube ,STDtube)
ii. Prepare citricsoln.(5gmcitricacidin 25 ml of H2O)
iii. Add10 test soln.inthe testtube thenadd 2ml citricsoln.
iv. Add10 standard ironreagent(10ppm) inthe test tube thenadd2ml citric soln.
v. Thenadd 0.1 ml thioglycolicacid
vi. Thenadd 5ml NH3 conc.
vii. Result:(the STDis more thantest inpinkcolour)
Heavy Metals:
Definition:
In general,metallictype of impuritiesare detectedbystandardprocedure of inorganicqualitative
analysiswhichinvolve colourandprecipitationreaction.
It detectselementswithinsolublesulfides[lead(Pb),mercury(Hg),bismuth(Bi),arsenic(As), antimony
(Sb),tin(Sn),cadmium(Cd),silver(Ag),copper(Cu),molybdenum(Mo)],itdoesnotidentifywhichis
elementispresent.
Thistestis basedonprinciple thattracesof leadsaltsif presentare convertedtoleadsulphide bythe
additionof Na2S to a slightlyalkalinesolutionbufferedbyahighconcentrationof ammoniumacetate.
The brown colourobtaineddue tothe presence of colloidalPbSinthe sample solutioniscomparedwith
that obtainedfromaknownamountof lead.
Pb2+
+ H2S → PbS¯ + 2H+
Method:
i. Prepare 4 tubes(testtube,STDtube,blanktube,anothertube)respectively.
ii. Put 12ml of testsoln.inthe testtube.
iii. Put 2ml of testsoln.inthe testtube + 10ml of standardlead(10ppm) in STD tube
iv. Put 2ml of testsoln.inthe testtube+10 ml of H2O in blanktube
v. Put 5ml of (heavymetal mix. Reagent)thatistoAdd1 mL of a mixture of 15 mL of 1M sodium
hydroxide,5mL of waterand 20 mL of glycerol (85%) , heatina waterbathfor 20 seconds,cool
and use immediately.+1ml of thioacetamidereagentinthe anothertube.
vi. Thenadd 2 ml of (bufferPH3.5) inthe first3tubes
vii. Add1ml fromtube 4 in eachfirst3 tubes
Result: the STD tube is more than testtube inbrowncolour.
Chloride limittest :
i. Prepare 2 tubes(testtube ,STDtube)
ii. Put 5 ml of testsoln.inthe testtube
iii. Put 5 ml of chloride standardreagent(10ppm) inSTD tube
iv. Put 1ml of AgNO3 ineachtube
v. Put 1 ml of HNO3in each tube
Result:the STD tube ismore than testtube inwhite ppt.
Sulphate limittest :
i. Prepare 2 tubes(testtube ,STDtube)
ii. Put 5 ml of testsoln.inthe testtube
iii. Put 5 ml of Sulphate standardreagent(10ppm) inSTD tube
iv. Add 1ml of HCL(1N) in eachtube
v. Add 1ml of BaCL2 in eachtube.
Result: the STD ismore thantest
Iron test:
viii. Prepare 2 Nesslertubes(testtube ,STDtube)
ix. Prepare citricsoln.(5gmcitricacidin 25 ml of H2O)
x. Add10 test soln.inthe testtube thenadd 2ml citricsoln.
xi. Add10 standard ironreagent(10ppm) inthe test tube thenadd2ml citric soln.
xii. Thenadd 0.1 ml thioglycolicacid
xiii. Thenadd 5ml NH3 conc.
Result:(the STDis more thantest inpinkcolour)
Residue water soluble :
 (Sample+impurities) thenaddwaterthenmake filterationthus(sample)and
(water+impurities)thatoccurevapouration.
 Residue watersoluble =Grosswt - Tare wt
 Tare wt=wtof emptydriedbeaker
 Gross wt = wt of thisbeakerafterevapourationof itssample.
TOC (Total OrganicCarbon)
 It meanif there are ionsinthe water sample ornot.
 Mechanism:
i. Washingstep:
UV &H3PO4&Sodiumpersulphateconvertthe carbonintoCO2&H2CO3 where H2CO3 tobe
H+
,CO2
-
ionsto increase conductivity&the curve indicate thatthe rate of conductivityis
highor low.
ii. Spargingstep:
Remove inorganiccarbonportionfirstly;thenmeanthe organiccarbon , thismethodis
called(sparging) thatoccurpurgingthe sample byNitrogengas.
Flame photometer:
 Is a device usedininorganicchemical analysistodeterminethe conc.Of certainmetal ions,
amongthemsodium,potassium,calcium,Group1&Group2 metalsare quite sensitivetoflame
photometrydue totheir lowexcitation energies.
‫وغيره‬ ‫والنورمالتي‬ ‫الموالرتي‬ ‫وتعريفات‬ ‫الكيمائية‬ ‫المحاليل‬ ‫تحضير‬ ‫قوانين‬
Solutions preparation
SSoolluuttiioonn
A solution is a homogeneous mixture composed of two or more
substances. In such a mixture, a solute is dissolved in another substance,
known as a solvent.
SSoolluuttee
The substance which dissolves in a solution
SSoollvveenntt
The substance which dissolves another to form a solution
SSaattuurraattiioonn
Saturation is the point at which a solution of a substance can dissolve no
more of that substance and additional amounts of it will appear as a
precipitate.
SSuuppeerrssaattuurraattiioonn
It refers to a solution that contains more of the dissolved material than
could be dissolved by the solvent under normal circumstances.
TTyyppeess ooff ssoolluuttiioonnss
Percentage solution
Molar solution
Normal solution
PPPeeerrrccceeennntttaaagggeee sssooollluuutttiiiooonnn
WWeeiigghhtt// WWeeiigghhtt ssoolluuttiioonn %% ((ww//ww))
This type of solution is rarely if ever prepared in the laboratory since it is
easier to measure volumes of liquids rather than weigh the liquid on an
analytical balance.
This type of percent solution is usually expressed as (w/w), where "w"
denotes weight (usually grams) in both cases.
Example:
An example of a correct designation for this type of solution is as follows:
10 g/100 g (w/w), which indicates that there are 10 grams of solute for
every 100 grams total
WWeeiigghhtt//vvoolluummee ssoolluuttiioonn %% ((ww//vv))
Weight-volume percentage, (sometimes referred to as mass-volume
percentage and often abbreviated as % m/v or % w/v) describes the mass
of the solute in g per 100 ml of the resulting solution.
Example:
PPrreeppaarraattiioonn ooff 1100%% ((WW//VV)) NNaaCCll ssoolluuttiioonn
CCCaaalllcccuuulllaaatttiiiooonnnsss:
so10% (W/V)NaCl solution has 10 grams of sodium chloride dissolved in
100 ml of solution.
PPPrrroooccceeeddduuurrreee:::
Weigh 10g of sodium chloride.
Pour it into a graduated cylinder containing about 80ml of water.
Once the sodium chloride has dissolved completely add water to bring
the volume up to the final 100 ml.
Wt of solute (g) =
C (required Conc.) X V of solvent (ml)
100
Note:
Do not simply measure 100ml of water and add 10g of sodium chloride.
This will introduce error because adding the solid will change the final
volume of the solution and throw off the final percentage.
g/L unite
A gram per liter (g/L) is a unit of measurement of
concentration which shows how many grams of a
certain substance are present in one litre of liquid.
1 g/L = 1000 mg/L = 100 mg/dl = 1000000 g/L =
0.1% (w/v) solution
ppm unite
ppm or part per million is a unit of concentration
often used and denotes one part per 1,000,000 parts,
one part in 106
, and a value of 1 × 10–6
.
1 mg/L = 1 ppm = g/ml
VVoolluummee //vvoolluummee ssoolluuttiioonn %% ((vv//vv))
Volume-volume percentage (abbreviated as % v/v) describes the volume of
the solute in ml per 100 ml of the resulting solution.
Example:
PPrreeppaarraattiioonn ooff 3300%% ((VV//VV)) ssuullffuurriicc aacciidd
CCCaaalllcccuuulllaaatttiiiooonnnsss:::
So 30% (V/V) sulfuric acid has 30 ml of sulfuric acid dissolved in 70 ml of
water.
PPPrrroooccceeeddduuurrreee:::
Calculate the required volume of solute
Subtract the volume of solute from the total solution volume
Dissolve 30 ml sulfuric acid in a 70 ml of water to bring final volume of
solution up to 100ml.
V1 of solute (ml) =
C2 (required Conc.) X V2 of solvent (ml)
C1 (original solute Conc.)
Note:
When you mix concentrated
sulfuric acid and water, you must
add acid (AA) to water in ice
bath.
Why?
Sulfuric acid reacts very
vigorously with water, in a highly
exothermic reaction. Water is
less dense than sulfuric acid, so
if you pour water on the acid, the
reaction occurs on top of the
liquid. If you add the acid to the water, it sinks and any wild reactions
have to get through the water.
MMMooolllaaarrr sssooollluuutttiiiooonnn
MMoolleeccuullaarr wweeiigghhtt
It is the sum of the atomic weights of all the atoms in a molecule. Also
called formula weight
MMoollee
A mole is also called gram-molecular weight and defined as number of
particles whose total mass in grams was numerically equivalent to the
molecular weight or it is the amount of substance containing the Avogadro
number (6.022 × 1023
)
MMoollaarriittyy
Molarity or molar concentration denotes the number of moles of a given
substance per liter of solution.
MMoollaarr ssoolluuttiioonn
It is a solution that contains 1 mole of solute in each liter of solution.
UUnniittss ooff mmoollaarriittyy
The units for molar concentration are mol/L.These units are often denoted
by a capital letter M (pronounced "molar").
1 mol/l = 1000 mmol/l = 1000000 mol/l = 1000000000 nmol/l
1 mmol/ml = 1 mol/l
1 mol/ml = 1 mmol/l
Name Abbreviation Concentration
Millimolar mM 10-3
molar
Micromolar M 10-6
molar
Nanomolar nM 10-
9 molar
Picomolar pM 10-12
molar
Femtomolar fM 10-15
molar
MMoollaarriittyy ooff ssoolliidd ssoolluuttee
Example:
PPrreeppaarraattiioonn ooff 11MM NNaaCCll ssoolluuttiioonn iinn 11000000 mmll
CCCaaalllcccuuulllaaatttiiiooonnnsss:::
 M:the required molarity
 M.wt: molecularweightof the solute
 V: total volume in liters
PPPrrroooccceeeddduuurrreee:::
Dissolve 58.5 g of NaCl in a 1000 ml (1 liter) of water to prepare 1M NaCl
solution.
Wt of solute (g) = M (mole/l) X M.wt (g/mole) X V (L)
MMoollaarriittyy ooff lliiqquuiidd ssoolluuttee
To prepare 1M solutions make the following steps:
Calculate the molecular weight of the solute
Calculate the molarity of the solute using the following formula:
Calculate the volume of the solute needed to prepare 1M solution using
the following formula:
Subtract the volume of solute from the total solution volume
Mix both volumes of solute and solvent to reach the total required
volume
Example1:
PPrreeppaarraattiioonn ooff 11MM HHCCLL ssoolluuttiioonn iinn 11000000 mmll
% percent Density M.wt
32 1.18 36.5
HCL molarity = 10.345
Volume required from HCL = 96.66 ml
Molarity (M) =
% X density X 10
M.wt
V1 of solute(ml) =
M2 (required molarity) X V2 (required volume) (ml)
M1 (original molarity)
Complete to 1 liter with 903.33 ml distilled water
Example2:
PPrreeppaarraattiioonn ooff 11MM HH22SSOO44 ssoolluuttiioonn iinn 11000000 mmll
% percent Density M.wt
98 1.83 98
H2SO4 molarity = 18.3
Volume required from H2SO4 = 54.64 ml
Complete to 1 liter with 945.36 ml distilled water
Example3:
PPrreeppaarraattiioonn ooff 11MM HH22OO22 ssoolluuttiioonn iinn 11000000 mmll
% percent Density M.wt
30 1.44 34.01
H2O2 molarity = 12.70
Volume required from H2O2 = 78.74 ml
Complete to 1 liter with 921.25 ml distilled water
NNNooorrrmmmaaalll sssooollluuutttiiiooonnn
EEqquuiivvaalleenntt wweeiigghhtt
An equivalent weight is equal to the molecular weight divided by the
valence (replaceable H ions).
NNoorrmmaall
A normal is one gram equivalent of a solute per liter of solution.
NNoorrmmaalliittyy
Normality is the total no of gram equivalents of the solute present per liter of the
solution
NNoorrmmaall ssoolluuttiioonnss
The definition of a normal solution is a solution that contains 1 gram
equivalent weight (gEW) per liter solution.
UUnniittss ooff NNoorrmmaalliittyy
The units for normal concentration are Eq/L. These units are oftendenoted
by a capital letter N (pronounced "normal").
mEq/L = 0.001 Eq/L
HHooww ttoo ccaallccuullaattee eeqquuiivvaalleenntt wweeiigghhtt
EEqq..wwtt ffoorr aacciiddss aanndd bbaasseess
Examples:
HCL the MW= 36.5 the EW = 36.5
H2SO4 the MW = 98 the EW = 49
H3PO4 the MW = 98 the EW = 32.7
NaOH the MW = 40 the EW = 40
Ca (OH)2 the MW = 74 the EW = 37
EEqq..wwtt ffoorr ssaallttss
Eq.wt =
M.wt of acid or base
No of H+ in acids or OH- in bases
Eq.wt =
M.wt of salt
No of cations X valency or No of anions X valency
Examples:
KCL the MW= 74.55 the EW = (74.55 / 1 X 1) = 74.55
CaCl2 the MW= 110.98 the EW = (110.98 / 1 X 2) or (110.98 / 2 X 1) =
55.49
Na2CO3 the MW= 105.98 the EW = (105.98 / 1 X 2) or (105.98 / 2 X 1) =
52.99
NNoorrmmaalliittyy ooff ssoolliidd ssoolluuttee
Examples:
PPrreeppaarraattiioonn ooff 11NN NNaaOOHH ssoolluuttiioonn
PPrreeppaarraattiioonn ooff 11NN CCaa((OOHH))22 ssoolluuttiioonn
PPrreeppaarraattiioonn ooff 11NN KKCCLL ssoolluuttiioonn
CCCaaalllcccuuulllaaatttiiiooonnnsss:::
Wt of solute (g) = N (Eq/l) X Eq.wt X V (L)
 N: the required normality
 Eq.wt: equivalent weightof the solute
 V: total volume in liters
PPPrrroooccceeeddduuurrreee:::
Dissolve 40 g of NaOH in a 1000 ml (1 liter) of water to prepare 1N
NaOH solution.
Dissolve 37 g of Ca (OH)2 in a 1000 ml (1 liter) of water to prepare 1N
Ca (OH)2 solution.
Dissolve 74.55 g of KCl in a 1000 ml (1 liter) of water to prepare 1N KCl
solution.
NNoorrmmaalliittyy ooff lliiqquuiidd ssoolluuttee
To prepare 1N solutions make the following steps:
Calculate the equivalent weight of the solute
Calculate the normality of the solute using the following formula:
Calculate the volume of the solute needed to prepare 1N solution using
the following formula:
Normality (N) =
% X density X 10
Eq.wt
V1 of solute(ml) =
N2 (required normality) X V2 (required volume) (ml)
N1 (original normality)
Subtract the volume of solute from the total solution volume
Mix both volumes of solute and solvent to reach the total required
volume
Example1:
PPrreeppaarraattiioonn ooff 11NN HHCCLL ssoolluuttiioonn
% percent Density M.wt
32 1.18 36.5
HCL normality = 10.345
Volume required from HCL = 96.66 ml
Complete to 1 liter with 903.33 ml distilled water
Example2:
PPrreeppaarraattiioonn ooff 11NN HH22SSOO44 ssoolluuttiioonn
% percent Density M.wt
98 1.83 98
H2SO4 normality = 36.6
Volume required from H2SO4 = 27.32 ml
Complete to 1 liter with 972.67 ml distilled water
DDDiiillluuutttiiiooonnn ooofff sssooollluuutttiiiooonnnsss
SSiimmppllee DDiilluuttiioonn
A simple dilution is one in which a unit volume of a liquid material of interest
is combined with an appropriate volume of a solvent liquid to achieve the
desired concentration.
The dilution factor is the total number of unit volumes in which your material
will be dissolved. The diluted material must then be thoroughly mixed to
achieve the true dilution.
Example:
Dilute a serum sample1:5 dilution as follow:
Combining 1 unit volume of serum (for example 200 l) + 4 unit volumes of
the saline (for example 800 l)
In this case the dilution factor is 5 (1 + 4 = 5 = dilution factor).
SSeerriiaall DDiilluuttiioonn
A serial dilution is simply a series of simple dilutions which amplifies the
dilution factor quickly beginning with a small initial quantity of material.
The source of dilution material for each step comes from the diluted
material of the previous.
In a serial dilution the total dilution factor at any point is the product of the
individual dilution factors in each step up to it.
Final dilution factor (DF) = DF1 * DF2 * DF3 etc
Example:
Using a primarystock solution (for example 2 mmol/l) prepares a
series of differentconcentrations using serialdilution as follow:
The initial step combines 1 unit volume of stock solution (100 ml) with 9 unit
volumes of distilled water (900 ml) = 1:10 dilution.
Prepare another 6 tubes each one contains 500 ml distilled water
Combines 1 unit volume of the first tube (500 ml) with the 500 ml distilled
water in the second tube
Combines 1 unit volume of the second tube (500 ml) with the 500 ml
distilled water in the third tube and so on until the last tube
The total dilution would be: 1:10 X 2 X 2 X 2 X 2 X 2 X 2 = 1:640
SSppeecciiffiicc DDiilluuttiioonn
It is used when we need to make a specific volume of known concentration
from stock solutions
To do this we use the following formula:
V1C1=V2C2
V1: the volume of stock we start with.(Unknown)
C1: the concentration ofstock solution
V2: total volumeneeded atthe new concentration
C2: the new concentration
Example:
Suppose we have 3 ml of a stock solution of 100 mg/ml and we want
to make 200 ml of solution having 25 mg/ ml.
V1 = (V2 x C2) / C1
V1 = (0.2 ml x 25 mg/ml) / 100 mg/ml
V1 = 0.05 ml, or 50 ml
So, we would take 0.05 ml stock solution and dilute it with 150 ml of solvent
to get the 200 ml of 25 mg/ ml solution needed
CCCooonnnvvveeerrrsssiiiooonnn ooofff CCCooonnnccc... uuunnniiitttsss
CCoonnvveerrssiioonn ooff WWtt%% PPeerrcceenntt ttoo mmoollaarriittyy
Molarity (M) = (% X 10)/Molecular wt
CCoonnvveerrssiioonn ooff mmoollaarriittyy ttoo WWtt%% PPeerrcceenntt
Wt% Percent = (M X Molecular wt)/ 10
CCoonnvveerrssiioonn ooff WWtt%% PPeerrcceenntt ttoo nnoorrmmaalliittyy
Normality (N) = (% X 10)/Equivalent wt
"X" units
Stock solutions of stable compounds are routinely maintained in labs as
more concentrated solutions that can be diluted to working strength
when used in typical applications. The usual working concentration is
denoted as 1X. A solution 20 times more concentrated would be denoted
as 20X and would require a 1:20 dilution to restore the typical working
concentration.
CCoonnvveerrssiioonn ooff nnoorrmmaalliittyy ttoo WWtt%% PPeerrcceenntt
Wt% Percent = (N X Equivalent wt)/ 10
CCoonnvveerrssiioonn ooff NNoorrmmaalliittyy ttoo MMoollaarriittyy
Normality (N) = Molarity (M) X n
CCoonnvveerrssiioonn ooff MMoollaarriittyy ttoo NNoorrmmaalliittyy
Molarity (M) = Normality (N) / n
Where n =
number of (H+
) in acids or (OH-
) in bases or valency in salts
CCoonnvveerrssiioonn ooff WWtt%% PPeerrcceenntt ttoo gg//ll
Wt% Percent = g/l / 10
CCoonnvveerrssiioonn ooff gg//ll ttoo WWtt%% PPeerrcceenntt
g/l = Wt% Percent X 10
CCoonnvveerrssiioonn ooff MMoollaarriittyy ttoo gg//ll
g/l = M X Molecular wt
CCoonnvveerrssiioonn ooff gg//ll ttoo MMoollaarriittyy
M = Molecular wt / g/l
CCoonnvveerrssiioonn ooff NNoorrmmaalliittyy ttoo gg//ll
g/l = M X Equivalent wt
CCoonnvveerrssiioonn ooff gg//ll ttoo NNoorrmmaalliittyy
M = Equivalent wt / g/l
Examples:
11MM NNaaCCll 55..8855%% NNaaCCll 5588..55 gg//ll NNaaCCll 11NN NNaaCCll
11MM HHCCLL 33..0099%% HHCCLL --------------- 11NN HHCCLL
00..55MM HH22SSOO44 22..6677%% HH22SSOO44 --------------- 11NN HH22SSOO44
11MM NNaaOOHH 44%% NNaaOOHH 4400 gg//ll NNaaOOHH 11NN NNaaOOHH
00..55MM CCaa((OOHH))22 33..77%% CCaa((OOHH))22 3377 gg//ll CCaa((OOHH))22 11NN CCaa((OOHH))22
00..55MM NNaa22CCOO33 55..2299%% NNaa22CCOO33 52.99 gg//ll NNaa22CCOO33 11NN NNaa22CCOO33

Weitere ähnliche Inhalte

Was ist angesagt?

Analytical method validation workshop
Analytical method validation workshopAnalytical method validation workshop
Analytical method validation workshop
Siham Abdallaha
 
Exp no 9 assay of boric acid
Exp no 9 assay of boric acidExp no 9 assay of boric acid
Exp no 9 assay of boric acid
Ankita Berde
 

Was ist angesagt? (20)

limit test for iron
limit test for ironlimit test for iron
limit test for iron
 
Acid base titration
Acid base titrationAcid base titration
Acid base titration
 
Diazotization titrations
Diazotization titrationsDiazotization titrations
Diazotization titrations
 
Hoofdstuk 3 - De zuur-base titraties
Hoofdstuk 3 - De zuur-base titratiesHoofdstuk 3 - De zuur-base titraties
Hoofdstuk 3 - De zuur-base titraties
 
Redox titration for mpharm ist year
Redox titration for mpharm ist year Redox titration for mpharm ist year
Redox titration for mpharm ist year
 
Limit test for arsenic and lead
Limit test for arsenic and leadLimit test for arsenic and lead
Limit test for arsenic and lead
 
Chapter 8 a acid-base titration
Chapter 8 a acid-base titrationChapter 8 a acid-base titration
Chapter 8 a acid-base titration
 
5 3 and 5 4
5 3 and 5 45 3 and 5 4
5 3 and 5 4
 
Principle and Applications Of MBTH, NQS, FC and BM Reagents
Principle and Applications Of MBTH, NQS, FC and BM ReagentsPrinciple and Applications Of MBTH, NQS, FC and BM Reagents
Principle and Applications Of MBTH, NQS, FC and BM Reagents
 
Role Of Solvent
Role Of Solvent Role Of Solvent
Role Of Solvent
 
Analytical chemistry
Analytical chemistryAnalytical chemistry
Analytical chemistry
 
Fats and oils
Fats and oilsFats and oils
Fats and oils
 
Analytische chemie I - Hoofdstuk1 - Algemene Inleiding
Analytische chemie I - Hoofdstuk1 - Algemene InleidingAnalytische chemie I - Hoofdstuk1 - Algemene Inleiding
Analytische chemie I - Hoofdstuk1 - Algemene Inleiding
 
Non aqueous titration
Non aqueous titrationNon aqueous titration
Non aqueous titration
 
Antimicrobials B.Pharm PIC 1st Sem Unit-3
Antimicrobials B.Pharm PIC 1st Sem Unit-3Antimicrobials B.Pharm PIC 1st Sem Unit-3
Antimicrobials B.Pharm PIC 1st Sem Unit-3
 
Analytical method validation workshop
Analytical method validation workshopAnalytical method validation workshop
Analytical method validation workshop
 
Analysis of paint
Analysis of paintAnalysis of paint
Analysis of paint
 
Non Aqueous Titration- by Dr. A. Amsavel
Non Aqueous Titration- by Dr. A. AmsavelNon Aqueous Titration- by Dr. A. Amsavel
Non Aqueous Titration- by Dr. A. Amsavel
 
Exp no 9 assay of boric acid
Exp no 9 assay of boric acidExp no 9 assay of boric acid
Exp no 9 assay of boric acid
 
General introduction of limit test and limit test for chloride.
General introduction of limit test and limit test for chloride.General introduction of limit test and limit test for chloride.
General introduction of limit test and limit test for chloride.
 

Andere mochten auch

Quality control of pharmaceutical products
Quality control of pharmaceutical productsQuality control of pharmaceutical products
Quality control of pharmaceutical products
Siham Abdallaha
 
001 thermodynamic system
001 thermodynamic system001 thermodynamic system
001 thermodynamic system
physics101
 
Gas Chromatography and HPLC
Gas Chromatography and HPLCGas Chromatography and HPLC
Gas Chromatography and HPLC
Momina Mateen
 
Ll.b ii lot ii u-iii consumer protection act
Ll.b ii lot ii u-iii consumer protection act Ll.b ii lot ii u-iii consumer protection act
Ll.b ii lot ii u-iii consumer protection act
Rai University
 

Andere mochten auch (20)

Pharmaceutical water
Pharmaceutical waterPharmaceutical water
Pharmaceutical water
 
Manufacture of Paints
Manufacture of PaintsManufacture of Paints
Manufacture of Paints
 
Quality control of pharmaceutical products
Quality control of pharmaceutical productsQuality control of pharmaceutical products
Quality control of pharmaceutical products
 
Royal Link Pharma
Royal Link PharmaRoyal Link Pharma
Royal Link Pharma
 
Solutions preparation
Solutions preparationSolutions preparation
Solutions preparation
 
001 thermodynamic system
001 thermodynamic system001 thermodynamic system
001 thermodynamic system
 
English Grammar
English GrammarEnglish Grammar
English Grammar
 
Thermodynamic properties
Thermodynamic propertiesThermodynamic properties
Thermodynamic properties
 
14 phenolic resins 2
14 phenolic resins 214 phenolic resins 2
14 phenolic resins 2
 
Gas Chromatography and HPLC
Gas Chromatography and HPLCGas Chromatography and HPLC
Gas Chromatography and HPLC
 
Polymer processing, characterisation and applications
Polymer processing, characterisation and applicationsPolymer processing, characterisation and applications
Polymer processing, characterisation and applications
 
Gas chromatography
Gas chromatographyGas chromatography
Gas chromatography
 
Preparation of standard, normal and molar solutions
Preparation of standard, normal and molar solutionsPreparation of standard, normal and molar solutions
Preparation of standard, normal and molar solutions
 
What is catalysis, its type and its application
What is catalysis, its type and its applicationWhat is catalysis, its type and its application
What is catalysis, its type and its application
 
Polymerization techniques
Polymerization techniquesPolymerization techniques
Polymerization techniques
 
Laws Of Thermodynamics
Laws Of ThermodynamicsLaws Of Thermodynamics
Laws Of Thermodynamics
 
Polymer ppt
Polymer pptPolymer ppt
Polymer ppt
 
Unit 2
Unit 2 Unit 2
Unit 2
 
Ll.b ii lot ii u-iii consumer protection act
Ll.b ii lot ii u-iii consumer protection act Ll.b ii lot ii u-iii consumer protection act
Ll.b ii lot ii u-iii consumer protection act
 
Bsc agri 2 pae u-4.1 introduction
Bsc agri  2 pae  u-4.1 introductionBsc agri  2 pae  u-4.1 introduction
Bsc agri 2 pae u-4.1 introduction
 

Ähnlich wie Qc pharmceutical

chemical-kinetics-210716042124 (2).pdf
chemical-kinetics-210716042124 (2).pdfchemical-kinetics-210716042124 (2).pdf
chemical-kinetics-210716042124 (2).pdf
AliaaARazzakMohamed
 
Argentometric titration
Argentometric titrationArgentometric titration
Argentometric titration
XINYOUWANZ
 
421546507-CHEMESTRY-PROJECT-FILE-pptx.pdf
421546507-CHEMESTRY-PROJECT-FILE-pptx.pdf421546507-CHEMESTRY-PROJECT-FILE-pptx.pdf
421546507-CHEMESTRY-PROJECT-FILE-pptx.pdf
kritika2805singh
 

Ähnlich wie Qc pharmceutical (20)

Chemical Kinetics & Rate of a chemical reaction.pptx
Chemical Kinetics & Rate of a chemical reaction.pptxChemical Kinetics & Rate of a chemical reaction.pptx
Chemical Kinetics & Rate of a chemical reaction.pptx
 
Kinetic for Pharmaceutical analysis and Physical Pharmacy
Kinetic for Pharmaceutical analysis and Physical PharmacyKinetic for Pharmaceutical analysis and Physical Pharmacy
Kinetic for Pharmaceutical analysis and Physical Pharmacy
 
chemical-kinetics-ppt.pptx
chemical-kinetics-ppt.pptxchemical-kinetics-ppt.pptx
chemical-kinetics-ppt.pptx
 
chemical-kinetics-ppt.pptx
chemical-kinetics-ppt.pptxchemical-kinetics-ppt.pptx
chemical-kinetics-ppt.pptx
 
Chemical kinetics- Physical Chemistry
Chemical kinetics- Physical ChemistryChemical kinetics- Physical Chemistry
Chemical kinetics- Physical Chemistry
 
chemical-kinetics-210716042124 (2).pdf
chemical-kinetics-210716042124 (2).pdfchemical-kinetics-210716042124 (2).pdf
chemical-kinetics-210716042124 (2).pdf
 
Volumetric Analysis.pptx
Volumetric Analysis.pptxVolumetric Analysis.pptx
Volumetric Analysis.pptx
 
chapter_16.ppt
chapter_16.pptchapter_16.ppt
chapter_16.ppt
 
Chemical kinetics dr. asm
Chemical kinetics dr. asmChemical kinetics dr. asm
Chemical kinetics dr. asm
 
Chemical Kinetics Made Simple
Chemical Kinetics Made SimpleChemical Kinetics Made Simple
Chemical Kinetics Made Simple
 
Argentometric titration
Argentometric titrationArgentometric titration
Argentometric titration
 
Reaction kinetics
Reaction kineticsReaction kinetics
Reaction kinetics
 
Cmcchapter16 100613134218-phpapp01
Cmcchapter16 100613134218-phpapp01Cmcchapter16 100613134218-phpapp01
Cmcchapter16 100613134218-phpapp01
 
physical pharmacy 2.pdf
physical pharmacy 2.pdfphysical pharmacy 2.pdf
physical pharmacy 2.pdf
 
CMC Chapter 16 (1).ppt
CMC Chapter 16 (1).pptCMC Chapter 16 (1).ppt
CMC Chapter 16 (1).ppt
 
Enzyme kinetics
Enzyme kineticsEnzyme kinetics
Enzyme kinetics
 
chemical kinetics of chemical reaction (1).pptx
chemical kinetics of chemical reaction (1).pptxchemical kinetics of chemical reaction (1).pptx
chemical kinetics of chemical reaction (1).pptx
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
421546507-CHEMESTRY-PROJECT-FILE-pptx.pdf
421546507-CHEMESTRY-PROJECT-FILE-pptx.pdf421546507-CHEMESTRY-PROJECT-FILE-pptx.pdf
421546507-CHEMESTRY-PROJECT-FILE-pptx.pdf
 
class 12 chemicalkinetics.pptx
class 12 chemicalkinetics.pptxclass 12 chemicalkinetics.pptx
class 12 chemicalkinetics.pptx
 

Kürzlich hochgeladen

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Silpa
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Silpa
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 

Kürzlich hochgeladen (20)

Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptx
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curve
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 

Qc pharmceutical

  • 1. Some definition: Qualitative analysis:the chemical analysisthatdetectthe presence of substance inasample Quantitative analysis:isthe chemical analysisthatdeterminesthe concentrationof asubstance ina sample Volumetricanalysis(titrimetricanalysis):isthe quantitative chemical analysiscarriedoutby determiningthe volumeof asolutionof accuratelyknownconcentrationwhichisrequiredtoreact quantitativelywithameasuredvolume of asolutionof the substance tobe determined GravimetricAnalysisisaquantitativeanalysisisbasedonthe measurementof the weightof asubstance of preciselyknowncompositionthatischemicallyrelatedtothe analyte.Mostoftenthe unknownis precipitatedfromsolutionbyareagentand,afterseparationanddrying,isweighed Instrumental analysisisafieldof Analyticalchemistrywhichinvestigatesthe analyte viadevicesor machinerytechniques.Like atomicabsorption Redox titration(Oxidation-Reductiontitration)isatitrationinwhichthe reactionbetweenthe analyte and titrantisan oxidation/reductionreaction Redox reaction(oxidation-reductionreaction) isareactionthat involvestransferof electronsfromone substance toanother Complexometrictitrationisatitrationinwhichthe reactionbetweenthe analyte andtitrantisa complexationreaction Precipitationtitrationisatitrationinwhichthe reactionbetweenthe analyte andtitrantinvolvesa precipitation Concentrationisageneral measurementunitstatingthe amountof solute presentinaknownamount of solution Solutionisahomogeneousmixture of twoormore substances Solute isa minorspeciesinasolution Solventisthe mostabundantcomponentinasolution Standardsolutionisthe solutionof accuratelyknownconcentration Molarity(M) isthe numberof molesof solute perliterof solution Normality(N) isthe numberof equivalentsof solute perliterof solution Molality(m) isthe numberof molesof solute perkilogramof solvent Strengthof solution(S) isthe numberof gramsof solute perone literof solution
  • 2. Weightpercent(%w/w) isthe numberof gramsof solute per100 g of solution Volume percent(%v/v) isthe numberof millilitersof solute per100 ml of solution Weight-to-volume percent(%w/v) isthe numberof gramsof solute per100 ml of solution Part permillion(ppm) isthe numberof microgramsof solute pergramof solution;foraqueoussolutions the unitsare oftenexpressedasthe numberof milligramsof solute perliterof solution Part perbillion(ppb) isthe numberof nanogramsof solute pergramof solution;foraqueoussolutions the unitsare oftenexpressedasthe numberof microgramsof solute perliterof solution Mole Is Avogadro'snumberof particles(atoms.molecules,ions,oranythingelse Molecularweightisthe sumof the atomicweightsof atomsinthe molecularformula Equivalentweightisthe atomicweightof anelementorradical dividedbyitsvalence;the molecular weightof a compounddividedbyitscombiningpowerinaspecificreaction Gram-equivalentweightisthe equivalentweightof anelementorcompoundexpressedingrams Dilutionthe processof preparingalessconcentratedsolutionfromamore concentratedsolution Molar solutionisthe solutionthatcon¬tains one mole of solute ineachone literof it Normal solutionisthe solutionthatcon¬tainsone gramequivalentof solute ineachone literof it Molal solutionisthe solutionthatcon¬tainsone mole of solute dissolvedineachone kilogramof solvent Titrationisa procedure inwhicha solutionof accuratelyknownconcentration(titrant) isadded graduallyaddedtoanothersolutionof unknownconcentration(analyte) until the chemical reaction betweenthe twosolutionsiscomplete Analyte isa constituent of the sample whichistobe studiedbyquantitative measurementsoridentified qualitatively Titrant isthe substance thatquantitativelyreactswiththe analyte inatitration.The titrantisusuallya standardsolutionaddedcarefullytothe analyte until the reactioniscomplete.The amountof analyte is calculatedfromthe volume of titrantrequiredforcompletereaction Back titrationisa titrationinwhichwe add a knownexcessof one standardreagenttothe analyte.Then we titrate the excessreagentwithasecondstandardreagent.A back titrationisuseful whenitsend pointisclearerthan the endpointof the directtitrationor whenan excessof the firstreagentis requiredforcomplete reactionwithanalyte
  • 3. Blanktitrationisa titrationin whichwe carry out the same procedure withoutanalyte End pointisthe pointat whichthe indicatorchangescolor.It isthe experimental estimate of the equivalence pointinatitration equivalence point:the momentatwhich;the Rx is completelyandstoichiometric between indicator& unknown example:all molesHCl reactedwithsame molesof NaOH as Rx. ratio is 1:1 NaOH + HClNaCl+H2O Indicatorisa coloredcompoundwhose change incolorindicatesthe endpointof a titration Titrationcurve isa graphshowingthe progressof a titrationas a functionof the volume of titrantadded NeutralizationTitrations(acid–base titration) A titrationinwhichthe reactionbetweenthe analyteand titrantis an acid–base reaction Acid Arrhenius:a compoundwhichreleaseshydrogenions(H+) insolution Bronsted-Lowry:a compoundcontainingdetachable hydrogenions Lewis: a compoundthatcan accepta pairof electronsfromabase Base .Arrhenius:a compoundthat produceshydroxideionsinaqueoussolution Bronsted-Lowry:a molecule orionthatcaptureshydrogenions Lewis: a molecule orionthatdonatesan electronpairtoform a chemical bond Strongacid isan acidthat completelydissociatesintohydrogenionsandanionsinsolution Strongbase isa base that completelydissociatesintoionsinsolution
  • 4. Acid-base indicator(Neutralizationindicator) isaweakacid or a weakbase.The undissociatedformof the indicatorhas a colordifferentfromthe colorof itsionizedpart.These substanceschange theircolor accordingto variationof pH of medium External indicator:it's detectionof the endpointoutsideconical flask pH is the negative logarithmof the H+ concentration Oxidationisthe lossof electronsoranincrease inoxidationstate byamolecule,atom, orion Reductionisthe gainof electronsora decrease inoxidationstate bya molecule,atom, orion Oxidizingagentisa substance whichoxidize othersubstance anditself isreduced. - e.g.KMnO4, K2Cr2O7 and I2 Reducingagentisa substance whichreduce othersubstance anditself isoxidized. - e.g.C2O2H4, FeSO4 and Na2S2O3 Redox indicatorsare highlycoloreddyesthatare weakreducingoroxidizingagentsthatcanbe ox¬idizedorreduced;the colorsof the oxidizedandreducedformsare different Self indicatoristhe indicatorinwhichthe titrantor analyte itself actasindicator(i.e.change theircolor at endpoint IodimetrydirecttitrationswithI2 Iodometrytitrationof iodineproducedfromchemicalreaction Buffersolution:a solutionwhichresistance change inpH SolubilityProduct:it'sthe productof the ionconcentrationof a sparinglysoluble electrolyte PostPrecipitation:secondaryprecipitationof aforeignsubstance onthe particlesof the primary precipitation Co-Precipitation:Contaminationof the precipitate withsubstance whichare normallysoluble underthe precipitationcondition,due toadsorptionorocclusion MaskingProcess: maskingagentisreagentthat protectsome components Adsorption:a phenomenawhichformswhenagasor vapor isbroughtin contact withan evacuated solid Double Salt: twosimple salthave apropertiesinaquasstate and have anotherpropertiesinsolidstate Formulaweight:No.of atomswhichexistinthe compound MolecularWeight: it'ssum of all atomicweightsof atomsof compound
  • 5. Hydrolysis:reactionof substance withwateror it'sions Mole fraction: the numberof molesof a componentof a mixture dividedbythe total numberof moles inmixture Co-ordinationbond:transferof lone pairof electronsfromnonmetal atom( ligand) to metal atom Co-ordinationnumber:the numberof Co-ordinationbondaroundthe central metal inCo-ordination sphere Ligand: anionor natural molecule whichcontainunpairedelectrons Orderof reaction: it'ssum of all powerof the conc. of the reactant rate of reaction: decrease of concentrationperunittime of one of the reactant Kc : an equilibriumconst.intermsof molarconcentration Kp : an equilibriumconst.intermsof partial pressure Ka( acid ionizationconst.) :is equilibriumconst.of chemical reactioninvolvingweakacidinaqueous solution Ksp( solubilityproductconst.) : isthe equilibriumconst.fora solidsubstance dissolvinginaqueous solution viscosity:resistance of flowof liquiddue topowerbetweenthe layerof liquid Titration& Typesof Titration  Titrationisa procedure inwhicha solutionof accuratelyknownconcentration(titrant) isadded graduallyaddedtoanothersolutionof unknownconcentration(analyte) until the chemical reactionbetweenthe twosolutionsiscomplete  Analyte isa constituentof the sample whichistobe studiedbyquantitative measurementsor identifiedqualitatively  Titrant isthe substance thatquantitativelyreactswiththe analyte in atitration.The titrantis usuallyastandard solutionaddedcarefullytothe analyte until the reactioniscomplete.The amountof analyte iscalculatedfromthe volume of titrantrequiredforcomplete reaction Typesof titration 1. Acid–base titration:
  • 6. 2. Oxidation –reduction(Redox) titration: 3. Precipitiontitration: 4. Complexometrictitration:. 1. Acid–base titration:  Acid-base indicator(Neutralizationindicator) isaweakacid or a weakbase.The undissociated formof the indicatorhasa colordifferentfromthe colorof itsionizedpart.These substances change theircoloraccording to variationof pH of medium  NeutralizationTitrations(acid–base titration) A titrationinwhichthe reactionbetweenthe analyte andtitrantis an acid–base reaction  Whenwe titrate the sample bystandardsoln.of base inburrete iscalled(aciditytest)  Whenwe titrate the sample bystandardsoln.of acid inburrete iscalled(alkalinitytest)  End pointisthe pointat whichthe indicatorchangescolor.It isthe experimental estimate of the equivalence pointinatitration  Indicatorisa coloredcompoundwhose change incolorindicatesthe endpointof a titration  ph.ph.isindicatorintitrationof strongalkaliesagainststrongorweakacids  Methyleorange .isindicatorintitrationof strongacidsagainststrongor weakalkalies  No indicatorgivescorrectresultinthe titrationof weakacidsagainstweakacidsagainstbases  Strongacid isan acidthat completelydissociatesintohydrogenionsandanions insolution  Strongbase isa base that completelydissociatesintoionsinsolution 1. . Oxidation –reduction(Redox) titration:  Basedon oxidationreduction reaction  The chemical Rx,inwhichoccurtransferof electron(lossorgainof electrons)amongthe reacting ionsinaqeoussoln.  Some these titrationsare namedafter the reagentusedas(permanganate KMnO4,dichromate K2Cr2O7,iodimetricbyI2,iodometricbyNa2S2O3)  Oxidationisthe lossof electronsoranincrease inoxidationstate byamolecule,atom,orion
  • 7.  Reductionisthe gainof electronsora decrease inoxidationstate bya molecule,atom, orion  Oxidizingagentisa substance whichoxidize othersubstance anditself isreduced. - e.g.KMnO4, K2Cr2O7 and I2  Reducingagentisa substance whichreduce othersubstance anditself isoxidized. - e.g. C2O2H4, FeSO4and(sodiumthiosulphate ) Na2S2O3  Redox indicatorsare highlycoloreddyesthatare weakreducingoroxidizingagentsthatcanbe oxidizedorreduced;the colorsof the oxidizedandreducedformsare different  Q:What the differencebetween iodimetric&iodometric?????  IodimetrydirecttitrationswithI2  Iodometrytitrationof iodineproducedfromchemicalreaction 1. Precipitiontitration:  Basedon formationof insoluble ppt,whensoln.of 2 reactingsubstancesare contact witheach other.  AgNo3+NaCl =AgCl+NaNo3  WhenAgNo3is reactedwithNaCl;thusWhite ppt. of AgCl isformed  Such titrationsinvolvesAgNo3are called(Argentometric) 1. Complexometrictitration  Undissociated complex isformedatthe equivalence point  These titrationsare superiortoprecipitationtitrationsasthere isNoerror due to co- precipitations(Co-Precipitation:Contaminationof the precipitate withsubstance whichare normallysolubleunderthe precipitationcondition,due toadsorptionorocclusion)  EDTA(ethylene diaminetetraaceticacid) isuseful reagentthatformscomplexeswithmetals  In the formof disodiumsalt;itsusedtoestimate Ca ions&Mg ions inpresence of (Eriochrome black-T)(EBT)indicator.  EDTA is consideredasaLigand: anionor natural molecule whichcontainunpairedelectrons  Co-ordinationbond:transferof lone pairof electronsfromnonmetal atom( ligand) to metal atom
  • 8.  Co-ordinationnumber:the numberof Co-ordinationbondaroundthe central metal inCo- ordinationsphere NOTES: Q: WHAT the difference between endpoint&equivalence point??  End pointisthe pointat whichthe indicatorchangescolor.It isthe experimental estimate of the equivalence pointinatitration  equivalence point:the momentatwhich;the Rx is completelyand stoichiometric between indicator&unknown example:all molesHCl reactedwithsame molesof NaOH as Rx.ratio is 1:1 NaOH + HCl = NaCl+ H2O  Back titrationisa titrationinwhichwe add a knownexcessof one standardreagenttothe analyte.Thenwe titrate the excessreagentwithasecondstandardreagent.A backtitrationis useful whenitsendpointisclearerthanthe endpointof the directtitrationorwhenan excess of the firstreagentisrequiredforcomplete reactionwithanalyte  Blanktitrationisa titrationinwhichwe carry out the same procedure withoutanalyte  Titrationcurve isa graphshowingthe progressof a titrationas a functionof the volume of titrantadded  Indicatorisa coloredcompoundwhose change incolorindicatesthe endpointof a titration  Disadvantagesof indicators: 1-visual error 2-eachindicatorhas specificPHrange 3-inturbidsoln.&colouredsoln.;the change incolour incolour isn’tobvious. *Acid Arrhenius:a compoundwhichreleaseshydrogenions(H+) insolution Bronsted-Lowry:a compoundcontainingdetachable hydrogenions Lewis: a compoundthatcan accepta pairof electronsfromabase
  • 9. *Base Arrhenius:a compoundthat produceshydroxideionsinaqueoussolution Bronsted-Lowry:a molecule orionthatcaptureshydrogenions Lewis: a molecule orionthatdonatesan electronpairtoform a chemical bond The electriccell :  In presence of resistance wire ;electronpassfromcathode toanode & electriccurrentfrom anode to cathode .  In absence of resistance wire ;we replace itbyliquidsoln.thatiscalledelectrolyte thathave 2 types:  Strongelectrolyte:the soln.have completelyionized.e.g:HCLthat dissociatedintoH+ &CL- ions  Weakelectrolyte: the soln.have partiallyionized.e.g:NH4OH that dissociatedintoNH4 + & OH- ions  The resistance inresisrance wire dependonlength &areasurface.  The resistance inelectrolyte soln.dependonionsmovementthatopposite toeachotheras +ve ions go to –ve electrode andthe –ve ionsgoto +ve electrode .thus+ve ionswill face –ve ions thusoccur resistance toeachother.  In presence of electrolyte;ionscarryelectronsfrom+ve electrode to–ve electrode; Firstly,CL- ions around +ve electrode (Anode)to give electrons into this electrode by(Redox)to go to the cathode electrode and CL- ions turns into CL- ions turns into CL2 gas in the soln. by loss of electrons that is carried on ions , then H+ ions around the –ve electrode cathode to gain electronsfromthe cathode byredox andturn intoH2 gas PHmeter:  Use formeasuringthe PH that iseitherthe conc.or activityof H+ ionsin aqueoussoln.  PH indicate if the soln.is acidicor basic; but isn’ta measure of acidityor alkalinity.  PH meterconsistsof glasselectrode connectedtoelectronicmeterthatmeasure the PH reading.
  • 10. NOTE:  Glasselectrode:iselectrodecontainreferenceelectrode &workingelectrodeinthe same set.  PH of wateris(5-7) at 250 C  PH=-log{H+ } Q: Why waterisacidic ?? Because waterhave Ca+2 ,Mg+2 ions thatmake waterhardness;where the Ca+2 ionsattract the Oxygen fromH2 to make strong &nearthusoccur small bondbetween(Ca&O)butmake the bond of Owitheach H atom is long&weak,thus eachH ionswill be free inthe mediumthusthe waterbecome acidic. Conductivitymeter:  To determine conc.of substance bymeasuringitsconductance.  R=(P*L)/A itsunit is (Ohm) ; P=specificresistance(resistance of 1cm3 of electrolyte);L=length of wire ;A= area surface ; R=resistance  G=1/R its unit is (Semens)or(S)or(Ohm-1 ) ;G = conductivity(itsabilityof electrolyte to conduct electriccurrent)  Conductivityof waterat250 C is1.3  Factors on conducitivity: 1) Numberof ions. 2) Mobilityof ions.  Typesof conductivity: a) Specificconductivity:conductance of 1cm3 of soln. b) Molar conductivity:conductance of 1 mole of soln. c) Equivalentconductivity:conductance of 1gm equivalent of soln. Potentiometer:  To determine conc.of substance bymeasuringelectrode potential of soln.incondition(No currentflow)  End pointisreachedwhensuddenlychange inpotentialof workingelectrode.  Combinedelectrode :e.g:glasselectrode. iselectrode containreference electrode&working electrode inthe same set.  Reference electrode;hasconst. potential orzero; don’tdependonconc.of analyte.Like SHE, Calomicelectrode ,Ag/AgCL  Workingelectrode :itspotential dependonconc.of analyte or metal ion.  Ecell=Eworking-Ereference  Nernestequation:Ecell= E0 +((R*T)/(n*F))*lna  E0 = standardelectrode potential;n=numberof electrons;R=gasconst.,T=temp.,F=Faraday const.,a=activity(a=conc.*activitycoefficient)
  • 11. Gravimetric analysis Its quantitive technique involves the conversion of element to be determined fromsolubleform to insoluble formand isolated it by filteration ,then weighting it . 1. Precipitation 2. Digestion 3. Filteration&washing 4. Drying,ignition&weighting 5. Calculation 1-precipition: Properties of good precipitate 1. Have good physicalform 2. Have definite chemical composition 3. Must be pure or extrapure Contamination of precipitation a) Co-precipition:its contamination of ppt by another element present in the mother liquid b) Past-precipition:its contamination involves precipition of second ppt. on surfaceof firstp Q:How reducecontamination? 1) Recrystallization(smalcrystals converts to large crystals) 2) Removal of interfering ions 3) Fastisolation or filteration for the formed ppt. 2-Digestion:leaving the ppt in contact with the mother soln. of period of time 3-Filteration:isolation of ppt fromthe mother soln. by (ashless filter paper – Buchner system) 4-Washing:process aims to removalof surfaceadsorbed ions
  • 12. 5-Drying:occur atlow temp. Iginition:occur at high temp. Drying&Iginition areused to determine the analyte Note: Dessicator(dry box) -dessicator is covered glass container for storageof objects in dry atmosphere -it is charger with drying agent as silica gel or anhydrous Caso4&anhydrousCaCL2 LOSS ONDyring test: a) Weigt the dryied empty petridish(tare wt)w1 b) Then put (1gm)of sampleon thisthe dryied empty petridish(w2=1gm) c) Then put this petridish onto oven at 105c d) Out the petridish to cool at the dessicator e) Weight this petridish (w3)then calculate by (w4=w3-w1) W3=weightof drying sample………..W(H2O)=W4-W2 LOSS ONDrying=( W(H2O)/W2)*100 Sulphated Ash test : a) Weight the dryied empty crucible (tare wt)(Ec) b) Then put (1gm)of sampleon empty crucible (Sw) c) Then add 1ml H2SO4 Conc. d) Put this crucible at flame to heat till No longer white fumes e) Then put this crucible onto the muffle at 850Cfor certain period time(acc. to pharmaceopia) f) Out the crucible to cool at the dessicator g) Weight the crucible (Ac);then calculate: Aw=Ac-Ec h) Repeat this test 3 times then take average
  • 13. Aw:ashwt from(Aw=Ac-Ec)………………,Ac:(ash+crucible)wt………….Ec:empty crucible wt………………Sw:sampleweightas (1gm) %Ash=(Aw/Sw)*100 Question:What is the difference between Sulfatedash & Residue on iginition? H2SO4conc. is used in Sulfated ash test ;H2SO4conc.is not used inResidue on iginition  Chromatographytheory:solutes tobe separateddependondistributionbetween2phases (mobile phase &stationaryphase) For Example inHPLC;sample iscomplex mix.Of organiccompoundthatisdissolvedinorganicsolventby HPLC that make separation&determinationof thismix.quantitativeorqualitatitve  Chromatogram:it’sa graphical representation(plot)of chromatographicseparationprocessin whichthe conc. isplottedagainstthe time  Injectionpoint:pointatchromatogramthatindicate thatthe sample injectedincolumn  Retentiontime: -time elapsedbetweeninjectionpoint&maximiumpeakof the solute - is the time that eachcomponenttakestocome off the column - can be usedtohelpidentifycomponents  Typesof resolution: 1. Base line resolution:occurcomplete separation(eachcomponenthave apeakrefersto indicate it) 2. Partial resolution:(eachpeakof eachcomponentisverynearlytoeachother) 3. Zeroresolution:(eachpeakof eachcomponentisfoundinone peakinthe chromatogram)  Columnof st.phase have large numberof separate layersthatcalledtheoretical plates(when no.of the theoretical platesincrease;there occurperfectefficiencyof chromatography)  The Theoretical plates(N): 1. To measure columnefficiency 2. To measure of peaksharpnesswhichisimportant fordetectionof trace component  peaksharpnessispreferredthanpeakbroadeningdue tooccur overlappingof peakbroadening thuspeaksharpnessisapprear fast  typesof liquidchromatography:(NPLC,RPLC) 1. NPLC:Normal Phase LiquidChromatography(polarst.phase assilicaparticles&non polarm.phase as hexane)
  • 14. 2. RPLC: ReversedPhase LiquidChromatography(polarm.phase assilicaparticles&non polarst.phase as hexane)  Displacementer:  The substance that foundinm.phase ;andhave the abilitytoreact withst.phase than all typesof solutes  It replace the solute thatfoundincolumn;whereasone componentwhichhasweaker interactionwithcolumnandstronginteractionwithm.phase while elute firstly,while one componentwhichhasstronginteractionwithcolumnandweakinteractionwith m.phase will be elutedlater  Disadvantage of displacementer;there isprobleminanalytical scale ;because No complete elutionof eachcomponentof mix (presence of mixedzones) thatcalled Tail region{itsconc.containmix of 2 adjacentsolutescomponents}  Tail region: (if there ispeakA & peakB , the peakA may be mixedwithpeakB; because there are remainamountof peakA But B>A )  Frontal analysis:inwhich;dilute soln.of mix.(m.phase)iscontinuouslyaddedonone column;solutesgetoutfromthat have st.phase basedon interactionbetweensolutes &st.phase  Elutiontypes a) Isocreaticeution.(compositionof m.phase doesn’tchange duringone separation process) i. Stepwise m.phase(inwhich;differentm.phaseare usedatdifferenttimes) ii. Onlyone m.phase(used,not changedincompositionduringprocess) b) Gradientelution(compositionof m.phase change duringone separationprocess,can changingfrompolar tonon polaror opposite isright)  Shapesof st.phase: A. Column- chromatography (st.phase isinside atube;andm.phase movesthroughthe columnbyinfluence of gravityorpressure ) i. Packed column(st.phase issolid;itcompletelypackedincolumnandm.phase is as inertmatter) ii. Opentubular column (st.phase coatsinside the wall inthe tube leavingempty path form.phase) B. Planar- chromatography (st.phase isinsideaplatTLC or paper;andm.phasemoves throughthe plate or paperby influenceof capillaryaction throughthe plate orpaper by influence of capillary action;Examples:paperchromatography;TLCthinlayer chromatographyplate )  Separation mechanismtypes: 1. Affinitychromatography  Separationdependon interactionbetweensolute&st.phase 2. Ion-exchange chromatography  Separationdependon difference inthe charge of solute  St.phase isresignsorpolymerwith acidorbasic group
  • 15. 3. Chiral chromatography  Is usedforseparationof chiral compounds  If solutes&st.phaseare chiral compoundsandm.phaseisn’tchiral compound  If solutes&st.phasearen’t chiral compoundsandm.phaseischiral compound  St.phase iscellulose ,amaylase derivatives,protiens,peptids,cyclodextrin 4. Size exclusionchromatography:Ex: (LSC)LiquidSolidChromatography  Separationdependsondifference insizeof the solute(small sizegetoutdown;butlarge size remains)  Examples;(gel filteration):aqueousliquidm.phase-gel permation):organicliquid m.phase  St.phase ispolymerorporoussilica 5. Adsorptionchromatography:Ex: (LSC)LiquidSolidChromatography  Separationdependsondifference in adsorptionaffinitiesof mix.componentsto st.phase  St.phase issilica 6. Partition chromatography:Ex: (LLC)LiquidLiquidChromatography  Separationdependsondifference indistributionof mix.components between2liquid phases(liquidm.phase&liquidst.phase )  Paper chromatography ;TLC thin layer chromatography plate  Paper chromatography: istechnique of separation&identificationof compoundsby movingsolvent(onsheetsorstripsof filterpaper)  TLC thinlayer chromatography plate:is technique of separation&identificationof compoundsbymovingsolvent(onthinlayerplate assilicagel coatedonplasticplate)  Advantages of TLC over Paper chromatography; TLC isbetterthan paperinresolution (as give sharpestpeakthaninpaper)inquantification&inTLC use corrosive agent  Types ofpaperchromatography: i. Ascendingchromatography:(inwhich,solventtravelsfrom downtoup through filterpaperorTLC by capillaryaction) ii. Descendingchromatography:(inwhich,solventtravelsfrom uptodown throughfilterpaperorTLC by capillaryaction;tere are volatile substances,to overcome itbygravity;DescendingisfastthanAscending) iii. One dimensionchromatography:(onlyone solventisapplied) iv. Two dimensionchromatography:(inwhich2solventsatrightangle are applied;wemake rightangle toavoidoverlapping)  TLC Method:  You put alittle spotof standard&testsoln.bymicropipette onTLCplate;you put TLC plate intothe TLC jarthat have m.phase;waitalittle bitform.phase to travel upwards;pull itoutof the chamber;thenusingdetectionsoln.thatwas preparedandput iton the plate theneither(use uv-lamptosee whatspotsare
  • 16. there)or(use the ovenat105 C at certainperiodof time tosee whatspotsare there)andthentrytocompare than2spots intermsof polarityandcalculate (RF) value  Mechanismof TLC =Paper chromatography:  Is resultof 2 forces 1) Propellingforce:thatdependonsolventflow,solubility…whenRF value increase 2) Retardingforce : that dependonpartition, adsorption…….whenRF value decrease  RF(RetentionFactor) o RF=propellingforce +retardingforce o RF isquantitative indicationof how fara particularcompoundtravelsin particularsolvent o RF value isgoodindicatorof unknowncompounds&knowncompound o When2 compoundsare likelysimilaroridentical;the RFvalue for unknowncompoundisclosedorsame to knowncompound o RF =D1/D2 where ; D1= distance thatcolor traveled,measuredfromcenterof the bandof colorto another centerof the endpoint D2=total distance thatsolventtraveled o If RF=1; indicate polaritysolvent(propellingforce >retardingforce)thus solute islessresistance tomove o If RF=zero; indicate Nopolarsolvent(propellingforce <retardingforce) thussolute ismore resistance tomove o If RF=0.3or 0.7 or any numberbetween(zerotoone ) may be also soluble HPLC(High Pressure LiquidChromatography)  It is used for 1) For separating mixtures either to analyze the mix. or to separate a required product from others in a reaction mixture 2) To find the relative amounts of different components in a mixture.  In which; how fast each one moves depends on its relative affinity for the m.phase in the st.phase ;or example , if m.phase is more polar than st.phase ;the more polar components of mix. will tend to move more quickely than the less polar ones  Components of HPLC :(mobile phase,pump. Injection port or autosampler,column, detector,display,waste bottles)  There are pumps; they produce a pressure 150 times that of the atmosphere ,hence the name high pressure liquid chromatography
  • 17.  If single sample is to be run, it is injected into the solvent stream, here in the injection port via a hypodermic syringe  If several samples can be run by loading them into autosamplers that will run them in order without any human intervention.  The pumps force the mixed solvents through the column. The solvent emerging from the column & carrying the separated components of the mix. passes into the detector .  By the detector; electromagnetic reaction between st.phase& solutes by moving m.phase acc. to polarity  Parameter for HPLC : temp.,pressure,wave length, flow rate (ml. per min. )  Types of column : 1) Length 150 mm ,diameter 4.6 mm , pore size 5 micro meter 2) Length 250 mm ,diameter 4.6 mm , pore size 5 micro meter 3) Length 300 mm ,diameter 4.6 mm , pore size 5 micro meter  Types of st.phase in the column 1) L1: C18 2) L7:C8 3) L10:CN  Factors on retention time : 1) Length of column :( when length of column increase; the retention time increase ) 2) Flow rate: (when flow rate increase ; the retention time decrease )  NOTE: buffer soln. are used to prevent crystllisation of salts  Some troubleshooting are : temp.,flow rate, PH, degassing m.phase, mixing m.phase , column fouling ,sample injection overloading acc. to number of volume  factors of choice for separation&quantitationbycolumnchromatography: 1. stationaryphase a. cross sectionshape &size b. length c. morphologyof stationaryphase d. material composition 2. mobile phase a. composition b. flowrate 3. temp. 4. detector 5. sample size(volume,concentration)
  • 18.  General Factors Increasing Resolution Increase column length Decrease column diameter Decrease flow-rate Pack column uniformly Use uniform stationary phase (packing material) Decrease sample size Select proper stationary phase Select proper mobile phase Use properpressure Use gradient elution Solubility:  1gm in 1ml=verysoluble  1gm in 10ml=free soluble  1gm in 30ml= soluble  1gm in 100ml=slightlysoluble  1gm in 300ml=spraingly soluble  1gm in 10,000ml=very slightlysoluble  1gm in 100,000ml=practically insoluble Polarimeter:  Principle of polarimeter:  It measure the optical rotation angle of polarizedlight asit passesthroughanoptically active fluid.  The measuredrotationcan be usedto calculatedthe value of soln.conc.  Light isin all direction&introduce intothe polarizer(filter-like) thatpolarize the light groupin one direction only . sogive us plane –polarizedlight enter the sample tube show us…if the molecule hasstereochemistry involvedor not :
  • 19.  Once the light come throughthe sample tube inthe organic compoundsthatwas up , down in& basicallystill up,downinthe end.(soNorotation of light,molecule don’thave Dextroor Levo;these molecules are achiral )  Once the lightcome throughthe sample tube inthe organic compoundsthat was up ,downin but changing as rotates;it will be suchas like right –handrotated;(moleculesdorotationof light, moleculeshave Dextro,Levo;these moleculesare chiral compoundasrotatedlefthandor righthand rotated)  Polarimeteradvantages:  It isused for analysisof optically,active fluidslike sugars,lacticacid,tartaric.  Thismethodgivesinformationonchemical structure ,chirality,andconc.of sample by measuringthe analyte through aray of ploarisedlight  Applicationof polarimeter:  Sugar industry  Food,drink&agriculture  Pharmaceutical industry  Chemical industry  Optical rotation=angle rotation/lengthof sample tube  SpecificOptical rotation=angle rotation/(lengthof sample tube*conc.) Where :conc.=Wt(gm)/(Vml) ‫ا‬ UV  Ultraviolet-visiblespectrometrytellusaboutelectronictransitioninatoms&molecules  Compoundsthatabsorbin the visible region(400-800 nm) such as some transitionmetal compoundsand organicdyesare colouredbutothersthatabsorb onlyinthe UV-region(200-400 nm) are colourless.  Inside UV-Visible spectrometer; 1) There are 2 lightsources, (tungstenlamp) likeacar headlampbulbfor givingoutvisible light& (Deuteriumlamp) givesoutUV-light.
  • 20. 2) The source produces white light thatinclude all wave lengths,all colours;thenlight goto(wave length selector)thatcontainsdiffractiongratingthatsplitsthe light into itsconstituentwave lengths. 3) The single wave length passto(half silveredmirrorsynchronized)whereasitcutsthe lightinto2 beams; one beampass throughthe sample cell While otherpassthroughthe reference cell ; Q: compare between doublebeam&single beam?? -double beam :measure blank&testin one time -single beam:measure blank&test separately 4) Both sample &reference beamare directedtoanotherhalf silveredmirrorsynchronizedthento photomultiplier(thatconvertlightphotoninto light current) 5) From photomultiplertodetectorthatcomparestheirintensitiesandsedsingle proportionaltothe ratio of their intensitiesto the computer that controlsthe instrument.The logarithumof thisratiogives quantitycalled(absorbance)(thatismeasure how muchlightisbeingabsorbedbythe sample that particularwavelength) NOTES:  UV-Visible are runonsolution,lightdoesn’t normallypassthrough solidsamples  To run the spectrumwe place some of the solventinasample cuvette to act as a blank, a reference .(there are 2 cuvettestype ) -glassor plasticcuvettes isrequiredforworkinthe visibleregionof the spectrum. -Quartzcuvettesare neededforworkinthe UV-range region.  Strongpeak(fundamental strangerpeak): The electronstransferfrom r0of groundstate to r0 of excitedstate ....(A)  Weakpeak(overtone peak): The electronstransferfrom r0 of ground state to r1 of excitedstate....(B)
  • 21.  Sharp peak:electrontransferfromr3 groundstate to r3 excitedstate butwhenitback occur at one step.  Broad peak:electrontransferfromr3 ground state to r3 excitedstate butwhenitbackoccur at more step.
  • 22. Karl-Fischer  To determine trace amountsof waterin sample.  Technique basedonareagent that react withthe waterina sample & convertsthe waterintonon-conductive chemical.  Reagentiscomposedof (CO2+Pyridine+Iodine) Water tests: 1. Appearance: Clear,colourlessliquidbyvisually 2. Conductivity: Result:1.3S at 250 C 3. PH: Result:(5-7) at250 C 4. Total organic carbon: Result:lessorequal 0.5 mg/ml 5. Acidity/alkalinity: Method: 10 ml boiledthencooledthen0.05ml of methyl redsoln. Result:soln.isnotredcolor Method:10 ml boiledthencooledthen0.1ml of bromothymol blue soln. Result:soln.isnotblue colour 6. Oxidizable test: Method:100ml of sample thenadd10 ml H2SO4(1M) thenadd0.1ml of (0.02M) KMnO4 then boil for 5min. Result: the soln.remainingfaintlypink.
  • 23. 7. Nitrate test: Method: I. Prepare 2 tubes(testtube & STD tube ) II. Add4.5 ml purifiedwaterSTD in the STD tube III. Add5 ml of sample inthe testtube IV. Add0.4 ml KCL10% at each tube V. Add0.5 ml Nitrate STD 2ppm at STD tube VI. Add5 ml of H2SO4 conc. At eachtube VII. Add0.1 ml diphenylamineateachtube Result: blue colourat STD tube &colourlessattesttube . 8. Ammoniumtest: Method: I. Prepare 20 ml of sample thenadd1ml of potassiumtetraiodomercurateintube (A) II. Prepare 4ml of NH4 (1ppmSTD)+16ml of ammonium -free water+1ml of potassium tetraiodomercurate in tube (B) Result: (A) tube isnot more intenselycolouredthantube (B) 9. Heavy metal: Method: I. Heat 20ml to evaourate till volumereachto20 ml II. Prepare 4 tubes(testtube,STDtube,blanktube,anothertube)respectively. III. Put 12ml of testsoln.inthe testtube. IV. Put 2ml of testsoln.inthe testtube + 10ml of standardlead(10ppm) in STD tube V. Put 2ml of testsoln.inthe testtube+10 ml of H2O in blanktube VI. Put 5ml of (heavymetal mix.Reagent)thatistoAdd1 mL of a mixture of 15 mL of 1M sodiumhydroxide,5mL of water and20 mL of glycerol (85%) , heatina waterbath for 20 seconds,cool anduse immediately.+1ml of thioacetamide reagentinthe another tube. VII. Thenadd 2 ml of (bufferPH3.5) inthe first3tubes VIII. Add1ml fromtube 4 in eachfirst3 tubes Result:the STDtube ismore than testtube inbrowncolour. 10. Calcium& magnesium: Method: 10ml sample thenadd2ml ammoniumchloridebuffersoln.(PH10)thenadd50mg of EBT indicatorthenadd0.5ml of( 0.01M) EDTA Result: pure blue colour 11. Residue on evapouration: Method: i. Evapourate 100ml on waterbath and dry ii. Bringa beakerandwt itemptydreied,then put100 ml of sample anevapourate thuswt thissame beaker aftercooledinthe dessicator. iii. Residue watersoluble =Grosswt - Tare wt iv. Tare wt=wtof emptydriedbeaker v. Gross wt = wt of thisbeakerafterevapourationof itssample.
  • 24. Result: Maximum0.001% 12. Chloride: Method: 10ml of sample thenadd1ml (2N) HNO3 then0.2 ml AgNO3in testtube Result: No change at 15min 13. Sulphate: Method: 10ml of sample thenadd0.1ml HCL(1N) thenadd0.1ml (BaCL2) Result: Nochange at least1hour 14. Iron test: Method: i. Prepare 2 Nesslertubes(testtube ,STDtube) ii. Prepare citricsoln.(5gmcitricacidin 25 ml of H2O) iii. Add10 test soln.inthe testtube thenadd 2ml citricsoln. iv. Add10 standard ironreagent(10ppm) inthe test tube thenadd2ml citric soln. v. Thenadd 0.1 ml thioglycolicacid vi. Thenadd 5ml NH3 conc. vii. Result:(the STDis more thantest inpinkcolour) Heavy Metals: Definition: In general,metallictype of impuritiesare detectedbystandardprocedure of inorganicqualitative analysiswhichinvolve colourandprecipitationreaction. It detectselementswithinsolublesulfides[lead(Pb),mercury(Hg),bismuth(Bi),arsenic(As), antimony (Sb),tin(Sn),cadmium(Cd),silver(Ag),copper(Cu),molybdenum(Mo)],itdoesnotidentifywhichis elementispresent. Thistestis basedonprinciple thattracesof leadsaltsif presentare convertedtoleadsulphide bythe additionof Na2S to a slightlyalkalinesolutionbufferedbyahighconcentrationof ammoniumacetate. The brown colourobtaineddue tothe presence of colloidalPbSinthe sample solutioniscomparedwith that obtainedfromaknownamountof lead. Pb2+ + H2S → PbS¯ + 2H+ Method: i. Prepare 4 tubes(testtube,STDtube,blanktube,anothertube)respectively. ii. Put 12ml of testsoln.inthe testtube. iii. Put 2ml of testsoln.inthe testtube + 10ml of standardlead(10ppm) in STD tube iv. Put 2ml of testsoln.inthe testtube+10 ml of H2O in blanktube
  • 25. v. Put 5ml of (heavymetal mix. Reagent)thatistoAdd1 mL of a mixture of 15 mL of 1M sodium hydroxide,5mL of waterand 20 mL of glycerol (85%) , heatina waterbathfor 20 seconds,cool and use immediately.+1ml of thioacetamidereagentinthe anothertube. vi. Thenadd 2 ml of (bufferPH3.5) inthe first3tubes vii. Add1ml fromtube 4 in eachfirst3 tubes Result: the STD tube is more than testtube inbrowncolour. Chloride limittest : i. Prepare 2 tubes(testtube ,STDtube) ii. Put 5 ml of testsoln.inthe testtube iii. Put 5 ml of chloride standardreagent(10ppm) inSTD tube iv. Put 1ml of AgNO3 ineachtube v. Put 1 ml of HNO3in each tube Result:the STD tube ismore than testtube inwhite ppt. Sulphate limittest : i. Prepare 2 tubes(testtube ,STDtube) ii. Put 5 ml of testsoln.inthe testtube iii. Put 5 ml of Sulphate standardreagent(10ppm) inSTD tube iv. Add 1ml of HCL(1N) in eachtube v. Add 1ml of BaCL2 in eachtube. Result: the STD ismore thantest Iron test: viii. Prepare 2 Nesslertubes(testtube ,STDtube) ix. Prepare citricsoln.(5gmcitricacidin 25 ml of H2O) x. Add10 test soln.inthe testtube thenadd 2ml citricsoln. xi. Add10 standard ironreagent(10ppm) inthe test tube thenadd2ml citric soln. xii. Thenadd 0.1 ml thioglycolicacid xiii. Thenadd 5ml NH3 conc. Result:(the STDis more thantest inpinkcolour) Residue water soluble :
  • 26.  (Sample+impurities) thenaddwaterthenmake filterationthus(sample)and (water+impurities)thatoccurevapouration.  Residue watersoluble =Grosswt - Tare wt  Tare wt=wtof emptydriedbeaker  Gross wt = wt of thisbeakerafterevapourationof itssample. TOC (Total OrganicCarbon)  It meanif there are ionsinthe water sample ornot.  Mechanism: i. Washingstep: UV &H3PO4&Sodiumpersulphateconvertthe carbonintoCO2&H2CO3 where H2CO3 tobe H+ ,CO2 - ionsto increase conductivity&the curve indicate thatthe rate of conductivityis highor low. ii. Spargingstep: Remove inorganiccarbonportionfirstly;thenmeanthe organiccarbon , thismethodis called(sparging) thatoccurpurgingthe sample byNitrogengas. Flame photometer:  Is a device usedininorganicchemical analysistodeterminethe conc.Of certainmetal ions, amongthemsodium,potassium,calcium,Group1&Group2 metalsare quite sensitivetoflame photometrydue totheir lowexcitation energies.
  • 27.
  • 28.
  • 29. ‫وغيره‬ ‫والنورمالتي‬ ‫الموالرتي‬ ‫وتعريفات‬ ‫الكيمائية‬ ‫المحاليل‬ ‫تحضير‬ ‫قوانين‬ Solutions preparation SSoolluuttiioonn A solution is a homogeneous mixture composed of two or more substances. In such a mixture, a solute is dissolved in another substance, known as a solvent. SSoolluuttee The substance which dissolves in a solution SSoollvveenntt The substance which dissolves another to form a solution SSaattuurraattiioonn Saturation is the point at which a solution of a substance can dissolve no more of that substance and additional amounts of it will appear as a precipitate. SSuuppeerrssaattuurraattiioonn
  • 30. It refers to a solution that contains more of the dissolved material than could be dissolved by the solvent under normal circumstances. TTyyppeess ooff ssoolluuttiioonnss Percentage solution Molar solution Normal solution PPPeeerrrccceeennntttaaagggeee sssooollluuutttiiiooonnn WWeeiigghhtt// WWeeiigghhtt ssoolluuttiioonn %% ((ww//ww)) This type of solution is rarely if ever prepared in the laboratory since it is easier to measure volumes of liquids rather than weigh the liquid on an analytical balance. This type of percent solution is usually expressed as (w/w), where "w" denotes weight (usually grams) in both cases. Example: An example of a correct designation for this type of solution is as follows: 10 g/100 g (w/w), which indicates that there are 10 grams of solute for every 100 grams total
  • 31. WWeeiigghhtt//vvoolluummee ssoolluuttiioonn %% ((ww//vv)) Weight-volume percentage, (sometimes referred to as mass-volume percentage and often abbreviated as % m/v or % w/v) describes the mass of the solute in g per 100 ml of the resulting solution. Example: PPrreeppaarraattiioonn ooff 1100%% ((WW//VV)) NNaaCCll ssoolluuttiioonn CCCaaalllcccuuulllaaatttiiiooonnnsss: so10% (W/V)NaCl solution has 10 grams of sodium chloride dissolved in 100 ml of solution. PPPrrroooccceeeddduuurrreee::: Weigh 10g of sodium chloride. Pour it into a graduated cylinder containing about 80ml of water. Once the sodium chloride has dissolved completely add water to bring the volume up to the final 100 ml. Wt of solute (g) = C (required Conc.) X V of solvent (ml) 100
  • 32. Note: Do not simply measure 100ml of water and add 10g of sodium chloride. This will introduce error because adding the solid will change the final volume of the solution and throw off the final percentage. g/L unite A gram per liter (g/L) is a unit of measurement of concentration which shows how many grams of a certain substance are present in one litre of liquid. 1 g/L = 1000 mg/L = 100 mg/dl = 1000000 g/L = 0.1% (w/v) solution ppm unite ppm or part per million is a unit of concentration often used and denotes one part per 1,000,000 parts, one part in 106 , and a value of 1 × 10–6 . 1 mg/L = 1 ppm = g/ml
  • 33. VVoolluummee //vvoolluummee ssoolluuttiioonn %% ((vv//vv)) Volume-volume percentage (abbreviated as % v/v) describes the volume of the solute in ml per 100 ml of the resulting solution. Example: PPrreeppaarraattiioonn ooff 3300%% ((VV//VV)) ssuullffuurriicc aacciidd CCCaaalllcccuuulllaaatttiiiooonnnsss::: So 30% (V/V) sulfuric acid has 30 ml of sulfuric acid dissolved in 70 ml of water. PPPrrroooccceeeddduuurrreee::: Calculate the required volume of solute Subtract the volume of solute from the total solution volume Dissolve 30 ml sulfuric acid in a 70 ml of water to bring final volume of solution up to 100ml. V1 of solute (ml) = C2 (required Conc.) X V2 of solvent (ml) C1 (original solute Conc.)
  • 34. Note: When you mix concentrated sulfuric acid and water, you must add acid (AA) to water in ice bath. Why? Sulfuric acid reacts very vigorously with water, in a highly exothermic reaction. Water is less dense than sulfuric acid, so if you pour water on the acid, the reaction occurs on top of the liquid. If you add the acid to the water, it sinks and any wild reactions have to get through the water. MMMooolllaaarrr sssooollluuutttiiiooonnn MMoolleeccuullaarr wweeiigghhtt It is the sum of the atomic weights of all the atoms in a molecule. Also called formula weight MMoollee
  • 35. A mole is also called gram-molecular weight and defined as number of particles whose total mass in grams was numerically equivalent to the molecular weight or it is the amount of substance containing the Avogadro number (6.022 × 1023 ) MMoollaarriittyy Molarity or molar concentration denotes the number of moles of a given substance per liter of solution. MMoollaarr ssoolluuttiioonn It is a solution that contains 1 mole of solute in each liter of solution. UUnniittss ooff mmoollaarriittyy The units for molar concentration are mol/L.These units are often denoted by a capital letter M (pronounced "molar"). 1 mol/l = 1000 mmol/l = 1000000 mol/l = 1000000000 nmol/l 1 mmol/ml = 1 mol/l 1 mol/ml = 1 mmol/l
  • 36. Name Abbreviation Concentration Millimolar mM 10-3 molar Micromolar M 10-6 molar Nanomolar nM 10- 9 molar Picomolar pM 10-12 molar Femtomolar fM 10-15 molar MMoollaarriittyy ooff ssoolliidd ssoolluuttee Example: PPrreeppaarraattiioonn ooff 11MM NNaaCCll ssoolluuttiioonn iinn 11000000 mmll CCCaaalllcccuuulllaaatttiiiooonnnsss:::  M:the required molarity  M.wt: molecularweightof the solute  V: total volume in liters PPPrrroooccceeeddduuurrreee::: Dissolve 58.5 g of NaCl in a 1000 ml (1 liter) of water to prepare 1M NaCl solution. Wt of solute (g) = M (mole/l) X M.wt (g/mole) X V (L)
  • 37. MMoollaarriittyy ooff lliiqquuiidd ssoolluuttee To prepare 1M solutions make the following steps: Calculate the molecular weight of the solute Calculate the molarity of the solute using the following formula: Calculate the volume of the solute needed to prepare 1M solution using the following formula: Subtract the volume of solute from the total solution volume Mix both volumes of solute and solvent to reach the total required volume Example1: PPrreeppaarraattiioonn ooff 11MM HHCCLL ssoolluuttiioonn iinn 11000000 mmll % percent Density M.wt 32 1.18 36.5 HCL molarity = 10.345 Volume required from HCL = 96.66 ml Molarity (M) = % X density X 10 M.wt V1 of solute(ml) = M2 (required molarity) X V2 (required volume) (ml) M1 (original molarity)
  • 38. Complete to 1 liter with 903.33 ml distilled water Example2: PPrreeppaarraattiioonn ooff 11MM HH22SSOO44 ssoolluuttiioonn iinn 11000000 mmll % percent Density M.wt 98 1.83 98 H2SO4 molarity = 18.3 Volume required from H2SO4 = 54.64 ml Complete to 1 liter with 945.36 ml distilled water Example3: PPrreeppaarraattiioonn ooff 11MM HH22OO22 ssoolluuttiioonn iinn 11000000 mmll % percent Density M.wt 30 1.44 34.01 H2O2 molarity = 12.70 Volume required from H2O2 = 78.74 ml Complete to 1 liter with 921.25 ml distilled water NNNooorrrmmmaaalll sssooollluuutttiiiooonnn EEqquuiivvaalleenntt wweeiigghhtt
  • 39. An equivalent weight is equal to the molecular weight divided by the valence (replaceable H ions). NNoorrmmaall A normal is one gram equivalent of a solute per liter of solution. NNoorrmmaalliittyy Normality is the total no of gram equivalents of the solute present per liter of the solution NNoorrmmaall ssoolluuttiioonnss The definition of a normal solution is a solution that contains 1 gram equivalent weight (gEW) per liter solution. UUnniittss ooff NNoorrmmaalliittyy The units for normal concentration are Eq/L. These units are oftendenoted by a capital letter N (pronounced "normal"). mEq/L = 0.001 Eq/L
  • 40. HHooww ttoo ccaallccuullaattee eeqquuiivvaalleenntt wweeiigghhtt EEqq..wwtt ffoorr aacciiddss aanndd bbaasseess Examples: HCL the MW= 36.5 the EW = 36.5 H2SO4 the MW = 98 the EW = 49 H3PO4 the MW = 98 the EW = 32.7 NaOH the MW = 40 the EW = 40 Ca (OH)2 the MW = 74 the EW = 37 EEqq..wwtt ffoorr ssaallttss Eq.wt = M.wt of acid or base No of H+ in acids or OH- in bases Eq.wt = M.wt of salt No of cations X valency or No of anions X valency
  • 41. Examples: KCL the MW= 74.55 the EW = (74.55 / 1 X 1) = 74.55 CaCl2 the MW= 110.98 the EW = (110.98 / 1 X 2) or (110.98 / 2 X 1) = 55.49 Na2CO3 the MW= 105.98 the EW = (105.98 / 1 X 2) or (105.98 / 2 X 1) = 52.99 NNoorrmmaalliittyy ooff ssoolliidd ssoolluuttee Examples: PPrreeppaarraattiioonn ooff 11NN NNaaOOHH ssoolluuttiioonn PPrreeppaarraattiioonn ooff 11NN CCaa((OOHH))22 ssoolluuttiioonn PPrreeppaarraattiioonn ooff 11NN KKCCLL ssoolluuttiioonn CCCaaalllcccuuulllaaatttiiiooonnnsss::: Wt of solute (g) = N (Eq/l) X Eq.wt X V (L)
  • 42.  N: the required normality  Eq.wt: equivalent weightof the solute  V: total volume in liters PPPrrroooccceeeddduuurrreee::: Dissolve 40 g of NaOH in a 1000 ml (1 liter) of water to prepare 1N NaOH solution. Dissolve 37 g of Ca (OH)2 in a 1000 ml (1 liter) of water to prepare 1N Ca (OH)2 solution. Dissolve 74.55 g of KCl in a 1000 ml (1 liter) of water to prepare 1N KCl solution. NNoorrmmaalliittyy ooff lliiqquuiidd ssoolluuttee To prepare 1N solutions make the following steps: Calculate the equivalent weight of the solute Calculate the normality of the solute using the following formula: Calculate the volume of the solute needed to prepare 1N solution using the following formula: Normality (N) = % X density X 10 Eq.wt V1 of solute(ml) = N2 (required normality) X V2 (required volume) (ml) N1 (original normality)
  • 43. Subtract the volume of solute from the total solution volume Mix both volumes of solute and solvent to reach the total required volume Example1: PPrreeppaarraattiioonn ooff 11NN HHCCLL ssoolluuttiioonn % percent Density M.wt 32 1.18 36.5 HCL normality = 10.345 Volume required from HCL = 96.66 ml Complete to 1 liter with 903.33 ml distilled water Example2: PPrreeppaarraattiioonn ooff 11NN HH22SSOO44 ssoolluuttiioonn % percent Density M.wt 98 1.83 98 H2SO4 normality = 36.6 Volume required from H2SO4 = 27.32 ml
  • 44. Complete to 1 liter with 972.67 ml distilled water DDDiiillluuutttiiiooonnn ooofff sssooollluuutttiiiooonnnsss SSiimmppllee DDiilluuttiioonn A simple dilution is one in which a unit volume of a liquid material of interest is combined with an appropriate volume of a solvent liquid to achieve the desired concentration. The dilution factor is the total number of unit volumes in which your material will be dissolved. The diluted material must then be thoroughly mixed to achieve the true dilution. Example: Dilute a serum sample1:5 dilution as follow:
  • 45. Combining 1 unit volume of serum (for example 200 l) + 4 unit volumes of the saline (for example 800 l) In this case the dilution factor is 5 (1 + 4 = 5 = dilution factor). SSeerriiaall DDiilluuttiioonn A serial dilution is simply a series of simple dilutions which amplifies the dilution factor quickly beginning with a small initial quantity of material. The source of dilution material for each step comes from the diluted material of the previous. In a serial dilution the total dilution factor at any point is the product of the individual dilution factors in each step up to it. Final dilution factor (DF) = DF1 * DF2 * DF3 etc Example: Using a primarystock solution (for example 2 mmol/l) prepares a series of differentconcentrations using serialdilution as follow:
  • 46. The initial step combines 1 unit volume of stock solution (100 ml) with 9 unit volumes of distilled water (900 ml) = 1:10 dilution. Prepare another 6 tubes each one contains 500 ml distilled water Combines 1 unit volume of the first tube (500 ml) with the 500 ml distilled water in the second tube Combines 1 unit volume of the second tube (500 ml) with the 500 ml distilled water in the third tube and so on until the last tube The total dilution would be: 1:10 X 2 X 2 X 2 X 2 X 2 X 2 = 1:640
  • 47. SSppeecciiffiicc DDiilluuttiioonn It is used when we need to make a specific volume of known concentration from stock solutions To do this we use the following formula: V1C1=V2C2 V1: the volume of stock we start with.(Unknown) C1: the concentration ofstock solution V2: total volumeneeded atthe new concentration C2: the new concentration Example: Suppose we have 3 ml of a stock solution of 100 mg/ml and we want to make 200 ml of solution having 25 mg/ ml. V1 = (V2 x C2) / C1 V1 = (0.2 ml x 25 mg/ml) / 100 mg/ml V1 = 0.05 ml, or 50 ml So, we would take 0.05 ml stock solution and dilute it with 150 ml of solvent to get the 200 ml of 25 mg/ ml solution needed
  • 48. CCCooonnnvvveeerrrsssiiiooonnn ooofff CCCooonnnccc... uuunnniiitttsss CCoonnvveerrssiioonn ooff WWtt%% PPeerrcceenntt ttoo mmoollaarriittyy Molarity (M) = (% X 10)/Molecular wt CCoonnvveerrssiioonn ooff mmoollaarriittyy ttoo WWtt%% PPeerrcceenntt Wt% Percent = (M X Molecular wt)/ 10 CCoonnvveerrssiioonn ooff WWtt%% PPeerrcceenntt ttoo nnoorrmmaalliittyy Normality (N) = (% X 10)/Equivalent wt "X" units Stock solutions of stable compounds are routinely maintained in labs as more concentrated solutions that can be diluted to working strength when used in typical applications. The usual working concentration is denoted as 1X. A solution 20 times more concentrated would be denoted as 20X and would require a 1:20 dilution to restore the typical working concentration.
  • 49. CCoonnvveerrssiioonn ooff nnoorrmmaalliittyy ttoo WWtt%% PPeerrcceenntt Wt% Percent = (N X Equivalent wt)/ 10 CCoonnvveerrssiioonn ooff NNoorrmmaalliittyy ttoo MMoollaarriittyy Normality (N) = Molarity (M) X n CCoonnvveerrssiioonn ooff MMoollaarriittyy ttoo NNoorrmmaalliittyy Molarity (M) = Normality (N) / n Where n = number of (H+ ) in acids or (OH- ) in bases or valency in salts CCoonnvveerrssiioonn ooff WWtt%% PPeerrcceenntt ttoo gg//ll Wt% Percent = g/l / 10 CCoonnvveerrssiioonn ooff gg//ll ttoo WWtt%% PPeerrcceenntt g/l = Wt% Percent X 10
  • 50. CCoonnvveerrssiioonn ooff MMoollaarriittyy ttoo gg//ll g/l = M X Molecular wt CCoonnvveerrssiioonn ooff gg//ll ttoo MMoollaarriittyy M = Molecular wt / g/l CCoonnvveerrssiioonn ooff NNoorrmmaalliittyy ttoo gg//ll g/l = M X Equivalent wt CCoonnvveerrssiioonn ooff gg//ll ttoo NNoorrmmaalliittyy M = Equivalent wt / g/l Examples: 11MM NNaaCCll 55..8855%% NNaaCCll 5588..55 gg//ll NNaaCCll 11NN NNaaCCll 11MM HHCCLL 33..0099%% HHCCLL --------------- 11NN HHCCLL 00..55MM HH22SSOO44 22..6677%% HH22SSOO44 --------------- 11NN HH22SSOO44 11MM NNaaOOHH 44%% NNaaOOHH 4400 gg//ll NNaaOOHH 11NN NNaaOOHH 00..55MM CCaa((OOHH))22 33..77%% CCaa((OOHH))22 3377 gg//ll CCaa((OOHH))22 11NN CCaa((OOHH))22 00..55MM NNaa22CCOO33 55..2299%% NNaa22CCOO33 52.99 gg//ll NNaa22CCOO33 11NN NNaa22CCOO33