SlideShare ist ein Scribd-Unternehmen logo
1 von 10
Chapter 35. Refraction                                                                          Physics, 6th Edition


                                    Chapter 35. Refraction

The Index of Refraction (Refer to Table 35-1 for values of n.)

35-1. The speed of light through a certain medium is 1.6 x 108 m/s in a transparent medium,

       what is the index of refraction in that medium?

                                         c   3 x 108 m/s
                                    n=     =             ;           n = 1.88
                                         v 1.6 x 108 m/s

35-2. If the speed of light is to be reduced by one-third, what must be the index of refraction for

       the medium through which the light travels? The speed c is reduced by a third, so that:

                                              c    c                 3
                       vx = ( 2 3 )c;    n=     =      ;        n=     and        n = 1.50
                                              vx ( 3
                                                  2 )c               2

35-3. Compute the speed of light in (a) crown glass, (b) diamond, (c) water, and (d) ethyl

       alcohol.    (Since n = c/v, we find that v = c/n for each of these media.)

                  3 x 108 m/s                                3 x 108 m/s
       (a) vg =               ; vg = 1.97 x 108 m/s (b) vd =             ; vd = 1.24 x 108 m/s
                     1.50                                       2.42

                  3 x 108 m/s                                             3 x 108 m/s
       (a) vw =               ; v = 2.26x 108 m/s              (b) va =               ; va = 2.21 x 108 m/s
                     1.33                                                    1.36

35-4 If light travels at 2.1 x 108 m/s in a transparent medium, what is the index of refraction?

                                             (3 x 108 m/s)
                                        n=                 ;        n = 1.43
                                             2.1 x 108 m/s



The Laws of Refraction

35-5. Light is incident at an angle of 370 from air to flint glass (n = 1.6). What is the angle of

       refraction into the glass?

                                                               (1.0) sin 37 0
                      ng sin θ g = na sin θ a ;    sin θ g =                  ;    θg = 22.10
                                                                    1.6


                                                      231
Chapter 35. Refraction                                                                              Physics, 6th Edition


35-6. A beam of light makes an angle of 600 with the surface of water. What is the angle of

       refraction into the water?

                                                         na sin θ a                                     nw = 1.5
                na sin θ a = nw sin θ w ;     sinθ w =                                        600
                                                            nw                         air

                                                                                       water
                         (1)sin 600
                sinθ w =            = 0.651;            θw = 40.6     0

                            1.33


35-7. Light passes from water (n = 1.33) to air. The beam emerges into air at an angle of 320

       with the horizontal water surface? What is the angle of incidence inside the water?

                                                                                           na sin θ a
                  θ = 900 – 320 = 580;          na sin θ a = nw sin θ w ;     sinθ w =
                                                                                              nw

                                              (1)sin 580
                                 sinθ w =                = 638;           θw = 39.60
                                                 1.33


35-8. Light in air is incident at 600 and is refracted into an unknown medium at an angle of 400.

       What is the index of refraction for the unknown medium?

                                                       na sin θ a (1)(sin 600 )
                  nx sin θ x = na sin θ a ;     nx =             =              ;          n = 1.35
                                                        sinθ x      sin 400


35-9. Light strikes from medium A into medium B at an angle of 350 with the horizontal

       boundary. If the angle of refraction is also 350, what is the relative index of refraction

       between the two media? [ θA = 900 – 350 = 550. ]

                                              nB sin θ A sin 550                             θ      A 350
              nA sin θ A = nB sin θ B ;         =       =        ;                 350
                                              nA sin θ B sin 350
                                                                                       B
                       nB sin 550
                         =        = 1.43;              nr = 1.43
                       nA sin 350




                                                         232
Chapter 35. Refraction                                                                        Physics, 6th Edition


35-10. Light incident from air at 450 is refracted into a transparent medium at an angle of 340.

        What is the index of refraction for the material?

                                                           (1)sin 450
                          nA sin θ A = nm sin θ m ;   nm =            ;       nm = 1.23
                                                             sin 350


*35-11. A ray of light originating in air (Fig. 35-20) is incident on water (n = 1.33) at an angle of

        600. It then passes through the water entering glass (n = 1.50) and finally emerging back

        into air again. Compute the angle of emergence.                              θair           nair = 1
        The angle of refraction into one medium becomes the                                        nw = 1.33
        angle of incidence for the next, and so on . . .
                                                                                  ng = 1.55
           nair sin θair = nw sin θw = ng sin θg = nair sin θair                   nair = 1
        Thus it is seen that a ray emerging into the same medium

        as that from which it originally entered has the same angle:                   θe = θi = 600


*35-12. Prove that, no matter how many parallel layers of different media are traversed by light,

        the entrance angle and the final emergent angle will be equal as long as the initial and

        final media are the same.         The prove is the same as shown for Problem 35-11:

                    nair sin θair = nw sin θw = ng sin θg = nair sin θair;     θe = θi = 600



Wavelength and Refraction

35-13. The wavelength of sodium light is 589 nm in air. Find its wavelength in glycerine.

                        From Table 28-1, the index for glycerin is: n = 1.47.

                         λg na                λa na (589 nm)(1)
                           = ;         λg =        =            ;            λg = 401 nm
                         λa ng                 ng      1.47




                                                      233
Chapter 35. Refraction                                                                    Physics, 6th Edition


35-14. The wavelength decreases by 25 percent as it goes from air to an unknown medium.

        What is the index of refraction for that medium?

                     A decrease of 25% means λx is equal to ¾ of its air value:



                       λx                    nair  λ                  n
                            = 0.750;              = x = 0.750; nair = air ;            nx = 1.33
                       λair                  nx λair                 0.750


35-15. A beam of light has a wavelength of 600 nm in air. What is the wavelength of this light

        as it passes into glass (n = 1.50)?

                      ng         λair       n λ        (1)(600 nm)
                             =        ; λg = air air =             ;   λg = 400 nm
                      nair       λg           ng            1.5


35-16. Red light (620 nm) changes to blue light (478 nm) when it passes into a liquid. What is

        the index of refraction for the liquid? What is the velocity of the light in the liquid?

                           nL λr       n λ      (1)(620 nm)
                               = ; nL = air r =             ;              nL = 1.30
                           nair λb      λb         478 nm


*35-17. A ray of monochromatic light of wavelength 400 nm in medium A is incident at 300 at

        the boundary of another medium B. If the ray is refracted at an angle of 500, what is its

        wavelength in medium B?

                sin θ A λ A                 λ A sin θ B (400 nm)sin500
                       =    ;        λB =              =               ;      λB = 613 nm
                sin θ B λB                   sin θ A        sin300


Total Internal Reflection

35-18. What is the critical angle for light moving from quartz (n = 1.54) to water (n = 1.33).

                                                 n2 1.33
                                     sin θ c =     =     ;     θc = 59.70
                                                 n1 1.54


                                                       234
Chapter 35. Refraction                                                                     Physics, 6th Edition


35-19. The critical angle for a given medium relative to air is 400. What is the index of

        refraction for the medium?

                                      n2               nair        1
                          sin θ c =      ;    nx =          0
                                                              =         ;      nx = 1.56
                                      n1             sin 40     sin 400


35-20. If the critical angle of incidence for a liquid to air surface is 460, what is the index of

        refraction for the liquid?

                                      n2               nair        1
                         sin θ c =       ;   nx =           0
                                                              =         ;      nx = 1.39
                                      n1             sin 46     sin 460


35-21. What is the critical angle relative to air for (a) diamond, (b) water, and (c) ethyl alcohol.

                                             n2                 1.0
               Diamond:         sin θ c =       ;    sinθ c =        ;      θc = 24.40
                                             n1                 2.42

                                             n2                 1.0
               Water:           sin θ c =       ;    sinθ c =        ;      θc = 48.80
                                             n1                 1.33

                                             n2                  1.0
               Alcohol:         sin θ c =       ;    sinθ c =        ;      θc = 47.30
                                             n1                 1.36


35-22. What is the critical angle for flint glass immersed in ethyl alcohol?

                                                  n2 1.36
                                      sin θ c =     =     ;          θc = 56.50
                                                  n1 1.63


*35-23. A right-angle prism like the one shown in Fig. 35-10a is submerged in water. What is the

        minimum index of refraction for the material to achieve total internal reflection?
                                                                         np             nw = 1.33
                                nw 1.33           1.33
            θc < 450; sin θ c =    =     ; np =          ;
                                np   np          sin 450

             np = 1.88    (Minimum for total internal reflection.)



                                                         235
Chapter 35. Refraction                                                                          Physics, 6th Edition


Challenge Problems

35-24. The angle of incidence is 300 and the angle of refraction is 26.30. If the incident medium

       is water, what might the refractive medium be?

                                              nw sin θ w (1.33)(sin 300 )
             nx sin θ x = nw sin θ w ;   nx =           =                 ;           n = 1.50, glass
                                               sinθ x       sin 26.30


35-25. The speed of light in an unknown medium is 2.40 x 108 m/s. If the wavelength of light in

       this unknown medium is 400 nm, what is the wavelength in air?

                      c λair                  (400 nm)(3 x 108 m/s)
                        =    ;       λair =                         ;             λx = 500 nm
                      vx λx                      (2.40 x 108 m/s)


35-26. A ray of light strikes a pane of glass at an angle of 300 with the glass surface. If the angle

       of refraction is also 300, what is the index of refraction for the glass?

                                                     ng       sin θ A sin 600
                      nA sin θ A = ng sin θ g ;           =          =        ;     nr = 1.73
                                                     nA       sin θ g sin 300


35-27. A beam of light is incident on a plane surface separating two media of indexes 1.6 and

       1.4. The angle of incidence is 300 in the medium of higher index. What is the angle of

       refraction?

                     sin θ 2 n1                     n2 sin θ 2 1.6sin 300
                            = ;          sin θ1 =             =           ;         θ1 = 34.80
                     sin θ1 n2                          n1        1.4


35-28. In going from glass (n = 1.50) to water (n = 1.33), what is the critical angle for total

       internal reflection?

                                                  n2 1.33
                                     sin θ c =      =     ;          θc = 62.50
                                                  n1 1.50




                                                          236
Chapter 35. Refraction                                                                      Physics, 6th Edition


35-29. Light of wavelength 650 nm in a particular glass has a speed of 1.7 x 108 m/s. What is the

       index of refraction for this glass? What is the wavelength of this light in air?

                                            3 x 108 m/s
                                        n=               ;             n = 1.76
                                           1.7 x 108 m/s

                         vg         λg                 (3 x 108 m/s)(650 nm)
                                =      ;    λair =                           ;    λair = 1146 nm
                         vair       λa                      1.7 x 108 m/s


35-30. The critical angle for a certain substance is 380 when it is surrounded by air. What is the

       index of refraction of the substance?

                                                n2               1.0
                                    sin θ c =      ;    n1 =           ;   n1 = 1.62
                                                n1             sin 380


35-31. The water in a swimming pool is 2 m deep. How deep does it appear to a person looking

       vertically down?

                                q nair 1.00                      2m
                                 =    =     ;              q=         ;     q = 1.50 m
                                p nw 1.33                        1.33


35-32. A plate of glass (n = 1.50) is placed over a coin on a table. The coin appears to be 3 cm

       below the top of the glass plate. What is the thickness of the glass plate?

                  q nair 1.00
                   =    =     ;                  p = 1.50q = (1.50)(3 cm);        p = 4.50 cm
                  p ng 1.50




                                                            237
Chapter 35. Refraction                                                                                 Physics, 6th Edition


Critical Thinking Problems

*35-33. Consider a horizontal ray of light striking one edge of an equilateral prism of glass (n =

        1.50) as shown in Fig. 35-21. At what angle θ will the ray emerge from the other side?

         sin 300 1.50                       sin 300
                 =     ;         sin θ1 =           ;       θ1 = 19.47 0                           600
          sin θ1   1.0                        1.5                                                                 n = 1.5
                                                                                    0
                                                                                  30          θ2
        θ2 = 90 – 19.47 = 70.5 ; θ3 = 180 − (60 + 70.5 )
                0            0          0               0         0        0
                                                                                                      θ1
                                                                                                             θ3
                                                                                                           θ4           θ
        θ3 = 49.47 ;0
                            θ4 = 90 – 49.46 ;
                                    0           0
                                                        θ4 = 40.53     0

                                                                                        600                       600
         sin 40.50 1.00
                  =     ;          sin θ = 1.5sin 40.50 ;             θ = 77.10
           sin θ    1.5


*35-34. What is the minimum angle of incidence at the first face of the prism in Fig. 35-21 such

        that the beam is refracted into air at the second face? (Larger angles do not produce

        total internal reflection at the second face.) [ First find critical angle for θ4 ]

                            nair   1
              sin θ 4 c =        =   ; θ 4c = 41.80 ;            Now find θ1:          θ3 = 900 – 41.80 = 48.20
                            ng 1.5

                θ2 = 1800 – (48.20 + 600); θ2 = 71.8 and θ1 = 900 – 71.80 = 18.20

                        sin18.20 1.00
                                  =     ;           sin θ min = 1.5sin18.20 ;          θmin = 27.90
                         sin θ min 1.50




                                                              238
Chapter 35. Refraction                                                                          Physics, 6th Edition


35-35. Light passing through a plate of transparent material of thickness t suffers a lateral

        displacement d, as shown in Fig. 35-22. Compute the lateral displacement if the light

        passes through glass surrounded by air. The angle of incidence θ1 is 400 and the glass

        (n = 1.50) is 2 cm thick.
                                                                     400
              sin 400 1.5                                                           500
                      =    ;        θ 2 = 25.40
               sin θ 2 1.0
                                                                              θ2 θ3                        t
                                                                  2 cm
               θ3 = 900 – (25.40 + 500); θ3 = 14.60                             R
                                                                                           d

                              2 cm
               cos 25.40 =         ;     R = 2.21 cm ;
                                R

                            d
                sin θ 3 =     ; d = R sin θ 3 = (2.21 cm) sin14.60 ;       d = 5.59 mm
                            R


*35-36. A rectangular shaped block of glass (n = 1.54) is submerged completely in water (n =

        1.33). A beam of light traveling in the water strikes a vertical side of the glass block at

        an angle of incidence θ1 and is refracted into the glass where it continues to the top

        surface of the block. What is the minimum angle θ1 at the side such that the light does

        not go out of the glass at the top? (First find θc )                     nw = 1.33

                           1.33                                                                   θc
               sin θ c =        = 0.864; θ c = 59.70
                           1.54
                                                                                      θ2
             θ2 = 90 – 59.7 = 30.3 ;
                     0          0         0
                                                θ2 = 30.3   0
                                                                         θ1
                                                                                               ng = 1.54
                   sin θ1 n2             sinθ1     1.54
                          = ;                    =      ;
                   sin θ 2 n1                  0
                                       sin30.3 1.33

                                               1.54sin 30.30
                                    sin θ1 =                 ;   θ1 = 35.70
                                                   1.33

          For angles smaller than 35.70, the light will leave the glass at the top surface.




                                                       239
Chapter 35. Refraction                                                                             Physics, 6th Edition


*35-37. Prove that the lateral displacement in Fig. 35-22 can be calculated from

                                                           n cos θ1 
                                           d = t sin θ1 1 − 1       
                                                         n2 cos θ 2 

         Use this relationship to verify the answer to Critical Thinking Problem 35-35.

                               d             d
                     cosθ1 =     ;    p=
                               p           cos θ1

                       sin θ1 p + a                     a
            tan θ1 =         =      ;       tan θ 2 =     ;               θ1
                       cosθ1    t                       t

                                     sin θ 2        d                           θ2                 θ1
            a = t tan θ 2 ;   a=t            ; p=                         t              θ2                      t
                                     cos θ 2      cosθ1
                                                                                               d
                                                                                                        p
                             d         sin θ 2                                     a                      θ1
              sin θ1 p + a   cos θ + t cos θ                                                θ1                 d
                    =      =      1          2
                                                         
              cosθ1    t            t                   
                                                        
                                                        

                                                                                                    t sin θ 2 cos θ1
         Simplifying this expression and solving for d, we obtain: d = t sin θ1 −
                                                                                                        cos θ 2

                                                                              n1
                               Now, n2 sinθ2 = n1 sinθ1 or        sin θ 2 =      sin θ1
                                                                              n2

                 Substitution and simplifying, we finally obtain the expression below:

                                                            n cos θ1 
                                            d = t sin θ1 1 − 1       
                                                          n2 cos θ 2 

            Substitution of values from Problem 35-35, gives the following result for d:

                                                    d = 5.59 mm




                                                          240

Weitere ähnliche Inhalte

Was ist angesagt?

Problemas del Capítulo II de Física Iii
Problemas del Capítulo II de Física IiiProblemas del Capítulo II de Física Iii
Problemas del Capítulo II de Física Iiiguestf39ed9c1
 
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   TippensProblemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb TippensLUIS POWELL
 
Capítulo 37 (5th edition)con soluciones interferencia de ondas luminosas
Capítulo 37 (5th edition)con soluciones  interferencia de ondas luminosasCapítulo 37 (5th edition)con soluciones  interferencia de ondas luminosas
Capítulo 37 (5th edition)con soluciones interferencia de ondas luminosas.. ..
 
Capítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacionCapítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacion.. ..
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2Breno Costa
 

Was ist angesagt? (20)

Problemas del Capítulo II de Física Iii
Problemas del Capítulo II de Física IiiProblemas del Capítulo II de Física Iii
Problemas del Capítulo II de Física Iii
 
Anschp25
Anschp25Anschp25
Anschp25
 
Topic 5 kft 131
Topic 5 kft 131Topic 5 kft 131
Topic 5 kft 131
 
Anschp27
Anschp27Anschp27
Anschp27
 
Anschp34
Anschp34Anschp34
Anschp34
 
Anschp22
Anschp22Anschp22
Anschp22
 
Anschp30
Anschp30Anschp30
Anschp30
 
Anschp21
Anschp21Anschp21
Anschp21
 
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   TippensProblemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
 
Topic 10 kft 131
Topic 10 kft 131Topic 10 kft 131
Topic 10 kft 131
 
Anschp32
Anschp32Anschp32
Anschp32
 
Anschp23
Anschp23Anschp23
Anschp23
 
Anschp18
Anschp18Anschp18
Anschp18
 
Anschp33
Anschp33Anschp33
Anschp33
 
Capítulo 37 (5th edition)con soluciones interferencia de ondas luminosas
Capítulo 37 (5th edition)con soluciones  interferencia de ondas luminosasCapítulo 37 (5th edition)con soluciones  interferencia de ondas luminosas
Capítulo 37 (5th edition)con soluciones interferencia de ondas luminosas
 
Topic 2 kft 131
Topic 2 kft 131Topic 2 kft 131
Topic 2 kft 131
 
Capítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacionCapítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacion
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 
Newtons rings
Newtons ringsNewtons rings
Newtons rings
 

Andere mochten auch

Andere mochten auch (8)

Anschp16
Anschp16Anschp16
Anschp16
 
Anschp17
Anschp17Anschp17
Anschp17
 
Anschp19
Anschp19Anschp19
Anschp19
 
Anschp20
Anschp20Anschp20
Anschp20
 
Multichannel B2B marketing in Europe
Multichannel B2B marketing in EuropeMultichannel B2B marketing in Europe
Multichannel B2B marketing in Europe
 
Netbrev maj 2012
Netbrev maj 2012Netbrev maj 2012
Netbrev maj 2012
 
Vijay Mewada June 11
Vijay Mewada June 11Vijay Mewada June 11
Vijay Mewada June 11
 
The ABC’s of Health Insurance
The ABC’s of Health Insurance The ABC’s of Health Insurance
The ABC’s of Health Insurance
 

Ähnlich wie Anschp35

11 4 refraction-of_light
11 4 refraction-of_light11 4 refraction-of_light
11 4 refraction-of_lightkohkch123
 
Refraction And Total Internal Reflection Internet
Refraction And Total Internal Reflection InternetRefraction And Total Internal Reflection Internet
Refraction And Total Internal Reflection Internetmrmeredith
 
Refraction of Light-Notes.pdf
Refraction of Light-Notes.pdfRefraction of Light-Notes.pdf
Refraction of Light-Notes.pdfTITUSINDIMULI
 
Reflection__Refraction__and_Diffraction.ppt
Reflection__Refraction__and_Diffraction.pptReflection__Refraction__and_Diffraction.ppt
Reflection__Refraction__and_Diffraction.pptMuhammadShamraizDar
 
Reflection_Refraction_andDiffraction.ppt
Reflection_Refraction_andDiffraction.pptReflection_Refraction_andDiffraction.ppt
Reflection_Refraction_andDiffraction.pptJonalyn34
 
Solar resource assessment luis martin
Solar resource assessment luis martinSolar resource assessment luis martin
Solar resource assessment luis martinIrSOLaV Pomares
 
Solar resource assessment luis martin
Solar resource assessment luis martinSolar resource assessment luis martin
Solar resource assessment luis martinIrSOLaV Pomares
 
JEE Main - Physics - Refraction of Light
JEE Main - Physics - Refraction of LightJEE Main - Physics - Refraction of Light
JEE Main - Physics - Refraction of LightEdnexa
 
Class 12th Physics wave optics ppt
Class 12th Physics wave optics pptClass 12th Physics wave optics ppt
Class 12th Physics wave optics pptArpit Meena
 
Physics Marking scheme| Class 12 session 2023-2024
Physics Marking scheme| Class 12 session 2023-2024Physics Marking scheme| Class 12 session 2023-2024
Physics Marking scheme| Class 12 session 2023-2024korish949
 
Wave Optics Class 12 Part-1
Wave Optics Class 12 Part-1Wave Optics Class 12 Part-1
Wave Optics Class 12 Part-1Self-employed
 
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ..... ..
 
ch-10 ( wave optics).pptx
ch-10 ( wave optics).pptxch-10 ( wave optics).pptx
ch-10 ( wave optics).pptxbablivashisht
 
PPT 3-DIFFRACTION.pptx
PPT 3-DIFFRACTION.pptxPPT 3-DIFFRACTION.pptx
PPT 3-DIFFRACTION.pptxRagavkumarAJ
 
Prism and its properties
Prism and its propertiesPrism and its properties
Prism and its propertiesGauriSShrestha
 

Ähnlich wie Anschp35 (20)

Ch31 ssm
Ch31 ssmCh31 ssm
Ch31 ssm
 
11 4 refraction-of_light
11 4 refraction-of_light11 4 refraction-of_light
11 4 refraction-of_light
 
Refraction And Total Internal Reflection Internet
Refraction And Total Internal Reflection InternetRefraction And Total Internal Reflection Internet
Refraction And Total Internal Reflection Internet
 
Refraction of Light-Notes.pdf
Refraction of Light-Notes.pdfRefraction of Light-Notes.pdf
Refraction of Light-Notes.pdf
 
Reflection__Refraction__and_Diffraction.ppt
Reflection__Refraction__and_Diffraction.pptReflection__Refraction__and_Diffraction.ppt
Reflection__Refraction__and_Diffraction.ppt
 
Reflection_Refraction_andDiffraction.ppt
Reflection_Refraction_andDiffraction.pptReflection_Refraction_andDiffraction.ppt
Reflection_Refraction_andDiffraction.ppt
 
Light
LightLight
Light
 
Solar resource assessment luis martin
Solar resource assessment luis martinSolar resource assessment luis martin
Solar resource assessment luis martin
 
Solar resource assessment luis martin
Solar resource assessment luis martinSolar resource assessment luis martin
Solar resource assessment luis martin
 
JEE Main - Physics - Refraction of Light
JEE Main - Physics - Refraction of LightJEE Main - Physics - Refraction of Light
JEE Main - Physics - Refraction of Light
 
Class 12th Physics wave optics ppt
Class 12th Physics wave optics pptClass 12th Physics wave optics ppt
Class 12th Physics wave optics ppt
 
Physics Marking scheme| Class 12 session 2023-2024
Physics Marking scheme| Class 12 session 2023-2024Physics Marking scheme| Class 12 session 2023-2024
Physics Marking scheme| Class 12 session 2023-2024
 
Wave Optics Class 12 Part-1
Wave Optics Class 12 Part-1Wave Optics Class 12 Part-1
Wave Optics Class 12 Part-1
 
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
 
wave pro.....
wave pro.....wave pro.....
wave pro.....
 
ch-10 ( wave optics).pptx
ch-10 ( wave optics).pptxch-10 ( wave optics).pptx
ch-10 ( wave optics).pptx
 
PPT 3-DIFFRACTION.pptx
PPT 3-DIFFRACTION.pptxPPT 3-DIFFRACTION.pptx
PPT 3-DIFFRACTION.pptx
 
Prism and its properties
Prism and its propertiesPrism and its properties
Prism and its properties
 
6.1 refraction of light
6.1 refraction of light6.1 refraction of light
6.1 refraction of light
 
4.4
4.44.4
4.4
 

Anschp35

  • 1. Chapter 35. Refraction Physics, 6th Edition Chapter 35. Refraction The Index of Refraction (Refer to Table 35-1 for values of n.) 35-1. The speed of light through a certain medium is 1.6 x 108 m/s in a transparent medium, what is the index of refraction in that medium? c 3 x 108 m/s n= = ; n = 1.88 v 1.6 x 108 m/s 35-2. If the speed of light is to be reduced by one-third, what must be the index of refraction for the medium through which the light travels? The speed c is reduced by a third, so that: c c 3 vx = ( 2 3 )c; n= = ; n= and n = 1.50 vx ( 3 2 )c 2 35-3. Compute the speed of light in (a) crown glass, (b) diamond, (c) water, and (d) ethyl alcohol. (Since n = c/v, we find that v = c/n for each of these media.) 3 x 108 m/s 3 x 108 m/s (a) vg = ; vg = 1.97 x 108 m/s (b) vd = ; vd = 1.24 x 108 m/s 1.50 2.42 3 x 108 m/s 3 x 108 m/s (a) vw = ; v = 2.26x 108 m/s (b) va = ; va = 2.21 x 108 m/s 1.33 1.36 35-4 If light travels at 2.1 x 108 m/s in a transparent medium, what is the index of refraction? (3 x 108 m/s) n= ; n = 1.43 2.1 x 108 m/s The Laws of Refraction 35-5. Light is incident at an angle of 370 from air to flint glass (n = 1.6). What is the angle of refraction into the glass? (1.0) sin 37 0 ng sin θ g = na sin θ a ; sin θ g = ; θg = 22.10 1.6 231
  • 2. Chapter 35. Refraction Physics, 6th Edition 35-6. A beam of light makes an angle of 600 with the surface of water. What is the angle of refraction into the water? na sin θ a nw = 1.5 na sin θ a = nw sin θ w ; sinθ w = 600 nw air water (1)sin 600 sinθ w = = 0.651; θw = 40.6 0 1.33 35-7. Light passes from water (n = 1.33) to air. The beam emerges into air at an angle of 320 with the horizontal water surface? What is the angle of incidence inside the water? na sin θ a θ = 900 – 320 = 580; na sin θ a = nw sin θ w ; sinθ w = nw (1)sin 580 sinθ w = = 638; θw = 39.60 1.33 35-8. Light in air is incident at 600 and is refracted into an unknown medium at an angle of 400. What is the index of refraction for the unknown medium? na sin θ a (1)(sin 600 ) nx sin θ x = na sin θ a ; nx = = ; n = 1.35 sinθ x sin 400 35-9. Light strikes from medium A into medium B at an angle of 350 with the horizontal boundary. If the angle of refraction is also 350, what is the relative index of refraction between the two media? [ θA = 900 – 350 = 550. ] nB sin θ A sin 550 θ A 350 nA sin θ A = nB sin θ B ; = = ; 350 nA sin θ B sin 350 B nB sin 550 = = 1.43; nr = 1.43 nA sin 350 232
  • 3. Chapter 35. Refraction Physics, 6th Edition 35-10. Light incident from air at 450 is refracted into a transparent medium at an angle of 340. What is the index of refraction for the material? (1)sin 450 nA sin θ A = nm sin θ m ; nm = ; nm = 1.23 sin 350 *35-11. A ray of light originating in air (Fig. 35-20) is incident on water (n = 1.33) at an angle of 600. It then passes through the water entering glass (n = 1.50) and finally emerging back into air again. Compute the angle of emergence. θair nair = 1 The angle of refraction into one medium becomes the nw = 1.33 angle of incidence for the next, and so on . . . ng = 1.55 nair sin θair = nw sin θw = ng sin θg = nair sin θair nair = 1 Thus it is seen that a ray emerging into the same medium as that from which it originally entered has the same angle: θe = θi = 600 *35-12. Prove that, no matter how many parallel layers of different media are traversed by light, the entrance angle and the final emergent angle will be equal as long as the initial and final media are the same. The prove is the same as shown for Problem 35-11: nair sin θair = nw sin θw = ng sin θg = nair sin θair; θe = θi = 600 Wavelength and Refraction 35-13. The wavelength of sodium light is 589 nm in air. Find its wavelength in glycerine. From Table 28-1, the index for glycerin is: n = 1.47. λg na λa na (589 nm)(1) = ; λg = = ; λg = 401 nm λa ng ng 1.47 233
  • 4. Chapter 35. Refraction Physics, 6th Edition 35-14. The wavelength decreases by 25 percent as it goes from air to an unknown medium. What is the index of refraction for that medium? A decrease of 25% means λx is equal to ¾ of its air value: λx nair λ n = 0.750; = x = 0.750; nair = air ; nx = 1.33 λair nx λair 0.750 35-15. A beam of light has a wavelength of 600 nm in air. What is the wavelength of this light as it passes into glass (n = 1.50)? ng λair n λ (1)(600 nm) = ; λg = air air = ; λg = 400 nm nair λg ng 1.5 35-16. Red light (620 nm) changes to blue light (478 nm) when it passes into a liquid. What is the index of refraction for the liquid? What is the velocity of the light in the liquid? nL λr n λ (1)(620 nm) = ; nL = air r = ; nL = 1.30 nair λb λb 478 nm *35-17. A ray of monochromatic light of wavelength 400 nm in medium A is incident at 300 at the boundary of another medium B. If the ray is refracted at an angle of 500, what is its wavelength in medium B? sin θ A λ A λ A sin θ B (400 nm)sin500 = ; λB = = ; λB = 613 nm sin θ B λB sin θ A sin300 Total Internal Reflection 35-18. What is the critical angle for light moving from quartz (n = 1.54) to water (n = 1.33). n2 1.33 sin θ c = = ; θc = 59.70 n1 1.54 234
  • 5. Chapter 35. Refraction Physics, 6th Edition 35-19. The critical angle for a given medium relative to air is 400. What is the index of refraction for the medium? n2 nair 1 sin θ c = ; nx = 0 = ; nx = 1.56 n1 sin 40 sin 400 35-20. If the critical angle of incidence for a liquid to air surface is 460, what is the index of refraction for the liquid? n2 nair 1 sin θ c = ; nx = 0 = ; nx = 1.39 n1 sin 46 sin 460 35-21. What is the critical angle relative to air for (a) diamond, (b) water, and (c) ethyl alcohol. n2 1.0 Diamond: sin θ c = ; sinθ c = ; θc = 24.40 n1 2.42 n2 1.0 Water: sin θ c = ; sinθ c = ; θc = 48.80 n1 1.33 n2 1.0 Alcohol: sin θ c = ; sinθ c = ; θc = 47.30 n1 1.36 35-22. What is the critical angle for flint glass immersed in ethyl alcohol? n2 1.36 sin θ c = = ; θc = 56.50 n1 1.63 *35-23. A right-angle prism like the one shown in Fig. 35-10a is submerged in water. What is the minimum index of refraction for the material to achieve total internal reflection? np nw = 1.33 nw 1.33 1.33 θc < 450; sin θ c = = ; np = ; np np sin 450 np = 1.88 (Minimum for total internal reflection.) 235
  • 6. Chapter 35. Refraction Physics, 6th Edition Challenge Problems 35-24. The angle of incidence is 300 and the angle of refraction is 26.30. If the incident medium is water, what might the refractive medium be? nw sin θ w (1.33)(sin 300 ) nx sin θ x = nw sin θ w ; nx = = ; n = 1.50, glass sinθ x sin 26.30 35-25. The speed of light in an unknown medium is 2.40 x 108 m/s. If the wavelength of light in this unknown medium is 400 nm, what is the wavelength in air? c λair (400 nm)(3 x 108 m/s) = ; λair = ; λx = 500 nm vx λx (2.40 x 108 m/s) 35-26. A ray of light strikes a pane of glass at an angle of 300 with the glass surface. If the angle of refraction is also 300, what is the index of refraction for the glass? ng sin θ A sin 600 nA sin θ A = ng sin θ g ; = = ; nr = 1.73 nA sin θ g sin 300 35-27. A beam of light is incident on a plane surface separating two media of indexes 1.6 and 1.4. The angle of incidence is 300 in the medium of higher index. What is the angle of refraction? sin θ 2 n1 n2 sin θ 2 1.6sin 300 = ; sin θ1 = = ; θ1 = 34.80 sin θ1 n2 n1 1.4 35-28. In going from glass (n = 1.50) to water (n = 1.33), what is the critical angle for total internal reflection? n2 1.33 sin θ c = = ; θc = 62.50 n1 1.50 236
  • 7. Chapter 35. Refraction Physics, 6th Edition 35-29. Light of wavelength 650 nm in a particular glass has a speed of 1.7 x 108 m/s. What is the index of refraction for this glass? What is the wavelength of this light in air? 3 x 108 m/s n= ; n = 1.76 1.7 x 108 m/s vg λg (3 x 108 m/s)(650 nm) = ; λair = ; λair = 1146 nm vair λa 1.7 x 108 m/s 35-30. The critical angle for a certain substance is 380 when it is surrounded by air. What is the index of refraction of the substance? n2 1.0 sin θ c = ; n1 = ; n1 = 1.62 n1 sin 380 35-31. The water in a swimming pool is 2 m deep. How deep does it appear to a person looking vertically down? q nair 1.00 2m = = ; q= ; q = 1.50 m p nw 1.33 1.33 35-32. A plate of glass (n = 1.50) is placed over a coin on a table. The coin appears to be 3 cm below the top of the glass plate. What is the thickness of the glass plate? q nair 1.00 = = ; p = 1.50q = (1.50)(3 cm); p = 4.50 cm p ng 1.50 237
  • 8. Chapter 35. Refraction Physics, 6th Edition Critical Thinking Problems *35-33. Consider a horizontal ray of light striking one edge of an equilateral prism of glass (n = 1.50) as shown in Fig. 35-21. At what angle θ will the ray emerge from the other side? sin 300 1.50 sin 300 = ; sin θ1 = ; θ1 = 19.47 0 600 sin θ1 1.0 1.5 n = 1.5 0 30 θ2 θ2 = 90 – 19.47 = 70.5 ; θ3 = 180 − (60 + 70.5 ) 0 0 0 0 0 0 θ1 θ3 θ4 θ θ3 = 49.47 ;0 θ4 = 90 – 49.46 ; 0 0 θ4 = 40.53 0 600 600 sin 40.50 1.00 = ; sin θ = 1.5sin 40.50 ; θ = 77.10 sin θ 1.5 *35-34. What is the minimum angle of incidence at the first face of the prism in Fig. 35-21 such that the beam is refracted into air at the second face? (Larger angles do not produce total internal reflection at the second face.) [ First find critical angle for θ4 ] nair 1 sin θ 4 c = = ; θ 4c = 41.80 ; Now find θ1: θ3 = 900 – 41.80 = 48.20 ng 1.5 θ2 = 1800 – (48.20 + 600); θ2 = 71.8 and θ1 = 900 – 71.80 = 18.20 sin18.20 1.00 = ; sin θ min = 1.5sin18.20 ; θmin = 27.90 sin θ min 1.50 238
  • 9. Chapter 35. Refraction Physics, 6th Edition 35-35. Light passing through a plate of transparent material of thickness t suffers a lateral displacement d, as shown in Fig. 35-22. Compute the lateral displacement if the light passes through glass surrounded by air. The angle of incidence θ1 is 400 and the glass (n = 1.50) is 2 cm thick. 400 sin 400 1.5 500 = ; θ 2 = 25.40 sin θ 2 1.0 θ2 θ3 t 2 cm θ3 = 900 – (25.40 + 500); θ3 = 14.60 R d 2 cm cos 25.40 = ; R = 2.21 cm ; R d sin θ 3 = ; d = R sin θ 3 = (2.21 cm) sin14.60 ; d = 5.59 mm R *35-36. A rectangular shaped block of glass (n = 1.54) is submerged completely in water (n = 1.33). A beam of light traveling in the water strikes a vertical side of the glass block at an angle of incidence θ1 and is refracted into the glass where it continues to the top surface of the block. What is the minimum angle θ1 at the side such that the light does not go out of the glass at the top? (First find θc ) nw = 1.33 1.33 θc sin θ c = = 0.864; θ c = 59.70 1.54 θ2 θ2 = 90 – 59.7 = 30.3 ; 0 0 0 θ2 = 30.3 0 θ1 ng = 1.54 sin θ1 n2 sinθ1 1.54 = ; = ; sin θ 2 n1 0 sin30.3 1.33 1.54sin 30.30 sin θ1 = ; θ1 = 35.70 1.33 For angles smaller than 35.70, the light will leave the glass at the top surface. 239
  • 10. Chapter 35. Refraction Physics, 6th Edition *35-37. Prove that the lateral displacement in Fig. 35-22 can be calculated from  n cos θ1  d = t sin θ1 1 − 1   n2 cos θ 2  Use this relationship to verify the answer to Critical Thinking Problem 35-35. d d cosθ1 = ; p= p cos θ1 sin θ1 p + a a tan θ1 = = ; tan θ 2 = ; θ1 cosθ1 t t sin θ 2 d θ2 θ1 a = t tan θ 2 ; a=t ; p= t θ2 t cos θ 2 cosθ1 d p  d sin θ 2  a θ1 sin θ1 p + a  cos θ + t cos θ  θ1 d = = 1 2  cosθ1 t  t      t sin θ 2 cos θ1 Simplifying this expression and solving for d, we obtain: d = t sin θ1 − cos θ 2 n1 Now, n2 sinθ2 = n1 sinθ1 or sin θ 2 = sin θ1 n2 Substitution and simplifying, we finally obtain the expression below:  n cos θ1  d = t sin θ1 1 − 1   n2 cos θ 2  Substitution of values from Problem 35-35, gives the following result for d: d = 5.59 mm 240