SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Downloaden Sie, um offline zu lesen
Types voltaic cell
Conversion electrical energy
to chemical energy
Electrochemistry
Electrolytic cellVoltaic cell
NH4CI and ZnCI2
Chemical and electrical energy
Redox rxn
(Oxidation/reduction)
Movement electron
Produce electricity
Conversion chemical energy
to electrical energy
Electrodes– differentmetal (Half cell) Electrodes– same metal (Half cell)
Chemical
rxn
Electric current
Daniell cell Alkaline cellDry cell Nickel cadmium cell
Primary cell (Non rechargeable)
MnO2 and KOH
Secondary cell (Rechargeable)
Conversion electrical to chemical energy
Electrochemistry
ElectrolyticcellVoltaic cell
Conversion chemical to electrical energy
Cathode(+ve) - Reduction Cathode(-ve) - Reduction
Vs
Electron flow from anode (-ve) to cathode (+ve) electrode Electron flow from anode (+ve) to cathode (-ve) electrode
Anode
(-ve)
Spontaneousrxn Non Spontaneousrxn
Anode (-ve) – Oxidation Anode (+ve) – Oxidation
++
О
О
О
О
- -
Zn → Zn 2+ + 2e
(oxidized)
Cu2+ + 2e → Cu
(reduced)
Zn2+
Zn2+
Zn2+
Zn2+-
-
-
-
→ +
+
+
Cu2+
Cu2+
Cu2+
-e
-e
+
+
+ -
-
-
X-→ X + -e
(oxidized)
X
-
X
-
X
-
Anode
(+ve)
Cathode
(-ve)
Cathode
(+ve)
-e
-e
Y+ + e- → Y
(reduced)
Y+
Y+
Y+
-e
-e
-e
-e
Anode Cathode
Voltaic Cell Electrolytic Cell
Anode Oxidation Negative (-ve) Oxidation Positive (+ve)
Cathode Reduction Positive (+ve) Reduction Negative (-ve)
Cation (+ve ion) to cathode (-ve)Anion (-ve ion) to anode (+ve)
Zn → Zn 2+ + 2e
Conversion electrical to chemical energy
Electrochemistry
Conversion chemical to electrical energy
Cathode (-ve)
Reduction
Vs
Electron flow from anode (-ve) to cathode (+ve) electrode Electron flow from anode (+ve) to cathode (-ve) electrode
Anode
(-ve)
Spontaneousrxn Non Spontaneousrxn
Anode (+ve)
Oxidation
+
О
О
-
Zn → Zn 2+ + 2e
(oxidized)
Cu2+ + 2e → Cu
(reduced)
Zn2+
Zn2+
Zn2+
Zn2+
-
--
-→ + +
+
Cu2+
Cu2+
Cu2+
-e
-e +
+
+
-
-
-
2Br-→ Br2 + 2e-
(oxidized)
Br
-
Br
-
Br
-
Anode
(+ve)
Cathode
(-ve)Cathode
(+ve)
-e
-e
Pb2+ + 2e- → Pb
(reduced)
Pb2+
-e
-e
-e
Cation (+ve ion) to cathode (-ve)Anion (-ve ion) to anode (+ve)
1.10Volt -e -e
-
-
-
-
+
+
+
+
Anode Cathode
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Cu2+ + 2e → Cu
Zn + Cu2+ → Zn2+ + Cu
2Br- → Br2 + 2e
Zn/Cu Voltaic Cell PbBr2 molten ElectrolyticCell
Pb2+ + 2e → Pb
PbBr2 → Pb+ Br2
Br -
Br -
Br -
Pb2+
Pb2+
Pb2+
Pb2+
Pb2+
Conversion electrical to chemical energy
Electrochemistry
Conversion chemical to electrical energy
Cathode (-ve)
Reduction
Vs
Spontaneousrxn Non Spontaneousrxn
Anode (+ve)
Oxidation
+
О
О
-
-e
1.10 Volt
-e -e
-
-
-
-
+
+
+
+
Anode Cathode
Zn/Cu Voltaic Cell PbBr2 molten ElectrolyticCell
PbBr2 → Pb+ Br2 Eθ = ???
Br -
Br -
Br -
Pb2+
Pb2+
Pb2+
Find Eθ
cell (use reduction potential)
Zn 2+ + 2e ↔ Zn Eθ = -0.76V
Cu2+ + 2e ↔ Cu Eθ = +0.34V
Cu half cell (+ve)
Reduction
Zn half cell (-ve)
Oxidation
Zn + Cu2+ → Zn2+ + Cu Eθ = ?????
Zn ↔ Zn2+ + 2e Eθ = +0.76
Cu2+ + 2e ↔ Cu Eθ = +0.34
Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V
Eθ
= +1.10V
+ve (spontaneous)
Pb2+ + 2e ↔ Pb Eθ = -0.13V
Br- + e ↔ Br -
Eθ = +1.07V
Find Eθ
cell (use reduction potential)
2Br -
↔ Br2+ 2e Eθ = -1.07
Pb2+ + 2e ↔ Pb Eθ = -0.13
Pb2+ + 2Br - → Pb+Br2 Eθ = -1.20V
Compound broken down
(LYSIS)
energy needed
Eθ
= -1.20V
-ve (NON spontaneous)
Conversion chemical to electrical energy Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Discharge of ions
1 Cation + 1 Anion
Electrolysis (Molten Salt)
Oxidation ← Anode (+ve) ← Anion
PbBr2 moltenElectrolytic Cell
Eθ =-ve → supply +1.20v to breakdown PbBr2 → Pb+ Br2
Find Eθ
cell (use reduction potential)
Pb2+ + 2e ↔ Pb Eθ = -0.13
2Br - ↔ Br2+ 2e Eθ = -1.07
Pb2+ + 2Br - → Pb +Br2 Eθ = -1.20V
Eθ
= -1.20V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Liquid – Pb2+ and Br- ions
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F- +2.87
Discharged Br- ion Br2 gas (brown gas seen) Discharged Pb2+ ion to Pb (grey deposit)
2Br - ↔ Br2+ 2e Pb2+ + 2e ↔ Pb
Compound broken down
(LYSIS)
energy needed
О
О
Pb2+ Br -
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Inert electrode
Carbon/graphite
Br -
Br -
Br -
Pb2+
Pb2+
Pb2+
Discharge of ions
1 Cation + 1 Anion
Oxidation ← Anode (+ve) ← Anion
CaCI2 molten Electrolytic Cell
Find Eθ
cell (use reduction potential)
Ca2+ + 2e ↔ Ca Eθ = -2.87
2CI - ↔ CI2+ 2e Eθ = -1.36
Ca2+ + 2CI - → Ca +CI2 Eθ = -4.23V
Eθ
= -4.23V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Liquid – Ca2+ and CI- ions
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ 1/2H2 + OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F- +2.87
Discharged CI- ion CI2 gas (yellow gas) Discharged Ca2+ ion to Ca
2CI - ↔ CI2+ 2e Ca2+ + 2e ↔ Ca
Compound broken down
(LYSIS)
energy needed
О
О
Ca2+ CI -
Eθ =-ve → supply +4.23v to breakdown CaCI2 → Ca+ CI2
Electrolysis (Molten Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Inert electrode
Carbon/graphite
CI -
CI -
CI -
Ca2+
Ca2+
Ca2+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
NaCI aqueous Electrolytic Cell
2H+ + 2e ↔ H2 Eθ = -0.83
4OH -
↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O → 2H2 + O2 Eθ = -2.06V
Eθ
= -2.06V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Na+ , CI- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
O2 + 4H+ +4e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ +1.33
1/2CI2 + e- ↔ CI- +1.36
1/2F2 + e- ↔ F- +2.87
Discharged OH- ion O2 gas Discharged H+ ion to H2 gas
О
О
Na+/H+ CI-/OH-
Eθ =-ve → supply +2.06v to breakdown NaCI → H2 + O2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
Na+ + e ↔ Na Eθ = -2.71
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
О
Oxidation
Eθ > more +ve easier to lose e
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23
2CI- ↔ CI2 + 2e Eθ = -1.36
О
Inert electrode
Carbon/graphite
OH-
OH-
CI -
CI -
H+
H+
Na+
Na+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
NaI aqueousElectrolytic Cell
2H+ + 2e ↔ H2 Eθ = -0.83
2I -
↔ I2 + 2e Eθ = -0.54
NaI → H2 + I2 Eθ = -1.37V
Eθ
= -1.37V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Na+ , I- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
I2 + 2e- ↔ 2I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
O2 + 4H+ +4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F- +2.87
Discharged I- ion I2 Discharged H+ ion to H2 gas
О
О
Na+/H+ I-/OH-
Eθ = -ve → supply +1.37 v to breakdown NaI → H2 + I2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
Na+ + e ↔ Na Eθ = -2.71
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
О
Oxidation
Eθ > more +ve easier to lose e
2I- ↔ I2 + 2e Eθ = -0.54
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23
О
Inert electrode
Carbon/graphite
I -
I -
OH-
OH-
H+
H+
Na+
Na+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
CuCI2 aqueous Electrolytic Cell
Cu2+ + 2e ↔ Cu Eθ = +0.34
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
CuCI2 → Cu + O2 Eθ = -0.89V
Eθ
= -0.89V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Cu2+ , CI- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
Cu+ + e- ↔ Cu +0.52
I2 + 2e- ↔ 2I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
O2 + 4H+ +4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
1/2F2 + e- ↔ F- +2.87
Discharged OH- ion O2 Discharged Cu2+ ion to Cu metal
О
Cu2+/H+ CI-/OH-
Eθ = -ve → supply +0.89 v to breakdown CuCI2 → Cu+ O2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
Cu2+ + 2e ↔ Cu Eθ = +0.34
О
Oxidation
Eθ > more +ve easier to lose e
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23
2CI- ↔ CI2 + 2e Eθ = -1.36
ОО
Inert electrode
Carbon/graphite
OH-
OH-
CI -
CI -
H+
H+
Cu2+
Cu2+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
CuBr2 aqueousElectrolytic Cell
Cu2+ + 2e ↔ Cu Eθ = +0.34
2Br- ↔ Br2 + 2e Eθ = -1.07
CuBr2 → Cu + Br2 Eθ = -0.73V
Eθ
= -0.73V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Cu2+ , Br- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
Cu+ + e- ↔ Cu +0.52
I2 + 2e- ↔ 2I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
1/2Br2 + e- ↔ Br- +1.07
O2 + 4H+ +4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F- +2.87
Discharged Br- ion Br2 Discharged Cu2+ ion to Cu
О
Cu2+/H+ Br-/OH-
Eθ = -ve → supply +0.73 v to breakdown CuBr2 → Cu+ Br2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
Cu2+ + 2e ↔ Cu Eθ = +0.34
О
Oxidation
Eθ > more +ve easier to lose e
2Br- ↔ Br2 + 2e Eθ = -1.07
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23
Inert electrode
Carbon/graphite
Br-
Br-
OH-
OH-
Cu2+
Cu2+
H+
H+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
KI aqueous Electrolytic Cell
2H+ + 2e ↔ H2 Eθ = -0.83
2I- ↔ I2 + 2e Eθ = -0.54
KI → H2+ Br2 Eθ = -1.37V
Eθ
= -1.37V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
K+ , I- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
I2 + 2e- ↔ 2I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
O2 + 4H+ +4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F- +2.87
Discharged I- ion I2 Discharged H+ ion to H2
О
K+/H+ I-/OH-
Eθ = -ve → supply +1.37 v to breakdown KI→ H2 + I2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
K+ + e ↔ K Eθ = -2.93
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
О
Oxidation
Eθ > more +ve easier to lose e
2I- ↔ I2 + 2e Eθ = -0.54
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23
ОО
Inert electrode
Carbon/graphite
OH-
OH-
I -
I -
H+
H+
K+
K+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
K2SO4 aqueous Electrolytic Cell
2H+ + 2e ↔ H2 Eθ = -0.83
4OH- ↔ 2H2O+ O2 + 4e Eθ = -1.23
K2SO4 → H2+ O2 Eθ = -2.06V
Eθ
= -2.06V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
K+ , SO4
2- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
I2 + 2e- ↔ 2I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
O2 + 4H+ +4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
S2 O8
2- + 2e ↔ SO4
2- +2.01
1/2F2 + e- ↔ F- +2.87
Discharged OH- ion O2 Discharged H+ ion to H2
О
K+/H+ SO4
2-/OH-
Eθ = -ve → supply +2.06 v to breakdown K2SO4→ H2 + O2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
K+ + e ↔ K Eθ = -2.93
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
О
Oxidation
Eθ > more +ve easier to lose e
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23
2SO4
2- ↔ S2O8
2- + 2e Eθ = -2.01
ОО
H2 gas
Ratio 1:2
O2 gas
Inert electrode
Carbon/graphite
OH-
OH-
SO4
2-
SO4
2-
K+
K+
H+
H+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
AgNO3 aqueous Electrolytic Cell
Ag+ + e ↔ Ag Eθ = +0.80
4OH- ↔ 2H2O+ O2 + 4e Eθ = -1.23
AgNO3 → Ag + O2 Eθ = -0.43V
Eθ
= -0.43V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Ag+ , NO3
- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
I2 + 2e- ↔ 2I- +0.54
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
O2 + 4H+ +4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
S2 O8
2- + 2e ↔ SO4
2- +2.01
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F- +2.87
Discharged OH- ion O2 Discharged Ag+ ion to Ag
О
Ag+/H+ NO3
-/OH-
Eθ = -ve → supply +0.43 v to breakdown AgNO3→ Ag + O2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
Ag+ + e ↔ Ag Eθ = +0.80
О
Oxidation
Eθ > more +ve easier to lose e
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23
NO3
- cannot be discharged
Inert electrode
Carbon/graphite
OH-
OH-
NO3
-
NO3
-
H+
H+
Ag+
Ag+
Discharge of ions
1 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
H2SO4 aqueous Electrolytic Cell
2H+ + 2e ↔ H2 Eθ = -0.83
4OH -
↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O → 2H2 + O2 Eθ = -2.06V
Eθ
= -2.06V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
H+ , SO4
2- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
O2 + 4H+ +4e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ +1.33
1/2CI2 + e- ↔ CI- +1.36
S2 O8
2- + 2e ↔ SO4
2- +2.01
1/2F2 + e- ↔ F- +2.87
Discharged OH- ion O2 gas Discharged H+ ion to H2 gas
О
О
H+ SO4
2-/OH-
Eθ =-ve → supply +2.06v to breakdown H2SO4 → H2 + O2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
Oxidation
Eθ > more +ve easier to lose e
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23
2SO4
2- ↔ S2O8
2- + 2e Eθ = -2.01
О
H2 gas
O2 gas
Ratio 1:2
Inert electrode
Carbon/graphite
OH-
OH-
SO4
2-
SO4
2-
H+
H+
H+
H+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
Conc NaCI Electrolytic Cell
2H+ + 2e ↔ H2 Eθ = -0.83
2CI -
↔ CI2 + 2e Eθ = -1.36
NaCI → 2H2 + CI2 + NaOH Eθ = -2.19
Cation → Cathode (-ve) → Reduction
Na+ , CI- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ + 0.77
Ag+ + e- ↔ Ag +0.80
O2 + 4H+ +4e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ +1.33
1/2CI2 + e- ↔ CI- +1.36
1/2F2 + e- ↔ F- +2.87
Discharged CI- ion CI2 gas Discharged H+ ion to H2 gas
О
О
Na+/H+ CI-/OH-
Inert electrode
Carbon/graphite
Eθ =-ve → supply +2.19v to breakdown NaCI → H2 + CI2 + NaOH
Electrolysis (Concentrated Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
Na+ + e ↔ Na Eθ = -2.71
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
О
Oxidation
Eθ > more +ve easier to lose e
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23
2CI- ↔ CI2 + 2e Eθ = -1.36
О
Ratio 1:2
H2 gas
CI2 gas
Dilute NaCI – OH- discharged due to Eθ value
Conc NaCI – CI- discharged due to overpotential factor
Discharged of H+ and OH- ion need addition voltage
due to high activation energy for H2/O2 production
If Conc CI- is high ↑ – it is preferred !!!!!!
OH-
OH-
CI -
CI -
H+
H+
Na+
Na+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
Conc CuCI2 Electrolytic Cell
Cu2+ + 2e ↔ Cu Eθ = +0.34
2CI- ↔ CI2 + 2e Eθ = -1.36
CuCI2 → Cu + O2 Eθ = -0.89V
Cation → Cathode (-ve) → Reduction
Cu2+ , CI- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
Cu+ + e- ↔ Cu +0.52
I2 + 2e- ↔ 2I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
O2 + 4H+ +4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI- +1.36
1/2F2 + e- ↔ F- +2.87
Discharged CI- ion CI2 Discharged Cu2+ ion to Cu metal
О
Cu2+/H+ CI-/OH-
Eθ = -ve → supply +0.89 v to breakdown CuCI2 → Cu+ O2
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
Cu2+ + 2e ↔ Cu Eθ = +0.34
О
Oxidation
Eθ > more +ve easier to lose e
4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23
2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23
2CI- ↔ CI2 + 2e Eθ = -1.36
ОО
Inert electrode
Carbon/graphite
Electrolysis (Concentrated Salt)
Dilute CuCI2 – OH- discharged due to Eθ value
Conc CuCI2 – CI- discharged due to overpotential factor
Discharged of H+ and OH- ion need addition voltage
due to high activation energy for H2/O2 production
If Conc CI- is high ↑ – it is preferred !!!!!!
CI2 gas
copper
OH -
OH -
CI -
CI -
Cu2+
Cu2+
H+
H+
Carbon electrode
Discharge of ions
2 Cation 2 Anion
Oxidation ← Anode (+ve) ← Anion
CuCI2 aqueous Electrolytic Cell
Cation → Cathode (-ve) → Reduction
Cu2+ , CI- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
Cu+ + e- ↔ Cu +0.52
I2 + 2e- ↔ 2I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
O2 + 4H+ +4e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F- +2.87
Discharged Cu2+ ion to Cu metal
О
CI-/OH-
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
Cu2+ + 2e ↔ Cu Eθ = +0.34
О
Copper electrode
as anode
Cu easier discharge
↓
due nature electrode
↓
Cu → Cu2+ + 2e
↓
Cu electrode dissolve
Copper electrode
OH- discharged
↓
due to Eθ value
↓
4OH- ↔ 2H2O+O2 + 4e
↓
O2 gas
+
+
+
+
+
Cu → Cu2+ + 2e
copper
electrode
Cu → 2e + Cu2+
Cu2+
Cu2+
Cu2+
Cu2+
Cu → 2e + Cu2+
Cu → 2e + Cu2+
Cu2+
Cu2+
e-
e-
e e
e- e- e -
At Anode
Copper electrode oxidizes/dissolve
Conc copper ions unchanged
Mass of Cu anode decreased
Mass of Cu cathode increased
Cu2+
Cu2+
Cu2+
OH-
OH-
CI -
CI -
H+
H+
Cu2+
Cu2+
Cu2+/H+
AgNO3 aqueous Electrolytic Cell
Carbon electrode
Discharge of ions
2 Anion
Oxidation ← Anode (+ve) ← Anion Cation → Cathode (-ve) → Reduction
Ag+ , NO3
- + H+ , OH- (from water)
+
+
+
+
+
+
-
-
-
-
-
NO3
-/OH-
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ > more +ve easier gain e
2H+ + 2e ↔ H2 Eθ = -0.83
2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83
Ag+ + e ↔ Ag Eθ = +0.80
Copper electrode
as anode
Ag easier discharge
↓
due nature electrode
↓
Ag → Ag+ + e
↓
Ag electrode dissolve
Silver electrode
OH- discharged
↓
due to Eθ value
↓
4OH- ↔ 2H2O+O2 + 4e
↓
O2 gas
+
+
+
+
+
Ag → Ag+ + e
silver
electrode
Ag → e + Ag+
Ag+
Ag+
Ag+
Ag+
Ag → e + Ag+
Ag → e + Ag+
Ag+
Ag+
e-
e-
e e
e- e- e -
At Anode
Silver electrode oxidizes/dissolve
Conc silver ions unchanged
Mass of Ag anode decreased
Mass of Ag cathode increased
Ag+
Ag+
Ag+
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
2H2O +2e- ↔ H2 + 2OH- -0.83
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ 1/2H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
I2 + 2e- ↔ 2I- +0.54
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
O2 + 4H+ +4e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
- + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
S2 O8
2- + 2e ↔ SO4
2- +2.01
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F- +2.87
ОО
Discharged Ag+ ion to Ag
-
-
-
-
-
OH -
OH -
NO3
-
NO3
-
Ag+
Ag+
H+
H+
Ag+/H+
Electrolyte Electrode Ions Cathode (-) Anode (+)
PbBr2 (molten) Carbon Pb2+/ Br- Pb2+ + 2e → Pb
Pb
2Br- → Br2 + 2e
Br2
CaCI2 (molten) Carbon Ca2+ /CI- Ca2+ +2e → Ca
Ca
2CI- → CI2 + 2e
CI2
NaCI Carbon Na+/ CI–
H+/OH-
2H+ + 2e → H2
H2
4OH- ↔ 2H2O +O2 + 4e
O2
NaCI
(conc)
Carbon Na+/ CI–
H+/OH-
2H+ + 2e → H2
H2
2CI- → CI2 + 2e
CI2
NaI Carbon Na+/ I–
H+/OH-
2H+ + 2e → H2
H2
2I- → I2 + 2e
I2
CuCI2 Carbon Cu2+/ CI–
H+/OH-
2H+ + 2e → H2
H2
4OH- ↔ 2H2O +O2 + 4e
O2
CuCI2
(conc)
Carbon Cu2+/CI-
H+/OH -
2H+ + 2e → H2
H2
2CI- → CI2 + 2e
CI2
CuCI2 Copper Cu2+/CI- Cu2++2e → Cu
Cu
Cu → Cu2++ 2e
Cu
CuBr2 Carbon Cu2+/Br-
H+/OH -
2H+ + 2e → H2
H2
2Br- → Br2 + 2e
Br2
KI Carbon K+/I-
H+/OH -
2H+ + 2e → H2
H2
2I- → I2 + 2e
I2
AgNO3 Carbon Ag+/NO3
-
H+/OH -
Ag+ + e → Ag
Ag
4OH- ↔ 2H2O +O2 + 4e
O2
AgNO3 Silver Ag+/NO3
- Ag+ + e → Ag Ag → Ag+ + e
K2SO4 Carbon K+/SO4
2-
H+/OH -
2H+ + 2e → H2
H2
4OH- ↔ 2H2O +O2 + 4e
O2
H2SO4 Carbon H+/SO4
2-
H+/OH -
2H+ + 2e → H2
H2
4OH- ↔ 2H2O +O2 + 4e
O2
HCI Carbon H+/CI-
H+/OH -
2H+ + 2e → H2
H2
4OH- ↔ 2H2O +O2 + 4e
O2
HCI
(conc)
Carbon H+/CI-
H+/OH -
2H+ + 2e → H2
H2
2CI- → CI2 + 2e
CI2
Ease Anion discharged
NO3
–
SO4
2-
CI–
Br–
I–
OH–
Ease Cation discharged
K+
Ca2+
Na+
Mg2+
Al 3+
Zn2+
Fe2+
Sn2+
Pb2+
H+
Cu2+
Ag+
easier
easier
Electrolyticcell
Conversion electrical to chemical energy
+ -
Anode (+ve)
Oxidation
Cathode (-ve)
Reduction
CathodeAnode
Factor affecting ion discharged
(Selective Discharge)
Relative E
values of ion
Conc ion
conc/diluted
Nature of
electrode
PANIC
Positive is Anode, Negative Is Cathode
NO3
– - diff to discharge
- ON for N is +5 (very high)
- Diffto lose e to get higher
Current– measured in Amperes or Coulombs per second
1A = 1 Coulomb charge pass througha point in 1 second = 1C/s
1 Coulomb charge (electron)= 6.28 x 10 18 electronspassing in 1 second
1 electron - carry charge of – 1.6 x 10 -19 C
6.28 x 10 18 electron - carry charge of - 1 C 1A
6.02 x 10 23 electron (1 Mol) - carry charge of - 96500C 1F
Electriccurrent
Flow electric charges(electron)
From High electric potential– low potential
ond
electron
ond
Coulomb
A
sec.1
.1028.6
sec1
1
1
18


Current
Flow of
charges
-
-
-
ItQ  t = Time/ s
Find amt charges pass through a sol if
Current is 2.ooA, time is 15 mins
ItQ 
Q = Amt Charges/ C
I = Current/ A
CQ 1800601500.2 
Faraday’s constant (F) – charge on 1 mol of electron 96500 C mol-1
1
1923
965001
106.11002.6





CmolF
CF
eLF
1A = 6.28 x 1018 e
1 second
L = Avogadro constant
1 Faraday – Quantity charge 96500C supply to 1 mol electron
Faraday's 1st Law Electrolysis Faraday's 2nd Law Electrolysis
Amt charges (Q)
Mass produce is directly proportional
to the quantity of electricity/charges ( C )
Factor affecting mass substance liberated
Chargeon ion
Current Time
ItQ 
Mass produce is inversely proportional to
charges on ion
Cu2+ + 2e ↔ CuAg+ + e ↔ Ag AI3+ + 3e ↔ AI
+1 +2 +3
1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI
Pass 1 mol e 1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI
Current– measured in Amperes or Coulombs per second
1A = 1 Coulomb charge pass througha point in 1 second = 1C/s
1 Coulomb charge (electron)= 6.28 x 10 18 electronspassing in 1 second
1 electron - carry charge of – 1.6 x 10 -19 C
6.28 x 10 18 electron - carry charge of - 1 C 1A
6.02 x 10 23 electron (1 Mol) - carry charge of - 96500C 1F
Electriccurrent
Flow electric charges(electron)
From High electric potential– low potential
ond
electron
ond
Coulomb
A
sec.1
.1028.6
sec1
1
1
18


Current
Flow of
charges
-
-
-
ItQ  t = Time/ s
Find amt charges pass through a sol if
Current is 2.ooA, time is 15 mins
ItQ 
Q = Amt Charges/ C
I = Current/ A
CQ 1800601500.2 
Faraday’s constant (F) – charge on 1 mol of electron 96500 C mol-1
1
1923
965001
106.11002.6





CmolF
CF
eLF
1A = 6.28 x 1018 e
1 second
L = Avogadro constant
1 Faraday – Quantity charge 96500C supply to 1 mol electron
Copper (II) sulfate electrolyzed using current -- 0.150A for 5 hrs. Cal mass of Cu deposited
CQ
Q
ItQ
2700
60605150.0



Cu2+ + 2e ↔ Cu
2 mol e → 1 mol Cu
0.028 mol e → 0.014 mol Cu
emolC
emolC
...028.0
96500
2700
2700
...196500


Find Current/I → Find Charge/Q → Find mol electron → Find Mass deposited
use Faraday’s constant
Mass = mol x RAM
Mass = 0.014 x 63.5
Mass = 0.889 g
Mass deposited
(Cathode)
Cu
1
Cu2+
Cu2+
Electrolysis
AI
t
Q
I
ItQ
4.6
605.12
4787



Cr3+ + 3e ↔ Cr
1 mol Cr → 3 mol e
0.0165 mol Cr → 0.0495 mol e
Find Mass → Find mol electron → Find Charges/Q → Find current/I
use Faraday’s constant
Mass = mol x RAM
0.86 = mol x 52.00
mol = 0.0165
Electrolysis Cr2(SO4)3 yield 0.86g of Cr after passing current for 12.5 min. Find amt of current used.
1 mol e → 96500C
0.0495mol e → 96500 x 0.0495
= 4787 C
Find time /hrs need to produce 25g of Cr from Cr2(SO4)3 with current of 1.1A
Find Mass → Find mol electron → Find Charges/Q →Find current/I
Cr3+ + 3e ↔ Cr use Faraday’s constant
1 mol Cr → 3 mol e
0.48 mol Cr → 1.44 mol e
Mass = mol x RAM
25 = mol x 52.00
mol = 0.48
1 mol e → 96500C
1.44mol e → 96500 x 1.44
= 138960C
1.35
1.1
138960



t
I
Q
t
ItQ
Mass deposited
(Cathode)
Cr3+
Cr3+
Cr
Find vol of H2 gas collect at cathode when aq sol Na2SO4 electrolyzed for 2.00 hours with a 10A.
Mass deposited
(Cathode)
Cr
Cr3+
Cr3+
Find Current/I → Find Charge/Q → Find mol electron → Find Vol
2H+ + 2e ↔ H2
CQ
Q
ItQ
72000
6060200.2



use Faraday’s constant
emolC
emolC
...746.0
96500
72000
72000
...196500


2 mol e → 1 mol H2
0.746 mol e → 0.373 mol H2
H2 O2
2
3
4
Vol = 8.35 dm3
Faraday's 1st Law Electrolysis
Faraday's 2nd Law Electrolysis
Amt charges (Q)
Mass produce is directly proportional
to the quantity of electricity/charges ( C )
Factor affecting mass substance liberated
Chargeon ion
Current Time
ItQ 
Mass produce is inversely proportional to charges onion
Cu2+ + 2e ↔ CuAg+ + e ↔ Ag AI3+ + 3e ↔ AI
+1 +2 +3
1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI
Pass 1 mol electron across
1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI
Ag+
Ag+
-
-
-
-
-
-
+
+
+
+
+
+ Cu2+
Cu2+
AI3+
AI3+
AgNO3,CuSO4, AICI3 connect in series. Same amt current used.
Cal mass Cu and Al when 10.8 g Ag deposited.
Ag+ + e ↔ Ag
1 mol Ag → 1 mol e
0.1 mol Ag →0.1 mol e
Mass = mol x RAM
10.8 = mol x 108
mol = 0.1
Cu2+ + 2e ↔ Cu
2 mol e → 1 mol Cu
0.1 mol e → 0.05 mol Cu
AI3+ + 3e ↔ AI
3 mol e → 1 mol AI
0.1 mol e → 0.03 mol AI
Mass Cu = 0.05 mol Mass AI = 0.03 mol
AgNO3, H3SO4 connect in series. Same amt current used
Cal vol H2,O2 when 10.8 g Ag deposited.
-
-
Ag+
Ag+
O2
H2
Ag+ + e ↔ Ag
1 mol Ag → 1 mol e
0.1 mol Ag → 0.1 mol e
Mass = mol x RAM
10.8 = mol x 108
mol = 0.1
2H+ + 2e ↔ H2
2 mol e → 1 mol H2
0.1 mol e → 0.05 mol H2
4OH- ↔ 2H2O +O2 + 4e
4 mol e → 1 mol O2
0.1 mol e → 0.025 mol O2
2.24 dm3
0.56 dm3
Faraday's 1st Law Electrolysis Faraday's 2nd Law Electrolysis
Amt charges (Q)
Mass produce is directly proportional
to the quantity of electricity/charges ( C )
Factor affecting mass substance liberated
Chargeon ion
Current Time
ItQ 
Mass produce is inversely proportional to charges onion
Cu2+ + 2e ↔ CuAg+ + e ↔ Ag AI3+ + 3e ↔ AI
+1 +2 +3
1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI
Pass 1 mol electron across
1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI
Purification of metal
Applicationof Electrolysis
Extractionreactivemetal
Aluminium Sodium
- ve
electrode
Aluminium
metal
AI2O3
Al3+ + 3e → Al
Electroplating
- Prevent corrosion
- Improve appearance
Copper, chromium,silver
- ve
Sodium
metal
Na+ + e → Na
NaCI + ve
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
Anode (+ve)
Plating metal
Cathode (-ve)
Object
+
+
-
-
Anode (+ve)
Impure Cu metal
Mass decrease
Cathode (-ve)
Pure Cu metal
Mass increase
Cu2+ + 2e ↔ Cu
Cu2+
Cu2+
Cu2+
Cu ↔ Cu2+ + 2e
2CI- -2e → CI2
Electrolysis of KI
Electrolysis of waterExcellent Silver crystalformation
Galvanizing Iron with Zinc
PANIC
Positive is Anode, Negative Is Cathode
Factor affecting ion discharged
(Selective Discharge)
Relative E
values of ion
Conc ion
conc/diluted
Nature of
electrode
Ease Cation discharged
K+
Ca2+
Na+
Mg2+
Al 3+
Zn2+
Fe2+
Sn2+
Pb2+
H+
Cu2+
Ag+ easier
Ease Anion discharged
NO3
–
SO4
2-
CI–
Br–
I–
OH– easier
NO3
– - diff to discharge
- ON for N is +5 (very high)
- Diffto lose e to get higher
Anode (+ve)
Oxidation
Cathode (-ve)
Reduction
Conversion electrical to chemical energy
Electrolyticcell
+ -
Faraday's 1st Law Electrolysis
Mass produce is directly proportional
to the quantity of electricity/charges ( C )
Factor affecting mass substance liberated
Amt charges (Q)
Chargeon ion
Current Time
ItQ 
Faraday's 2nd Law Electrolysis
Mass produce is inversely proportional
to charges on ion
+1 +2
Ag+ + e ↔ Ag Cu2+ + 2e ↔ Cu
1 mol e → 1 mol Ag 2 mol e → 1 mol Cu
1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu
Pass 1 mol electron across

Weitere ähnliche Inhalte

Was ist angesagt?

Coordination chemistry - introduction
Coordination chemistry - introductionCoordination chemistry - introduction
Coordination chemistry - introduction
SANTHANAM V
 
Electrochemistry-Dr. Surendran Parambadath
Electrochemistry-Dr. Surendran ParambadathElectrochemistry-Dr. Surendran Parambadath
Electrochemistry-Dr. Surendran Parambadath
Surendran Parambadath
 

Was ist angesagt? (20)

Hsab theory
Hsab theoryHsab theory
Hsab theory
 
Coordination chemistry - introduction
Coordination chemistry - introductionCoordination chemistry - introduction
Coordination chemistry - introduction
 
f block elements
  f block elements  f block elements
f block elements
 
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
 
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
IB Chemistry on Periodic Trends, Effective Nuclear Charge and Physical proper...
 
Oxidation and reduction, Balancing the redox rections
Oxidation and reduction, Balancing the redox rectionsOxidation and reduction, Balancing the redox rections
Oxidation and reduction, Balancing the redox rections
 
Electrochemistry-Dr. Surendran Parambadath
Electrochemistry-Dr. Surendran ParambadathElectrochemistry-Dr. Surendran Parambadath
Electrochemistry-Dr. Surendran Parambadath
 
Group VII elements - Halogens
Group VII elements - HalogensGroup VII elements - Halogens
Group VII elements - Halogens
 
Chapter 13 s and p block elements
Chapter 13   s and p block elementsChapter 13   s and p block elements
Chapter 13 s and p block elements
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Transition metals
Transition metalsTransition metals
Transition metals
 
d and f block elements XII (LATEST)
d and f block elements  XII (LATEST)d and f block elements  XII (LATEST)
d and f block elements XII (LATEST)
 
d and f block elements.pptx
d and f block elements.pptxd and f block elements.pptx
d and f block elements.pptx
 
Redox reaction
Redox reactionRedox reaction
Redox reaction
 
Alkali metal
Alkali metalAlkali metal
Alkali metal
 
Redox Reactions
Redox ReactionsRedox Reactions
Redox Reactions
 
Periodicity
PeriodicityPeriodicity
Periodicity
 
Bonding in Coordination Complexes
Bonding in Coordination ComplexesBonding in Coordination Complexes
Bonding in Coordination Complexes
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Kinetics of solution in reaction
Kinetics of solution in reactionKinetics of solution in reaction
Kinetics of solution in reaction
 

Andere mochten auch

IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
Lawrence kok
 

Andere mochten auch (20)

IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
 
IB Chemistry on Homologous series and functional groups of organic molecules
IB Chemistry on Homologous series and functional groups of organic moleculesIB Chemistry on Homologous series and functional groups of organic molecules
IB Chemistry on Homologous series and functional groups of organic molecules
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical Series
 
IB Chemistry on Organic nomenclature and functional groups.
IB Chemistry on Organic nomenclature and functional groups.IB Chemistry on Organic nomenclature and functional groups.
IB Chemistry on Organic nomenclature and functional groups.
 
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
 
IB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reactionIB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reaction
 
IB Chemistry on Electrophilic Addition and Synthetic routes
IB Chemistry on Electrophilic Addition and Synthetic routesIB Chemistry on Electrophilic Addition and Synthetic routes
IB Chemistry on Electrophilic Addition and Synthetic routes
 
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, KcIB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
IB Chemistry on Gibbs Free Energy and Equilibrium constant, Kc
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and EntropyIB Chemistry on Gibbs Free Energy and Entropy
IB Chemistry on Gibbs Free Energy and Entropy
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Born Haber Cycle and Lattice Enthalpy
IB Chemistry on Born Haber Cycle and Lattice EnthalpyIB Chemistry on Born Haber Cycle and Lattice Enthalpy
IB Chemistry on Born Haber Cycle and Lattice Enthalpy
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting PatternIB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
 
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
 

Ähnlich wie IB Chemistry on Electrolysis and Faraday's Law

Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
smitamalik
 
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
mhosn627
 
4. For each of the following electrochemical cells i. Identify the a.pdf
4. For each of the following electrochemical cells i. Identify the a.pdf4. For each of the following electrochemical cells i. Identify the a.pdf
4. For each of the following electrochemical cells i. Identify the a.pdf
fedosys
 
Chem 101 week 6 pt2
Chem 101 week 6 pt2Chem 101 week 6 pt2
Chem 101 week 6 pt2
tdean1
 
Lect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevLect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrev
chelss
 
Acids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadathAcids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadath
Surendran Parambadath
 
ELECTROCHEMITRY
ELECTROCHEMITRYELECTROCHEMITRY
ELECTROCHEMITRY
zlem
 
ELECTROCHEMSTRY POWER POINT
ELECTROCHEMSTRY POWER POINTELECTROCHEMSTRY POWER POINT
ELECTROCHEMSTRY POWER POINT
wanafifah
 

Ähnlich wie IB Chemistry on Electrolysis and Faraday's Law (20)

IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's Law
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
 
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
IB Chemistry on Redox, Oxidizing, Reducing Agents and writing half redox equa...
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
 
4. For each of the following electrochemical cells i. Identify the a.pdf
4. For each of the following electrochemical cells i. Identify the a.pdf4. For each of the following electrochemical cells i. Identify the a.pdf
4. For each of the following electrochemical cells i. Identify the a.pdf
 
intro to electrochemistry
intro to  electrochemistryintro to  electrochemistry
intro to electrochemistry
 
Lecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsLecture 21- Electrochemical cells
Lecture 21- Electrochemical cells
 
IB Chemistry on Redox, Oxidation states, oxidation number
IB Chemistry on Redox, Oxidation states, oxidation numberIB Chemistry on Redox, Oxidation states, oxidation number
IB Chemistry on Redox, Oxidation states, oxidation number
 
1. redox reactions summary presentation.ppt
1. redox reactions summary presentation.ppt1. redox reactions summary presentation.ppt
1. redox reactions summary presentation.ppt
 
apchapt17.ppt
apchapt17.pptapchapt17.ppt
apchapt17.ppt
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration Cell
 
Chem 101 week 6 pt2
Chem 101 week 6 pt2Chem 101 week 6 pt2
Chem 101 week 6 pt2
 
Electrochemistry ch 14
Electrochemistry ch 14Electrochemistry ch 14
Electrochemistry ch 14
 
Electrochemistrych14 140626154750-phpapp02
Electrochemistrych14 140626154750-phpapp02Electrochemistrych14 140626154750-phpapp02
Electrochemistrych14 140626154750-phpapp02
 
Lect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevLect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrev
 
Acids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadathAcids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadath
 
IA on effect of concentration on emf produced by Mn2+/Cu2+ voltaic cell, meas...
IA on effect of concentration on emf produced by Mn2+/Cu2+ voltaic cell, meas...IA on effect of concentration on emf produced by Mn2+/Cu2+ voltaic cell, meas...
IA on effect of concentration on emf produced by Mn2+/Cu2+ voltaic cell, meas...
 
ELECTROCHEMITRY
ELECTROCHEMITRYELECTROCHEMITRY
ELECTROCHEMITRY
 
ELECTROCHEMSTRY POWER POINT
ELECTROCHEMSTRY POWER POINTELECTROCHEMSTRY POWER POINT
ELECTROCHEMSTRY POWER POINT
 

Mehr von Lawrence kok

Mehr von Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Kürzlich hochgeladen

SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
CaitlinCummins3
 

Kürzlich hochgeladen (20)

OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
 
How to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptxHow to Manage Website in Odoo 17 Studio App.pptx
How to Manage Website in Odoo 17 Studio App.pptx
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management
 
male presentation...pdf.................
male presentation...pdf.................male presentation...pdf.................
male presentation...pdf.................
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...
 
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
 
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUMDEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
 
PSYPACT- Practicing Over State Lines May 2024.pptx
PSYPACT- Practicing Over State Lines May 2024.pptxPSYPACT- Practicing Over State Lines May 2024.pptx
PSYPACT- Practicing Over State Lines May 2024.pptx
 
Trauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical PrinciplesTrauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical Principles
 
Book Review of Run For Your Life Powerpoint
Book Review of Run For Your Life PowerpointBook Review of Run For Your Life Powerpoint
Book Review of Run For Your Life Powerpoint
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17
 

IB Chemistry on Electrolysis and Faraday's Law

  • 1. Types voltaic cell Conversion electrical energy to chemical energy Electrochemistry Electrolytic cellVoltaic cell NH4CI and ZnCI2 Chemical and electrical energy Redox rxn (Oxidation/reduction) Movement electron Produce electricity Conversion chemical energy to electrical energy Electrodes– differentmetal (Half cell) Electrodes– same metal (Half cell) Chemical rxn Electric current Daniell cell Alkaline cellDry cell Nickel cadmium cell Primary cell (Non rechargeable) MnO2 and KOH Secondary cell (Rechargeable)
  • 2. Conversion electrical to chemical energy Electrochemistry ElectrolyticcellVoltaic cell Conversion chemical to electrical energy Cathode(+ve) - Reduction Cathode(-ve) - Reduction Vs Electron flow from anode (-ve) to cathode (+ve) electrode Electron flow from anode (+ve) to cathode (-ve) electrode Anode (-ve) Spontaneousrxn Non Spontaneousrxn Anode (-ve) – Oxidation Anode (+ve) – Oxidation ++ О О О О - - Zn → Zn 2+ + 2e (oxidized) Cu2+ + 2e → Cu (reduced) Zn2+ Zn2+ Zn2+ Zn2+- - - - → + + + Cu2+ Cu2+ Cu2+ -e -e + + + - - - X-→ X + -e (oxidized) X - X - X - Anode (+ve) Cathode (-ve) Cathode (+ve) -e -e Y+ + e- → Y (reduced) Y+ Y+ Y+ -e -e -e -e Anode Cathode Voltaic Cell Electrolytic Cell Anode Oxidation Negative (-ve) Oxidation Positive (+ve) Cathode Reduction Positive (+ve) Reduction Negative (-ve) Cation (+ve ion) to cathode (-ve)Anion (-ve ion) to anode (+ve)
  • 3. Zn → Zn 2+ + 2e Conversion electrical to chemical energy Electrochemistry Conversion chemical to electrical energy Cathode (-ve) Reduction Vs Electron flow from anode (-ve) to cathode (+ve) electrode Electron flow from anode (+ve) to cathode (-ve) electrode Anode (-ve) Spontaneousrxn Non Spontaneousrxn Anode (+ve) Oxidation + О О - Zn → Zn 2+ + 2e (oxidized) Cu2+ + 2e → Cu (reduced) Zn2+ Zn2+ Zn2+ Zn2+ - -- -→ + + + Cu2+ Cu2+ Cu2+ -e -e + + + - - - 2Br-→ Br2 + 2e- (oxidized) Br - Br - Br - Anode (+ve) Cathode (-ve)Cathode (+ve) -e -e Pb2+ + 2e- → Pb (reduced) Pb2+ -e -e -e Cation (+ve ion) to cathode (-ve)Anion (-ve ion) to anode (+ve) 1.10Volt -e -e - - - - + + + + Anode Cathode Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Cu2+ + 2e → Cu Zn + Cu2+ → Zn2+ + Cu 2Br- → Br2 + 2e Zn/Cu Voltaic Cell PbBr2 molten ElectrolyticCell Pb2+ + 2e → Pb PbBr2 → Pb+ Br2 Br - Br - Br - Pb2+ Pb2+ Pb2+ Pb2+ Pb2+
  • 4. Conversion electrical to chemical energy Electrochemistry Conversion chemical to electrical energy Cathode (-ve) Reduction Vs Spontaneousrxn Non Spontaneousrxn Anode (+ve) Oxidation + О О - -e 1.10 Volt -e -e - - - - + + + + Anode Cathode Zn/Cu Voltaic Cell PbBr2 molten ElectrolyticCell PbBr2 → Pb+ Br2 Eθ = ??? Br - Br - Br - Pb2+ Pb2+ Pb2+ Find Eθ cell (use reduction potential) Zn 2+ + 2e ↔ Zn Eθ = -0.76V Cu2+ + 2e ↔ Cu Eθ = +0.34V Cu half cell (+ve) Reduction Zn half cell (-ve) Oxidation Zn + Cu2+ → Zn2+ + Cu Eθ = ????? Zn ↔ Zn2+ + 2e Eθ = +0.76 Cu2+ + 2e ↔ Cu Eθ = +0.34 Zn + Cu2+ → Zn 2+ + Cu Eθ = +1.10V Eθ = +1.10V +ve (spontaneous) Pb2+ + 2e ↔ Pb Eθ = -0.13V Br- + e ↔ Br - Eθ = +1.07V Find Eθ cell (use reduction potential) 2Br - ↔ Br2+ 2e Eθ = -1.07 Pb2+ + 2e ↔ Pb Eθ = -0.13 Pb2+ + 2Br - → Pb+Br2 Eθ = -1.20V Compound broken down (LYSIS) energy needed Eθ = -1.20V -ve (NON spontaneous) Conversion chemical to electrical energy Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!!
  • 5. Discharge of ions 1 Cation + 1 Anion Electrolysis (Molten Salt) Oxidation ← Anode (+ve) ← Anion PbBr2 moltenElectrolytic Cell Eθ =-ve → supply +1.20v to breakdown PbBr2 → Pb+ Br2 Find Eθ cell (use reduction potential) Pb2+ + 2e ↔ Pb Eθ = -0.13 2Br - ↔ Br2+ 2e Eθ = -1.07 Pb2+ + 2Br - → Pb +Br2 Eθ = -1.20V Eθ = -1.20V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Liquid – Pb2+ and Br- ions + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged Br- ion Br2 gas (brown gas seen) Discharged Pb2+ ion to Pb (grey deposit) 2Br - ↔ Br2+ 2e Pb2+ + 2e ↔ Pb Compound broken down (LYSIS) energy needed О О Pb2+ Br - Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Inert electrode Carbon/graphite Br - Br - Br - Pb2+ Pb2+ Pb2+
  • 6. Discharge of ions 1 Cation + 1 Anion Oxidation ← Anode (+ve) ← Anion CaCI2 molten Electrolytic Cell Find Eθ cell (use reduction potential) Ca2+ + 2e ↔ Ca Eθ = -2.87 2CI - ↔ CI2+ 2e Eθ = -1.36 Ca2+ + 2CI - → Ca +CI2 Eθ = -4.23V Eθ = -4.23V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Liquid – Ca2+ and CI- ions + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ 1/2H2 + OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged CI- ion CI2 gas (yellow gas) Discharged Ca2+ ion to Ca 2CI - ↔ CI2+ 2e Ca2+ + 2e ↔ Ca Compound broken down (LYSIS) energy needed О О Ca2+ CI - Eθ =-ve → supply +4.23v to breakdown CaCI2 → Ca+ CI2 Electrolysis (Molten Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Inert electrode Carbon/graphite CI - CI - CI - Ca2+ Ca2+ Ca2+
  • 7. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion NaCI aqueous Electrolytic Cell 2H+ + 2e ↔ H2 Eθ = -0.83 4OH - ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O → 2H2 + O2 Eθ = -2.06V Eθ = -2.06V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Na+ , CI- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 O2 + 4H+ +4e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F- +2.87 Discharged OH- ion O2 gas Discharged H+ ion to H2 gas О О Na+/H+ CI-/OH- Eθ =-ve → supply +2.06v to breakdown NaCI → H2 + O2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e Na+ + e ↔ Na Eθ = -2.71 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 О Oxidation Eθ > more +ve easier to lose e 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23 2CI- ↔ CI2 + 2e Eθ = -1.36 О Inert electrode Carbon/graphite OH- OH- CI - CI - H+ H+ Na+ Na+
  • 8. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion NaI aqueousElectrolytic Cell 2H+ + 2e ↔ H2 Eθ = -0.83 2I - ↔ I2 + 2e Eθ = -0.54 NaI → H2 + I2 Eθ = -1.37V Eθ = -1.37V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Na+ , I- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged I- ion I2 Discharged H+ ion to H2 gas О О Na+/H+ I-/OH- Eθ = -ve → supply +1.37 v to breakdown NaI → H2 + I2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e Na+ + e ↔ Na Eθ = -2.71 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 О Oxidation Eθ > more +ve easier to lose e 2I- ↔ I2 + 2e Eθ = -0.54 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23 О Inert electrode Carbon/graphite I - I - OH- OH- H+ H+ Na+ Na+
  • 9. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion CuCI2 aqueous Electrolytic Cell Cu2+ + 2e ↔ Cu Eθ = +0.34 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 CuCI2 → Cu + O2 Eθ = -0.89V Eθ = -0.89V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Cu2+ , CI- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F- +2.87 Discharged OH- ion O2 Discharged Cu2+ ion to Cu metal О Cu2+/H+ CI-/OH- Eθ = -ve → supply +0.89 v to breakdown CuCI2 → Cu+ O2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 Cu2+ + 2e ↔ Cu Eθ = +0.34 О Oxidation Eθ > more +ve easier to lose e 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23 2CI- ↔ CI2 + 2e Eθ = -1.36 ОО Inert electrode Carbon/graphite OH- OH- CI - CI - H+ H+ Cu2+ Cu2+
  • 10. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion CuBr2 aqueousElectrolytic Cell Cu2+ + 2e ↔ Cu Eθ = +0.34 2Br- ↔ Br2 + 2e Eθ = -1.07 CuBr2 → Cu + Br2 Eθ = -0.73V Eθ = -0.73V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Cu2+ , Br- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged Br- ion Br2 Discharged Cu2+ ion to Cu О Cu2+/H+ Br-/OH- Eθ = -ve → supply +0.73 v to breakdown CuBr2 → Cu+ Br2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 Cu2+ + 2e ↔ Cu Eθ = +0.34 О Oxidation Eθ > more +ve easier to lose e 2Br- ↔ Br2 + 2e Eθ = -1.07 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23 Inert electrode Carbon/graphite Br- Br- OH- OH- Cu2+ Cu2+ H+ H+
  • 11. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion KI aqueous Electrolytic Cell 2H+ + 2e ↔ H2 Eθ = -0.83 2I- ↔ I2 + 2e Eθ = -0.54 KI → H2+ Br2 Eθ = -1.37V Eθ = -1.37V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction K+ , I- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged I- ion I2 Discharged H+ ion to H2 О K+/H+ I-/OH- Eθ = -ve → supply +1.37 v to breakdown KI→ H2 + I2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e K+ + e ↔ K Eθ = -2.93 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 О Oxidation Eθ > more +ve easier to lose e 2I- ↔ I2 + 2e Eθ = -0.54 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23 ОО Inert electrode Carbon/graphite OH- OH- I - I - H+ H+ K+ K+
  • 12. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion K2SO4 aqueous Electrolytic Cell 2H+ + 2e ↔ H2 Eθ = -0.83 4OH- ↔ 2H2O+ O2 + 4e Eθ = -1.23 K2SO4 → H2+ O2 Eθ = -2.06V Eθ = -2.06V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction K+ , SO4 2- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 S2 O8 2- + 2e ↔ SO4 2- +2.01 1/2F2 + e- ↔ F- +2.87 Discharged OH- ion O2 Discharged H+ ion to H2 О K+/H+ SO4 2-/OH- Eθ = -ve → supply +2.06 v to breakdown K2SO4→ H2 + O2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e K+ + e ↔ K Eθ = -2.93 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 О Oxidation Eθ > more +ve easier to lose e 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23 2SO4 2- ↔ S2O8 2- + 2e Eθ = -2.01 ОО H2 gas Ratio 1:2 O2 gas Inert electrode Carbon/graphite OH- OH- SO4 2- SO4 2- K+ K+ H+ H+
  • 13. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion AgNO3 aqueous Electrolytic Cell Ag+ + e ↔ Ag Eθ = +0.80 4OH- ↔ 2H2O+ O2 + 4e Eθ = -1.23 AgNO3 → Ag + O2 Eθ = -0.43V Eθ = -0.43V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Ag+ , NO3 - + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + 2e- ↔ 2I- +0.54 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 S2 O8 2- + 2e ↔ SO4 2- +2.01 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged OH- ion O2 Discharged Ag+ ion to Ag О Ag+/H+ NO3 -/OH- Eθ = -ve → supply +0.43 v to breakdown AgNO3→ Ag + O2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 Ag+ + e ↔ Ag Eθ = +0.80 О Oxidation Eθ > more +ve easier to lose e 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23 NO3 - cannot be discharged Inert electrode Carbon/graphite OH- OH- NO3 - NO3 - H+ H+ Ag+ Ag+
  • 14. Discharge of ions 1 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion H2SO4 aqueous Electrolytic Cell 2H+ + 2e ↔ H2 Eθ = -0.83 4OH - ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O → 2H2 + O2 Eθ = -2.06V Eθ = -2.06V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction H+ , SO4 2- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 O2 + 4H+ +4e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 S2 O8 2- + 2e ↔ SO4 2- +2.01 1/2F2 + e- ↔ F- +2.87 Discharged OH- ion O2 gas Discharged H+ ion to H2 gas О О H+ SO4 2-/OH- Eθ =-ve → supply +2.06v to breakdown H2SO4 → H2 + O2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 Oxidation Eθ > more +ve easier to lose e 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23 2SO4 2- ↔ S2O8 2- + 2e Eθ = -2.01 О H2 gas O2 gas Ratio 1:2 Inert electrode Carbon/graphite OH- OH- SO4 2- SO4 2- H+ H+ H+ H+
  • 15. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion Conc NaCI Electrolytic Cell 2H+ + 2e ↔ H2 Eθ = -0.83 2CI - ↔ CI2 + 2e Eθ = -1.36 NaCI → 2H2 + CI2 + NaOH Eθ = -2.19 Cation → Cathode (-ve) → Reduction Na+ , CI- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 O2 + 4H+ +4e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F- +2.87 Discharged CI- ion CI2 gas Discharged H+ ion to H2 gas О О Na+/H+ CI-/OH- Inert electrode Carbon/graphite Eθ =-ve → supply +2.19v to breakdown NaCI → H2 + CI2 + NaOH Electrolysis (Concentrated Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e Na+ + e ↔ Na Eθ = -2.71 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 О Oxidation Eθ > more +ve easier to lose e 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23 2CI- ↔ CI2 + 2e Eθ = -1.36 О Ratio 1:2 H2 gas CI2 gas Dilute NaCI – OH- discharged due to Eθ value Conc NaCI – CI- discharged due to overpotential factor Discharged of H+ and OH- ion need addition voltage due to high activation energy for H2/O2 production If Conc CI- is high ↑ – it is preferred !!!!!! OH- OH- CI - CI - H+ H+ Na+ Na+
  • 16. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion Conc CuCI2 Electrolytic Cell Cu2+ + 2e ↔ Cu Eθ = +0.34 2CI- ↔ CI2 + 2e Eθ = -1.36 CuCI2 → Cu + O2 Eθ = -0.89V Cation → Cathode (-ve) → Reduction Cu2+ , CI- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F- +2.87 Discharged CI- ion CI2 Discharged Cu2+ ion to Cu metal О Cu2+/H+ CI-/OH- Eθ = -ve → supply +0.89 v to breakdown CuCI2 → Cu+ O2 Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 Cu2+ + 2e ↔ Cu Eθ = +0.34 О Oxidation Eθ > more +ve easier to lose e 4OH- ↔ 2H2O + O2 + 4e Eθ = -1.23 2H2O ↔ 4H+ + O2 + 4e Eθ = -1.23 2CI- ↔ CI2 + 2e Eθ = -1.36 ОО Inert electrode Carbon/graphite Electrolysis (Concentrated Salt) Dilute CuCI2 – OH- discharged due to Eθ value Conc CuCI2 – CI- discharged due to overpotential factor Discharged of H+ and OH- ion need addition voltage due to high activation energy for H2/O2 production If Conc CI- is high ↑ – it is preferred !!!!!! CI2 gas copper OH - OH - CI - CI - Cu2+ Cu2+ H+ H+
  • 17. Carbon electrode Discharge of ions 2 Cation 2 Anion Oxidation ← Anode (+ve) ← Anion CuCI2 aqueous Electrolytic Cell Cation → Cathode (-ve) → Reduction Cu2+ , CI- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged Cu2+ ion to Cu metal О CI-/OH- Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 Cu2+ + 2e ↔ Cu Eθ = +0.34 О Copper electrode as anode Cu easier discharge ↓ due nature electrode ↓ Cu → Cu2+ + 2e ↓ Cu electrode dissolve Copper electrode OH- discharged ↓ due to Eθ value ↓ 4OH- ↔ 2H2O+O2 + 4e ↓ O2 gas + + + + + Cu → Cu2+ + 2e copper electrode Cu → 2e + Cu2+ Cu2+ Cu2+ Cu2+ Cu2+ Cu → 2e + Cu2+ Cu → 2e + Cu2+ Cu2+ Cu2+ e- e- e e e- e- e - At Anode Copper electrode oxidizes/dissolve Conc copper ions unchanged Mass of Cu anode decreased Mass of Cu cathode increased Cu2+ Cu2+ Cu2+ OH- OH- CI - CI - H+ H+ Cu2+ Cu2+ Cu2+/H+
  • 18. AgNO3 aqueous Electrolytic Cell Carbon electrode Discharge of ions 2 Anion Oxidation ← Anode (+ve) ← Anion Cation → Cathode (-ve) → Reduction Ag+ , NO3 - + H+ , OH- (from water) + + + + + + - - - - - NO3 -/OH- Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e ↔ H2 Eθ = -0.83 2H2O +2e- ↔ H2 + 2OH- Eθ = -0.83 Ag+ + e ↔ Ag Eθ = +0.80 Copper electrode as anode Ag easier discharge ↓ due nature electrode ↓ Ag → Ag+ + e ↓ Ag electrode dissolve Silver electrode OH- discharged ↓ due to Eθ value ↓ 4OH- ↔ 2H2O+O2 + 4e ↓ O2 gas + + + + + Ag → Ag+ + e silver electrode Ag → e + Ag+ Ag+ Ag+ Ag+ Ag+ Ag → e + Ag+ Ag → e + Ag+ Ag+ Ag+ e- e- e e e- e- e - At Anode Silver electrode oxidizes/dissolve Conc silver ions unchanged Mass of Ag anode decreased Mass of Ag cathode increased Ag+ Ag+ Ag+ Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 2H2O +2e- ↔ H2 + 2OH- -0.83 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ 1/2H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + 2e- ↔ 2I- +0.54 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 S2 O8 2- + 2e ↔ SO4 2- +2.01 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 ОО Discharged Ag+ ion to Ag - - - - - OH - OH - NO3 - NO3 - Ag+ Ag+ H+ H+ Ag+/H+
  • 19. Electrolyte Electrode Ions Cathode (-) Anode (+) PbBr2 (molten) Carbon Pb2+/ Br- Pb2+ + 2e → Pb Pb 2Br- → Br2 + 2e Br2 CaCI2 (molten) Carbon Ca2+ /CI- Ca2+ +2e → Ca Ca 2CI- → CI2 + 2e CI2 NaCI Carbon Na+/ CI– H+/OH- 2H+ + 2e → H2 H2 4OH- ↔ 2H2O +O2 + 4e O2 NaCI (conc) Carbon Na+/ CI– H+/OH- 2H+ + 2e → H2 H2 2CI- → CI2 + 2e CI2 NaI Carbon Na+/ I– H+/OH- 2H+ + 2e → H2 H2 2I- → I2 + 2e I2 CuCI2 Carbon Cu2+/ CI– H+/OH- 2H+ + 2e → H2 H2 4OH- ↔ 2H2O +O2 + 4e O2 CuCI2 (conc) Carbon Cu2+/CI- H+/OH - 2H+ + 2e → H2 H2 2CI- → CI2 + 2e CI2 CuCI2 Copper Cu2+/CI- Cu2++2e → Cu Cu Cu → Cu2++ 2e Cu CuBr2 Carbon Cu2+/Br- H+/OH - 2H+ + 2e → H2 H2 2Br- → Br2 + 2e Br2 KI Carbon K+/I- H+/OH - 2H+ + 2e → H2 H2 2I- → I2 + 2e I2 AgNO3 Carbon Ag+/NO3 - H+/OH - Ag+ + e → Ag Ag 4OH- ↔ 2H2O +O2 + 4e O2 AgNO3 Silver Ag+/NO3 - Ag+ + e → Ag Ag → Ag+ + e K2SO4 Carbon K+/SO4 2- H+/OH - 2H+ + 2e → H2 H2 4OH- ↔ 2H2O +O2 + 4e O2 H2SO4 Carbon H+/SO4 2- H+/OH - 2H+ + 2e → H2 H2 4OH- ↔ 2H2O +O2 + 4e O2 HCI Carbon H+/CI- H+/OH - 2H+ + 2e → H2 H2 4OH- ↔ 2H2O +O2 + 4e O2 HCI (conc) Carbon H+/CI- H+/OH - 2H+ + 2e → H2 H2 2CI- → CI2 + 2e CI2 Ease Anion discharged NO3 – SO4 2- CI– Br– I– OH– Ease Cation discharged K+ Ca2+ Na+ Mg2+ Al 3+ Zn2+ Fe2+ Sn2+ Pb2+ H+ Cu2+ Ag+ easier easier Electrolyticcell Conversion electrical to chemical energy + - Anode (+ve) Oxidation Cathode (-ve) Reduction CathodeAnode Factor affecting ion discharged (Selective Discharge) Relative E values of ion Conc ion conc/diluted Nature of electrode PANIC Positive is Anode, Negative Is Cathode NO3 – - diff to discharge - ON for N is +5 (very high) - Diffto lose e to get higher
  • 20. Current– measured in Amperes or Coulombs per second 1A = 1 Coulomb charge pass througha point in 1 second = 1C/s 1 Coulomb charge (electron)= 6.28 x 10 18 electronspassing in 1 second 1 electron - carry charge of – 1.6 x 10 -19 C 6.28 x 10 18 electron - carry charge of - 1 C 1A 6.02 x 10 23 electron (1 Mol) - carry charge of - 96500C 1F Electriccurrent Flow electric charges(electron) From High electric potential– low potential ond electron ond Coulomb A sec.1 .1028.6 sec1 1 1 18   Current Flow of charges - - - ItQ  t = Time/ s Find amt charges pass through a sol if Current is 2.ooA, time is 15 mins ItQ  Q = Amt Charges/ C I = Current/ A CQ 1800601500.2  Faraday’s constant (F) – charge on 1 mol of electron 96500 C mol-1 1 1923 965001 106.11002.6      CmolF CF eLF 1A = 6.28 x 1018 e 1 second L = Avogadro constant 1 Faraday – Quantity charge 96500C supply to 1 mol electron Faraday's 1st Law Electrolysis Faraday's 2nd Law Electrolysis Amt charges (Q) Mass produce is directly proportional to the quantity of electricity/charges ( C ) Factor affecting mass substance liberated Chargeon ion Current Time ItQ  Mass produce is inversely proportional to charges on ion Cu2+ + 2e ↔ CuAg+ + e ↔ Ag AI3+ + 3e ↔ AI +1 +2 +3 1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI Pass 1 mol e 1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI
  • 21. Current– measured in Amperes or Coulombs per second 1A = 1 Coulomb charge pass througha point in 1 second = 1C/s 1 Coulomb charge (electron)= 6.28 x 10 18 electronspassing in 1 second 1 electron - carry charge of – 1.6 x 10 -19 C 6.28 x 10 18 electron - carry charge of - 1 C 1A 6.02 x 10 23 electron (1 Mol) - carry charge of - 96500C 1F Electriccurrent Flow electric charges(electron) From High electric potential– low potential ond electron ond Coulomb A sec.1 .1028.6 sec1 1 1 18   Current Flow of charges - - - ItQ  t = Time/ s Find amt charges pass through a sol if Current is 2.ooA, time is 15 mins ItQ  Q = Amt Charges/ C I = Current/ A CQ 1800601500.2  Faraday’s constant (F) – charge on 1 mol of electron 96500 C mol-1 1 1923 965001 106.11002.6      CmolF CF eLF 1A = 6.28 x 1018 e 1 second L = Avogadro constant 1 Faraday – Quantity charge 96500C supply to 1 mol electron Copper (II) sulfate electrolyzed using current -- 0.150A for 5 hrs. Cal mass of Cu deposited CQ Q ItQ 2700 60605150.0    Cu2+ + 2e ↔ Cu 2 mol e → 1 mol Cu 0.028 mol e → 0.014 mol Cu emolC emolC ...028.0 96500 2700 2700 ...196500   Find Current/I → Find Charge/Q → Find mol electron → Find Mass deposited use Faraday’s constant Mass = mol x RAM Mass = 0.014 x 63.5 Mass = 0.889 g Mass deposited (Cathode) Cu 1 Cu2+ Cu2+
  • 22. Electrolysis AI t Q I ItQ 4.6 605.12 4787    Cr3+ + 3e ↔ Cr 1 mol Cr → 3 mol e 0.0165 mol Cr → 0.0495 mol e Find Mass → Find mol electron → Find Charges/Q → Find current/I use Faraday’s constant Mass = mol x RAM 0.86 = mol x 52.00 mol = 0.0165 Electrolysis Cr2(SO4)3 yield 0.86g of Cr after passing current for 12.5 min. Find amt of current used. 1 mol e → 96500C 0.0495mol e → 96500 x 0.0495 = 4787 C Find time /hrs need to produce 25g of Cr from Cr2(SO4)3 with current of 1.1A Find Mass → Find mol electron → Find Charges/Q →Find current/I Cr3+ + 3e ↔ Cr use Faraday’s constant 1 mol Cr → 3 mol e 0.48 mol Cr → 1.44 mol e Mass = mol x RAM 25 = mol x 52.00 mol = 0.48 1 mol e → 96500C 1.44mol e → 96500 x 1.44 = 138960C 1.35 1.1 138960    t I Q t ItQ Mass deposited (Cathode) Cr3+ Cr3+ Cr Find vol of H2 gas collect at cathode when aq sol Na2SO4 electrolyzed for 2.00 hours with a 10A. Mass deposited (Cathode) Cr Cr3+ Cr3+ Find Current/I → Find Charge/Q → Find mol electron → Find Vol 2H+ + 2e ↔ H2 CQ Q ItQ 72000 6060200.2    use Faraday’s constant emolC emolC ...746.0 96500 72000 72000 ...196500   2 mol e → 1 mol H2 0.746 mol e → 0.373 mol H2 H2 O2 2 3 4 Vol = 8.35 dm3
  • 23. Faraday's 1st Law Electrolysis Faraday's 2nd Law Electrolysis Amt charges (Q) Mass produce is directly proportional to the quantity of electricity/charges ( C ) Factor affecting mass substance liberated Chargeon ion Current Time ItQ  Mass produce is inversely proportional to charges onion Cu2+ + 2e ↔ CuAg+ + e ↔ Ag AI3+ + 3e ↔ AI +1 +2 +3 1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI Pass 1 mol electron across 1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI Ag+ Ag+ - - - - - - + + + + + + Cu2+ Cu2+ AI3+ AI3+ AgNO3,CuSO4, AICI3 connect in series. Same amt current used. Cal mass Cu and Al when 10.8 g Ag deposited. Ag+ + e ↔ Ag 1 mol Ag → 1 mol e 0.1 mol Ag →0.1 mol e Mass = mol x RAM 10.8 = mol x 108 mol = 0.1 Cu2+ + 2e ↔ Cu 2 mol e → 1 mol Cu 0.1 mol e → 0.05 mol Cu AI3+ + 3e ↔ AI 3 mol e → 1 mol AI 0.1 mol e → 0.03 mol AI Mass Cu = 0.05 mol Mass AI = 0.03 mol AgNO3, H3SO4 connect in series. Same amt current used Cal vol H2,O2 when 10.8 g Ag deposited. - - Ag+ Ag+ O2 H2 Ag+ + e ↔ Ag 1 mol Ag → 1 mol e 0.1 mol Ag → 0.1 mol e Mass = mol x RAM 10.8 = mol x 108 mol = 0.1 2H+ + 2e ↔ H2 2 mol e → 1 mol H2 0.1 mol e → 0.05 mol H2 4OH- ↔ 2H2O +O2 + 4e 4 mol e → 1 mol O2 0.1 mol e → 0.025 mol O2 2.24 dm3 0.56 dm3
  • 24. Faraday's 1st Law Electrolysis Faraday's 2nd Law Electrolysis Amt charges (Q) Mass produce is directly proportional to the quantity of electricity/charges ( C ) Factor affecting mass substance liberated Chargeon ion Current Time ItQ  Mass produce is inversely proportional to charges onion Cu2+ + 2e ↔ CuAg+ + e ↔ Ag AI3+ + 3e ↔ AI +1 +2 +3 1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI Pass 1 mol electron across 1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI Purification of metal Applicationof Electrolysis Extractionreactivemetal Aluminium Sodium - ve electrode Aluminium metal AI2O3 Al3+ + 3e → Al Electroplating - Prevent corrosion - Improve appearance Copper, chromium,silver - ve Sodium metal Na+ + e → Na NaCI + ve - - - - - - - - + + + + + + + + + + + + Anode (+ve) Plating metal Cathode (-ve) Object + + - - Anode (+ve) Impure Cu metal Mass decrease Cathode (-ve) Pure Cu metal Mass increase Cu2+ + 2e ↔ Cu Cu2+ Cu2+ Cu2+ Cu ↔ Cu2+ + 2e 2CI- -2e → CI2
  • 25. Electrolysis of KI Electrolysis of waterExcellent Silver crystalformation Galvanizing Iron with Zinc PANIC Positive is Anode, Negative Is Cathode Factor affecting ion discharged (Selective Discharge) Relative E values of ion Conc ion conc/diluted Nature of electrode Ease Cation discharged K+ Ca2+ Na+ Mg2+ Al 3+ Zn2+ Fe2+ Sn2+ Pb2+ H+ Cu2+ Ag+ easier Ease Anion discharged NO3 – SO4 2- CI– Br– I– OH– easier NO3 – - diff to discharge - ON for N is +5 (very high) - Diffto lose e to get higher Anode (+ve) Oxidation Cathode (-ve) Reduction Conversion electrical to chemical energy Electrolyticcell + - Faraday's 1st Law Electrolysis Mass produce is directly proportional to the quantity of electricity/charges ( C ) Factor affecting mass substance liberated Amt charges (Q) Chargeon ion Current Time ItQ  Faraday's 2nd Law Electrolysis Mass produce is inversely proportional to charges on ion +1 +2 Ag+ + e ↔ Ag Cu2+ + 2e ↔ Cu 1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu Pass 1 mol electron across