SlideShare ist ein Scribd-Unternehmen logo
1 von 31
Downloaden Sie, um offline zu lesen
PART 2 :
   BALANCED HOMODYNE
        DETECTION
             Michael G. Raymer
Oregon Center for Optics, University of Oregon
             raymer@uoregon.edu




                                    M.G.Raymer_TTRL2b_V2_2005
                                                       1 of 31
OUTLINE
PART 1
1. Noise Properties of Photodetectors
2. Quantization of Light
3. Direct Photodetection and Photon Counting
PART 2
4. Balanced Homodyne Detection
5. Ultrafast Photon Number Sampling
PART 3
6. Quantum State Tomography



                                    M.G.Raymer_TTRL2b_V2_2005
                                                       2 of 31
DC-BALANCED HOMODYNE DETECTION I
          Goal -- measure quadrature amplitudes with high
                  Q.E. and temporal-mode selectivity

     ES = signal field (ωO), 1 - 1000 photons
     EL = laser reference field (local oscillator) (ωO), 106 photons
                                                  n1
               E1 =                          dt
ES (t)        ES + E L   PD
                                                                   ND
                              BS                  n2
                                   PD        dt
EL (t)              θ               E2 =
                                   ES - EL
                                              ND ∝     ∫   E1(− )(t − τ d ) E1(+) (t) dt
             τd
            delay                                 −    ∫   E 2(− )(t − τ d ) E 2(+) (t) dt
                                                             M.G.Raymer_TTRL2b_V2_2005
                                                                                3 of 31
DC-BALANCED HOMODYNE DETECTION II
               integrator circuit




                             n1
                        dt
          PD
                                     ND
                             n2
                 PD     dt
      θ

                                    M.G.Raymer_TTRL2b_V2_2005
                                                       4 of 31
DC-BALANCED HOMODYNE DETECTION III
ΦS = signal amplitude; ΦL = laser reference amplitude
                                               n1
                                         dt
 ΦS
ES (t)
                                                        ND
                                   BS         n2
                                         dt
Φ
EL (t)
   L
                           θ
                  τd
                 delay


                                                                                overlap
         ∫       dt ∫ Det d x ΦL
             T
ˆ
ND =                          ˆ (− ) (x,0,t − τ d ) ⋅ Φ(+) (x,0,t) + h.c.
                               2                      ˆS
             0                                                                  integral
                                                      ˆ (+ ) (r,t) = i c
                                                      ΦS                   ∑    ˆ
                                                                                ak v k (r,t)
                                                                            k
       v k (r,t) = ∑ Ck j u j (r) exp(−iω j t)
                       j
                                                                     wave-packet
       c ∫ 0 dt ∫ Det d x v *k (x,0,t) ⋅ v m (x,0,t) = δ k m
             T             2
                                                                     modes
                                                                 M.G.Raymer_TTRL2b_V2_2005
                                                                                    5 of 31
DC-BALANCED HOMODYNE DETECTION IV


           ∫                    ˆ (− ) (x,0,t − τ d ) ⋅ ∑ ak v k (x,0,t) + h.c.
                   dt ∫ Det d x ΦL
               T
  ˆ
  ND ∝                     2
                                                          ˆ
               0
                                                        k
                                                               wave-packet modes
Assume that the LO pulse is a strong coherent state of a particular
localized wave packet mode:                       LO phase
              ˆ (+ ) (r,t) ∝ | α | exp(i θ ) v L (r,t) + vacuum
              ΦL                     L


    N D (θ ) = | α L | ( a e−iθ + a† e iθ )
    ˆ                    ˆ        ˆ

  a = ∑ ak c ∫ 0 dt ∫ Det d 2 x v *L (x,0,t − τ d ) ⋅ v k (x,0,t) = ak= L
                       T
  ˆ     ˆ                                                           ˆ
       k

 The signal field is spatially and temporally gated by the LO field,
 which has a controlled shape. Where the LO is zero, that portion
 of the signal is rejected. Only a single temporal-spatial wave-
 packet mode of the signal is detected.
                                                            M.G.Raymer_TTRL2b_V2_2005
                                                                               6 of 31
DC-BALANCED HOMODYNE DETECTION V

                                                           wave-packet
signal : ΦS (r,t) ∝ a v L (r,t) + ∑ ak v k (r,t)
         ˆ (+ )     ˆ               ˆ
                                   k
                                                           modes

quadrature operators:            q = ( a + a† ) / 21/2
                                 ˆ ˆ ˆ
                                 p = (a − a† ) / i21/2
                                 ˆ     ˆ ˆ


  detected              N D (θ ) a e−iθ + a† e iθ
                         ˆ        ˆ        ˆ                LO phase
                  qθ ≡
                  ˆ             =
  quantity:            |αL | 2           2

                   ˆ
                  N D (θ )
            qθ ≡
            ˆ              = q cosθ + p sin θ
                             ˆ        ˆ
                 |αL | 2

                 ⎛qθ ⎞ ⎛ cos θ sin θ ⎞⎛ q ⎞
                   ˆ                     ˆ
                 ⎜ ⎟=⎜                ⎟⎜ ⎟
                 ⎝ pθ ⎠ ⎝ −sin θ cos θ⎠⎝ p⎠
                   ˆ                     ˆ
                                                     M.G.Raymer_TTRL2b_V2_2005
                                                                        7 of 31
ULTRAFAST OPTICAL SAMPLING



                   Conventional Approach:
         Ultrafast Time Gating of Light Intensity by
            NON-LINEAR OPTICAL SAMPLING


    strong short
    pump (ωp )
delay                            sum-frequency (ωp + ωs )




   weak signal(ωs )     second-order NL crystal

                                            M.G.Raymer_TTRL2b_V2_2005
                                                               8 of 31
LINEAR OPTICAL SAMPLING I
BHD for Ultrafast Time Gating of Quadrature Amplitudes

detected                   ˆ
                          N D (θ )
                    qθ ≡
                    ˆ              = q cosθ + p sin θ
                                     ˆ        ˆ
quantity:                |αL | 2                                  LO phase
                 q = ( a + a† ) / 21/2
                 ˆ ˆ ˆ                   p = (a − a† ) / i21/2
                                         ˆ    ˆ ˆ

a = ∑ ak c ∫ 0 dt ∫ Det d 2 x v *L (x,0,t − τ d ) ⋅ v k (x,0,t) = ak= L
                T
ˆ     ˆ                                                           ˆ
      k
                                         LO             signal



                                                                   t


  θ



                                                          M.G.Raymer_TTRL2b_V2_2005
                                                                             9 of 31
LINEAR OPTICAL SAMPLING II
     Ultrafast Time Gating of Quadrature Amplitudes

 LO mode:          v L (x,0,t) ∝ α L v L (x) f L (t − τ d )

                              ∫
                                  T
      ˆ
      N D (τ d ) = −i c α *           dt f L* (t − τ d ) φS (t) + h.c.
                          L       0


                                           φS (t) = ∫ Det d x v L * (x) ⋅ ΦS
                                                           2              ˆ (+) (x,0,t)

if signal is band-limited and                 signal
LO covers the band, e.g.                        LO
    f L (t) ∝ (1 / t)sin(B t / 2)
                                                        ν−Β/2      ν+Β/2 ω

   ˆ D (τ d ) ∝ α * f˜L* (ν ) ∫ ν +B /2 dω exp(−i ω τ d ) φ S (ω ) + h.c.
   N                                                      ˜
                  L            ν −B /2 2π

              ∝ α L f˜L* (ν ) φ S (τ d ) + h.c.
                  *



                                            exact sampling
                                                         M.G.Raymer_TTRL2b_V2_2005
                                                                               10 of 31
LINEAR OPTICAL SAMPLING III
M. E. Anderson, M. Munroe, U. Leonhardt, D. Boggavarapu, D. F. McAlister and M. G. Raymer, Proceedings of
Generation, Amplification, and Measurment of Ultrafast Laser Pulses III, pg 142-151 (OE/LASE, San Jose, Jan.
1996) (SPIE, Vol. 2701, 1996).


                                 Ultrafast                              Signal
                                   Laser          (optical or           Source
                                                 elect. synch.)


                                 Spectral                           Signal
                                  Filter
                                                                  Signal

                                              Reference (LO)
                                   Time             Phase    LO        Balanced
                                   Delay          Adjustment           Homodyne
                                                                        Detector
                                   τd                  θ
                                                                        n1 n2
                                                                       Computer


                       mean quadrature
                       amplitude in sampling                           ˆ
                                                                       qθ (t)    ψ
                       window at time t
                                                                                 M.G.Raymer_TTRL2b_V2_2005
                                                                                                    11 of 31
LINEAR OPTICAL SAMPLING IV

                                 LO
                                                        scan LO
840 nm, 170 fs                        θ                 delay τd
Sample: Microcavity
exciton polariton
                               coherent
                               signal



                                               Balanced
                                               Homodyne
                                               detector

          ˆ
          qθ (t)   ψ
                                          M.G.Raymer_TTRL2b_V2_2005
                                                             12 of 31
LINEAR OPTICAL SAMPLING V
  Mean Quadrature Measurement - sub ps Time Resolution

                                       Sample: Microcavity
                     ˆ
                     q (t)
                  10000θ       ψ
                                       exciton polariton                       5


                   1000                                                        4


mean                100                                                        3

quadrature




                                                                                    g
       < n(t) >




                                                                                       (2)
                     10                                                        2




                                                                                    (t,t)
amplitude
<q> at                1                                                        1
time t
                    0.1                                                        0


                   0.01                                                        -1
                           0       2    4       6       8         10      12
                                            Time (ps)
                                       LO delay τd (ps)

                                        ˆ
                     coherent field --> qθ + π /2 (t)    ψ
                                                             = pθ (t) ψ ≅ 0
                                                               ˆ
                                                                  M.G.Raymer_TTRL2b_V2_2005
                                                                                             13 of 31
LINEAR OPTICAL SAMPLING VI
      Phase Sweeping for Indirect Sampling of Mean
     Photon Number and Photon Number Fluctuations
detected                ˆ
                       N D (θ )
                 qθ ≡
                 ˆ              = q cosθ + p sin θ (θ = LO phase)
                                  ˆ        ˆ
quantity:             |αL | 2
  Relation with photon-number operator:
                1                                 1
     n = a a = ( q − i p )( q + i p ) = q + p +
     ˆ     †
          ˆ ˆ     ˆ    ˆ ˆ        ˆ     ˆ 2
                                            ˆ 2

                2                                 2
 Phase-averaged quadrature-squared:
        1 π 2       1 π                             1 2
qθ θ = ∫ 0 qθ dθ =     ∫0 ˆ(q cosθ + p sin θ ) dθ = (q + p 2 )
  2                                             2
ˆ            ˆ                          ˆ             ˆ  ˆ
       π            π                               2

                     1   ensemble                                   1
   n = qθ
   ˆ   ˆ 2       −                     n (t) ψ = qθ (t)
                                       ˆ         ˆ 2            −
             θ       2                                    θ ψ       2
                         average

      works also for incoherent field (no fixed phase)
                                            M.G.Raymer_TTRL2b_V2_2005
                                                                    14 of 31
LINEAR OPTICAL SAMPLING VII
    Phase Sweeping --> Photon Number Fluctuations
 detected          ˆ
                  N D (θ )
 quantity: qθ ≡ | α | 2 = q cosθ + p sin θ
            ˆ              ˆ       ˆ
                                                L

 Richter’s formula for Factorial Moments:
                                ∞
           n (r )   ψ
                        =   ∑ [n(n −1)...(n − r + 1)] p(n) = ( a† ) r ( a) r
                                                               ˆ        ˆ                  ψ
                            n= 0

                      (r!) 2   2 π dθ
                    = r
                     2 (2r)!
                             ∫ 0 2π H 2r (qθ ) ψ
                                          ˆ

Hermite Polynomials: H 0 (x) = 1, H1 (x) = 2x, H 3 (x) = 4 x 2 − 2
                   1                        2π      dθ
                                        ∫
                                                                                                       1
 n   (1)
           = a
             ˆ a =
               ˆ    †
                                                        ˆθ 2 − 2
                                                       4q                ˆ (t) ψ = qθ 2 (t)
                                                                         n         ˆ                 −
                   4                        0       2π             ψ                           θ ψ     2
                                            2π      dθ 2 4           1
 n   (2)
           = a a
             ˆ ˆ    †2      2
                                    =   ∫   0       2π 3
                                                         qθ − 2 qθ +
                                                         ˆ      ˆ2
                                                                     2   ψ
                                                                             M.G.Raymer_TTRL2b_V2_2005
                                                                                                15 of 31
LINEAR OPTICAL SAMPLING VIII
   Phase Sweeping --> Photon Number Fluctuations

Variance of Photon Number in Sampling Time
Window: var(n)=< n 2 > - < n >2
                    2π   dθ ⎡ 2 4                           1⎤
                ∫
                                                       2
    var(n) =                    qθ − qθ − qθ
                                ˆ    ˆ2   ˆ2               + ⎥
                    0    2π ⎢ 3
                            ⎣                               4⎦

Second-Order Coherence of Photon Number in
Sampling Time Window:
        g(2)(t,t )=[< n 2 > - < n >]/< n >2

g(2) (t,t) = 2 corresponds to thermal light, i.e. light produced
primarily by spontaneous emission.
g(2) (t,t) = 1 corresponds to light with Poisson statistics, i.e., light
produced by stimulated emission in the presence of gain saturation.
                                                           M.G.Raymer_TTRL2b_V2_2005
                                                                              16 of 31
LINEAR OPTICAL SAMPLING IX
                  Photon Number Fluctuations
if the signal is incoherent, no phase sweeping is required
                         80MHz                        1-50kHz
  Ti:Sapphire                             Regen.
                                         Amplifier
                                                                         λ/2
 Electronic                   Trigger Pulse          Sample             LO
   Delay
                                   λ/2                   Signal

                Alt. Source                                            PBS1
                                                                         λ/2
  Voltage                         Charge-Sensitive                      PBS2
   Pulser                         Pre-Amps
      Computer                                          Photodiodes
                   n1                   Shaper
      AD/DA               Stretcher
                   n2                   Shaper                                   M.
   GPIB controller                    Balanced Homodyne Detector                 Munroe
                                                                  M.G.Raymer_TTRL2b_V2_2005
                                                                                     17 of 31
LINEAR OPTICAL SAMPLING X
        Superluminescent Diode (SLD) Optical Amplifier
                                                   metal cap




                                      o
                                  6

               600 µm
                                           3 µm



 (AR) SiO 2
p-clad layer
                                                    p-contact layer
quantum
 wells

                ~                            ~    undoped, graded

                ~                            ~
n-clad layer                                      confining layers
                        n-GaAs substrate




                                            Superluminescent
(Sarnoff Labs)                              Emission
                                                                           M. Munroe
                                                               M.G.Raymer_TTRL2b_V2_2005
                                                                                  18 of 31
LINEAR OPTICAL SAMPLING XI

                                 (no cavity)                                    1.0
                                                                                                                  (a)
                                                  (a)                           0.8




                                                             Intensity (a.u.)
                                                                                0.6

                                                                                0.4

                                                                                0.2

                    25                                                          0.0
Output Power (mW)



                                                                                      810     820    830    840      850
                                                                                             Wavelength (nm)
                    20

                    15

                    10

                    5
                                                                                1.0                               (b)
                    0




                                                        Intensity (a.u.)
                         0        100       200                                 0.5
                             Drive Current (mA)
                                                  (b)                           0.0

                                                                                       760     800    840      880
                                                                                             Wavelength (nm)


                                                                                               M. Munroe
                                                                                M.G.Raymer_TTRL2b_V2_2005
                                                                                                   19 of 31
LINEAR OPTICAL SAMPLING XII
                         SLD in the single-pass configuration




         3.0
                   <n(t,t)>                          2.4
                    (2)
                   g (t,t)

         2.5                                         2.2


                                                     2.0

         2.0
                                                     1.8




                                                           g(2)(t,t)
<n(t)>




                                                     1.6
         1.5

                                                     1.4
                                                                  Photon Fluctuation
                                                                  is Thermal-like,
         1.0                                         1.2
                                                                  within a single time
                                                     1.0          window (150 fs)
         0.5

               0        5        10
                              time (ns)
                                          15    20                M. Munroe
                                                                       M.G.Raymer_TTRL2b_V2_2005
                                                                                          20 of 31
LINEAR OPTICAL SAMPLING XIII
                 SLD in the double-pass with grating configuration




                                                    4.0
                    <n(t)>
    14               (2)
                    g (t,t)
                                                    3.5
    12

                                                    3.0
    10

                                                    2.5




                                                          g(2)(t,t)
<n(t)>




         8

                                                    2.0
         6
                                                                      Photon Fluctuation
                                                    1.5
         4
                                                                      is Laser-like, within
         2                                          1.0               a single time
         0                                          0.5
                                                                      window (150 fs)
             0          5        10       15   20
                              time (ns)                               M. Munroe
                                                                       M.G.Raymer_TTRL2b_V2_2005
                                                                                          21 of 31
Single-Shot Linear Optical Sampling I

           -- Does not require phase sweeping.
         Measure both quadratures simultaneously.
         Dual- DC-Balanced Homodyne Detection

                          LO1

                        BHD     q
signal       50/50
                                 q2 + p2 = n
                        BHD     p

            π/2 phase     LO2
            shifter


                                               M.G.Raymer_TTRL2b_V2_2005
                                                                  22 of 31
Fiber Implementation of Single-shot Linear Optical
           Sampling Of Photon Number




MFL: mode-locked Erbium-doped fiber laser. OF: spectral filter.
PC: polarization controller. BD: balanced detector.
                                                  M.G.Raymer_TTRL2b_V2_2005
                                                                     23 of 31
Measured quadratures
(continuous and dashed
line) on a 10-Gb/s
pulse train.

Waveform obtained by
postdetection squaring
and summing of the two
quadratures.



        M.G.Raymer_TTRL2b_V2_2005
                           24 of 31
Two-Mode DC-HOMODYNE DETECTION I

 LO is in a Superposition of two wave-packet modes, 1 and 2
    ˆ (+ ) (r,t) = i c | α L |exp(iθ ) [v1 (r,t)cosα + v 2 (r,t)exp(−iζ )sin α ]
    ΦL
Dual temporal modes:                      1 2                 (temporal,
                 Dual LO                                      spatial, or
signal                                                        polarization)

                                    BHD         Q
                                                              β = θ −ζ

         Q = cos(α )[q1 cosθ + p1 sin θ ] + sin(α )[q2 cos β + p2 sin β ]
         ˆ           ˆ         ˆ                    ˆ          ˆ

                              ˆ
                              q1θ                           ˆ
                                                            q2 β
                quadrature of mode 1                quadrature of mode 2
                                                           M.G.Raymer_TTRL2b_V2_2005
                                                                              25 of 31
Two-Mode DC-HOMODYNE DETECTION II
   ultrafast two-time number correlation measurements using dual-
   LO BHD; super luminescent laser diode (SLD)
                                       1 2
                        Dual LO
   signal                            t1 t2
SLD                            BHD           Q          two-time second-
                                                        order coherence
                                                              : n (t1 ) n (t2 ):
                                                                ˆ       ˆ
                                                 g (t1,t2 ) =
                                                  (2)

                                                              n (t1 ) n (t2 )
                                                              ˆ          ˆ




D. McAlister                                            M.G.Raymer_TTRL2b_V2_2005
                                                                           26 of 31
Two-Mode DC-HOMODYNE DETECTION III
                Alternative Method using a Single LO.
             Signal is split and delayed by different times.
               Polarization rotations can be introduced.


    signal
                                          LO
source

                                                BHD      Q
                             polarization rotator


                two-pol., two-time                       : n i (t1 ) n j (t2 ):
                                                           ˆ         ˆ
                second-order           g (t1,t2 ) =
                                         (2)
                                         i, j
                coherence                                n i (t1 ) n j (t2 )
                                                         ˆ         ˆ
A. Funk                                               M.G.Raymer_TTRL2b_V2_2005
                                                                         27 of 31
Two-Mode DC-HOMODYNE DETECTION IV

  Single-time, two-polarization correlation measurements on
                                         emission from a VCSEL




0-2π phase
sweeping
and time
delay
                 0-2π relative phase sweeping          E. Blansett
                                            M.G.Raymer_TTRL2b_V2_2005
                                                              28 of 31
Two-Mode DC-HOMODYNE DETECTION V

      Single-time, two-
   polarization correlation
      measurements on
   emission from a VCSEL
          at low temp. (10K)

              : n i (t1 ) n i (t2 ):
                ˆ         ˆ
 g (t1,t2 ) =
   (2)
   i, i
              n i (t1 ) ni (t2 )
              ˆ            ˆ


                  : n i (t1 ) n j (t2 ):
                    ˆ         ˆ            uncorrelated
g (t1,t2 ) =
  (2)
  i, j
                  n i (t1 ) n j (t2 )
                  ˆ         ˆ

E. Blansett                                  M.G.Raymer_TTRL2b_V2_2005
                                                                29 of 31
Two-Mode DC-HOMODYNE DETECTION VI

      Single-time, two-
   polarization correlation
      measurements on
   emission from a VCSEL
          at room temp.

              : n i (t1 ) n i (t2 ):
                ˆ         ˆ
 g (t1,t2 ) =
   (2)
   i, i
              n i (t1 ) ni (t2 )
              ˆ            ˆ


                 : n i (t1 ) n j (t2 ):
                   ˆ         ˆ            anticorrelated
g (t1,t2 ) =
  (2)
  i, j
                 n i (t1 ) n j (t2 )
                 ˆ         ˆ

Spin-flip --> gain competition              M.G.Raymer_TTRL2b_V2_2005
                                                               30 of 31
SUMMARY: DC-Balanced Homodyne Detection


1. BHD can take advantage of: high QE and ultrafast time
gating.
2. BHD can provide measurements of photon mean
numbers, as well as fluctuation information (variance,
second-order coherence).
3. BHD can selectively detect unique spatial-temporal
modes, including polarization states.




                                           M.G.Raymer_TTRL2b_V2_2005
                                                              31 of 31

Weitere ähnliche Inhalte

Was ist angesagt?

Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101
bheemsain
 

Was ist angesagt? (20)

Kondo Effect.pptx
Kondo Effect.pptxKondo Effect.pptx
Kondo Effect.pptx
 
Optical properties of semiconductors ppt
Optical properties of semiconductors pptOptical properties of semiconductors ppt
Optical properties of semiconductors ppt
 
Fdtd
FdtdFdtd
Fdtd
 
Chap6 photodetectors
Chap6 photodetectorsChap6 photodetectors
Chap6 photodetectors
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101
 
01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).ppt01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).ppt
 
Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibrium
 
Signals and systems-3
Signals and systems-3Signals and systems-3
Signals and systems-3
 
RF cavity resonator
RF cavity resonator RF cavity resonator
RF cavity resonator
 
HARRISON’S METHOD
HARRISON’S METHODHARRISON’S METHOD
HARRISON’S METHOD
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Gixrd
GixrdGixrd
Gixrd
 
Waveguide
WaveguideWaveguide
Waveguide
 
Impedance Matching
Impedance MatchingImpedance Matching
Impedance Matching
 
Photo detector noise
Photo detector noisePhoto detector noise
Photo detector noise
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
 
High-Speed Optical Modulators and Data Communication Systems in Silicon Photo...
High-Speed Optical Modulators and Data Communication Systems in Silicon Photo...High-Speed Optical Modulators and Data Communication Systems in Silicon Photo...
High-Speed Optical Modulators and Data Communication Systems in Silicon Photo...
 
Difference between plane waves and laser
Difference between plane waves and laserDifference between plane waves and laser
Difference between plane waves and laser
 
Apperture and Horn Antenna
Apperture and Horn AntennaApperture and Horn Antenna
Apperture and Horn Antenna
 

Ähnlich wie Balanced homodyne detection

Case Study (All)
Case Study (All)Case Study (All)
Case Study (All)
gudeyi
 
Suppression of correlated electron escape in double ionization in strong lase...
Suppression of correlated electron escape in double ionization in strong lase...Suppression of correlated electron escape in double ionization in strong lase...
Suppression of correlated electron escape in double ionization in strong lase...
Jakub Prauzner-Bechcicki
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterion
srkrishna341
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasi
rymmanz86
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5
Vin Voro
 
Tele3113 wk1tue
Tele3113 wk1tueTele3113 wk1tue
Tele3113 wk1tue
Vin Voro
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
Grigor Alaverdyan
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
srkrishna341
 

Ähnlich wie Balanced homodyne detection (20)

Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Rousseau
RousseauRousseau
Rousseau
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
Case Study (All)
Case Study (All)Case Study (All)
Case Study (All)
 
Suppression of correlated electron escape in double ionization in strong lase...
Suppression of correlated electron escape in double ionization in strong lase...Suppression of correlated electron escape in double ionization in strong lase...
Suppression of correlated electron escape in double ionization in strong lase...
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterion
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Kinematika rotasi
Kinematika rotasiKinematika rotasi
Kinematika rotasi
 
7076 chapter5 slides
7076 chapter5 slides7076 chapter5 slides
7076 chapter5 slides
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5
 
Tele3113 wk1tue
Tele3113 wk1tueTele3113 wk1tue
Tele3113 wk1tue
 
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologyH. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
 
Second-Order Transient Circuits
Second-Order Transient CircuitsSecond-Order Transient Circuits
Second-Order Transient Circuits
 
Midsem sol 2013
Midsem sol 2013Midsem sol 2013
Midsem sol 2013
 
L02 acous
L02 acousL02 acous
L02 acous
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
 
Final Present Pap1on relibility
Final Present Pap1on relibilityFinal Present Pap1on relibility
Final Present Pap1on relibility
 

Mehr von wtyru1989

Gaussian discord imperial
Gaussian discord imperialGaussian discord imperial
Gaussian discord imperial
wtyru1989
 
Entropic characteristics of quantum channels and the additivity problem
Entropic characteristics of quantum channels and the additivity problemEntropic characteristics of quantum channels and the additivity problem
Entropic characteristics of quantum channels and the additivity problem
wtyru1989
 
Manipulating continuous variable photonic entanglement
Manipulating continuous variable photonic entanglementManipulating continuous variable photonic entanglement
Manipulating continuous variable photonic entanglement
wtyru1989
 
The gaussian minimum entropy conjecture
The gaussian minimum entropy conjectureThe gaussian minimum entropy conjecture
The gaussian minimum entropy conjecture
wtyru1989
 
The security of quantum cryptography
The security of quantum cryptographyThe security of quantum cryptography
The security of quantum cryptography
wtyru1989
 
Entanglement of formation
Entanglement of formationEntanglement of formation
Entanglement of formation
wtyru1989
 
Bound entanglement is not rare
Bound entanglement is not rareBound entanglement is not rare
Bound entanglement is not rare
wtyru1989
 
Continuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationsContinuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applications
wtyru1989
 
Relative entropy and_squahed_entanglement
Relative entropy and_squahed_entanglementRelative entropy and_squahed_entanglement
Relative entropy and_squahed_entanglement
wtyru1989
 
Towards a one shot entanglement theory
Towards a one shot entanglement theoryTowards a one shot entanglement theory
Towards a one shot entanglement theory
wtyru1989
 
Postselection technique for quantum channels and applications for qkd
Postselection technique for quantum channels and applications for qkdPostselection technique for quantum channels and applications for qkd
Postselection technique for quantum channels and applications for qkd
wtyru1989
 
Qkd and de finetti theorem
Qkd and de finetti theoremQkd and de finetti theorem
Qkd and de finetti theorem
wtyru1989
 
Lattices, sphere packings, spherical codes
Lattices, sphere packings, spherical codesLattices, sphere packings, spherical codes
Lattices, sphere packings, spherical codes
wtyru1989
 

Mehr von wtyru1989 (20)

Gaussian discord imperial
Gaussian discord imperialGaussian discord imperial
Gaussian discord imperial
 
Entropic characteristics of quantum channels and the additivity problem
Entropic characteristics of quantum channels and the additivity problemEntropic characteristics of quantum channels and the additivity problem
Entropic characteristics of quantum channels and the additivity problem
 
Manipulating continuous variable photonic entanglement
Manipulating continuous variable photonic entanglementManipulating continuous variable photonic entanglement
Manipulating continuous variable photonic entanglement
 
The gaussian minimum entropy conjecture
The gaussian minimum entropy conjectureThe gaussian minimum entropy conjecture
The gaussian minimum entropy conjecture
 
The security of quantum cryptography
The security of quantum cryptographyThe security of quantum cryptography
The security of quantum cryptography
 
Entanglement of formation
Entanglement of formationEntanglement of formation
Entanglement of formation
 
Bound entanglement is not rare
Bound entanglement is not rareBound entanglement is not rare
Bound entanglement is not rare
 
Continuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationsContinuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applications
 
Relative entropy and_squahed_entanglement
Relative entropy and_squahed_entanglementRelative entropy and_squahed_entanglement
Relative entropy and_squahed_entanglement
 
Lect12 photodiode detectors
Lect12 photodiode detectorsLect12 photodiode detectors
Lect12 photodiode detectors
 
Towards a one shot entanglement theory
Towards a one shot entanglement theoryTowards a one shot entanglement theory
Towards a one shot entanglement theory
 
Postselection technique for quantum channels and applications for qkd
Postselection technique for quantum channels and applications for qkdPostselection technique for quantum channels and applications for qkd
Postselection technique for quantum channels and applications for qkd
 
Encrypting with entanglement matthias christandl
Encrypting with entanglement matthias christandlEncrypting with entanglement matthias christandl
Encrypting with entanglement matthias christandl
 
Qkd and de finetti theorem
Qkd and de finetti theoremQkd and de finetti theorem
Qkd and de finetti theorem
 
Dic rd theory_quantization_07
Dic rd theory_quantization_07Dic rd theory_quantization_07
Dic rd theory_quantization_07
 
Lattices, sphere packings, spherical codes
Lattices, sphere packings, spherical codesLattices, sphere packings, spherical codes
Lattices, sphere packings, spherical codes
 
Em method
Em methodEm method
Em method
 
标量量化
标量量化标量量化
标量量化
 
Fully understanding cmrr taiwan-2012
Fully understanding cmrr taiwan-2012Fully understanding cmrr taiwan-2012
Fully understanding cmrr taiwan-2012
 
Op amp tutorial-1
Op amp tutorial-1Op amp tutorial-1
Op amp tutorial-1
 

Balanced homodyne detection

  • 1. PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu M.G.Raymer_TTRL2b_V2_2005 1 of 31
  • 2. OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of Light 3. Direct Photodetection and Photon Counting PART 2 4. Balanced Homodyne Detection 5. Ultrafast Photon Number Sampling PART 3 6. Quantum State Tomography M.G.Raymer_TTRL2b_V2_2005 2 of 31
  • 3. DC-BALANCED HOMODYNE DETECTION I Goal -- measure quadrature amplitudes with high Q.E. and temporal-mode selectivity ES = signal field (ωO), 1 - 1000 photons EL = laser reference field (local oscillator) (ωO), 106 photons n1 E1 = dt ES (t) ES + E L PD ND BS n2 PD dt EL (t) θ E2 = ES - EL ND ∝ ∫ E1(− )(t − τ d ) E1(+) (t) dt τd delay − ∫ E 2(− )(t − τ d ) E 2(+) (t) dt M.G.Raymer_TTRL2b_V2_2005 3 of 31
  • 4. DC-BALANCED HOMODYNE DETECTION II integrator circuit n1 dt PD ND n2 PD dt θ M.G.Raymer_TTRL2b_V2_2005 4 of 31
  • 5. DC-BALANCED HOMODYNE DETECTION III ΦS = signal amplitude; ΦL = laser reference amplitude n1 dt ΦS ES (t) ND BS n2 dt Φ EL (t) L θ τd delay overlap ∫ dt ∫ Det d x ΦL T ˆ ND = ˆ (− ) (x,0,t − τ d ) ⋅ Φ(+) (x,0,t) + h.c. 2 ˆS 0 integral ˆ (+ ) (r,t) = i c ΦS ∑ ˆ ak v k (r,t) k v k (r,t) = ∑ Ck j u j (r) exp(−iω j t) j wave-packet c ∫ 0 dt ∫ Det d x v *k (x,0,t) ⋅ v m (x,0,t) = δ k m T 2 modes M.G.Raymer_TTRL2b_V2_2005 5 of 31
  • 6. DC-BALANCED HOMODYNE DETECTION IV ∫ ˆ (− ) (x,0,t − τ d ) ⋅ ∑ ak v k (x,0,t) + h.c. dt ∫ Det d x ΦL T ˆ ND ∝ 2 ˆ 0 k wave-packet modes Assume that the LO pulse is a strong coherent state of a particular localized wave packet mode: LO phase ˆ (+ ) (r,t) ∝ | α | exp(i θ ) v L (r,t) + vacuum ΦL L N D (θ ) = | α L | ( a e−iθ + a† e iθ ) ˆ ˆ ˆ a = ∑ ak c ∫ 0 dt ∫ Det d 2 x v *L (x,0,t − τ d ) ⋅ v k (x,0,t) = ak= L T ˆ ˆ ˆ k The signal field is spatially and temporally gated by the LO field, which has a controlled shape. Where the LO is zero, that portion of the signal is rejected. Only a single temporal-spatial wave- packet mode of the signal is detected. M.G.Raymer_TTRL2b_V2_2005 6 of 31
  • 7. DC-BALANCED HOMODYNE DETECTION V wave-packet signal : ΦS (r,t) ∝ a v L (r,t) + ∑ ak v k (r,t) ˆ (+ ) ˆ ˆ k modes quadrature operators: q = ( a + a† ) / 21/2 ˆ ˆ ˆ p = (a − a† ) / i21/2 ˆ ˆ ˆ detected N D (θ ) a e−iθ + a† e iθ ˆ ˆ ˆ LO phase qθ ≡ ˆ = quantity: |αL | 2 2 ˆ N D (θ ) qθ ≡ ˆ = q cosθ + p sin θ ˆ ˆ |αL | 2 ⎛qθ ⎞ ⎛ cos θ sin θ ⎞⎛ q ⎞ ˆ ˆ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎝ pθ ⎠ ⎝ −sin θ cos θ⎠⎝ p⎠ ˆ ˆ M.G.Raymer_TTRL2b_V2_2005 7 of 31
  • 8. ULTRAFAST OPTICAL SAMPLING Conventional Approach: Ultrafast Time Gating of Light Intensity by NON-LINEAR OPTICAL SAMPLING strong short pump (ωp ) delay sum-frequency (ωp + ωs ) weak signal(ωs ) second-order NL crystal M.G.Raymer_TTRL2b_V2_2005 8 of 31
  • 9. LINEAR OPTICAL SAMPLING I BHD for Ultrafast Time Gating of Quadrature Amplitudes detected ˆ N D (θ ) qθ ≡ ˆ = q cosθ + p sin θ ˆ ˆ quantity: |αL | 2 LO phase q = ( a + a† ) / 21/2 ˆ ˆ ˆ p = (a − a† ) / i21/2 ˆ ˆ ˆ a = ∑ ak c ∫ 0 dt ∫ Det d 2 x v *L (x,0,t − τ d ) ⋅ v k (x,0,t) = ak= L T ˆ ˆ ˆ k LO signal t θ M.G.Raymer_TTRL2b_V2_2005 9 of 31
  • 10. LINEAR OPTICAL SAMPLING II Ultrafast Time Gating of Quadrature Amplitudes LO mode: v L (x,0,t) ∝ α L v L (x) f L (t − τ d ) ∫ T ˆ N D (τ d ) = −i c α * dt f L* (t − τ d ) φS (t) + h.c. L 0 φS (t) = ∫ Det d x v L * (x) ⋅ ΦS 2 ˆ (+) (x,0,t) if signal is band-limited and signal LO covers the band, e.g. LO f L (t) ∝ (1 / t)sin(B t / 2) ν−Β/2 ν+Β/2 ω ˆ D (τ d ) ∝ α * f˜L* (ν ) ∫ ν +B /2 dω exp(−i ω τ d ) φ S (ω ) + h.c. N ˜ L ν −B /2 2π ∝ α L f˜L* (ν ) φ S (τ d ) + h.c. * exact sampling M.G.Raymer_TTRL2b_V2_2005 10 of 31
  • 11. LINEAR OPTICAL SAMPLING III M. E. Anderson, M. Munroe, U. Leonhardt, D. Boggavarapu, D. F. McAlister and M. G. Raymer, Proceedings of Generation, Amplification, and Measurment of Ultrafast Laser Pulses III, pg 142-151 (OE/LASE, San Jose, Jan. 1996) (SPIE, Vol. 2701, 1996). Ultrafast Signal Laser (optical or Source elect. synch.) Spectral Signal Filter Signal Reference (LO) Time Phase LO Balanced Delay Adjustment Homodyne Detector τd θ n1 n2 Computer mean quadrature amplitude in sampling ˆ qθ (t) ψ window at time t M.G.Raymer_TTRL2b_V2_2005 11 of 31
  • 12. LINEAR OPTICAL SAMPLING IV LO scan LO 840 nm, 170 fs θ delay τd Sample: Microcavity exciton polariton coherent signal Balanced Homodyne detector ˆ qθ (t) ψ M.G.Raymer_TTRL2b_V2_2005 12 of 31
  • 13. LINEAR OPTICAL SAMPLING V Mean Quadrature Measurement - sub ps Time Resolution Sample: Microcavity ˆ q (t) 10000θ ψ exciton polariton 5 1000 4 mean 100 3 quadrature g < n(t) > (2) 10 2 (t,t) amplitude <q> at 1 1 time t 0.1 0 0.01 -1 0 2 4 6 8 10 12 Time (ps) LO delay τd (ps) ˆ coherent field --> qθ + π /2 (t) ψ = pθ (t) ψ ≅ 0 ˆ M.G.Raymer_TTRL2b_V2_2005 13 of 31
  • 14. LINEAR OPTICAL SAMPLING VI Phase Sweeping for Indirect Sampling of Mean Photon Number and Photon Number Fluctuations detected ˆ N D (θ ) qθ ≡ ˆ = q cosθ + p sin θ (θ = LO phase) ˆ ˆ quantity: |αL | 2 Relation with photon-number operator: 1 1 n = a a = ( q − i p )( q + i p ) = q + p + ˆ † ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2 ˆ 2 2 2 Phase-averaged quadrature-squared: 1 π 2 1 π 1 2 qθ θ = ∫ 0 qθ dθ = ∫0 ˆ(q cosθ + p sin θ ) dθ = (q + p 2 ) 2 2 ˆ ˆ ˆ ˆ ˆ π π 2 1 ensemble 1 n = qθ ˆ ˆ 2 − n (t) ψ = qθ (t) ˆ ˆ 2 − θ 2 θ ψ 2 average works also for incoherent field (no fixed phase) M.G.Raymer_TTRL2b_V2_2005 14 of 31
  • 15. LINEAR OPTICAL SAMPLING VII Phase Sweeping --> Photon Number Fluctuations detected ˆ N D (θ ) quantity: qθ ≡ | α | 2 = q cosθ + p sin θ ˆ ˆ ˆ L Richter’s formula for Factorial Moments: ∞ n (r ) ψ = ∑ [n(n −1)...(n − r + 1)] p(n) = ( a† ) r ( a) r ˆ ˆ ψ n= 0 (r!) 2 2 π dθ = r 2 (2r)! ∫ 0 2π H 2r (qθ ) ψ ˆ Hermite Polynomials: H 0 (x) = 1, H1 (x) = 2x, H 3 (x) = 4 x 2 − 2 1 2π dθ ∫ 1 n (1) = a ˆ a = ˆ † ˆθ 2 − 2 4q ˆ (t) ψ = qθ 2 (t) n ˆ − 4 0 2π ψ θ ψ 2 2π dθ 2 4 1 n (2) = a a ˆ ˆ †2 2 = ∫ 0 2π 3 qθ − 2 qθ + ˆ ˆ2 2 ψ M.G.Raymer_TTRL2b_V2_2005 15 of 31
  • 16. LINEAR OPTICAL SAMPLING VIII Phase Sweeping --> Photon Number Fluctuations Variance of Photon Number in Sampling Time Window: var(n)=< n 2 > - < n >2 2π dθ ⎡ 2 4 1⎤ ∫ 2 var(n) = qθ − qθ − qθ ˆ ˆ2 ˆ2 + ⎥ 0 2π ⎢ 3 ⎣ 4⎦ Second-Order Coherence of Photon Number in Sampling Time Window: g(2)(t,t )=[< n 2 > - < n >]/< n >2 g(2) (t,t) = 2 corresponds to thermal light, i.e. light produced primarily by spontaneous emission. g(2) (t,t) = 1 corresponds to light with Poisson statistics, i.e., light produced by stimulated emission in the presence of gain saturation. M.G.Raymer_TTRL2b_V2_2005 16 of 31
  • 17. LINEAR OPTICAL SAMPLING IX Photon Number Fluctuations if the signal is incoherent, no phase sweeping is required 80MHz 1-50kHz Ti:Sapphire Regen. Amplifier λ/2 Electronic Trigger Pulse Sample LO Delay λ/2 Signal Alt. Source PBS1 λ/2 Voltage Charge-Sensitive PBS2 Pulser Pre-Amps Computer Photodiodes n1 Shaper AD/DA Stretcher n2 Shaper M. GPIB controller Balanced Homodyne Detector Munroe M.G.Raymer_TTRL2b_V2_2005 17 of 31
  • 18. LINEAR OPTICAL SAMPLING X Superluminescent Diode (SLD) Optical Amplifier metal cap o 6 600 µm 3 µm (AR) SiO 2 p-clad layer p-contact layer quantum wells ~ ~ undoped, graded ~ ~ n-clad layer confining layers n-GaAs substrate Superluminescent (Sarnoff Labs) Emission M. Munroe M.G.Raymer_TTRL2b_V2_2005 18 of 31
  • 19. LINEAR OPTICAL SAMPLING XI (no cavity) 1.0 (a) (a) 0.8 Intensity (a.u.) 0.6 0.4 0.2 25 0.0 Output Power (mW) 810 820 830 840 850 Wavelength (nm) 20 15 10 5 1.0 (b) 0 Intensity (a.u.) 0 100 200 0.5 Drive Current (mA) (b) 0.0 760 800 840 880 Wavelength (nm) M. Munroe M.G.Raymer_TTRL2b_V2_2005 19 of 31
  • 20. LINEAR OPTICAL SAMPLING XII SLD in the single-pass configuration 3.0 <n(t,t)> 2.4 (2) g (t,t) 2.5 2.2 2.0 2.0 1.8 g(2)(t,t) <n(t)> 1.6 1.5 1.4 Photon Fluctuation is Thermal-like, 1.0 1.2 within a single time 1.0 window (150 fs) 0.5 0 5 10 time (ns) 15 20 M. Munroe M.G.Raymer_TTRL2b_V2_2005 20 of 31
  • 21. LINEAR OPTICAL SAMPLING XIII SLD in the double-pass with grating configuration 4.0 <n(t)> 14 (2) g (t,t) 3.5 12 3.0 10 2.5 g(2)(t,t) <n(t)> 8 2.0 6 Photon Fluctuation 1.5 4 is Laser-like, within 2 1.0 a single time 0 0.5 window (150 fs) 0 5 10 15 20 time (ns) M. Munroe M.G.Raymer_TTRL2b_V2_2005 21 of 31
  • 22. Single-Shot Linear Optical Sampling I -- Does not require phase sweeping. Measure both quadratures simultaneously. Dual- DC-Balanced Homodyne Detection LO1 BHD q signal 50/50 q2 + p2 = n BHD p π/2 phase LO2 shifter M.G.Raymer_TTRL2b_V2_2005 22 of 31
  • 23. Fiber Implementation of Single-shot Linear Optical Sampling Of Photon Number MFL: mode-locked Erbium-doped fiber laser. OF: spectral filter. PC: polarization controller. BD: balanced detector. M.G.Raymer_TTRL2b_V2_2005 23 of 31
  • 24. Measured quadratures (continuous and dashed line) on a 10-Gb/s pulse train. Waveform obtained by postdetection squaring and summing of the two quadratures. M.G.Raymer_TTRL2b_V2_2005 24 of 31
  • 25. Two-Mode DC-HOMODYNE DETECTION I LO is in a Superposition of two wave-packet modes, 1 and 2 ˆ (+ ) (r,t) = i c | α L |exp(iθ ) [v1 (r,t)cosα + v 2 (r,t)exp(−iζ )sin α ] ΦL Dual temporal modes: 1 2 (temporal, Dual LO spatial, or signal polarization) BHD Q β = θ −ζ Q = cos(α )[q1 cosθ + p1 sin θ ] + sin(α )[q2 cos β + p2 sin β ] ˆ ˆ ˆ ˆ ˆ ˆ q1θ ˆ q2 β quadrature of mode 1 quadrature of mode 2 M.G.Raymer_TTRL2b_V2_2005 25 of 31
  • 26. Two-Mode DC-HOMODYNE DETECTION II ultrafast two-time number correlation measurements using dual- LO BHD; super luminescent laser diode (SLD) 1 2 Dual LO signal t1 t2 SLD BHD Q two-time second- order coherence : n (t1 ) n (t2 ): ˆ ˆ g (t1,t2 ) = (2) n (t1 ) n (t2 ) ˆ ˆ D. McAlister M.G.Raymer_TTRL2b_V2_2005 26 of 31
  • 27. Two-Mode DC-HOMODYNE DETECTION III Alternative Method using a Single LO. Signal is split and delayed by different times. Polarization rotations can be introduced. signal LO source BHD Q polarization rotator two-pol., two-time : n i (t1 ) n j (t2 ): ˆ ˆ second-order g (t1,t2 ) = (2) i, j coherence n i (t1 ) n j (t2 ) ˆ ˆ A. Funk M.G.Raymer_TTRL2b_V2_2005 27 of 31
  • 28. Two-Mode DC-HOMODYNE DETECTION IV Single-time, two-polarization correlation measurements on emission from a VCSEL 0-2π phase sweeping and time delay 0-2π relative phase sweeping E. Blansett M.G.Raymer_TTRL2b_V2_2005 28 of 31
  • 29. Two-Mode DC-HOMODYNE DETECTION V Single-time, two- polarization correlation measurements on emission from a VCSEL at low temp. (10K) : n i (t1 ) n i (t2 ): ˆ ˆ g (t1,t2 ) = (2) i, i n i (t1 ) ni (t2 ) ˆ ˆ : n i (t1 ) n j (t2 ): ˆ ˆ uncorrelated g (t1,t2 ) = (2) i, j n i (t1 ) n j (t2 ) ˆ ˆ E. Blansett M.G.Raymer_TTRL2b_V2_2005 29 of 31
  • 30. Two-Mode DC-HOMODYNE DETECTION VI Single-time, two- polarization correlation measurements on emission from a VCSEL at room temp. : n i (t1 ) n i (t2 ): ˆ ˆ g (t1,t2 ) = (2) i, i n i (t1 ) ni (t2 ) ˆ ˆ : n i (t1 ) n j (t2 ): ˆ ˆ anticorrelated g (t1,t2 ) = (2) i, j n i (t1 ) n j (t2 ) ˆ ˆ Spin-flip --> gain competition M.G.Raymer_TTRL2b_V2_2005 30 of 31
  • 31. SUMMARY: DC-Balanced Homodyne Detection 1. BHD can take advantage of: high QE and ultrafast time gating. 2. BHD can provide measurements of photon mean numbers, as well as fluctuation information (variance, second-order coherence). 3. BHD can selectively detect unique spatial-temporal modes, including polarization states. M.G.Raymer_TTRL2b_V2_2005 31 of 31