SlideShare ist ein Scribd-Unternehmen logo
1 von 36
Tutorial on Electronic Configuration and
Quantum Numbers.

Prepared by
Lawrence Kok
http://lawrencekok.blogspot.com
Periodic Table of elements – divided into s, p, d, f blocks
Periodic Table of elements – divided into s, p, d, f blocks

s block
• s orbitals partially fill

d block
• d orbitals partially filled
• transition elements

f block
• f orbital partially fill

p block
• p orbital partially fill
Electron filled according to 3 Principles
1

Aufbau Principle
• electron occupy orbitals of lower energy first
• building up, construction from bottom up

4Be

High energy

- 1s2 2s2

5B

- 1s2 2s2 2p1

2p

2p

2s

2s
Click here to view simulation

1s

1s
lower energy

Click here to view simulation

Click here to view simulation
Electron filled according to 3 Principles
1

Aufbau Principle
• electron occupy orbitals of lower energy first
• building up, construction from bottom up

4Be

High energy

- 1s2 2s2

5B

- 1s2 2s2 2p1

2p

2p

2s

2s
Click here to view simulation

1s

1s
lower energy

2

Hund’s Principle
• electron occupy orbitals singly first before pairing up
7N

High energy

- 1s2 2s2 2p3

8O

- 1s2 2s2 2p4

2p
2s
1s

Click here to view simulation
lower energy

Click here to view simulation
Electron filled according to 3 Principles
1

Aufbau Principle
• electron occupy orbitals of lower energy first
• building up, construction from bottom up

4Be

High energy

- 1s2 2s2

5B

- 1s2 2s2 2p1

2p

2p

2s

2s
Click here to view simulation

1s

1s
lower energy

2

Hund’s Principle
• electron occupy orbitals singly first before pairing up
7N

High energy

- 1s2 2s2 2p3

8O

- 1s2 2s2 2p4

2p
2s

Click here to view simulation

1s
3

lower energy

Pauli Exclusion Principle
• each orbital occupy by 2 electron opposite spin
4Be

- 1s2 2s2

High energy

10Ne

- 1s2 2s2 2p6

Click here to view simulation
lower energy
Electron configuration

5

B

1s2 2s2 2p1

6

C

1s2 2s2 2p2

7

N

1s2 2s2 2p3

8

O

1s2 2s2 2p4

9

F

1s2 2s2 2p5

10

Ne

1s2 2s2 2p6

11

Na

1s2 2s2 2p6 3s1

12

Mg

1s2 2s2 2p6 3s2

13

Al

1s2 2s2 2p6 3s2 3p1

14

Si

1s2

15

P

1s2 2s2 2p6 3s2 3p3

16

S

1s2 2s2 2p6 3s2 3p4

17

CI

1s2 2s2 2p6 3s2 3p5

18

Ar

1s2 2s2 2p6 3s2 3p6

19

K

1s2 2s2 2p6 3s2 3p6 4s1

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

Electron occupy 4s first then 3d

Energy level and sublevels

2s2

2p6

4s energy level lower than 3d

3s2

4s
3p
3p2

3s
18Ar

– 1s2 2s2 2p6 3s2 3p6
2p
2s
1s

3d
Electron configuration

5

B

1s2 2s2 2p1

6

C

1s2 2s2 2p2

7

N

1s2 2s2 2p3

8

O

1s2 2s2 2p4

9

F

1s2 2s2 2p5

10

Ne

1s2 2s2 2p6

11

Na

1s2 2s2 2p6 3s1

12

Mg

1s2 2s2 2p6 3s2

13

Al

1s2 2s2 2p6 3s2 3p1

14

Si

1s2

15

P

1s2 2s2 2p6 3s2 3p3

16

S

1s2 2s2 2p6 3s2 3p4

17

CI

1s2

18

Ar

1s2 2s2 2p6 3s2 3p6

19

K

1s2

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

Electron occupy 4s first then 3d

Energy level and sublevels

2s2

2s2

2s2

2p6

2p6

2p6

4s energy level lower than 3d

3s2

3s2

3s2

4s

3d

3p
3p2

3s
18Ar

– 1s2 2s2 2p6 3s2 3p6
2p
2s

3p5

3p6 4s1

Electrons fill 4s first

3d
4s

1s
3p
19K

– 1s2 2s2 2p6 3s2 3p6 4s1

3s
2p

2s

1s
Electron configuration

5

B

1s2 2s2 2p1

6

C

1s2 2s2 2p2

7

N

1s2 2s2 2p3

8

O

1s2 2s2 2p4

9

F

1s2 2s2 2p5

10

Ne

1s2 2s2 2p6

11

Na

1s2 2s2 2p6 3s1

12

Mg

1s2 2s2 2p6 3s2

13

Al

1s2 2s2 2p6 3s2 3p1

14

Si

1s2

15

P

1s2 2s2 2p6 3s2 3p3

16

S

1s2 2s2 2p6 3s2 3p4

17

CI

1s2

18

Ar

1s2 2s2 2p6 3s2 3p6

19

K

1s2

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

Electron occupy 4s first then 3d

Energy level and sublevels

1s2 2s2 2p6 3s2 3p6 4s2 3d10

2s2

2s2

2s2

2p6

2p6

2p6

4s energy level lower than 3d

3s2

3s2

3s2

4s

3d

3p
3p2

3s
18Ar

– 1s2 2s2 2p6 3s2 3p6
2p
2s

3p5

3p6 4s1

Electrons fill 4s first

3d
4s

1s
3p
19K

– 1s2 2s2 2p6 3s2 3p6 4s1

3s
4s then 3d is fill

2p
3d

2s

4s

1s
21Sc

3p
3s

– 1s2 2s2 2p6 3s2 3p6 4s2 3d1
2p

2s
1s
Electron Notation
Atom
s, p, d, f notation
Complete configuration

10

Ne

1s2 2s2 2p6

11

Na

1s2 2s2 2p6 3s1

12

Mg

1s2 2s2 2p6 3s2

13

Al

1s2 2s2 2p6 3s2 3p1

14

Si

1s2 2s2 2p6 3s2 3p2

15

P

1s2 2s2 2p6 3s2 3p3

16

S

1s2 2s2 2p6 3s2 3p4

17

CI

1s2 2s2 2p6 3s2 3p5

18

Ar

1s2 2s2 2p6 3s2 3p6

19

K

1s2 2s2 2p6 3s2 3p6 4s1

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10
Electron Notation
Atom
s, p, d, f notation
Complete configuration

Noble gas notation
Condensed configuration

10

Ne

1s2 2s2 2p6

10

Ne

[Ne]

11

Na

1s2 2s2 2p6 3s1

11

Na

[Ne] 3s1

12

Mg

1s2 2s2 2p6 3s2

12

Mg

[Ne] 3s2

13

Al

1s2 2s2 2p6 3s2 3p1

13

Al

[Ne] 3s2 3p1

14

Si

1s2 2s2 2p6 3s2 3p2

14

Si

[Ne] 3s2 3p2

15

P

1s2 2s2 2p6 3s2 3p3

15

P

[Ne] 3s2 3p3

16

S

1s2 2s2 2p6 3s2 3p4

16

S

[Ne] 3s2 3p4

17

CI

1s2 2s2 2p6 3s2 3p5

17

CI

[Ne] 3s2 3p5

18

Ar

1s2 2s2 2p6 3s2 3p6

18

Ar

[Ar]

19

K

1s2 2s2 2p6 3s2 3p6 4s1

19

K

[Ar] 4s1

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

20

Ca

[Ar] 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

21

Sc

[Ar] 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

22

Ti

[Ar] 4s2 3d2

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

23

V

[Ar] 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

24

Cr

[Ar] 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

25

Mn

[Ar] 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

26

Fe

[Ar] 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

27

Co

[Ar] 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

28

Ni

[Ar] 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

29

Cu

[Ar] 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

30

Zn

[Ar] 4s2 3d10

[Ne]

[Ar]
Electron Notation
Atom

Positive/Negative Ion

s, p, d, f notation
Complete configuration

Noble gas notation
Condensed configuration

Noble gas notation
Complete configuration

10

Ne

1s2 2s2 2p6

10

Ne

[Ne]

10

Ne

1s2 2s2 2p6 /[Ne]

11

Na

1s2 2s2 2p6 3s1

11

Na

[Ne] 3s1

11

Na+

1s2 2s2 2p6 / [Ne]

12

Mg

1s2 2s2 2p6 3s2

12

Mg

[Ne] 3s2

12

Mg2+

1s2 2s2 2p6 / [Ne]

13

Al

1s2 2s2 2p6 3s2 3p1

13

Al

[Ne] 3s2 3p1

13

Al3+

1s2 2s2 2p6 / [Ne]

14

Si

1s2 2s2 2p6 3s2 3p2

14

Si

[Ne] 3s2 3p2

14

Si4+

1s2 2s2 2p6 / [Ne]

15

P

1s2 2s2 2p6 3s2 3p3

15

P

[Ne] 3s2 3p3

15

P3-

1s2 2s2 2p6 3s2 3p6 /[Ar]

16

S

1s2 2s2 2p6 3s2 3p4

16

S

[Ne] 3s2 3p4

16

S2-

1s2 2s2 2p6 3s2 3p6 /[Ar]

17

CI

1s2 2s2 2p6 3s2 3p5

17

CI

[Ne] 3s2 3p5

17

CI-

1s2 2s2 2p6 3s2 3p6/ [Ar]

18

Ar

1s2 2s2 2p6 3s2 3p6

18

Ar

[Ar]

19

[Ne]

18

Ar

[Ar]

K

[Ar]

4s1

19

K+

1s2 2s2 2p6 3s2 3p6 /[Ar]

20

Ca

[Ar] 4s2

20

Ca2+

1s2 2s2 2p6 3s2 3p6 / [Ar]

21

Sc

[Ar] 4s2 3d1

22

Ti

[Ar] 4s2 3d2

1s2 2s2 2p6 3s2 3p6 4s2 3d3

23

V

[Ar] 4s2 3d3

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

24

Cr

[Ar] 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

25

Mn

[Ar] 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

26

Fe

[Ar] 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

27

Co

[Ar] 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

28

Ni

[Ar] 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

29

Cu

[Ar] 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

30

Zn

[Ar] 4s2 3d10

K

1s2

2s2

2p6

3s2

3p6 4s1

19

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

V

24

[Ar]
d block

Exception to d block elements
4s energy level lower than 3d

3d

4s
3p
Electron configuration d block

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti
V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

21Sc

– 1s2 2s2 2p6 3s2 3p6 4s2 3d1

2p

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

3s
2s
1s

4s energy level lower than 3d
d block

Exception to d block elements
4s energy level lower than 3d

3d

4s
3p
Electron configuration d block

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti
V

24

Cr

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co
Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

2s2

2p6

3s2

3p6 4s1

3d5

4s energy level lower than 3d

2p

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

– 1s2 2s2 2p6 3s2 3p6 4s2 3d1

1s2 2s2 2p6 3s2 3p6 4s2 3d3

1s2

21Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

3s
2s
1s
24Cr

– 1s2 2s2 2p6 3s2 3p6 4s13d5

24Cr

– 1s2 2s2 2p6 3s2 3p6 4s2 3d4

3d

✔
✗

4s
3p
3s
2p
2s

1s

Half fill energetically more stable
d block

Exception to d block elements
4s energy level lower than 3d

3d

4s
3p
Electron configuration d block

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti
V

24

Cr

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co
Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

2s2

2p6

3s2

3p6 4s1

3d5

4s energy level lower than 3d

2p

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

– 1s2 2s2 2p6 3s2 3p6 4s2 3d1

1s2 2s2 2p6 3s2 3p6 4s2 3d3

1s2

21Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

3s
2s
1s
24Cr

– 1s2 2s2 2p6 3s2 3p6 4s13d5

24Cr

– 1s2 2s2 2p6 3s2 3p6 4s2 3d4

3d

✔
✗

4s
3p
3s

Half fill energetically more stable

2p
2s

1s

29Cu

29Cu

–1s2 2s2 2p6 3s2 3p6 4s1 3d10
–1s2 2s2 2p6 3s2 3p6 4s2 3d9

✔
✗

4s
3p
3s

Half fill energetically more stable

2p
2s
1s

3d
s block elements
• s orbitals partially fill

1

H
He

p block elements
• p orbital partially fill

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

Periodic Table – s, p d, f blocks elements

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

14
19
20

K
Ca

Si

[Ne] 3s2 3p2

[Ar]

4s1

15

P

[Ne] 3s2 3p3

[Ar]

4s2

16

S

[Ne] 3s2 3p4

17

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6
s block elements
• s orbitals partially fill

1

H
He

p block elements
• p orbital partially fill

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

Periodic Table – s, p d, f blocks elements

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

14
20

K
Ca

[Ne] 3s2 3p2

[Ar]

15

P

[Ne] 3s2 3p3

[Ar]

4s2

16

S

[Ne] 3s2 3p4

17

19

Si

4s1

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6

d block elements
• d orbitals partially fill
• transition elements

21

Sc

[Ar] 4s2 3d1

22

Ti

[Ar] 4s2 3d2

23

V

[Ar] 4s2 3d13

24

Cr

[Ar] 4s1 3d5

25

Mn

[Ar] 4s2 3d5

26

Fe

[Ar] 4s2 3d6

27

Co

[Ar] 4s2 3d7

28

Ni

[Ar] 4s2 3d8

29

Cu

[Ar] 4s1 3d10

30

Zn

[Ar] 4s2 3d10
s block elements
• s orbitals partially fill

1

H
He

p block elements
• p orbital partially fill

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

Periodic Table – s, p d, f blocks elements

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

14
20

K
Ca

[Ne] 3s2 3p2

[Ar]

15

P

[Ne] 3s2 3p3

[Ar]

4s2

16

S

[Ne] 3s2 3p4

17

19

Si

4s1

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6

d block elements
• d orbitals partially fill
• transition elements

21

Sc

[Ar] 4s2 3d1

22

Ti

[Ar] 4s2 3d2

23

V

[Ar] 4s2 3d13

24

Cr

[Ar] 4s1 3d5

25

Mn

[Ar] 4s2 3d5

26

Fe

[Ar] 4s2 3d6

27

Co

[Ar] 4s2 3d7

28

Ni

[Ar] 4s2 3d8

29

Cu

[Ar] 4s1 3d10

30

Zn

[Ar] 4s2 3d10

f block elements
• f orbitals partially fill

Video on electron configuration

Click here electron structure

Click here video on s,p,d,f notation

Click here video s,p,d,f blocks,
Periodic Table – s, p d, f blocks elements
Electron structure
Chromium d block (Period 4)

Electron structure
Germanium p block, Gp 4 (Period 4)

Electron structure
Iodine p block, Gp 7 (Period 5)

1s2 2s2 2p6 3s2 3p6 4s1 3d5
[Ar] 4s1 3d5

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2
[Ar] 4s2 3d10 4p2

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p5
[Kr] 5s2 4d10 5p5

d block – d partially filled

Gp 4 -4 valence electron

Gp 7 - 7 valence electron
Periodic Table – s, p d, f blocks elements
Electron structure
Chromium d block (Period 4)

Electron structure
Germanium p block, Gp 4 (Period 4)

Electron structure
Iodine p block, Gp 7 (Period 5)

1s2 2s2 2p6 3s2 3p6 4s1 3d5
[Ar] 4s1 3d5

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2
[Ar] 4s2 3d10 4p2

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p5
[Kr] 5s2 4d10 5p5

d block – d partially filled

Electron structure
Cadmium d block (Period 5)

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10
[Kr] 5s2 4d10
d block – d partially filled

Gp 4 -4 valence electron

Electron structure
Mercury d block (Period 6)

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d10
[Xe] 6s2 4f14 5d10
d block – d partially filled

Gp 7 - 7 valence electron

Electron structure
Lead p block, Gp 4 (Period 6)

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2
[Xe] 6s2 4f14 5d10 6p2
Gp 4 -4 valence electron
s block elements
• s orbitals partially fill

1

H
He

p block elements
• p orbital partially fill

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

Periodic Table – s, p d, f blocks elements

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

14

Si

[Ne] 3s2 3p2

15

P

[Ne] 3s2 3p3

16

S

[Ne] 3s2 3p4

17

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

19
20

K
Ca

[Ar]

4s1

[Ar]

4s2

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2
[Xe] 6s2 4f14 5d10 6p2
Periodic Table – s, p d, f blocks elements

s block elements
• s orbitals partially fill

1

H
He

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

p block elements
• p orbital partially fill

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

14

Si

[Ne] 3s2 3p2

15

P

[Ne] 3s2 3p3

16

S

[Ne] 3s2 3p4

17

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

19

K

20

1

Ca

[Ar]
[Ar]

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2
[Xe] 6s2 4f14 5d10 6p2

4s1
4s2

Identify position elements P, Q, R, S and T
Electron configuration :
P – 3s2 3p6
Q – 4s2 4p5
R – 3s2 3p6 4s2
S – 1s2 2s2 2p6 3s2 3p6 3d3 4s2
T – 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6

Answer

Element

2

Write electron configuration for X, Y and Z
Element

Group

Period

X

2

3

Y

15

2

Z

18

3

Answer

Grou
p

Period

Classification

P

8/18

3

Noble gas

Q

7/17

4

p block

R

2

4

s block

S

5

4

d block

T

8/18

4

Noble gas

X – 1s2 2s2 2p6 3s2
Y – 1s2 2s2 2p3
Z – 1s2 2s2 2p6 3s2 3p6

3

Write electron structure for ions:

•
•
•
•
•
•

O - 1s2 2s2 2p4
O2- V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3
V3+ Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9
Cu2+ -

Answer

Write electron structure for ions:

•
•
•
•
•
•

O - 1s2 2s2 2p4
O2- -1s2 2s2 2p6
V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3
V 3+ - 1s2 2s2 2p6 3s2 3p6 4s0 3d2
Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9
Cu 2+ - 1s2 2s2 2p6 3s23p6 4s0 3d9
Four Quantum Numbers
•
•
•
1

Electrons arrange in specific energy level and sublevels
Orbitals of electrons in atom differ in size, shape and orientation.
Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms)

Principal Quantum Number (n): n = 1, 2, 3,.. ∞
• Energy of electron and size of orbital/shell
• Distance from nucleus, (higher n – higher energy)
• Larger n - farther e from nucleus – larger size orbital
• n=1, 1stprincipal shell ( innermost/ground shell state)

No TWO electron have same
4 quantum number
Four Quantum Numbers
•
•
•

Electrons arrange in specific energy level and sublevels
Orbitals of electrons in atom differ in size, shape and orientation.
Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms)

1

Principal Quantum Number (n): n = 1, 2, 3,.. ∞
• Energy of electron and size of orbital/shell
• Distance from nucleus, (higher n – higher energy)
• Larger n - farther e from nucleus – larger size orbital
• n=1, 1stprincipal shell ( innermost/ground shell state)

2

Angular Momentum Quantum Number (l): l = 0 to n-1.
• Orbital Shape
• Divides shells into subshells/sublevels.
• Letters (s, d, p, f)
s orbital

p orbital

d orbital

No TWO electron have same
4 quantum number
Four Quantum Numbers
•
•
•

Electrons arrange in specific energy level and sublevels
Orbitals of electrons in atom differ in size, shape and orientation.
Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms)

1

Principal Quantum Number (n): n = 1, 2, 3,.. ∞
• Energy of electron and size of orbital/shell
• Distance from nucleus, (higher n – higher energy)
• Larger n - farther e from nucleus – larger size orbital
• n=1, 1stprincipal shell ( innermost/ground shell state)

2

Angular Momentum Quantum Number (l): l = 0 to n-1.
• Orbital Shape
• Divides shells into subshells/sublevels.
• Letters (s, d, p, f)
s orbital

p orbital

d orbital

3

No TWO electron have same
4 quantum number

Magnetic Quantum Number (ml): ml = -l, 0, +l.
• Orientation orbital in space/direction
• mℓ range from −ℓ to ℓ,
• ℓ = 0 -> mℓ = 0
–> s sublevel -> 1 orbital
• ℓ = 1 -> mℓ = -1, 0, +1
-> p sublevel -> 3 diff p orbitals
• ℓ = 2 -> mℓ = -2, -1, 0, +1, +2 -> d sublevel -> 5 diff d orbitals
• (2l+ 1 ) quantum number for each ℓ value
Four Quantum Numbers
•
•
•

Electrons arrange in specific energy level and sublevels
Orbitals of electrons in atom differ in size, shape and orientation.
Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms)

1

Principal Quantum Number (n): n = 1, 2, 3,.. ∞
• Energy of electron and size of orbital/shell
• Distance from nucleus, (higher n – higher energy)
• Larger n - farther e from nucleus – larger size orbital
• n=1, 1stprincipal shell ( innermost/ground shell state)

2

Angular Momentum Quantum Number (l): l = 0 to n-1.
• Orbital Shape
• Divides shells into subshells/sublevels.
• Letters (s, d, p, f)
s orbital

p orbital

3

4

No TWO electron have same
4 quantum number

Magnetic Quantum Number (ml): ml = -l, 0, +l.
• Orientation orbital in space/direction
• mℓ range from −ℓ to ℓ,
• ℓ = 0 -> mℓ = 0
–> s sublevel -> 1 orbital
• ℓ = 1 -> mℓ = -1, 0, +1
-> p sublevel -> 3 diff p orbitals
• ℓ = 2 -> mℓ = -2, -1, 0, +1, +2 -> d sublevel -> 5 diff d orbitals
• (2l+ 1 ) quantum number for each ℓ value

Spin Quantum Number (ms): ms = +1/2 or -1/2
• Each orbital – 2 electrons, spin up/down
• Pair electron spin opposite direction
• One spin up, ms = +1/2
• One spin down, ms = -1/2
• No net spin/cancel out each other– diamagnetic electron
writing electron spin
electron spin up/down

d orbital
Principal and Angular Momentum Quantum numbers
•
•
•

Electrons arrange in specific energy level and sublevels
Orbitals of electrons in atom differ in size, shape and orientation.
Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms)

1

Principal Quantum Number (n): n = 1, 2, 3, …, ∞
• Energy of electron and size of orbital /shell
• Distance from nucleus, (higher n – higher energy)
• Larger n - farther e from nucleus – larger size orbital
• n=1, 1stprincipal shell ( innermost/ground shell state)

2

Angular Momentum Quantum Number (l): l = 0, ..., n-1.
• Orbital Shape
• Divides shells into subshells (sublevels)
• Letters (s,p,d,f)
• < less than n-1

Sublevels, l
Principal and Angular Momentum Quantum numbers
•
•
•

Electrons arrange in specific energy level and sublevels
Orbitals of electrons in atom differ in size, shape and orientation.
Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms)

1

Principal Quantum Number (n): n = 1, 2, 3, …, ∞
• Energy of electron and size of orbital /shell
• Distance from nucleus, (higher n – higher energy)
• Larger n - farther e from nucleus – larger size orbital
• n=1, 1stprincipal shell ( innermost/ground shell state)

2

Angular Momentum Quantum Number (l): l = 0, ..., n-1.
• Orbital Shape
• Divides shells into subshells (sublevels)
• Letters (s,p,d,f)
• < less than n-1

Sublevels, l

Quantum number, n and l

l=1

2p sublevel

l=0

2s sublevel

n= 2

n= 1
1

Principal
Quantum #, n
(Size , energy)

l=0
2

1s sublevel

Angular momentum
quantum number, l
(Shape of orbital)

1

Principal Quantum
Number (n)

2

Angular Momentum
Quantum Number (l)
Principal and Angular Momentum Quantum numbers
•
•
•

Electrons arrange in specific energy level and sublevels
Orbitals of electrons in atom differ in size, shape and orientation.
Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms)

1

Principal Quantum Number (n): n = 1, 2, 3, …, ∞
• Energy of electron and size of orbital /shell
• Distance from nucleus, (higher n – higher energy)
• Larger n - farther e from nucleus – larger size orbital
• n=1, 1stprincipal shell ( innermost/ground shell state)

2

Angular Momentum Quantum Number (l): l = 0, ..., n-1.
• Orbital Shape
• Divides shells into subshells (sublevels)
• Letters (s,p,d,f)
• < less than n-1

Sublevels, l

Quantum number, n and l

l=1

2p sublevel

l=0

2s sublevel

n= 2

n= 1
1

Principal
Quantum #, n
(Size , energy)

l=0
2

1s sublevel

Angular momentum
quantum number, l
(Shape of orbital)
2p sublevel – contain 2p orbital

2nd energy level

Has TWO sublevels
2s sublevel – contain 2s orbital

1st energy level

Has ONE sublevel

1s sublevel – contain 1s orbital

1

Principal Quantum
Number (n)

2

Angular Momentum
Quantum Number (l)
Electronic Orbitals
n = 1, 2, 3,….

Allowed values

l = 0 to n-1

Allowed values

ml = -l, 0, +l- (2l+ 1 ) for each ℓ value
ml =+2
ml =+1
ml = 0

l=1

3px orbital

ml = 0

3s sublevel

3py orbital

3s orbital

ml =+1

l=0

3pz orbital

ml = 0

3p sublevel

3dxy orbital

ml =-1

l=1

3dxz orbital

ml =+1
n= 3

3dz2 orbital

ml =-2

3d sublevel

3dyz orbital

ml =-1

l=2
Energy Level

3dx2 – y2 orbital

2py orbital

ml = 0

2p sublevel

2pz orbital

ml =-1

n= 2

2px orbital

l=0

1

Principal
Quantum #, n
(Size , energy)

2

ml =0

2s orbital

l=0

n= 1

2s sublevel

1s sublevel

ml =0

1s orbital

Angular momentum
quantum number, l
(Shape of orbital)

3

Magnetic Quantum
Number (ml)
(Orientation orbital)
Electronic Orbitals
Simulation Electronic Orbitals
n = 1, 2, 3,….

Allowed values

l = 0 to n-1

Allowed values

ml = -l, 0, +l- (2l+ 1 ) for each ℓ value
ml =+2
ml =+1
ml = 0

l=1

3px orbital

ml = 0

3s sublevel

3py orbital

3s orbital

ml =+1

l=0

3pz orbital

ml = 0

3p sublevel

3dxy orbital

ml =-1

l=1

3dxz orbital

ml =+1
n= 3

3dz2 orbital

ml =-2

3d sublevel

3dyz orbital

ml =-1

l=2
Energy Level

3dx2 – y2 orbital

2py orbital

ml = 0

2p sublevel

2pz orbital

ml =-1

n= 2

2px orbital

l=0

1

Principal
Quantum #, n
(Size , energy)

2

2s sublevel

ml =0

1s sublevel

ml =0

Click here to view simulation

2s orbital

l=0

n= 1

Click here to view simulation

1s orbital

Angular momentum
quantum number, l
(Shape of orbital)

3

Magnetic Quantum
Number (ml)
(Orientation orbital)

Click here to view simulation
Quantum Numbers and Electronic Orbitals
ml =+2

Energy Level

3dx2 – y2orbital

ml =+1

3dz2 orbital

3dxz orbital

ml =-2

3d sublevel

ml = 0

ml =-1

l=2

3dyz orbital

3dxy orbital

n= 3

ml =+1

l=1

3s sublevel

2p sublevel

n= 2

3pz orbital
3px orbital

ml = 0

3s orbital

ml =+1

l=0

3p sublevel

ml = 0
ml =-1

l=1

3py orbital

2py orbital

ml = 0

2pz orbital

ml =-1

2px orbital

l=0

n= 1

2s sublevel

ml =0

2s orbital

l=0

1s sublevel

ml =0

1s orbital
Quantum Numbers and Electronic Orbitals
ml =+2

3dx2 – y2orbital

Simulation Electronic Orbitals
Energy Level

ml =+1

3d sublevel

ml = 0

3dz2 orbital

ml =-1

l=2

3dyz orbital

3dxz orbital
Click here to view simulation

n= 3
ml =-2

3dxy orbital

ml =+1
3p sublevel

ml = 0

3pz orbital

ml =-1

l=1

3py orbital

3px orbital

Click here to view simulation
l=0

2p sublevel

n= 2

ml = 0

3s orbital

ml =+1
l=1

3s sublevel

2py orbital

ml = 0

2pz orbital

ml =-1

2px orbital

l=0

n= 1

2s sublevel

ml =0

2s orbital

l=0

1s sublevel

ml =0

1s orbital

Click here to view simulation
Concept Map

No TWO electron have same
4 quantum number

Quantum number

Quantum number = genetic code for electron

What are these 4 numbers?
(1, 0, 0, +1/2) 0r (3, 1, 1, +1/2)
4 numbers

n

l

Size/distance

Shape

Number + letter

ml

Orientation

ms

Electron spin

Electron has special number codes
Concept Map

No TWO electron have same
4 quantum number

Quantum number

Quantum number = genetic code for electron

What are these 4 numbers?
(1, 0, 0, +1/2) 0r (3, 1, 1, +1/2)
4 numbers

n

l

Size/distance

Shape

ml

Orientation

ms

Electron has special number codes

Electron spin

Number + letter

1

Electron with quantum number given below

(n,l,ml,,ms) – (1, 0, 0, +1/2)

(n,l,ml,,ms) – (3, 1, 1, +1/2)

2

1s orbital

3py orbital

What values of l, ml, allow for n = 3? How many orbitals exists for n=3?

Video on Quantum numbers

For n=3 -> l = n -1 =2 -> ml = -l, 0, +l -> -2, -1, 0, +1, +2
• mℓ range from −ℓ to ℓ,
• ℓ = 0 -> mℓ = 0
–> s sublevel -> 1 orbital
• ℓ = 1 -> mℓ = -1, 0, +1
-> p sublevel -> 3 diff p orbitals
• ℓ = 2 -> mℓ = -2, -1, 0, +1, +2 -> d sublevel -> 5 diff d orbitals
• (2l+ 1 ) quantum number for each ℓ value
Answer = nine ml values – 9 orbitals/ total # orbitals = n 2
Click here video on quantum number

Click here video on quantum number
Acknowledgements
Thanks to source of pictures and video used in this presentation
http://crescentok.com/staff/jaskew/isr/tigerchem/econfig/electron4.htm
http://pureinfotech.com/wp-content/uploads/2012/09/periodicTable_20120926101018.png

Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/

Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

Weitere ähnliche Inhalte

Was ist angesagt?

Section 1.1 Why Do Atoms Combine?
Section 1.1 Why Do Atoms Combine? Section 1.1 Why Do Atoms Combine?
Section 1.1 Why Do Atoms Combine? Melinda MacDonald
 
Greek astronomy
Greek  astronomyGreek  astronomy
Greek astronomyANKUSH PAL
 
Polarity-of-Molecules-and-Its-Properties -.pptx
Polarity-of-Molecules-and-Its-Properties -.pptxPolarity-of-Molecules-and-Its-Properties -.pptx
Polarity-of-Molecules-and-Its-Properties -.pptxDiosaliePabilan1
 
Group Names and Properties
Group Names and PropertiesGroup Names and Properties
Group Names and PropertiesTeacherAndrew
 
Factors Affecting Reaction Rates
Factors Affecting Reaction RatesFactors Affecting Reaction Rates
Factors Affecting Reaction RatesAngelo Delossantos
 
Electron configuration
Electron configurationElectron configuration
Electron configurationKamal Metwalli
 
Exothermic and Endothermic Reactions.ppt
Exothermic and Endothermic Reactions.pptExothermic and Endothermic Reactions.ppt
Exothermic and Endothermic Reactions.pptSamRugumamu
 
6 concept of atomic no.... moran &amp; atega
6 concept of atomic no.... moran &amp; atega6 concept of atomic no.... moran &amp; atega
6 concept of atomic no.... moran &amp; ategaRupert Capellan
 
Ratesofreaction
RatesofreactionRatesofreaction
RatesofreactionReem Bakr
 
Models-of-the-Universe.pptx
Models-of-the-Universe.pptxModels-of-the-Universe.pptx
Models-of-the-Universe.pptxStephanyDelaPea
 
Astronomy and the invention of Telescope
Astronomy and the invention of TelescopeAstronomy and the invention of Telescope
Astronomy and the invention of TelescopeJerome Bigael
 
Electron arrangement in atoms
Electron arrangement in atomsElectron arrangement in atoms
Electron arrangement in atomsAngbii Gayden
 
How to draw the lewis dot structure of a molecule
How to draw the lewis dot structure of a moleculeHow to draw the lewis dot structure of a molecule
How to draw the lewis dot structure of a moleculegengarl
 
POLARITY OF MOLECULES.pptx
POLARITY OF MOLECULES.pptxPOLARITY OF MOLECULES.pptx
POLARITY OF MOLECULES.pptxmargiebartolome
 
Closed and open system in earth
Closed and open system in earthClosed and open system in earth
Closed and open system in earthGhassan Hadi
 

Was ist angesagt? (20)

Section 1.1 Why Do Atoms Combine?
Section 1.1 Why Do Atoms Combine? Section 1.1 Why Do Atoms Combine?
Section 1.1 Why Do Atoms Combine?
 
Greek astronomy
Greek  astronomyGreek  astronomy
Greek astronomy
 
Chemical Names and Formulas
Chemical Names and FormulasChemical Names and Formulas
Chemical Names and Formulas
 
Polarity-of-Molecules-and-Its-Properties -.pptx
Polarity-of-Molecules-and-Its-Properties -.pptxPolarity-of-Molecules-and-Its-Properties -.pptx
Polarity-of-Molecules-and-Its-Properties -.pptx
 
Group Names and Properties
Group Names and PropertiesGroup Names and Properties
Group Names and Properties
 
Liquids and Solids
Liquids and SolidsLiquids and Solids
Liquids and Solids
 
Factors Affecting Reaction Rates
Factors Affecting Reaction RatesFactors Affecting Reaction Rates
Factors Affecting Reaction Rates
 
Electron configuration
Electron configurationElectron configuration
Electron configuration
 
Exothermic and Endothermic Reactions.ppt
Exothermic and Endothermic Reactions.pptExothermic and Endothermic Reactions.ppt
Exothermic and Endothermic Reactions.ppt
 
6 concept of atomic no.... moran &amp; atega
6 concept of atomic no.... moran &amp; atega6 concept of atomic no.... moran &amp; atega
6 concept of atomic no.... moran &amp; atega
 
Ratesofreaction
RatesofreactionRatesofreaction
Ratesofreaction
 
H r diagram
H r diagramH r diagram
H r diagram
 
Models-of-the-Universe.pptx
Models-of-the-Universe.pptxModels-of-the-Universe.pptx
Models-of-the-Universe.pptx
 
Astronomy and the invention of Telescope
Astronomy and the invention of TelescopeAstronomy and the invention of Telescope
Astronomy and the invention of Telescope
 
Electron arrangement in atoms
Electron arrangement in atomsElectron arrangement in atoms
Electron arrangement in atoms
 
How to draw the lewis dot structure of a molecule
How to draw the lewis dot structure of a moleculeHow to draw the lewis dot structure of a molecule
How to draw the lewis dot structure of a molecule
 
POLARITY OF MOLECULES.pptx
POLARITY OF MOLECULES.pptxPOLARITY OF MOLECULES.pptx
POLARITY OF MOLECULES.pptx
 
A1 23 The Universe
A1 23 The UniverseA1 23 The Universe
A1 23 The Universe
 
NUCLEOSYNTHESIS.pptx
NUCLEOSYNTHESIS.pptxNUCLEOSYNTHESIS.pptx
NUCLEOSYNTHESIS.pptx
 
Closed and open system in earth
Closed and open system in earthClosed and open system in earth
Closed and open system in earth
 

Andere mochten auch

IB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationIB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationLawrence kok
 
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...Lawrence kok
 
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic Spectrum
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic SpectrumIB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic Spectrum
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic SpectrumLawrence kok
 
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic Mass
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic MassIB Chemistry on Atomic Structure, Particle Physics and Relative Atomic Mass
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic MassLawrence kok
 
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...Lawrence kok
 
IB Chemistry on Electromagnetic Spectrum and Wave Particle Duality
IB Chemistry on Electromagnetic Spectrum and Wave Particle DualityIB Chemistry on Electromagnetic Spectrum and Wave Particle Duality
IB Chemistry on Electromagnetic Spectrum and Wave Particle DualityLawrence kok
 
IB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configurationIB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configurationLawrence kok
 
IB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configurationIB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configurationLawrence kok
 
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic Mass
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic MassIB Chemistry on Atomic Structure, Particle Physics and Relative Atomic Mass
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic MassLawrence kok
 
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic Spectrum
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic SpectrumIB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic Spectrum
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic SpectrumLawrence kok
 
IB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and ConcentrationIB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and ConcentrationLawrence kok
 
Uncertainty calculation for rate of reaction
Uncertainty calculation for rate of reactionUncertainty calculation for rate of reaction
Uncertainty calculation for rate of reactionLawrence kok
 
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...Lawrence kok
 
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...Lawrence kok
 
IB Chemistry on Chemical Properties, Oxides and Chlorides of period 3
IB Chemistry on Chemical Properties, Oxides and Chlorides of period 3IB Chemistry on Chemical Properties, Oxides and Chlorides of period 3
IB Chemistry on Chemical Properties, Oxides and Chlorides of period 3Lawrence kok
 
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...Lawrence kok
 
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...Lawrence kok
 
IB Chemistry on Lewis Structure, Ionic and Covalent Bonding
IB Chemistry on Lewis Structure, Ionic and Covalent BondingIB Chemistry on Lewis Structure, Ionic and Covalent Bonding
IB Chemistry on Lewis Structure, Ionic and Covalent BondingLawrence kok
 
IB Chemistry on VSEPR
IB Chemistry on VSEPRIB Chemistry on VSEPR
IB Chemistry on VSEPRLawrence kok
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalLawrence kok
 

Andere mochten auch (20)

IB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationIB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic Configuration
 
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...
 
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic Spectrum
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic SpectrumIB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic Spectrum
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic Spectrum
 
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic Mass
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic MassIB Chemistry on Atomic Structure, Particle Physics and Relative Atomic Mass
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic Mass
 
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...
IB Chemistry on Quantum Numbers, Electronic Configuration and De Broglie Wave...
 
IB Chemistry on Electromagnetic Spectrum and Wave Particle Duality
IB Chemistry on Electromagnetic Spectrum and Wave Particle DualityIB Chemistry on Electromagnetic Spectrum and Wave Particle Duality
IB Chemistry on Electromagnetic Spectrum and Wave Particle Duality
 
IB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configurationIB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configuration
 
IB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configurationIB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configuration
 
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic Mass
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic MassIB Chemistry on Atomic Structure, Particle Physics and Relative Atomic Mass
IB Chemistry on Atomic Structure, Particle Physics and Relative Atomic Mass
 
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic Spectrum
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic SpectrumIB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic Spectrum
IB Chemistry on Line Emission Spectrum, Bohr Model and Electromagnetic Spectrum
 
IB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and ConcentrationIB Chemistry Serial Dilution, Molarity and Concentration
IB Chemistry Serial Dilution, Molarity and Concentration
 
Uncertainty calculation for rate of reaction
Uncertainty calculation for rate of reactionUncertainty calculation for rate of reaction
Uncertainty calculation for rate of reaction
 
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
 
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
IB Chemistry, IB Biology on Uncertainty calculation, error analysis and stand...
 
IB Chemistry on Chemical Properties, Oxides and Chlorides of period 3
IB Chemistry on Chemical Properties, Oxides and Chlorides of period 3IB Chemistry on Chemical Properties, Oxides and Chlorides of period 3
IB Chemistry on Chemical Properties, Oxides and Chlorides of period 3
 
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
 
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
 
IB Chemistry on Lewis Structure, Ionic and Covalent Bonding
IB Chemistry on Lewis Structure, Ionic and Covalent BondingIB Chemistry on Lewis Structure, Ionic and Covalent Bonding
IB Chemistry on Lewis Structure, Ionic and Covalent Bonding
 
IB Chemistry on VSEPR
IB Chemistry on VSEPRIB Chemistry on VSEPR
IB Chemistry on VSEPR
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 

Ähnlich wie IB Chemistry on Quantum Numbers and Electronic Configuration

Electronic configuration.pptx
Electronic configuration.pptxElectronic configuration.pptx
Electronic configuration.pptxDeepthy Gs
 
IB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismIB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismLawrence kok
 
IB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismIB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismLawrence kok
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalLawrence kok
 
Electron Configuration
Electron ConfigurationElectron Configuration
Electron Configurationcrumpjason
 
Chapter 5, extra notes
Chapter 5, extra notesChapter 5, extra notes
Chapter 5, extra notesSHERIFA s
 
Thesmdcodebook 130419134902-phpapp02
Thesmdcodebook 130419134902-phpapp02Thesmdcodebook 130419134902-phpapp02
Thesmdcodebook 130419134902-phpapp02Andy Jah
 
Thesmdcodebook 130408190652-phpapp02
Thesmdcodebook 130408190652-phpapp02Thesmdcodebook 130408190652-phpapp02
Thesmdcodebook 130408190652-phpapp02Andy Jah
 
Ab initio studies on the luminescence of f-elements in solids
Ab initio studies on the luminescence of f-elements in solidsAb initio studies on the luminescence of f-elements in solids
Ab initio studies on the luminescence of f-elements in solidsLuis Seijo
 
Answers To Self-Tests And Exercises
Answers To Self-Tests And ExercisesAnswers To Self-Tests And Exercises
Answers To Self-Tests And ExercisesBecky Gilbert
 
Ciclotron dynamic 12000 h 2ω
Ciclotron   dynamic 12000 h 2ωCiclotron   dynamic 12000 h 2ω
Ciclotron dynamic 12000 h 2ωMuniz Rodrigues
 
Essence of of critical phenomena
Essence of of critical phenomenaEssence of of critical phenomena
Essence of of critical phenomenaAbbas K. Rizi
 
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdfNEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdfAtishThatei
 
Ch3 test prep forslideshare
Ch3 test prep forslideshareCh3 test prep forslideshare
Ch3 test prep forslideshareZB Chemistry
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13Faysal Khan
 
Codigo de componentes smd gm4 pmk
Codigo de componentes smd gm4 pmkCodigo de componentes smd gm4 pmk
Codigo de componentes smd gm4 pmkNelsinho Ajhuacho
 

Ähnlich wie IB Chemistry on Quantum Numbers and Electronic Configuration (20)

Electronic configuration.pptx
Electronic configuration.pptxElectronic configuration.pptx
Electronic configuration.pptx
 
IB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismIB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and Magnetism
 
IB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismIB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and Magnetism
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 
Electron config
Electron configElectron config
Electron config
 
Electron Configuration
Electron ConfigurationElectron Configuration
Electron Configuration
 
Chapter 5, extra notes
Chapter 5, extra notesChapter 5, extra notes
Chapter 5, extra notes
 
Echon (electron configuration)
Echon (electron configuration)Echon (electron configuration)
Echon (electron configuration)
 
Thesmdcodebook 130419134902-phpapp02
Thesmdcodebook 130419134902-phpapp02Thesmdcodebook 130419134902-phpapp02
Thesmdcodebook 130419134902-phpapp02
 
Thesmdcodebook 130408190652-phpapp02
Thesmdcodebook 130408190652-phpapp02Thesmdcodebook 130408190652-phpapp02
Thesmdcodebook 130408190652-phpapp02
 
Ab initio studies on the luminescence of f-elements in solids
Ab initio studies on the luminescence of f-elements in solidsAb initio studies on the luminescence of f-elements in solids
Ab initio studies on the luminescence of f-elements in solids
 
Answers To Self-Tests And Exercises
Answers To Self-Tests And ExercisesAnswers To Self-Tests And Exercises
Answers To Self-Tests And Exercises
 
Ciclotron dynamic 12000 h 2ω
Ciclotron   dynamic 12000 h 2ωCiclotron   dynamic 12000 h 2ω
Ciclotron dynamic 12000 h 2ω
 
Essence of of critical phenomena
Essence of of critical phenomenaEssence of of critical phenomena
Essence of of critical phenomena
 
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdfNEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf
 
Ch3 test prep forslideshare
Ch3 test prep forslideshareCh3 test prep forslideshare
Ch3 test prep forslideshare
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
 
detalles
detallesdetalles
detalles
 
Codigo de componentes smd gm4 pmk
Codigo de componentes smd gm4 pmkCodigo de componentes smd gm4 pmk
Codigo de componentes smd gm4 pmk
 
Atomic Structure.pptx
Atomic Structure.pptxAtomic Structure.pptx
Atomic Structure.pptx
 

Mehr von Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

Mehr von Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Kürzlich hochgeladen

APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 

Kürzlich hochgeladen (20)

APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 

IB Chemistry on Quantum Numbers and Electronic Configuration

  • 1. Tutorial on Electronic Configuration and Quantum Numbers. Prepared by Lawrence Kok http://lawrencekok.blogspot.com
  • 2. Periodic Table of elements – divided into s, p, d, f blocks
  • 3. Periodic Table of elements – divided into s, p, d, f blocks s block • s orbitals partially fill d block • d orbitals partially filled • transition elements f block • f orbital partially fill p block • p orbital partially fill
  • 4. Electron filled according to 3 Principles 1 Aufbau Principle • electron occupy orbitals of lower energy first • building up, construction from bottom up 4Be High energy - 1s2 2s2 5B - 1s2 2s2 2p1 2p 2p 2s 2s Click here to view simulation 1s 1s lower energy Click here to view simulation Click here to view simulation
  • 5. Electron filled according to 3 Principles 1 Aufbau Principle • electron occupy orbitals of lower energy first • building up, construction from bottom up 4Be High energy - 1s2 2s2 5B - 1s2 2s2 2p1 2p 2p 2s 2s Click here to view simulation 1s 1s lower energy 2 Hund’s Principle • electron occupy orbitals singly first before pairing up 7N High energy - 1s2 2s2 2p3 8O - 1s2 2s2 2p4 2p 2s 1s Click here to view simulation lower energy Click here to view simulation
  • 6. Electron filled according to 3 Principles 1 Aufbau Principle • electron occupy orbitals of lower energy first • building up, construction from bottom up 4Be High energy - 1s2 2s2 5B - 1s2 2s2 2p1 2p 2p 2s 2s Click here to view simulation 1s 1s lower energy 2 Hund’s Principle • electron occupy orbitals singly first before pairing up 7N High energy - 1s2 2s2 2p3 8O - 1s2 2s2 2p4 2p 2s Click here to view simulation 1s 3 lower energy Pauli Exclusion Principle • each orbital occupy by 2 electron opposite spin 4Be - 1s2 2s2 High energy 10Ne - 1s2 2s2 2p6 Click here to view simulation lower energy
  • 7. Electron configuration 5 B 1s2 2s2 2p1 6 C 1s2 2s2 2p2 7 N 1s2 2s2 2p3 8 O 1s2 2s2 2p4 9 F 1s2 2s2 2p5 10 Ne 1s2 2s2 2p6 11 Na 1s2 2s2 2p6 3s1 12 Mg 1s2 2s2 2p6 3s2 13 Al 1s2 2s2 2p6 3s2 3p1 14 Si 1s2 15 P 1s2 2s2 2p6 3s2 3p3 16 S 1s2 2s2 2p6 3s2 3p4 17 CI 1s2 2s2 2p6 3s2 3p5 18 Ar 1s2 2s2 2p6 3s2 3p6 19 K 1s2 2s2 2p6 3s2 3p6 4s1 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 Electron occupy 4s first then 3d Energy level and sublevels 2s2 2p6 4s energy level lower than 3d 3s2 4s 3p 3p2 3s 18Ar – 1s2 2s2 2p6 3s2 3p6 2p 2s 1s 3d
  • 8. Electron configuration 5 B 1s2 2s2 2p1 6 C 1s2 2s2 2p2 7 N 1s2 2s2 2p3 8 O 1s2 2s2 2p4 9 F 1s2 2s2 2p5 10 Ne 1s2 2s2 2p6 11 Na 1s2 2s2 2p6 3s1 12 Mg 1s2 2s2 2p6 3s2 13 Al 1s2 2s2 2p6 3s2 3p1 14 Si 1s2 15 P 1s2 2s2 2p6 3s2 3p3 16 S 1s2 2s2 2p6 3s2 3p4 17 CI 1s2 18 Ar 1s2 2s2 2p6 3s2 3p6 19 K 1s2 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 Electron occupy 4s first then 3d Energy level and sublevels 2s2 2s2 2s2 2p6 2p6 2p6 4s energy level lower than 3d 3s2 3s2 3s2 4s 3d 3p 3p2 3s 18Ar – 1s2 2s2 2p6 3s2 3p6 2p 2s 3p5 3p6 4s1 Electrons fill 4s first 3d 4s 1s 3p 19K – 1s2 2s2 2p6 3s2 3p6 4s1 3s 2p 2s 1s
  • 9. Electron configuration 5 B 1s2 2s2 2p1 6 C 1s2 2s2 2p2 7 N 1s2 2s2 2p3 8 O 1s2 2s2 2p4 9 F 1s2 2s2 2p5 10 Ne 1s2 2s2 2p6 11 Na 1s2 2s2 2p6 3s1 12 Mg 1s2 2s2 2p6 3s2 13 Al 1s2 2s2 2p6 3s2 3p1 14 Si 1s2 15 P 1s2 2s2 2p6 3s2 3p3 16 S 1s2 2s2 2p6 3s2 3p4 17 CI 1s2 18 Ar 1s2 2s2 2p6 3s2 3p6 19 K 1s2 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn Electron occupy 4s first then 3d Energy level and sublevels 1s2 2s2 2p6 3s2 3p6 4s2 3d10 2s2 2s2 2s2 2p6 2p6 2p6 4s energy level lower than 3d 3s2 3s2 3s2 4s 3d 3p 3p2 3s 18Ar – 1s2 2s2 2p6 3s2 3p6 2p 2s 3p5 3p6 4s1 Electrons fill 4s first 3d 4s 1s 3p 19K – 1s2 2s2 2p6 3s2 3p6 4s1 3s 4s then 3d is fill 2p 3d 2s 4s 1s 21Sc 3p 3s – 1s2 2s2 2p6 3s2 3p6 4s2 3d1 2p 2s 1s
  • 10. Electron Notation Atom s, p, d, f notation Complete configuration 10 Ne 1s2 2s2 2p6 11 Na 1s2 2s2 2p6 3s1 12 Mg 1s2 2s2 2p6 3s2 13 Al 1s2 2s2 2p6 3s2 3p1 14 Si 1s2 2s2 2p6 3s2 3p2 15 P 1s2 2s2 2p6 3s2 3p3 16 S 1s2 2s2 2p6 3s2 3p4 17 CI 1s2 2s2 2p6 3s2 3p5 18 Ar 1s2 2s2 2p6 3s2 3p6 19 K 1s2 2s2 2p6 3s2 3p6 4s1 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10
  • 11. Electron Notation Atom s, p, d, f notation Complete configuration Noble gas notation Condensed configuration 10 Ne 1s2 2s2 2p6 10 Ne [Ne] 11 Na 1s2 2s2 2p6 3s1 11 Na [Ne] 3s1 12 Mg 1s2 2s2 2p6 3s2 12 Mg [Ne] 3s2 13 Al 1s2 2s2 2p6 3s2 3p1 13 Al [Ne] 3s2 3p1 14 Si 1s2 2s2 2p6 3s2 3p2 14 Si [Ne] 3s2 3p2 15 P 1s2 2s2 2p6 3s2 3p3 15 P [Ne] 3s2 3p3 16 S 1s2 2s2 2p6 3s2 3p4 16 S [Ne] 3s2 3p4 17 CI 1s2 2s2 2p6 3s2 3p5 17 CI [Ne] 3s2 3p5 18 Ar 1s2 2s2 2p6 3s2 3p6 18 Ar [Ar] 19 K 1s2 2s2 2p6 3s2 3p6 4s1 19 K [Ar] 4s1 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 20 Ca [Ar] 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 21 Sc [Ar] 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 22 Ti [Ar] 4s2 3d2 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 23 V [Ar] 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 24 Cr [Ar] 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 25 Mn [Ar] 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 26 Fe [Ar] 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 27 Co [Ar] 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 28 Ni [Ar] 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 29 Cu [Ar] 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 30 Zn [Ar] 4s2 3d10 [Ne] [Ar]
  • 12. Electron Notation Atom Positive/Negative Ion s, p, d, f notation Complete configuration Noble gas notation Condensed configuration Noble gas notation Complete configuration 10 Ne 1s2 2s2 2p6 10 Ne [Ne] 10 Ne 1s2 2s2 2p6 /[Ne] 11 Na 1s2 2s2 2p6 3s1 11 Na [Ne] 3s1 11 Na+ 1s2 2s2 2p6 / [Ne] 12 Mg 1s2 2s2 2p6 3s2 12 Mg [Ne] 3s2 12 Mg2+ 1s2 2s2 2p6 / [Ne] 13 Al 1s2 2s2 2p6 3s2 3p1 13 Al [Ne] 3s2 3p1 13 Al3+ 1s2 2s2 2p6 / [Ne] 14 Si 1s2 2s2 2p6 3s2 3p2 14 Si [Ne] 3s2 3p2 14 Si4+ 1s2 2s2 2p6 / [Ne] 15 P 1s2 2s2 2p6 3s2 3p3 15 P [Ne] 3s2 3p3 15 P3- 1s2 2s2 2p6 3s2 3p6 /[Ar] 16 S 1s2 2s2 2p6 3s2 3p4 16 S [Ne] 3s2 3p4 16 S2- 1s2 2s2 2p6 3s2 3p6 /[Ar] 17 CI 1s2 2s2 2p6 3s2 3p5 17 CI [Ne] 3s2 3p5 17 CI- 1s2 2s2 2p6 3s2 3p6/ [Ar] 18 Ar 1s2 2s2 2p6 3s2 3p6 18 Ar [Ar] 19 [Ne] 18 Ar [Ar] K [Ar] 4s1 19 K+ 1s2 2s2 2p6 3s2 3p6 /[Ar] 20 Ca [Ar] 4s2 20 Ca2+ 1s2 2s2 2p6 3s2 3p6 / [Ar] 21 Sc [Ar] 4s2 3d1 22 Ti [Ar] 4s2 3d2 1s2 2s2 2p6 3s2 3p6 4s2 3d3 23 V [Ar] 4s2 3d3 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 24 Cr [Ar] 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 25 Mn [Ar] 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 26 Fe [Ar] 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 27 Co [Ar] 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 28 Ni [Ar] 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 29 Cu [Ar] 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 30 Zn [Ar] 4s2 3d10 K 1s2 2s2 2p6 3s2 3p6 4s1 19 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 V 24 [Ar]
  • 13. d block Exception to d block elements 4s energy level lower than 3d 3d 4s 3p Electron configuration d block 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 21Sc – 1s2 2s2 2p6 3s2 3p6 4s2 3d1 2p 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 3s 2s 1s 4s energy level lower than 3d
  • 14. d block Exception to d block elements 4s energy level lower than 3d 3d 4s 3p Electron configuration d block 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti V 24 Cr 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 2s2 2p6 3s2 3p6 4s1 3d5 4s energy level lower than 3d 2p 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 – 1s2 2s2 2p6 3s2 3p6 4s2 3d1 1s2 2s2 2p6 3s2 3p6 4s2 3d3 1s2 21Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 3s 2s 1s 24Cr – 1s2 2s2 2p6 3s2 3p6 4s13d5 24Cr – 1s2 2s2 2p6 3s2 3p6 4s2 3d4 3d ✔ ✗ 4s 3p 3s 2p 2s 1s Half fill energetically more stable
  • 15. d block Exception to d block elements 4s energy level lower than 3d 3d 4s 3p Electron configuration d block 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti V 24 Cr 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 2s2 2p6 3s2 3p6 4s1 3d5 4s energy level lower than 3d 2p 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 – 1s2 2s2 2p6 3s2 3p6 4s2 3d1 1s2 2s2 2p6 3s2 3p6 4s2 3d3 1s2 21Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 3s 2s 1s 24Cr – 1s2 2s2 2p6 3s2 3p6 4s13d5 24Cr – 1s2 2s2 2p6 3s2 3p6 4s2 3d4 3d ✔ ✗ 4s 3p 3s Half fill energetically more stable 2p 2s 1s 29Cu 29Cu –1s2 2s2 2p6 3s2 3p6 4s1 3d10 –1s2 2s2 2p6 3s2 3p6 4s2 3d9 ✔ ✗ 4s 3p 3s Half fill energetically more stable 2p 2s 1s 3d
  • 16. s block elements • s orbitals partially fill 1 H He p block elements • p orbital partially fill 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 Periodic Table – s, p d, f blocks elements C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 14 19 20 K Ca Si [Ne] 3s2 3p2 [Ar] 4s1 15 P [Ne] 3s2 3p3 [Ar] 4s2 16 S [Ne] 3s2 3p4 17 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6
  • 17. s block elements • s orbitals partially fill 1 H He p block elements • p orbital partially fill 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 Periodic Table – s, p d, f blocks elements C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 14 20 K Ca [Ne] 3s2 3p2 [Ar] 15 P [Ne] 3s2 3p3 [Ar] 4s2 16 S [Ne] 3s2 3p4 17 19 Si 4s1 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6 d block elements • d orbitals partially fill • transition elements 21 Sc [Ar] 4s2 3d1 22 Ti [Ar] 4s2 3d2 23 V [Ar] 4s2 3d13 24 Cr [Ar] 4s1 3d5 25 Mn [Ar] 4s2 3d5 26 Fe [Ar] 4s2 3d6 27 Co [Ar] 4s2 3d7 28 Ni [Ar] 4s2 3d8 29 Cu [Ar] 4s1 3d10 30 Zn [Ar] 4s2 3d10
  • 18. s block elements • s orbitals partially fill 1 H He p block elements • p orbital partially fill 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 Periodic Table – s, p d, f blocks elements C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 14 20 K Ca [Ne] 3s2 3p2 [Ar] 15 P [Ne] 3s2 3p3 [Ar] 4s2 16 S [Ne] 3s2 3p4 17 19 Si 4s1 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6 d block elements • d orbitals partially fill • transition elements 21 Sc [Ar] 4s2 3d1 22 Ti [Ar] 4s2 3d2 23 V [Ar] 4s2 3d13 24 Cr [Ar] 4s1 3d5 25 Mn [Ar] 4s2 3d5 26 Fe [Ar] 4s2 3d6 27 Co [Ar] 4s2 3d7 28 Ni [Ar] 4s2 3d8 29 Cu [Ar] 4s1 3d10 30 Zn [Ar] 4s2 3d10 f block elements • f orbitals partially fill Video on electron configuration Click here electron structure Click here video on s,p,d,f notation Click here video s,p,d,f blocks,
  • 19. Periodic Table – s, p d, f blocks elements Electron structure Chromium d block (Period 4) Electron structure Germanium p block, Gp 4 (Period 4) Electron structure Iodine p block, Gp 7 (Period 5) 1s2 2s2 2p6 3s2 3p6 4s1 3d5 [Ar] 4s1 3d5 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2 [Ar] 4s2 3d10 4p2 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p5 [Kr] 5s2 4d10 5p5 d block – d partially filled Gp 4 -4 valence electron Gp 7 - 7 valence electron
  • 20. Periodic Table – s, p d, f blocks elements Electron structure Chromium d block (Period 4) Electron structure Germanium p block, Gp 4 (Period 4) Electron structure Iodine p block, Gp 7 (Period 5) 1s2 2s2 2p6 3s2 3p6 4s1 3d5 [Ar] 4s1 3d5 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2 [Ar] 4s2 3d10 4p2 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p5 [Kr] 5s2 4d10 5p5 d block – d partially filled Electron structure Cadmium d block (Period 5) 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 [Kr] 5s2 4d10 d block – d partially filled Gp 4 -4 valence electron Electron structure Mercury d block (Period 6) 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d10 [Xe] 6s2 4f14 5d10 d block – d partially filled Gp 7 - 7 valence electron Electron structure Lead p block, Gp 4 (Period 6) 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2 [Xe] 6s2 4f14 5d10 6p2 Gp 4 -4 valence electron
  • 21. s block elements • s orbitals partially fill 1 H He p block elements • p orbital partially fill 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 Periodic Table – s, p d, f blocks elements C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 14 Si [Ne] 3s2 3p2 15 P [Ne] 3s2 3p3 16 S [Ne] 3s2 3p4 17 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 19 20 K Ca [Ar] 4s1 [Ar] 4s2 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2 [Xe] 6s2 4f14 5d10 6p2
  • 22. Periodic Table – s, p d, f blocks elements s block elements • s orbitals partially fill 1 H He 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 p block elements • p orbital partially fill C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 14 Si [Ne] 3s2 3p2 15 P [Ne] 3s2 3p3 16 S [Ne] 3s2 3p4 17 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 19 K 20 1 Ca [Ar] [Ar] 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2 [Xe] 6s2 4f14 5d10 6p2 4s1 4s2 Identify position elements P, Q, R, S and T Electron configuration : P – 3s2 3p6 Q – 4s2 4p5 R – 3s2 3p6 4s2 S – 1s2 2s2 2p6 3s2 3p6 3d3 4s2 T – 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 Answer Element 2 Write electron configuration for X, Y and Z Element Group Period X 2 3 Y 15 2 Z 18 3 Answer Grou p Period Classification P 8/18 3 Noble gas Q 7/17 4 p block R 2 4 s block S 5 4 d block T 8/18 4 Noble gas X – 1s2 2s2 2p6 3s2 Y – 1s2 2s2 2p3 Z – 1s2 2s2 2p6 3s2 3p6 3 Write electron structure for ions: • • • • • • O - 1s2 2s2 2p4 O2- V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3 V3+ Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9 Cu2+ - Answer Write electron structure for ions: • • • • • • O - 1s2 2s2 2p4 O2- -1s2 2s2 2p6 V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3 V 3+ - 1s2 2s2 2p6 3s2 3p6 4s0 3d2 Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9 Cu 2+ - 1s2 2s2 2p6 3s23p6 4s0 3d9
  • 23. Four Quantum Numbers • • • 1 Electrons arrange in specific energy level and sublevels Orbitals of electrons in atom differ in size, shape and orientation. Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms) Principal Quantum Number (n): n = 1, 2, 3,.. ∞ • Energy of electron and size of orbital/shell • Distance from nucleus, (higher n – higher energy) • Larger n - farther e from nucleus – larger size orbital • n=1, 1stprincipal shell ( innermost/ground shell state) No TWO electron have same 4 quantum number
  • 24. Four Quantum Numbers • • • Electrons arrange in specific energy level and sublevels Orbitals of electrons in atom differ in size, shape and orientation. Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms) 1 Principal Quantum Number (n): n = 1, 2, 3,.. ∞ • Energy of electron and size of orbital/shell • Distance from nucleus, (higher n – higher energy) • Larger n - farther e from nucleus – larger size orbital • n=1, 1stprincipal shell ( innermost/ground shell state) 2 Angular Momentum Quantum Number (l): l = 0 to n-1. • Orbital Shape • Divides shells into subshells/sublevels. • Letters (s, d, p, f) s orbital p orbital d orbital No TWO electron have same 4 quantum number
  • 25. Four Quantum Numbers • • • Electrons arrange in specific energy level and sublevels Orbitals of electrons in atom differ in size, shape and orientation. Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms) 1 Principal Quantum Number (n): n = 1, 2, 3,.. ∞ • Energy of electron and size of orbital/shell • Distance from nucleus, (higher n – higher energy) • Larger n - farther e from nucleus – larger size orbital • n=1, 1stprincipal shell ( innermost/ground shell state) 2 Angular Momentum Quantum Number (l): l = 0 to n-1. • Orbital Shape • Divides shells into subshells/sublevels. • Letters (s, d, p, f) s orbital p orbital d orbital 3 No TWO electron have same 4 quantum number Magnetic Quantum Number (ml): ml = -l, 0, +l. • Orientation orbital in space/direction • mℓ range from −ℓ to ℓ, • ℓ = 0 -> mℓ = 0 –> s sublevel -> 1 orbital • ℓ = 1 -> mℓ = -1, 0, +1 -> p sublevel -> 3 diff p orbitals • ℓ = 2 -> mℓ = -2, -1, 0, +1, +2 -> d sublevel -> 5 diff d orbitals • (2l+ 1 ) quantum number for each ℓ value
  • 26. Four Quantum Numbers • • • Electrons arrange in specific energy level and sublevels Orbitals of electrons in atom differ in size, shape and orientation. Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms) 1 Principal Quantum Number (n): n = 1, 2, 3,.. ∞ • Energy of electron and size of orbital/shell • Distance from nucleus, (higher n – higher energy) • Larger n - farther e from nucleus – larger size orbital • n=1, 1stprincipal shell ( innermost/ground shell state) 2 Angular Momentum Quantum Number (l): l = 0 to n-1. • Orbital Shape • Divides shells into subshells/sublevels. • Letters (s, d, p, f) s orbital p orbital 3 4 No TWO electron have same 4 quantum number Magnetic Quantum Number (ml): ml = -l, 0, +l. • Orientation orbital in space/direction • mℓ range from −ℓ to ℓ, • ℓ = 0 -> mℓ = 0 –> s sublevel -> 1 orbital • ℓ = 1 -> mℓ = -1, 0, +1 -> p sublevel -> 3 diff p orbitals • ℓ = 2 -> mℓ = -2, -1, 0, +1, +2 -> d sublevel -> 5 diff d orbitals • (2l+ 1 ) quantum number for each ℓ value Spin Quantum Number (ms): ms = +1/2 or -1/2 • Each orbital – 2 electrons, spin up/down • Pair electron spin opposite direction • One spin up, ms = +1/2 • One spin down, ms = -1/2 • No net spin/cancel out each other– diamagnetic electron writing electron spin electron spin up/down d orbital
  • 27. Principal and Angular Momentum Quantum numbers • • • Electrons arrange in specific energy level and sublevels Orbitals of electrons in atom differ in size, shape and orientation. Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms) 1 Principal Quantum Number (n): n = 1, 2, 3, …, ∞ • Energy of electron and size of orbital /shell • Distance from nucleus, (higher n – higher energy) • Larger n - farther e from nucleus – larger size orbital • n=1, 1stprincipal shell ( innermost/ground shell state) 2 Angular Momentum Quantum Number (l): l = 0, ..., n-1. • Orbital Shape • Divides shells into subshells (sublevels) • Letters (s,p,d,f) • < less than n-1 Sublevels, l
  • 28. Principal and Angular Momentum Quantum numbers • • • Electrons arrange in specific energy level and sublevels Orbitals of electrons in atom differ in size, shape and orientation. Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms) 1 Principal Quantum Number (n): n = 1, 2, 3, …, ∞ • Energy of electron and size of orbital /shell • Distance from nucleus, (higher n – higher energy) • Larger n - farther e from nucleus – larger size orbital • n=1, 1stprincipal shell ( innermost/ground shell state) 2 Angular Momentum Quantum Number (l): l = 0, ..., n-1. • Orbital Shape • Divides shells into subshells (sublevels) • Letters (s,p,d,f) • < less than n-1 Sublevels, l Quantum number, n and l l=1 2p sublevel l=0 2s sublevel n= 2 n= 1 1 Principal Quantum #, n (Size , energy) l=0 2 1s sublevel Angular momentum quantum number, l (Shape of orbital) 1 Principal Quantum Number (n) 2 Angular Momentum Quantum Number (l)
  • 29. Principal and Angular Momentum Quantum numbers • • • Electrons arrange in specific energy level and sublevels Orbitals of electrons in atom differ in size, shape and orientation. Allow states call orbitals, given by four quantum number 'n', 'l', 'ml' and ’ms’ - (n, l, ml, ms) 1 Principal Quantum Number (n): n = 1, 2, 3, …, ∞ • Energy of electron and size of orbital /shell • Distance from nucleus, (higher n – higher energy) • Larger n - farther e from nucleus – larger size orbital • n=1, 1stprincipal shell ( innermost/ground shell state) 2 Angular Momentum Quantum Number (l): l = 0, ..., n-1. • Orbital Shape • Divides shells into subshells (sublevels) • Letters (s,p,d,f) • < less than n-1 Sublevels, l Quantum number, n and l l=1 2p sublevel l=0 2s sublevel n= 2 n= 1 1 Principal Quantum #, n (Size , energy) l=0 2 1s sublevel Angular momentum quantum number, l (Shape of orbital) 2p sublevel – contain 2p orbital 2nd energy level Has TWO sublevels 2s sublevel – contain 2s orbital 1st energy level Has ONE sublevel 1s sublevel – contain 1s orbital 1 Principal Quantum Number (n) 2 Angular Momentum Quantum Number (l)
  • 30. Electronic Orbitals n = 1, 2, 3,…. Allowed values l = 0 to n-1 Allowed values ml = -l, 0, +l- (2l+ 1 ) for each ℓ value ml =+2 ml =+1 ml = 0 l=1 3px orbital ml = 0 3s sublevel 3py orbital 3s orbital ml =+1 l=0 3pz orbital ml = 0 3p sublevel 3dxy orbital ml =-1 l=1 3dxz orbital ml =+1 n= 3 3dz2 orbital ml =-2 3d sublevel 3dyz orbital ml =-1 l=2 Energy Level 3dx2 – y2 orbital 2py orbital ml = 0 2p sublevel 2pz orbital ml =-1 n= 2 2px orbital l=0 1 Principal Quantum #, n (Size , energy) 2 ml =0 2s orbital l=0 n= 1 2s sublevel 1s sublevel ml =0 1s orbital Angular momentum quantum number, l (Shape of orbital) 3 Magnetic Quantum Number (ml) (Orientation orbital)
  • 31. Electronic Orbitals Simulation Electronic Orbitals n = 1, 2, 3,…. Allowed values l = 0 to n-1 Allowed values ml = -l, 0, +l- (2l+ 1 ) for each ℓ value ml =+2 ml =+1 ml = 0 l=1 3px orbital ml = 0 3s sublevel 3py orbital 3s orbital ml =+1 l=0 3pz orbital ml = 0 3p sublevel 3dxy orbital ml =-1 l=1 3dxz orbital ml =+1 n= 3 3dz2 orbital ml =-2 3d sublevel 3dyz orbital ml =-1 l=2 Energy Level 3dx2 – y2 orbital 2py orbital ml = 0 2p sublevel 2pz orbital ml =-1 n= 2 2px orbital l=0 1 Principal Quantum #, n (Size , energy) 2 2s sublevel ml =0 1s sublevel ml =0 Click here to view simulation 2s orbital l=0 n= 1 Click here to view simulation 1s orbital Angular momentum quantum number, l (Shape of orbital) 3 Magnetic Quantum Number (ml) (Orientation orbital) Click here to view simulation
  • 32. Quantum Numbers and Electronic Orbitals ml =+2 Energy Level 3dx2 – y2orbital ml =+1 3dz2 orbital 3dxz orbital ml =-2 3d sublevel ml = 0 ml =-1 l=2 3dyz orbital 3dxy orbital n= 3 ml =+1 l=1 3s sublevel 2p sublevel n= 2 3pz orbital 3px orbital ml = 0 3s orbital ml =+1 l=0 3p sublevel ml = 0 ml =-1 l=1 3py orbital 2py orbital ml = 0 2pz orbital ml =-1 2px orbital l=0 n= 1 2s sublevel ml =0 2s orbital l=0 1s sublevel ml =0 1s orbital
  • 33. Quantum Numbers and Electronic Orbitals ml =+2 3dx2 – y2orbital Simulation Electronic Orbitals Energy Level ml =+1 3d sublevel ml = 0 3dz2 orbital ml =-1 l=2 3dyz orbital 3dxz orbital Click here to view simulation n= 3 ml =-2 3dxy orbital ml =+1 3p sublevel ml = 0 3pz orbital ml =-1 l=1 3py orbital 3px orbital Click here to view simulation l=0 2p sublevel n= 2 ml = 0 3s orbital ml =+1 l=1 3s sublevel 2py orbital ml = 0 2pz orbital ml =-1 2px orbital l=0 n= 1 2s sublevel ml =0 2s orbital l=0 1s sublevel ml =0 1s orbital Click here to view simulation
  • 34. Concept Map No TWO electron have same 4 quantum number Quantum number Quantum number = genetic code for electron What are these 4 numbers? (1, 0, 0, +1/2) 0r (3, 1, 1, +1/2) 4 numbers n l Size/distance Shape Number + letter ml Orientation ms Electron spin Electron has special number codes
  • 35. Concept Map No TWO electron have same 4 quantum number Quantum number Quantum number = genetic code for electron What are these 4 numbers? (1, 0, 0, +1/2) 0r (3, 1, 1, +1/2) 4 numbers n l Size/distance Shape ml Orientation ms Electron has special number codes Electron spin Number + letter 1 Electron with quantum number given below (n,l,ml,,ms) – (1, 0, 0, +1/2) (n,l,ml,,ms) – (3, 1, 1, +1/2) 2 1s orbital 3py orbital What values of l, ml, allow for n = 3? How many orbitals exists for n=3? Video on Quantum numbers For n=3 -> l = n -1 =2 -> ml = -l, 0, +l -> -2, -1, 0, +1, +2 • mℓ range from −ℓ to ℓ, • ℓ = 0 -> mℓ = 0 –> s sublevel -> 1 orbital • ℓ = 1 -> mℓ = -1, 0, +1 -> p sublevel -> 3 diff p orbitals • ℓ = 2 -> mℓ = -2, -1, 0, +1, +2 -> d sublevel -> 5 diff d orbitals • (2l+ 1 ) quantum number for each ℓ value Answer = nine ml values – 9 orbitals/ total # orbitals = n 2 Click here video on quantum number Click here video on quantum number
  • 36. Acknowledgements Thanks to source of pictures and video used in this presentation http://crescentok.com/staff/jaskew/isr/tigerchem/econfig/electron4.htm http://pureinfotech.com/wp-content/uploads/2012/09/periodicTable_20120926101018.png Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com