SlideShare ist ein Scribd-Unternehmen logo
1 von 216
Downloaden Sie, um offline zu lesen
1
F ก F F ˆ กF
1. ก F { , , }A a b c= {0,1}B =
ˆ กF F F ˈ ˆ กF ก B A
[O-net ʾก ก 2548]
1. {( ,1),( ,0),( ,1)}a b c
2. {(0, ),(1, ),(1, )}b a c
3. {( ,1),( ,0)}b c
4. {(0, ),(1, )}c b
2
2. ˆ กF ( )y f x= F ก F
[O-net ʾก ก 2548]
1. ( ) 1f x x= −
2. ( ) 1f x x= +
3. ( ) 1f x x= −
4. ( ) 1f x x= +
-1 0 1
••
(0,1)
( )y f x=
X
Y
3
3. F {(1,0),(2,1),(3,5),(4,3),(5,2)}f =
F (2) (3)f f+ F F ก F
[O-net ʾก ก 2548]
4
4. ก F ( )n A ก A
F 1 {( 1, 2),(0, 1),(1,2),(2, 3),(3,4)}r = − − − −
2 {( , ) | 1 }r x y y x= + =
F 1 2( )n r r∩ F ก F
[O-net ʾก ก 2548]
5
5. F {1,2,3,4}A =
{( , ) | }r m n A A m n= ∈ × ≤ F
ก F r F ก F F
[O-net ʾก ก 2549]
1. 8
2. 10
3. 12
4. 16
6
6. ก F {( , ) | ,r a b a A b B= ∈ ∈ b F a }
F {2,3,5}A = F
F r ˈ ˆ กF B F ก F
[O-net ʾก ก 2549]
1. {3,4,10}
2. {2,3,15}
3. {0,3,10}
4. {4,5,9}
7
7. ก ˆ กF F F ก X กก F 1
[O-net ʾก ก 2549]
1.
2
1y x= +
2. 2y x= −
3. 1y x= −
4.
1
2
x
y
 
=  
 
8
8. ก F {1,2,3,4,5,6}A =
{1,2,3,...,11,12}B =
{( , ) | 2 }
2
a
S a b A B b a= ∈ × = +
ก S F ก F F
[O-net ʾก ก 2550]
1. 1
2. 2
3. 3
4. 4
9
9. ก x F F ก ก
2
4 5 6y x x= − − + F ก X
[O-net ʾก ก 2550]
1.
2 1
( , )
3 3
− −
2.
5 3
( , )
2 2
− −
3.
1 6
( , )
4 7
4.
1 3
( , )
2 2
10
10. F F 3x = ˈ F ก ˆ กF
2 2
( ) ( 5) ( 10)f x x k x k= − + + + − k ˈ
F f F F ก F F
[O-net ʾก ก 2550]
1. -4
2. 0
3. 6
4. 14
11
11. ก F
2
( ) 2 15f x x x= − − F F
[O-net ʾก ก 2550]
1. ( ) 17f x ≥ − ก x
2. ( 3 2 3) 0f − − − >
3. (1 3 5) (1 3 5)f f+ + = − −
4. ( 1 3 5) ( 1 3 5)f f− + + = − − −
12
12. ก F {1,2}A = { , }B a b= F F F
ˈ) ก F A B×
[O-net ʾก ก 2551]
1. (2, )b
2. ( , )b a
3. ( ,1)a
4. (1,2)
13
13. F {1,99}A = F A F F ˈ ˆ กF
[O-net ʾก ก 2551]
1. F ก
2. F F ก
3.
4. F
14
14. ก F r F ก
F F ก F
[O-net ʾก ก 2551]
1. r ˈ ˆ กF (1,1),(2,2) (3,3) F F ก
2. r ˈ ˆ กF ˈ ก
3. r F ˈ ˆ กF (3,3) (3, 1)− F ก
4. r F ˈ ˆ กF (1,1) ( 1,1)− F ก
•
2
1
3
-1
-2
-3
1 2 3-1-2-3
•
•
•
•
15
15. F F ˈ ก ˆ กF
2 2
2 1
3 2 1
x x
y
x x x
−
= +
+ + −
[O-net ʾก ก 2551]
1. 2−
2. 1−
3. 0
4. 1
16
16. F a Fก ˆ กF (2 )x
y a= F (3,16) F F
[O-net ʾก ก 2551]
1. 2
2. 3
3. 4
4. 5
17
17. F
2
( ) 2f x x x= − + + F F ก F
[O-net ʾก ก 2552]
1. ( ) 0f x ≥ 1 2x− ≤ ≤
2. กก ก ˆ กF f F
3. ˆ กF f F F ก 2
4. ˆ กF f F F ก 2
18
18. F F ˈ ˆ กF
[O-net ʾก ก 2552]
1. {(1,2),(2,3),(3,2),(2,4)}
2. {(1,2),(2,3),(3,1),(3,3)}
3. {(1,3),(1,2),(1,1),(1,4)}
4. {(1,3),(2,1),(3,3),(4,1)}
19
19. F ( ) 3f x x= − ( ) 2 4g x x= − + − F f gD R∪ F
[O-net ʾก ก 2552]
1. ( ],3−∞
2. [ )2,− ∞
3. [ ]2,3−
4. ( ),−∞ ∞
20
20. ก Fก ˆ กF f ˈ
F 11 ( 11) 3 ( 3) (3)f f f− − − F
[O-net ʾก ก 2552]
0-5-10
5
-5
X
Y
21
21. F F ˈ ˆ กF
[O-net ʾก ก 2553]
1. {(0,1),(0,2),(2,1),(1,3)}
2. {(0,2),(1,1),(2,2),(3,0)}
3. {(1,1),(2,0),(2,3),(3,1)}
4. {(1,2),(0,3),(1,3),(2,2)}
22
22. F F ˈ F ก ˈ
[O-net ʾก ก 2553]
1. {( , ) | }x y y x≥
2. {( , ) | }x y y x≤
3. {( , ) | }x y y x≥
4. {( , ) | }x y y x≤
10
y x=
y x= −
Y
X
23
23. F
2
( ) 3 4f x x= − − F F F ก F
[O-net ʾก ก 2553]
1. [ ]2,2fD = − [ ]0,3fR =
2. [ ]2,2fD = − [ ]1,3fR =
3. [ ]0,2fD = [ ]0,3fR =
4. [ ]0,2fD = [ ]1,3fR =
24
24. F ( 2) 2 1f x x− = − F
2
( )f x F F ก F F
[O-net ʾก ก 2553]
1.
2
2 1x −
2.
2
2 1x +
3.
2
2 3x +
4.
2
2 9x +
25
25. ˈ ก ˆ กF
2
( ) 2 4 6f x x x= − −
F F
ก. ก F 1x = −
. กก F
F F ก F
[O-net ʾก ก 2553]
1. ก. ก . ก
2. ก. ก .
3. ก. . ก
4. ก. .
26
26. F F
[Entrance ก . ʾ 2520]
ก. F x 2
( ) 4 4f x x x= − − F ( )f x x= −
. F x y ˈ 0x y+ > F x y x y+ ≤ +
. F r A B⊂ × F r ˈ F ก A B
. A B A B× ก F ก 7
. F F ˆ กF f ˈ ˆ กF g F g fo F
27
27. F {1,2,3,4}, {1,3,4,5}A B= =
{(1,1),(2,3),(3,4),(4,5)}f = F F ก
[Entrance ก . ʾ 2520]
ก.
1
f f−
o ˈ ˆ กF ก A B
. f fo ˈ ˆ กF ก A A
.
1
f f−
o ˈ ˆ กF ก A A
.
1
f f −
o ˈ ˆ กF ก B A
28
28. F {1,2,3}, {2,3,4}A B= = ˆ กF 1 1− ก A B
[Entrance ก . ʾ 2520]
ก. {(1,3),(2,4),(3,3)}
. {(2,2),(3,3),(4,1)}
. {(1,1),(2,2),(3,3)}
. {(1,2),(3,3),(2,3)}
. F F ก
29
29. ก F {(1, 2),(0,0)}r = − F ( )P A F
F r F F ( )P A
[Entrance ก . ʾ 2521]
ก. { ,{ 2},{ 2,0},{0, 2}}∅ − − −
. { ,{1},{1,0},{0,1}}∅
. {{ 2},{ },{ 2,0}, }− ∅ − ∅
. { ,{1, 2},{0,0},{(1, 2),(0,0)}}∅ − −
30
30. ก F F
1 {( , ) | 3 }r x y R R y x= ∈ × = −
2
2
{( , ) | }
1 3
r x y R R y
x
= ∈ × =
− +
F F A B 1r 2r F F A B∩
F F
[Entrance ก . ʾ 2521]
ก.
.
.
.
o o o4− 2− 3
4− 2− 3
o o •
o3
2− 3
o o
31
31. ก F ( ) 3f x x=
2 2 ; 0
( )
2 3 ; 0
x x
h x
x x
− <
= 
− ≥
2
( ) 1g x x= +
F F ( )(1)f h go o F F ก
[Entrance ก . ʾ 2521]
ก. 3
. 5
. 6
. 10
. F F ก
32
32. ก F
1 1
( 1) 1
2 2
f x x+ = − F F
1
(2)f −
F F ก
[Entrance ก . ʾ 2521]
ก. 6
. 4
. 2
. 0
. F F ก
33
33. F F
2 2
1 {( , ) | 2 }r x y R R y x= ∈ × ≤ −
2
2 {( , ) | }r x y R R y x= ∈ × ≥
F F 1 2r r∩ F F F
[Entrance ก . ʾ 2521]
ก.
.
.
.
(0, 2)
( 2,0)
(0, 2)−
( 2,0)−
(1,1)
( 1, 1)− −
(0, 2)
( 2,0)
(0, 2)−
( 2,0)−
(1,1)
( 1, 1)− −
Y
X
Y
X
(0, 2)
( 2,0)
(0, 2)−
( 2,0)−
(1,1)
( 1, 1)− −
X
Y
(0, 2)
( 2,0)
(0, 2)−
( 2,0)−
(1,1)
( 1, 1)− −
X
Y
34
34. F ,x y ˈ ก ก x y a+ = 0a > ก F
F
[Entrance ก . ʾ 2522]
ก. .
.
.
.
Y
X
a
a
a−
a−
Y
X
a
a
a−
a−
Y
X
a
a
a−
a−
Y
X
a
a
a−
a−
•
•
•
•
Y
X
a
a
a−
a−
35
35. F
2
( ) 7f x x= + x ˈ
( ) sing x x= 0 2x π≤ ≤
F F ก
[Entrance ก . ʾ 2522]
ก.
2
( )( ) sin( 7)f g x x= +o 0 2x π≤ <
.
1
( ) 7f x x−
= − x ˈ
.
2
( )( ) sin 7f g x x= +o 0 2x π≤ <
.
1 1
( ) sing x x− −
= 0 2x π≤ <
.
2
( )( ) sin 7f g x x x+ = + + x ˈ
36
36. f ˈ ˆ กF 1 1− ก A B F F ก
[Entrance ก . ʾ 2522]
ก. A B ก F ก
. A ก กก F B
. B ก กก F A
. A B⊂
. ก F ก F ก F F F A B
37
37. F A B= = {( , ) | 2}f x y A B y x= ∈ × = +
F ก F
[Entrance ก . ʾ 2523]
ก. f ˈ F F F ˆ กF F x กก F F F F y F ก
. f ˈ ˆ กF F F F ˆ กF 1 1− ก F ก ก x F
ก ˆ กF กก F
. f ˈ ˆ กF ก A B ก A B F ก
. ก F . F . f F F ˆ กF one to one
correspondence
. F F ก
38
38. F F
(1) F
3 3
( )f x a x= − 0x > F ( )f f f f x x=o o o
(2) F
2
( )
x
f x
x
= ( )g x x= x R∈ f g ก ก
ก
(3) F ( )f x x= x R∈ 1
f −
ˈ ˆ กF
1
f f−
=
F ก F
[Entrance ก . ʾ 2523]
ก. F F (1)-(3) F ก F F
. F F (1)-(3) F ก F 2 F F (1) (2)
. F F (1)-(3) F ก F 2 F F (1) (3)
. F F (1)-(3) F ก F 2 F F (2) (3)
. F F (1)-(3) ก F ก F
39
39. F {1,2,3,4}A = F r ˈ F ก A A F F
F ˈ ˆ กF F F F F ˈ ˆ กF
[Entrance ก . ʾ 2523]
ก. 1 {( , ) | }r x y A A y x= ∈ × = +
.
2
2 {( , ) | }r x y A A y x= ∈ × =
. 3 {(1,1),(2,4),(4,1)}r =
. 4 {(1,1),(2,4),(3,3),(4,1)}r =
. 5 {(1,2),(2,3),(3,4),(4,1)}r =
40
40. ก F
2 2
{( , ) | 2 1x y x by x− + = , ,x y b ˈ }
F F F ก F
[Entrance ก . ʾ 2523]
ก. F 2b = − ก F ˈ ก
. F 0b > ก F ˈ F
. F 0b < ก F ˈ ก
. F 0b = ก F ˈ F F ก ก x
. ก ก F
41
41. ก F
2 2
{( , ) | 0}
4 9
x y
r x y= − = F F F ก F
[Entrance ก . ʾ 2524]
ก. F 1r 1
1r r−
⊂ 1r ˈ ˆ กF ก R R F
. F 2r 2r r⊂ 2r ˈ ˆ กF ก R R F
. F 3r F ˈ F r 3
[ 1,1]rD = − F
F F F
1
3r −
F ˈ ˆ กF
. ก F r ˈ F 2 F ก
. F 4
3
{( , ) | }
2
r x y y x= = ˈ F r
42
42. ก
2
log 100 ( 1)
{( , ) | 5 }x
f x y y − −
= = F F ก F
[Entrance ก . ʾ 2524]
ก. { | 9 11}fD x x= − ≤ ≤ { | 0 5}fR y y= ≤ ≤
. { | 9 11}fD x x= − < ≤ { | 0 5}fR y y= ≤ ≤
. { | 9 11}fD x x= − ≤ < { | 0 5}fR y y= ≤ <
. { | 9 11}fD x x= − ≤ < { | 0 5}fR y y= < <
. { | 9 11}fD x x= − < < { | 0 5}fR y y= < ≤
43
43. ก
2
2
1
{( , ) | 1}, {( , ) | }
1
f x y y x g x y y
x
= = − = =
−
F F ก F
[Entrance ก . ʾ 2524]
ก.
1
2
( ) {( , ) | }
1
y
f g x y x
y
−
= =
−
o
. 2
{( , ) | }
1
x
f g x y y
x
= =
−
o
.
1
( )( ) }f g x
x
=
−
o
.
1 2
2
1
{( , ) | 1 }g x y x
y
−
= = −
. F F ก
44
44. F
2
{( , ) | 2 2f x y y x x= = + − 3 2}x− < ≤ F
(1) { | 3 6}fR y y= − ≤ ≤
(2) { |1 6}fR y y= < ≤
(3) F h f⊂ { | 1 1}hD x x= − ≤ < ( ) ( )h x f x= F
1
h−
ˈ
ˆ กF 1 1−
F F ก F
[Entrance ก . ʾ 2524]
ก. F (1) ก F
. F (2) ก F
. F (3) ก F
. F (1) (3) ก 2 F
. F (2) (3) ก 2 F
45
45. ก F {( , ) | log 0}x y R R xy∈ × < ก ( )
ก F F F (ก F F ˈ F )
[Entrance ก . ʾ 2525]
ก.
.
.
.
Y
X
Y
X
Y
X
Y
X
46
46. F F ก
[Entrance ก . ʾ 2525]
ก. {( , ) | ,r x y x R y R= ∈ ∈
3
}
2 1
x
y
x
−
=
+
ˈ ˆ กF
1
{( , ) | ,r x y x R y R−
= ∈ ∈
3
}
1 2
x
y
x
−
=
−
ˈ ˆ กF
. F ( ) 5f x x= +
2
25
( )
5
x
g x
x
−
=
−
F f g=
. {( , ) | 0 ,r x y x y Rπ= < < ∈ sin }x
y e x= ˈ ˆ กF F
.
2 2
( ) 4, 2; ( ) 2 3f x x x g x x x= − ≥ = + − F
2
2
4
( )( ) , 2
2 3
f x
x x
g x x
−
= ≥
+ −
. F ( ) 3f x x= −
3; 3
( )
3 ; 3
x x
g x
x x
− ≥
= 
− <
F f g=
47
47. ก
2 1
( ) 6, ( )
3
f x x g x
x
= + =
−
F F ก
[Entrance ก . ʾ 2525]
ก. 2
6
( )( )
( 3)
f g x
x
=
−
o
. 2
1
( )( )
3
g f x
x
=
−
o
. fR R=
. {3} { | , 3}gR R x x R x= − = ∈ ≠
. {0} { | , 0}gR R x x R x= − = ∈ ≠
48
48. ก ˆ กF f g
3
( ) ;
2
x
f x x R
+
= ∈ ( ) ;g x x x R= ∈
3x = F
1 1
[( )( ) ( )(2)]/ ( 2)f g x f g x− −
− −o o F ก
[Entrance ก . ʾ 2526]
ก. 2
. 6
. 1
.
1
2
49
49. F ˆ กF f g ˈ R , , 0c R c∈ <
ก ( )f x x c= − ( )g x c= − ก x F F
[Entrance ก . ʾ 2526]
ก. ( ) ( )f x g x x+ ≠ ก x R∈
. f g+ ˈ ˆ กF 1 1−
. f gD R+ =
. F f g+ F ˈ ˆ กF
50
50. ก F {1,2}A = F F ก F
[Entrance ก . ʾ 2526]
ก. F ก A A F ก 4
. ˆ กF ก A A F ก 4
. ˆ กF ก A A F ก 1
. F F ˆ กF ก A A F ˈ ˆ กF
51
51. F F ˈ F
[Entrance ก . ʾ 2527]
ก.
2
{( , ) | 1} {( , ) | 0}x y R R x y x y R R y x∈ × − > ∩ ∈ × + <
. {( , ) | 2} {( , ) | 2 3 }x y I I y x x y R R y x∈ × = + ∩ ∈ × = −
. {( , ) | } {( , ) | }x y R R y x x y R R y x∈ × > ∩ ∈ × <
. {( , ) | 1 4} {( , ) | 2}x y R R x y x y R R y∈ × − ≤ − < ∩ ∈ × = −
52
52. ก F
2
{( , ) | 3}A x y R R y x= ∈ × < −
{( , ) | 2 3( 1) 4 }B x y R R y x x= ∈ × + + >
ก F F F ก F
[Entrance ก . ʾ 2527]
ก. ( 1, 2)− − ˈ A B′∩
.
3 3
( , )
2 4
− ˈ A B′∩
.
3 3
( , )
2 4
− ˈ A B′−
. ( 1, 2)− − ˈ A B′−
53
53. F F F F ˈ ˆ กF
[Entrance ก . ʾ 2527]
ก. {( , ) | }, {1,2,3}x y A A y x A∈ × > =
.
2
{( , ) | 1}x y R R x y∈ × =
. {( , ) | 2}x y R R y x∈ × = −
. {( , ) | 2}, { 2, 1,0,1,2}x y B B y x B∈ × = − = − −
54
54. F
2
( ) 25, ( ) 2f x x g x x= − =
2
( ) ( ) ( ) ( 25)(2 )h x f x g x x x= = − F ( )( )g h xo
[Entrance ก . ʾ 2527]
ก. { | 5}x x ≥
. { | 5 0x x− ≤ ≤ 5}x ≥
. { | 5x x ≤ − 5}x ≥
. { | 0}x x ≥
55
55. F
1
( )( ) , ( ) 3
3
f g x x g x x= = −o ( ( )) 2 1g h x x= − F
[Entrance ก . ʾ 2527]
ก.
1
( ) ( )f x g x−
= ( ) 6 4h x x= +
.
1
( ) ( )f x g x−
= ( ) 6 6h x x= +
. ( ) 3 9f x x= + ( ) 6 4h x x= +
. ( ) 3 9f x x= − ( ) 6 6h x x= +
56
56. ก F
2
{( , ) | 6 10}r x y R R x y y= ∈ × = − + F F ˈ
[Entrance ก . ʾ 2528]
ก. 1
r
D R− = 1 { | 0}r
R y y− = ≥
. 1 { | 0}r
D x x− = ≥ 1
r
R R− =
. 1
r
D R− = 1 { | 1}r
R x x− = ≥
. 1 { | 1}r
D y y− = ≥ 1
r
R R− =
57
57. ก 3 F F F ก Y F
F F F ก X F F F 3x y− = F F
F ก ˈ F ก F
[Entrance ก . ʾ 2528]
ก. {( , ) | 0,0 3x y R R x y∈ × ≥ ≤ ≤ 3}y x≥ −
. {( , ) | 0,0 3x y R R y x∈ × ≥ ≤ ≤ 3}x y≥ −
. {( , ) | 3 0x y R R y∈ × − ≤ ≤ 3}y x≤ −
. {( , ) | 3 0x y R R x∈ × − ≤ ≤ 3}x y≤ −
58
58. F F ˈ
[Entrance ก . ʾ 2528]
ก. F A ˈ ก :f A B→ ˈ ˆ กF 1 1− F B ˈ ก
. F f ˈ ˆ กF 1 1− F F ˈ
1 1
f f f f− −
=o o
.
2
( )g x x= 0x ≥ F ˈ ˆ กF 1 1−
. ( )
x
f x e= ˈ ˆ กF 1 1−
59
59. ก F
2
( )
1
f x
x
=
− F F ˈ
[Entrance ก . ʾ 2528]
ก. { | 1}fD x x= ≠ { | 2 0}fR x x= − ≤ <
. { | 1fD x x= ≠ 1}x ≠ − { | 2 0}fR x x= − ≤ ≤
. { | 1}fD x x= ≠ { | 2fR x x= ≤ − 0}x >
. { | 1fD x x= ≠ 1}x ≠ − { | 2fR x x= ≤ − 0}x >
60
60. ˆ กF F
( ) 1f x x= + , ( )g x x= ,
1
( )h x
x
=
F F ˈ ( ก กF f go Fก F g fR D⊂ )
[Entrance ก . ʾ 2528]
ก. f ho F
. h go F
. g fo F
. h fo F
61
61. ก F {( , ) | }r x y R R y x x= ∈ × = F r
[Entrance ก . ʾ 2529]
ก.
1 ; 0
{( , ) | }
; 0
x x
r x y R R y
x x
−
 ≥
= ∈ × = 
− <
.
1 ; 0
{( , ) | }
; 0
x x
r x y R R y
x x
−
 ≥
= ∈ × = 
− − <
.
1 ; 0
{( , ) | }
; 0
x x
r x y R R y
x x
−
− ≥
= ∈ × = 
− <
.
1 ; 0
{( , ) | }
; 0
x x
r x y R R y
x x
−
− ≥
= ∈ × = 
− − <
62
62. ก F
2 2
1 {( , ) | 1}r x y R R x y= ∈ × + =
2 2
1
{( , ) | 1}
1
r x y R R y
x
= ∈ × = −
+
F A ˈ 1r B ˈ F 2r F A B− F F
[Entrance ก . ʾ 2529]
ก. [0,1] {1}∪
. (0,1] { 1}∪ −
. (0,1]
. { 1}−
63
63. F F
[Entrance ก . ʾ 2529]
ก. F f ˈ ˆ กF ก A B g ˈ ˆ กF ก B C
F g fo ˈ ˆ กF ก A C
. F ( )f x x= 2
( )g x x= F g f f gD D≠o o
. F
2
( ) 4 3f x x x= − + ( )g x x= F f g g fR R≠o o
. F
2 1
( )
3
x
f x
+
= 3 2
( ) 3 3g x x x x= − + F
1 1 1 1
(1) (1)f g g f− − − −
=o o
64
64. F { | 0}R x R x+
= ∈ ≥ {0,1,2,3,...}N =
:f R R+ +
→ ( ) 2f x x=
(0) 1, ( 1) ( ( )),g g n f g n n N= + = ∈
F F
[Entrance ก . ʾ 2529]
ก. g ˈ ˆ กF F ก N R+
. f go ˈ ˆ กF F ก N R+
. g f gR R= o
. ( ) 2,g n n N< ∀ ∈
65
65. F ( )
1
x
f x
x
=
+ F
1
( )f x−
F
[Entrance ก . ʾ 2529]
ก.
1
x
x−
. 1
x
x−
. 1
x
x+
.
1
x
x+
66
66. F
2 2
1 {( , ) | 4 4}r x y R R x y= ∈ × + =
2 {( , ) | log }r x y R R y x= ∈ × =
F F
[Entrance ก . ʾ 2530]
ก. 1 1r rD R⊂
. 2 2r rD R⊂
. 1 2r rD D⊂
. 1 2r rR R⊂
67
67. F {( , ) | 3 2}f x y R R y x= ∈ × = −
{( , ) | 2 7}g x y R R y x= ∈ × = +
F F
1 1
( )(2)g f− −
o F F
[Entrance ก . ʾ 2530]
ก.
17
6
−
.
7
2
−
.
1
6
−
.
7
2
68
68. ˆ กF F F ˈ ˆ กF F
[Entrance ก . ʾ 2530]
ก. 4logy x=
.
2
, 1x
y a a= >
. sin 7y x= −
.
3
5 2y x= − +
69
69.
2 2
( ) ( ) 4y y x x+ − + = ก ˈ F
[Entrance ก . ʾ 2531]
ก.
.
.
.
Y
X
2
1
1−2− 1 2
1−
Y
X
1
1−2− 1 2
1−
Y
X
1
1−2− 1 2
1−
Y
X
1
1−2− 1 2
1−
2
2
2
2
70
70. ˆ กF F F ˈ F F F
“ก F A ≠ ∅ ˈ F :f A A→ F f ˈ ˆ กF F ” F
ˈ
[Entrance ก . ʾ 2531]
ก. ( ) ,f n n n N= ∀ ∈ , N =
. ( ) 2 ,f n n n N= ∀ ∈ , N =
. ( )
1
n
f n
n

= 
+
.
1
2( )
2
n
f n
n
+

= 


F n ˈ ก
F n ˈ F ก
F n ˈ ก
F n ˈ F ก
71
71. ก F
2
( ) 10 , ( ) 1x
f x g x x= = −
{( , ) | ( )( )}r x y R R y f g x= ∈ × = o F F ก
[Entrance ก . ʾ 2531]
ก. [ 1,1], [0,1]r rD R= − =
. [0,1], [1,10]r rD R= =
. [ 1,1], [1,10]r rD R= − =
. F F f go F
72
72. F
2
( )f x x= ,A R⊆ R=
1
( ) { | ( ) }f A x f x A−
= ∈
F F
[Entrance ก . ʾ 2531]
ก.
1
([ 25,0]) {0}f −
− =
.
1
([ 1,1]) [ 1,1]f −
− = −
.
1
([0,1]) [ 1,1]f −
= −
.
1
([4,9]) [2,3]f −
=
73
73. ก F {1,2,3,4,5}A = ˆ กF :f A A→ F
, ( )x A f x x∈ > ( ) 3f x = F ก F F
[Entrance ก . ʾ 2531]
ก. 24
. 29
. 72
. 120
74
74. F
2 ; [ 2,3]
( )
5 ; (3,8)
x x
f x
x x
 ∈ −
= 
− ∈
2 ; ( 2,0]
( )
4 ; (0,4]
x x
g x
x x
− ∈ −
= 
− ∈
F F A = F f B =
1
g−
F A B′∩ F F
[Entrance ก . ʾ 2532]
ก. ( 2,0) [2,6]− ∪
. ( 2,0) (2,6)− ∪
. [2,6]
. ( 2,0)−
75
75. ก F {2,5,6,7,8}D = F F D ˈ F
F F ˈ ˆ กF
[Entrance ก . ʾ 2532]
ก. {( , ) | sin ( 5)}
6
x y y x
π
= −
. {( , ) | 2}x y y x= −
.
2
{( , ) | 4 }x y y x x= −
. {( , ) |x y y = กก x F 4}
76
76. ก F
2
{( , ) | 4 }f x y R R y x= ∈ × = −
{( , ) | 2}g x y R R y x= ∈ × = −
{( , ) | 2 0h x y R R y x= ∈ × + + = 0}x ≤
F F F ˈ ˆ กF F F F
[Entrance ก . ʾ 2533]
ก. ( )f g h∩ ∩
. ( )f g h∩ ∪
. ( )f h g∩ ∪
. ( )f g h∪ ∪
77
77. ก F f g ˈ ˆ กF ก R R
2
( ) 2
1 ; 1
( )
20 ; 1
x
f x
x
g x
x x
=
≤
= 
− >
F n ˈ ก F F F ( )( ) 0g f n >o F n F ก F
F
[Entrance ก . ʾ 2533]
ก. 1
. 2
. 3
. 4
78
78. F :f R R+
→ R+
ˈ ก :g R R→
ก F
2
( )( ) 3[ ( )] 2 ( ) 1g f x f x f x= − +o
2
( ) 2g x x x= − + F F F
[Entrance ก . ʾ 2533]
ก. ( )(1) 2g f =o
. ( )(1) 2gf =
. ( )(1) 2
g
f
=
. ( )(1) 2g f− =
79
79. ก F
( ) ; 3
( ) ( ( 1)) ; 3 0
1 ; 0
f x x
f x f f x x
x x
 < −

= + − ≤ <
 + ≥
F 5h > F
(3 ) ( )
( 2)
f h f h
f
+ − −
−
F F ก F
[Entrance ก . ʾ 2533]
80
80. ก F
21
( ) 3 1
2
f x x= +
( ) 3g x x= −
2
( ) 5 6h x x x= − + +
F
g
U
h
= F f UR D∩ ˈ F F
[Entrance ก . ʾ 2534]
ก. ( 4,1)−
. ( 1,5)−
. (2,7)
. (4,8)
81
81. ก ˆ กF f g ก R R
( ) 1
1
( )
( )
f x x
g x
f x
= +
=
( )( )g f xo F F ก F F
[Entrance ก . ʾ 2534]
ก. 1 x+
. 2 x+
.
1
1 x+
.
1
2 x+
82
82. F f g ˈ ˆ กF ก
2
{( , ) | 2 5}
{( , ) | 2 3}
f x y R R x y
g x y R R x y
= ∈ × + =
= ∈ × − =
F g fo F F
[Entrance ก . ʾ 2535]
ก.
2
{( , ) | 2}x y R R x y∈ × + =
.
2
{( , ) | 4 11}x y R R x y∈ × + =
.
2
{( , ) | 4 2 5}x y R R x x y∈ × + − =
.
2
{( , ) | 4 12 2 4 0}x y R R x x y∈ × − + + =
83
83. ก F R ˈ
F
2 2
{( , ) | 9 4 18 16 11 0}r x y R R x y x y= ∈ × + − + − = F r rD R∩
F ก F
[Entrance ก . ʾ 2535]
ก. [ 1,3]−
. [ 5,1]−
. [ 1,1]−
. [ 5,3]−
84
84. F
1
( )
2
x
f x
x
−
=
−
( )( 2) 3 6f g x x+ = +o F (2)g F ก F
[Entrance ก . ʾ 2535]
ก.
5
6
.
3
2
.
12
5
.
24
11
85
85. ก F {1,2}A = {1,2,3,...,10}B =
F { | : ,N f f A B f= → ˈ 1 1− x A∈ F F ( ) }f x x=
F N กก
[Entrance ก . ʾ 2535]
86
86. F { 2, 1,0,1,2}A = − − F ˆ กF :f A A→
F ( ) 0f x > 0x < ( ) 0f x < 0x > F ก F
F
[Entrance ก . ʾ 2536]
ก. 160
. 80
. 64
. 16
87
87. F R ˈ :f R R→ ก
1 ; 0
(1 ) 0 ; 0
1 ; 0
x x
f x x
x x
− − <

− = =
 − >
F
2
( )x y f y x∗ = − x y F F ( 2) (3)f− ∗ F
F F
[Entrance ก . ʾ 2536]
ก. ( 4, 2]− −
. ( 2,2]−
. (2,4]
. (4,6)
88
88. F R ˈ :f R R→ :g R R→ ก
2 1
( ) x
f x a +
= ( ) 5g x bx= +
F
1
( )( 2) 27f g−
− =o ( )(0) 15fg = F 3 ( 1) 4 (2)f g− −
F F ก F
[Entrance ก . ʾ 2536]
ก. -35
. -33
. 37
. 39
89
89. F I ˈ F : , :f I I g I I→ → ก
( ) 2 ;f x x= ก x I∈
0
( )
2
g x x


= 

F :F I I→ ก F g f f= −o F F ˈ F
[Entrance ก . ʾ 2536]
ก. F F F
. F F F
. F F F
. F
F x ˈ
F x ˈ
90
90. F R ˈ ก F
2 3
{ | 4}
2
x
A x R
x
−
= ∈ <
+
F F
(1) F a b ˈ ก A F
2
a b+
ˈ ก A
(2) F :f A R→ ก
2
( )f x x= F F f [0, )∞
F F ก F
[Entrance ก . ʾ 2536]
ก. ก
. ก ก
. ก ก ก
. ก ก
91
91. ก F R ˈ I ˈ
F
2
{ | 2 8}A x I x= ∈ − <
1
{ |1 0}B x R
x
= ∈ + >
F F F F ˈ ˆ กF ก A B∩ B
[Entrance ก . ʾ 2537]
ก. {( 3,1),( 2,2),( 1,3),(1,4),(2,5)}− − −
. {( 3,0),( 2,1),(1, 1),(2, 2),(3, 3)}− − − − −
. {( 3,1),(0,2),(1,1),(2,3),(3,4)}−
. {( 3,1),( 2,4),(1,5),(2,2),(3,1)}− −
92
92. F
2
1 {( , ) | 2 0}r x y x y= + − ≤
2
2 {( , ) | ln 0}r x y y x= − ≥
F 1 2( )r r∩ F F
[Entrance ก . ʾ 2537]
ก. [1,2]
. ( ,0]−∞
.
1
( ,1] [ ,1]
2
−∞ ∪
.
1
( , ] [1,2]
2
−∞ ∪
93
93. F ( ) 1f x x= − 1 2
( )( ) 4 1g f x x−
= −o F ก
( ) 0g x = ˈ F F
[Entrance ก . ʾ 2537]
ก. [ 4, 1]− −
. [ 1,0]−
. [0,4]
. [4,6]
94
94. F
2
{( , ) |r x y y x= ≤ 2 }y x≥ F F 1
r−
F F
[Entrance ก . ʾ 2538]
ก. [0,2]
. [0,4]
. ( ,0] [2, )−∞ ∪ ∞
. ( ,0] [4, )−∞ ∪ ∞
95
95. F ( ) (3 )(2 )f x x x= + −
1
( )
3
g x
x
=
+
F f g⋅
F F
[Entrance ก . ʾ 2538]
ก. ∅
. ( ,2]−∞
. ( 3,2)−
. ( 3,2]−
96
96. F f g ˈ ˆ กF ก R R
F
3
( ) 1f x x= + 3 2
( )( ) 3 3 2f g x x x x= + + +o F F
1
( ) ( 7)g f −
−o F ก F F
[Entrance ก . ʾ 2538]
ก. -1
. -2
. 1
. 3
97
97. F 1r 2r ˈ Fก
1
2
2
{( , ) | 3}
{( , ) | 9 0
r x y R R y x
r x y R R x y
= ∈ × ≤ −
= ∈ × + − ≤
F F ก
[Entrance ก . ʾ 2538]
ก. 1 2r r⊂
. 2 1r r⊂
.
1
1 2r r −
⊂
.
1
2 1r r−
⊂
3}y ≥
98
98. ก F {1,2,3}A = { , }B a b=
F { | }S r r A B= ⊂ ×
{ |F r S r= ∈ ˈ ˆ กF ก 2}=
F ( )n F F ก F
[Entrance ก . ʾ 2538]
99
99. F A ก 8 B ก 6 A ก B ก
F ก 3 F ˆ กF F ก ( )B A− ( )A B−
F ก F F
[Entrance ก . ʾ 2540]
ก. 30
. 60
. 10
. 20
100
100. F {1,2,3,4,5}A = S ˈ ˆ กF f :f A A→
ˈ ˆ กF 1 1− F (1) 3f > F ก S F ก F F
[Entrance ก . ʾ 2540]
ก. 40
. 48
. 56
. 72
101
101. ก F 2
( ) 2 1f x x x= + + 3 2
( ) 3 3 9g x x x x= + + + F
1
( )(7)f g−
o F F ก F
[Entrance ก . ʾ 2540]
ก. 2−
. 1−
. 1
. 2
102
102. F I +
ˈ ก
ก F {( , ) | 2 12f x y x y= + = , }x y I +
∈ F f fo F ก F
F
[Entrance ก . ʾ 2540]
ก. {(8,5),(4,4)}
. {(5,8),(4,4)}
. {(2,2),(4,4)}
. {(6,3),(4,4)}
103
103. F {0,1,2,3}A = ( )P A F A
F r ˈ F ก A ( )P A ก
{( , ) | 2,r a B a a B= ≥ ∉ 1 }a B+ ∉ F r กก
[Entrance ก . ʾ 2540]
104
104. F F 2
4
{( , ) | 2 }
( 1) 4
r x y R R y
x
= ∈ × = −
− −
F F
F r
[Entrance ก . ʾ 2541]
ก. ( ,2) [3, )−∞ ∪ ∞
. ( ,2) (3, )−∞ ∪ ∞
. ( ,2] [3, )−∞ ∪ ∞
. ( ,2] (3, )−∞ ∪ ∞
105
105. F ( ) 10 ,x
f x x= ˈ ก ,a b ˈ ก F f F
1
1
( )
( )
f ab
f b
−
− F F
[Entrance ก . ʾ 2541]
ก. 10log a
. 101 log a+
. 1 logb a+
. 1 loga b+
106
106. F 2
{( , ) | 2 1}f x y R R y x x= ∈ × = + +
2
1
{( , ) | }
1
g x y R R y
x
= ∈ × =
−
( )h g f fg= +o F h F F
[Entrance ก . ʾ 2541]
ก. { | 1}x x ≠
. { | ( 2) 0}x x x − ≠
. 2
{ | ( 1)( 2) 0}x x x− − ≠
. 2
{ | ( 1)( 2) 0}x x x x− + ≠
107
107. F
1
( )
1
f x
x
=
+
1x ≠ − F I ˈ ˆ กF ก ก F
( )( )g f f f I= +o F ( )g x F ก F F
[Entrance ก . ʾ 2541]
ก. 1
.
2
( 1)
( 2)
x
x
+
+
.
2
( 1)
( 2)
x x
x
+ +
+
.
2
( 1)
( 2)
x x
x
+ −
+
108
108. ก F
2
2 , 1
( ) ( 1) , 1 2
( 1) , 2
x
f x x x
x x
≤ −

= − − < <
 + ≥
ก ( ) 4 0f x − = ˈ ˈ F F F
[Entrance ก . ʾ 2541]
ก. ( 3,5)−
. ( 6, 1)− −
. ( 5,4)−
. (1,6)
109
109. ก F { |S x x I= ∈ 5}x ≤
3 2 2
4
4
( ) ; ,
4
x x x a
f x a S b S
x bx
− − +
= ∈ ∈
+ +
F ( , )a b S S∈ × F (1) 0f = F ก F
[Entrance 1 , 2541]
ก. 15
. 18
. 20
. 22
110
110. ก F 2
{( , ) | log( 1) log( 2) log(4 )}f x y y x x x= = + + + − −
1
{( , ) | 2x
g x y y −
= = 0}x ≥
F f gD R∩ ˈ F
[Entrance 1 , 2541]
ก. [0,1.5)
. [0.5,2.5)
. [1,3)
. [1.5,4)
111
111. F {1,2,3}A = { , , , }B a b c d= F ก
{ : |f A B f→ F ˈ ˆ กF 1 1}− F ก F
[Entrance 1 , 2541]
ก. 40
. 34
. 30
. 24
112
112. ก F r ˈ F
2
2
1
{( , ) | }
1
x
r x y y
x
−
= =
+
F F ก F
[Entrance 1 , 2542]
ก. 1[ 1,1], [ 1,1]r r
D D −= − = −
. 1[ 1,1], [0,1]r r
D D −= − =
. 1[0,1], [ 1,1]r r
D D −= = −
. 1[0,1], [0,1]r r
D D −= =
113
113. ก
0, 0
( )
1, 0
x
f x
x
<
= 
≥
F {( , ) | (1 )x
g x y y f e= = − 0}y > F F F ก
[Entrance 1 , 2542]
ก. g gD R ′⊂
. g gD R′ ⊂
. [1, )g gD R⊂ ∪ ∞
. [1, )g gD R⊂ ∩ ∞
114
114. F ( ) 1f x x= − F
30
2
10
( )( )
n
f f n
=
∑ o F F
[Entrance 1 , 2542]
ก. 9028
. 9030
. 9128
. 9170
115
115. F ( ) 4f x x=
2
( )
1
g x
x
=
−
F F x F
( )( ) ( )( )f g x g f x=o o F ก F
[Entrance 1 , 2542]
116
116. ก F ( )
1
x
f x
x
=
−
2
( ) 1g x x= − F g fA D= o
gB D= F A B′∪ F F
[Entrance 1 , 2542]
ก. { 1,1}R − −
. ( 1, )− ∞
.
1
( ,1) (1, )
2
∪ ∞
. ( 1,1) (1, )− ∪ ∞
117
117. F
1
( ) sin , ( ) cosf x x g x x−
= = ( ) ( )( )h x f g x= o
F F
(1) h ( ( )) ( )
2
g h x g x
π
− =
(2) h ˈ ˆ กF F
F F ˈ
[Entrance 1 , 2542]
ก. (1) ก (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
118
118. F {1,2,3}A = {3,4}B =
F { | : |S f f A B A B f= ∪ → × ˈ ˆ กF F }
F ก S F ก F F
[Entrance 1 , 2542]
ก. 120
. 240
. 360
. 480
119
119. ก F
7
( ) ( ), 3 3
24
x
f x xπ
+
= − < ≤ ( 6) ( )f x f x+ =
ก x R∈ F 1
( ) sin , [0, ]g x A x A π−
= + ∈
2
cos
5
A = F
F 1
( )(5)g f−
o F ก F F
[Entrance 1 , 2542]
ก.
1
10
.
1
5
.
1
5
−
.
1
10
−
120
120. ก F 2
{( , ) | 9 }r x y y x= = − 2
1
{( , ) | }
9
s x y y
x
= =
−
F F
1. 1r s
D R −∩ = ∅
2. 1 (0, )r s
R D −∩ = ∞
F F ก
[Entrance 1 , 2543]
ก. (1) (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
121
121. F , :f g R R→ ก ( )
1
x
f x
x
=
+
( )g x = F กก F F ก x
( F (1.01) 2, ( 6) 6, ( 7.99) 7g g g= − = − − = − ˈ F )
F ( ) ( )( )F x f g x= o ( ) ( )( )G x g f x= o F F F ˈ
[Entrance 1 , 2543]
ก. ( , )FD = −∞ ∞
. (0,1)FR =
. ( ) 1; 0G x x= >
. ( ) 0; 0G x x= <
122
122. F {1,2,3,4,5}A = { , }B a b= F
{ | :S f f A B= → ˈ ˆ กF } ก S F ก F F
[Entrance 1 , 2543]
ก. 22
. 25
. 27
. 30
123
123. F 2
( ) ( 1)f x x= + ( ) 1g x x= + F f g g fD R′∩o o
F F
[Entrance 1 , 2543]
ก. [0,1)
. [0,2)
. [1, )∞
. [2, )∞
124
124. F ( )( ) 3 14f g x x= −o
1
( 2) 2
3
f x x+ = − F
1
( )( )g f x−
o F ก F F
[Entrance 1 , 2543]
ก. 3 4x −
. 3 6x −
. 3 8x −
. 3 10x −
125
125. F ,A B F ˈ ก
{1,2,3,4,5,6}A =
{{1},{1,2},{1,2,3},{1,2,3,4}}B =
{ : | ( )F f B A f x x= → ∉ ก }x B∈
ก F F ก F F
[Entrance 1 , 2544]
ก. 24
. 60
. 100
. 120
126
126. ก F 2
1
{( , ) | }
1
r x y y
x
= =
−
F F
(1) ( , 1) (1, )rD = −∞ − ∪ ∞
(2)
1 1
{( , ) | }
x
r x y y
x
− +
= = ±
F F ก
[Entrance 1 , 2544]
ก. (1) (2)
. (1) (2)
. (1) (2)
. (1) (2)
127
127. ก F ( ) , 1
1
x
f x x
x
= ≠ −
+
( ) , 1
1
x
g x x
x
= ≠
−
F F
[Entrance 1 , 2544]
ก. 1
( ) ( ) , 1f g x x x−
= ≠o
. 1 1
( )( ) , 1f g x x x− −
= ≠ −o
.
1
( )( ) , 1
1 2
x
f g x x
x
−
= ≠
+
o
.
1
( )( ) , 1
1 2
x
g f x x
x
−
= ≠ −
+
o
128
128. ก F ( ) 2sin
2
x
f x = 2
( ) 1g x x= −
( )f g g fR D R∩ − o F F
[Entrance 1 , 2544]
ก. ( 1,1)−
. ( 2,2)−
. [2, 3] [1,2]− ∪
. [ 2, 1] ( 3,2]− − ∪
129
129. ก F {1,2,3,4}A =
{ : | ( ) 1S f A A f x x= → ≤ + ก }x A∈
ˆ กF ˈ ก S F ก F
[Entrance 1 , 2544]
130
130. F 3 2 2 2
{( , ) | 2 3 0}r x y R R x xy x y= ∈ × + − + =
F F 1
r−
F ก F
[Entrance 1 , 2544]
ก.
1 1
( , ]
3 2
−
.
1 1
[ , )
2 3
−
.
1 1
( , ) ( , )
3 3
−∞ − ∪ − ∞
. ( , )−∞ ∞
131
131. ก F 2
( ) 4f x x= − 2
1
( )
9
g x
x
=
−
F F ˈ ก g fR o
[Entrance 1 , 2544]
ก.
1
2
.
1
4
.
1
8
.
1
14
132
132. ก F ( 1) 3 2 ( )f x x f x+ = + + (3 1) 2 8g x x− = +
F (0) 1f = F 1
( (2))g f−
[Entrance 1 , 2544]
ก. 1−
. 0
. 1
. 2
133
133. ก F 1 {( , ) | 1}x y
r x y e +
= ≤
2 {( , ) | ln( 3 5) 0}r x y x y= − + ≥
ˈ ก 1 2r r∩ F ก x F ก F F
[Entrance 1 , 2545]
ก. 1.5 F
. 2 F
. 2.5 F
. 3 F
134
134. ก F I ˈ
F ,f g ˈ ˆ กF ก I I ก ( ) 2f x x=
( ) 2
x
g x
x


= 

g f f−o ˈ ˆ กF ก I I F F
[Entrance 1 , 2545]
ก. F
. F F F
. F F F
. F F F
x ˈ F
x ˈ
135
135. ก F ( ) 5 ( )f x g x= − ( ) 5 2g x x= +
F [ , ]f gD a b=o F 4( )a b+ F ก F F
[Entrance 1 , 2545]
ก. 15
. 20
. 25
. 30
136
136. ก F ,f g ˈ ˆ กF F 1
( ( )) 2f g x x−
= + ก x R∈
F F
(1) (2 ) (2( 1))f x g x= − ก x R∈
(2) 1
( ( ))g f x−
ˈ ˆ กF R
F F ก
[Entrance 1 , 2545]
ก. (1) ก (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
137
137. ก F
21
( ) 36 4
3
f x x= − F { | [ 3,3]A x x= ∈ −
( ) {0,1, 2,3}}f x ∈ F ก A F ก F
[Entrance 1 , 2545]
138
138. ก F k ˈ F
{( , ) | }r x y R R x k x y k y+ +
= ∈ × + = + F F
(1) F 1k = F r ˈ ˆ กF
(2) F 1k = − F r ˈ ˆ กF
F F ก
[Entrance 1 , 2545]
ก. (1) ก (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
139
139. ก F
2
2 , 1
( ) ( 1) , 1 2
1 , 2
x
f x x x
x x
≤ −

= − − < <
 + ≥
F k ˈ F F ( ) 5g x > F ( )( )g f ko F F ก F F
[Entrance 1 , 2545]
ก. 5
. 6
. 7
. 8
140
140. ก F ( ) , 0f x x x= ≥
,0 1
( )
1, 1
x x
g x
x x
≤ <
= 
+ ≥
F F
(1) 1
g f −
o ˈ ˆ กF fR
(2) 1
f g−
o ˈ ˆ กF gR
F F ก
[Entrance 1 , 2545]
ก. (1) ก (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
141
141. ก F {1,2}, {1,2,3,...,10}A B= =
1:1
{ | :f f A B→ x A∈ ( ) }f x x=
ก F ก F F
[Entrance 1 , 2546]
ก. 16
. 17
. 18
. 19
142
142. ก F 2
( ) ( 1)f x x= − − ก 1x ≤
( ) 1g x x= − ก 1x ≤
F F
(1)
1
( ) 1f x x−
= − ก 0x ≤
(2)
1 1 1 3
( )( )
4 4
g f− −
− =o
F F ก
[Entrance 1 , 2546]
ก. (1) (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
143
143. ก F f g ˈ ˆ กF ( ) 0f x < ก x
F 2
( )( ) 2[ ( )] 2 ( ) 4g f x f x f x= + −o
1 1
( )
3
x
g x− +
= F
F F
(1) g fo ˈ ˆ กF
(2) (100) (100) 300f g+ =
F F ก
[Entrance 1 , 2546]
ก. (1) (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
144
144. ก F {( , ) | 0 ,0 5r x y x y= ≤ ≤ ≤ 2 2
2 6 8}x y x y− − + ≤
F F
(1) [0,3]rD =
(2) F 0 c< (3, )c r∈ F 5c =
F F ก
[Entrance 1 , 2546]
ก. (1) (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
145
145. ก F 0a >
2
( ) , 0f x ax x= ≥
3
( )g x x=
F 1
( )(4) 2f g−
=o F
1
1
(64)
(64)
f
g
−
− F F ก F
[Entrance 1 , 2546]
146
146. ก F ,f g ˈ ˆ กF [0, )fD = ∞
1 2
( ) , 0f x x x−
= ≥
1 2
( ) ( ( )) 1 , 0g x f x x−
= + ≥
F 0a > ( ) ( ) 19f a g a+ = F 1 1
( ) ( )f a g a−
+ F ก F F
[Entrance 1 , 2546]
ก. 273
. 274
. 513
. 514
147
147. ก F 0a > 3
(10)
( )
1
x
a
g x
x
−
= 
−
F ( 2.5, )gR = − ∞ F F F
(1) 1
( 1) log 2g a−
− =
(2)
1
3
log(4 )
( )
1
x
g x
x
−

= 
−
F F ก
[Entrance 1 , 2546]
ก. (1) ก (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
1x <
1x ≥
0x <
0x ≥
148
148. F
2
4
{( , ) | }
2
x
r x y y
x
−
= =
−
F F
(1) 4 rR∈
(2) 1 [0,4) (4, )r
R − = ∪ ∞
F F ก
[Entrance 1 , 2546]
ก. (1) ก (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
149
149. ก F ( ) 10x
f x = 2
( ) 100 3g x x= −
F ก ˈ ก g fR o F F
[Entrance 1 , 2547]
150
150. ก F {( , ) |r x y x y= ≥ 2 2
2 3}y x x= + −
F F
(1) [1, )rD = ∞
(2) ( , )rR = −∞ ∞
F F ก
[Entrance 1 , 2547]
ก. (1) ก (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
151
151. ก F 2
( )f x ax b= + ( 1) 6g x x c− = + , ,a b c ˈ F
F ( ) ( )f x g x= 1,2x = ( )(1) 8f g+ = F 1
( )(16)f g−
o F
F ก F F
[Entrance 1 , 2547]
ก.
31
9
.
61
9
. 10
. 20
152
152. ก F
1
( )
1 1
x
f x
x
−
= 
+ −
F F
(1) 1
( ) ( )f x f x−
≠ ก (1, )x ∈ ∞
(2) 0a ≥ 2 F 1
( )f a a−
=
F F ก
[Entrance 1 , 2547]
ก. (1) ก (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
[0,1]x ∈
(1, )x ∈ ∞
153
153. ก F 2
( )
1
x
f x
x
=
−
( 1,1)x ∈ − F F
(1)
2
1
1 1 4
( ) 2
0
x
f x x
−
− − +

= 


(2) f ˈ ˆ กF F ( 1,1)−
F F ˈ
[Entrance 1 , 2547]
ก. (1) ก (2) ก
. (1) ก (2)
. (1) (2) ก
. (1) (2)
0x ≠
0x =
154
154. F {1,2,3,4}A = {1,2,3,4,5}B =
F f ˈ ˆ กF ก A B
(1) 2f =
(2)f m= m ˈ
F ˆ กF f ก F F ก F
[Entrance 1 , 2548]
1. 75
2. 150
3. 425
4. 500
155
155. ก F
5
( ) 1h x x= − 5
( )g x x= F f ˈ ˆ กF
( ( )) ( )f g x h x= F (5)f F F
[A-net ก F ʾ 2549]
156
156. ก F {1,2,{1,2},(1,2)}A = (1,2) F
( )B A A A= × − ก B F ก F
[A-net ก F ʾ 2549]
157
157. ก F
2
1 1 4
( ) 2
0
x
f x x
− + +

= 


F
1 2
( )
3
f a−
= F a F F ก F
[A-net ก F ʾ 2549]
0x ≠
0x =
158
158. ก F {1,2,3,4,5}A =
{ , }B a b=
ˆ กF ก A B ก ˆ กF
[A-net ก F ʾ 2549]
159
159. ก F 2 2
{( , ) | 16}r x y R R x y= ∈ × + =
2 2
{( , ) | 3 2 0}s x y R R xy x y= ∈ × + + + =
F F ˈ r sD D−
[A-net ʾ 2550]
1. [ 4, 1]− −
2. [ 3,0]−
3. [ 2,1]−
4. [ 1,2]−
160
160. ก F ,f g ˈ ˆ กF 3
( ) ( 1) 3f x x= − +
1 2
( ) 1, 0g x x x−
= − ≥ F 1
( ) 0g f a−
=o F 2
a F F
[A-net ʾ 2550]
1. [10,40]
2. [40,70]
3. [70,100]
4. [100,130]
161
161. ก F ( ) 3 5f x x= + 2
( ) 3 3 1h x x x= + − F g ˈ ˆ กF
F f g h=o F (5)g F F
[A-net ʾ 2550]
162
162. ก F f g ˈ ˆ กF 2
( ) 1f x x= + ( )g x ax=
(0,1)a ∈ F k ˈ F ( )( ) ( )( )f g k g f k=o o F
1
2
1
( )( )f g
k
−
o F F ก F F
[A-net ʾ 2551]
1. 1
2. 2
3. 3
4. 4
163
163. ก F f g ˈ ˆ กF 3
1 ; 0
( )
1 ; 0
x x
f x
x x
− <
= 
− ≥
2
( ) 4 13g x x x= + + F a ˈ ก ( ) 25g a =
1 1
( 2 ) (13 )f a f a− −
− + F F ก F F
[A-net ʾ 2551]
1. 0
2. 2
3. 4
4. 6
164
164. ก F {( , ) | ( 2)( 1) 1}r x y x y= − − =
2 2
{( , ) | ( 1) }s x y xy y= = + F F F ˈ r sR R∩
[A-net ʾ 2551]
1. ( , 1)−∞ −
2.
1
( 2, )
2
− −
3.
1
( , 2)
2
4. (1, )∞
165
165. ก F 2 2
{( , ) | 1}A x y x y= + >
2 2
{( , ) | 4 9 1}B x y x y= + <
2 2
{( , ) | 1}C x y y x= − >
F F
[A-net ʾ 2551]
1. A B A− =
2. B C B− =
3. ( )B A C∩ ∪ = ∅
4. ( )A B C∩ ∪ = ∅
166
166. ก F ( ) 3 1f x x= −
2
1
2
, 0
( )
, 0
x x
g x
x x
−
 ≥
= 
− <
F 1
( (2) ( 8))f g g−
+ − F ก F F
[PAT1 ʾ 2552]
1.
1 2
3
−
2.
1 2
3
+
3.
1 2
3
−
−
4.
1 2
3
+
−
167
167. ก F [ 2, 1] [1,2]A = − − ∪ {( , ) | 1}r x y A A x y= ∈ × − = −
F , 0a b > ,r ra D b R∈ ∈ F a b+ F ก F F
[PAT1 ʾ 2552]
1. 2.5
2. 3
3. 3.5
4. 4
168
168. ก F 2
( ) 1f x x= − ( , 1] [0,1]x ∈ −∞ − ∪
( ) 2x
g x = ( ,0]x ∈ −∞
F F ก
[PAT1 ʾ 2552]
1. g fR D⊂
2. f gR D⊂
3. f ˈ ˆ กF 1 1−
4. g F ˈ ˆ กF 1 1−
169
169. ก F {1,2,3,4}A = { , , }B a b c=
{ | :S f f A B= → ˈ ˆ กF } ก F ก F F
[PAT1 ʾ 2552]
1. 12
2. 24
3. 36
4. 39
170
170. ก F ( ) 5f x x= − 2
( )g x x= F a ˈ
( ) ( )g f a f g a=o o F ( )( )fg a F F ก F F
[PAT1 ก ก ʾ 2552]
1. 25−
2. 18−
3. 18
4. 25
171
171. ก F 2
( ) 1f x x x= + + ,a b ˈ F 0b ≠
F ( ) ( )f a b f a b+ = − F 2
a F F F
[PAT1 ก ก ʾ 2552]
1. (0,0.5)
2. (0.5,1)
3. (1,1.5)
4. (1.5,2)
172
172. ก F {( , ) | [ 1,1]r x y x= ∈ − 2
}y x=
F F
ก. 1
{( , ) | [0,1]r x y x−
= ∈ }y x= ±
. ก r ก 1
r−
ก 2
F F ก
[PAT1 ก ก ʾ 2552]
1. ก. ก . ก
2. ก. ก .
3. ก. . ก
4. ก. .
173
173. ก F n ˈ
F :{1,2,..., } {1,2,..., }f n n→ ˈ ˆ กF 1 1− F ก
(1) (2) ... ( ) (1) (2)... ( )f f f n f f f n+ + + =
F F ก ˈ F (1) ( )f f n− F ก F F
[PAT1 ก ก ʾ 2552]
1. 2
2. 5
3. 8
4. 11
174
174. ก F [ 2,2]S = − 2 2
{( , ) | 2 2}r x y S S x y= ∈ × + =
F F F F ˈ r rD R−
[PAT1 ʾ 2552]
1. ( 1.4, 1.3)− −
2. ( 1.3, 1.2)− −
3. (1.2,1.4)
4. (1.4,1.5)
175
175. F
1
( )f x
x
= ( ) 2 ( )g x f x= F 1
(3) (3)g f f g−
+o o F F
[PAT1 ʾ 2552]
176
176. F 3
( )f x x= ( )
1
x
g x
x
=
+
F 1 1
( )(2)f g− −
+ F F
[PAT1 ʾ 2552]
177
177. ก F 1
1
( )
1
x
y f x
x
+
= =
−
x ˈ F F ก 1
2 1 3 2( ), ( ),...y f y y f y= =
1( )n ny f y −= 2,3,4,...n =
2553 2010y y+ ก F F
[PAT1 ʾ 2553]
1.
1
1
x
x
−
+
2.
2
1
1
x
x
+
−
3.
2
1
2
x
x
+
4.
2
1 2
1
x x
x
+ −
−
178
178. F f g ˈ ˆ กF ก
2
1
( )
4
x
f x
x
−
=
−
( ) ( ) 1g x f x x= − −
F F
ก. (2, )gD = ∞
. F 0x > F ( ) 0g x = 1 F F
F F ก F
[PAT1 ʾ 2553]
1. ก. ก . ก
2. ก. ก F .
3. ก. F . ก
4. ก. .
179
179. F A ˈ ก F F ก F F ก 10
B ˈ ก F F ก F F ก 10
C ˈ ˆ กF :f A B→ ˈ ˆ กF F
. . . a ( )f a F F ก 1 ก F a A∈
ก C F ก F
[PAT1 ʾ 2553]
180
180. ก R ˈ
F 2
( ) 1f x x= − ( ) 2 1g x x= + ก x
F ( )(1)f g⊗ F ก F
[PAT1 ʾ 2553]
F :f R R→ :g R R→ ˈ ˆ กF
ก ก ก ⊗ f g
( )( ) ( ( )) ( ( ))f g x f g x g f x⊗ = −
ก x
181
181. F f g ˈ ˆ กF F ˈ
3
( )
6
x
f x
x
+
=
+
1 6
( )( )
1
x
f g x
x
− −
=
−
o
F ( ) 2g a = F a F F F
[PAT1 ก ก ʾ 2553]
1. [ 1,1)−
2. [1,3)
3. [3,5)
4. [5,7)
182
182. F R
F 1 2 3 4, , , ,f f f f g h ˈ ˆ กF ก R R
1 ( ) 1f x x= + 2 ( ) 1f x x= −
2
3 ( ) 4f x x= + 2
4 ( ) 4f x x= −
1 2( )( ) ( )( ) 2f g x f h x+ =o o
3 4( )( ) ( )( ) 4f g x f h x x+ =o o
F ( )(1)g ho F ก F
[PAT1 ก ก ʾ 2553]
183
183. F R F F F ˈ ˆ กF
[PAT1 ʾ 2553]
1. F 2
1 {( , ) | 4r x y R R x y= ∈ × = − 0}xy ≥
2. F 2 2
2 {( , ) | 4r x y R R x y= ∈ × + = 0}xy >
3. F 3 {( , ) | 1}r x y R R x y= ∈ × − =
4. F 4 {( , ) | 1}r x y R R x y= ∈ × − =
184
184. F I F :f I I→ ˈ ˆ กF
( 1) ( ) 3 2f n f n n+ = + + n I∈
F ( 100) 15,000f − = F (0)f F ก F
[PAT1 ʾ 2553]
185
185. F R
F {( , ) | 3 5}f x y R R y x= ∈ × = −
{( , ) | 2 1}g x y R R y x= ∈ × = +
F a R∈ 1 1
( )( ) 4g f a−
=o
F ( )(2 )f g ao F ก F
[PAT1 ʾ 2553]
186
186. F R F :f R R→ ˈ ˆ กF
F ก
1
1
x
f x
x
− 
= 
+ 
ก 1x ≠ − F F ก F
[PAT1 ʾ 2554]
1. ( )( )f f x x= − ก x
2.
1
( )
1
x
f x f
x
+ 
− =  
− 
ก 1x ≠
3.
1
( )f f x
x
 
= 
 
ก 0x ≠
4. ( )2 2 ( )f x f x− − = − − ก x
187
187. ก F I
F
4 3 2
5 2
2 75
( )
270
x x a x
f x
x b x
− + −
=
+ −
,a b I∈
F {( , ) | (3) 0}A x y I I f= ∈ × =
2 2
{( , ) | 2 3}B x y I I a ab b= ∈ × − + <
F ก A B∩ F ก F
[PAT1 ʾ 2554]
188
188. ก F R
F :f R R→ ˈ ˆ กF 2
( ) (1 ) 2xf x f x x x+ − = − x R∈
F F
54
25
( ( ))
x
x f x
=
+∑ F ก F
[PAT1 ʾ 2554]
189
189. ก F I
F :f I I→ ˈ ˆ กF
(1) (1) 1f =
(2) (2 ) 4 ( ) 6f x f x= +
(3) ( 2) ( ) 12 12f x f x x+ = + +
F F (7) (16)f f+ F ก F
[PAT1 ʾ 2554]
190
190. ก F
1
{( , ) | }
5 3
r x y R R y
x
= ∈ × =
− −
R r
[PAT1 ʾ 2554]
1. { | 2 8}x R x∈ − < <
2. { | 6 3}x R x∈ − < <
3. { | 0 3}x R x∈ < <
4. { | 8}x R x∈ <
191
191. F R F :f R R→ ˈ ˆ กF F
ก
0 , 1
( ) 1
, 1
1
x
f x x
x
x
= −

= −
≠ − +
F { | ( )( ) cot 75 }A x R f f x= ∈ = o
o
F F F ˈ F
[PAT1 ʾ 2554]
1. ( 3, 2)A ∩ − −
2. ( 4, 3)A ∩ − −
3. (2,3)A ∩
4. (3, 4)A ∩
192
192. ก F ( ) 1 3f x x= − S ˈ x F
ก ก ( )( )f f x x=o ก ก S
[PAT1 ʾ 2554]
193
193. ก F :f N N→ F ก ก
( ) ( ) ( ) 4f x y f x f y xy+ = + + (1) 4f = F (20)f
[PAT1 ʾ 2554]
194
194. ก R F
{( , ) | 1 0}r x y R R x y y x= ∈ × + − − = F F
ก. r ˈ F { | 1}rD x R x= ∈ ≠ −
. F 1
r−
ˈ ˆ กF
F F ก F
[PAT1 ʾ 2555]
1. ก. ก . ก
2. ก. ก F .
3. ก. F . ก
4. ก. .
195
195. ก F R ก 2
( ) 3g x x x= + + ก
x F :f R R→ ˈ ˆ กF F ก
2
2
( )( ) 2( )(1 ) 6 10 17
2( )( ) ( )(1 ) 6 2 13
f g x f g x x x
f g x f g x x x
+ − = − +
+ − = − +
o o
o o
F (383)f F ก F
[PAT1 ʾ 2555]
196
196. ก F R F I
F f g ˈ ˆ กF ก R R
3 2
( 5) 2f x x x x+ = − + ก x
1
(2 1) 4g x x−
− = + ก x
F F
(ก) ( )(0) 169f g− < −
( ) { | ( )( ) 5 0}x I g f x∈ + =o ˈ F
F F ก F
[PAT1 ʾ 2555]
1. (ก) ก ( ) ก
2. (ก) ก F ( )
3. (ก) F ( ) ก
4. (ก) ( )
197
197. ก F
2
2
2 8
{( , ) | }
1
x
r x y I I y
x
−
= ∈ × =
+
I
ก r rD R− F ก F F
[PAT1 ʾ 2555]
1. 2
2. 4
3. 5
4. 7
198
198. ก F {1, 2,3,..., }A k= k ˈ ก
F {( , ) | 0 7}B a b A A b a= ∈ × < − ≤
F k F ก F F ก B F ก 714
[PAT1 ʾ 2555]
199
199. F R ก F
{( , ) | 12 1 3}r x y R R x y= ∈ × − + + = F F
(ก) ( 1,8)r rD R∩ ⊂ −
( ) { | 8 12}r rD R x R x− = ∈ < ≤
F F ก
[PAT1 ʾ 2556]
1. (ก) ก ( ) ก
2. (ก) ก F ( )
3. (ก) F ( ) ก
4. (ก) ( )
200
200. F A B ˈ ก A B F ก 4 5
ก A B∪ F ก 7 F F
(ก) F A B∩ 4 F
( ) F ก A B− B A− 64 F
F F ก F
[PAT1 ʾ 2556]
1. (ก) ก ( ) ก
2. (ก) ก F ( )
3. (ก) F ( ) ก
4. (ก) ( )
201
201. F R F F
(ก) F 2 2
{( , ) | 4, 0}x y R R x y xy∈ × + = > ˈ ˆ กF
( ) F 2
2, 0
( )
, 0
x x
f x
x x
− ≤
= 
>
2
(3 1) 2 3g x x x− = + x R∈
F F 1
( )(25) 14g f −
=o
F F ก F
[PAT1 ʾ 2556]
1. (ก) ก ( ) ก
2. (ก) ก F ( )
3. (ก) F ( ) ก
4. (ก) ( )
202
202. ก F
1 1
,
2
( )
1 1 1
,
2 2
x
x
f x
x
x

<
= 
 + ≥

F
1
( ( ( )))
3
f f f −
ก F F
[PAT1 ʾ 2556]
1. 6−
2. 6
3. 3−
4. 3
203
203. , {0,1, 2,3,...}x y ∈ ก F ( , )F x y ˈ ก
(1, 1) , 0, 0
( , ) 1 , 0
( ( 1, ), 1), 0, 0
F y x y
F x y x y
F F x y y x y
− = ≠

+ =
 − − ≠ ≠
F (1, 2) (3,1)F F+ F ก F
[PAT1 ʾ 2556]
204
204. ก F R F :f R R→ ˈ ˆ กF F ก
( )( ) 4 (4 ( ))f f x x f x= + −o ก x F F (4)f F ก
F
[PAT1 ʾ 2556]
205
205. F R F f ˈ ˆ กF F ˈ
2
2 4 4
( )
1
x x
f x
x
+ +
=
+
1x ≠ F F ˆ กF f ˈ
F F
[PAT1 ʾ 2557]
1. 2
{ | 6 7 0}x R x x∈ + − ≥
2. 2
{ | 3 10 0}x R x x∈ + − ≥
3. 2
{ | 12 0}x R x x∈ + − ≥
4. 2
{ | 6 16 0}x R x x∈ − − ≥
206
206. F I F {( , ) | 21 4 }A x y I I xy y x= ∈ × − = −
F ก A F ก F F
[PAT1 ʾ 2557]
1. 5
2. 4
3. 3
4. 2
207
207. ก F 3 2
( ) 3f x x ax bx= + + + 2
( ) 3g x bx x a= + + a
b ˈ F (3) 0f = 2x − ( )f x F ก 5 F F
( )(1)g fo F ก F
[PAT1 ʾ 2557]
208
208. F R F :f R R→ :g R R→ ˈ ˆ กF
F ( )( ) 4 5f g x x= −o 1
( ) 2 1g x x−
= + ก x
F F
(ก) 1
4( )(2 1) ( ) 1f g x g x−
+ = +o
( ) 1 1 1
( ( ))( ) ( ) 1g f g x f x− − −
= +o o
F F ก F
[PAT1 ʾ 2557]
1. (ก) ก ( ) ก
2. (ก) ก F ( )
3. (ก) F ( ) ก
4. (ก) ( )
209
209. ก F R F :f R R→ :g R R→ ˈ
ˆ กF F ก ( ( )) 2 15f x g y x y+ = + + ก x y
F F
(ก) ( )( ) 2 15g f x x= +o ก x y
( ) (25 (57)) 75g f+ =
F F ก F
[PAT1 ʾ 2557]
1. (ก) ก ( ) ก
2. (ก) ก F ( )
3. (ก) F ( ) ก
4. (ก) ( )
210
210. F R a ˈ 0a ≠ F :f R R→
:g R R→ ˈ ˆ กF ( ) 2f x ax= +
3
( ) 3 ( 1)g x x x x= − − ก x F 1 1
( )(1) 1f g− −
=o F
( )( )g f ao F ก F
[PAT1 ʾ 2557]
211
211. F R F :f R R→ ˈ ˆ กF F
:g R R→ ˈ ˆ กF ( ) 2 ( ) 5g x f x= + ก x
F a ˈ 1 1
( )(1 ) ( )(1 )f g a g f a− −
+ = +o o F F 2
a F ก
F
[PAT1 ก ʾ 2557]
212
212. F R F S′ F S
F
2 2
{( , ) | 1 4}f x y R R y x y= ∈ × + − =
4
{( , ) | 1 }g x y R R y x= ∈ × = − F A ˈ F f B ˈ
g F F
(ก) A B′⊂
( ) ( ) ( )A B B A− ∩ − = ∅
F F ก F
[PAT1 ʾ 2558]
1. (ก) ก ( ) ก
2. (ก) ก F ( )
3. (ก) F ( ) ก
4. (ก) ( )
213
213. ก F R F ,f g h ˈ ˆ กF ก
R R 1
( ) 2 5,( )( ) 4f x x f g x x−
= − =o ( )( )g h xo F
1x − F F ก 21− F c ˈ ก F F ก
3 2
( ) 3 2h x c x x− = − − F F
(ก) ( )( ) 23f h c =o
( ) ( )( ) 35h g c+ =
F F ก F
[PAT1 ʾ 2558]
1. (ก) ก ( ) ก
2. (ก) ก F ( )
3. (ก) F ( ) ก
4. (ก) ( )
214
214. F R F F F F ˈ ˆ กF
[PAT1 ʾ 2558]
1. F 1 {( , ) | 1 0}r x y R R xy= ∈ × + =
2. F 2 {( , ) | tan }r x y R R y x= ∈ × =
3. F 2 2
3 {( , ) | 1}r x y R R x y= ∈ × = +
4. F 4 {( , ) | 2 }r x y R R y x= ∈ × = −
5. F
2
5 {( , ) | }
1
y
r x y R R x
y
= ∈ × =
+
215
215. F f g ˈ ˆ กF
9 , 0
( )
7 , 4
x x
f x
x x
 − ≤
= 
− >
2 , 1
( )
4 , 1
x x
g x
x x
+ <
= 
− ≥
F F
(ก) F 0x ≤ F ( )( ) 9 4g f x x= − −o
( ) F 4 6x< ≤ F ( )( ) 3g f x x= −o
( ) F 6x > F ( )( ) 9g f x x= −o
F F ก F
[PAT1 ʾ 2558]
1. F (ก) F ( ) ก F F ( )
2. F (ก) F ( ) ก F F ( )
3. F ( ) F ( ) ก F F (ก)
4. F (ก) F ( ) F ( ) ก F
5. F (ก) F ( ) F ( ) F
216
216. ก F I R
F
2
2
{( , ) | }
4 2 1
x
r x y R R y
x x
+
= ∈ × =
− − +
2
{ | }rA x x I D= ∈ ∩ F ก ก A F ก F F
[PAT1 ʾ 2558]
1. 6
2. 10
3. 19
4. 29
5. 30

Weitere ähnliche Inhalte

Was ist angesagt?

Bpt logarit ltdh 2013
Bpt logarit  ltdh 2013Bpt logarit  ltdh 2013
Bpt logarit ltdh 2013Huynh ICT
 
เลขยกกำลัง
เลขยกกำลังเลขยกกำลัง
เลขยกกำลังkuraek1530
 
เลขยกกำลังชุด 2
เลขยกกำลังชุด 2เลขยกกำลังชุด 2
เลขยกกำลังชุด 2kanjana2536
 
01บทนำ
01บทนำ01บทนำ
01บทนำDoc Edu
 
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-ssusere0a682
 
Ma5 vector-u-s54
Ma5 vector-u-s54Ma5 vector-u-s54
Ma5 vector-u-s54S'kae Nfc
 
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]Cikgu Pejal
 
Análise institucional
Análise institucionalAnálise institucional
Análise institucionalÍtalo Nunes
 
Math quota-cmu-g-455
Math quota-cmu-g-455Math quota-cmu-g-455
Math quota-cmu-g-455Rungroj Ssan
 

Was ist angesagt? (13)

Real-number
Real-numberReal-number
Real-number
 
sets
setssets
sets
 
008 math a-net
008 math a-net008 math a-net
008 math a-net
 
Bpt logarit ltdh 2013
Bpt logarit  ltdh 2013Bpt logarit  ltdh 2013
Bpt logarit ltdh 2013
 
เลขยกกำลัง
เลขยกกำลังเลขยกกำลัง
เลขยกกำลัง
 
เลขยกกำลังชุด 2
เลขยกกำลังชุด 2เลขยกกำลังชุด 2
เลขยกกำลังชุด 2
 
01บทนำ
01บทนำ01บทนำ
01บทนำ
 
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
ゲーム理論BASIC 演習37 -3人ゲームの混合戦略ナッシュ均衡を求める-
 
Ma5 vector-u-s54
Ma5 vector-u-s54Ma5 vector-u-s54
Ma5 vector-u-s54
 
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]
 
Análise institucional
Análise institucionalAnálise institucional
Análise institucional
 
Key pat2 3_53ps
Key pat2 3_53psKey pat2 3_53ps
Key pat2 3_53ps
 
Math quota-cmu-g-455
Math quota-cmu-g-455Math quota-cmu-g-455
Math quota-cmu-g-455
 

Ähnlich wie Function problem p

Ähnlich wie Function problem p (20)

Key pat1 1-53
Key pat1 1-53Key pat1 1-53
Key pat1 1-53
 
Key pat1 3-52
Key pat1 3-52Key pat1 3-52
Key pat1 3-52
 
Math
MathMath
Math
 
Math
MathMath
Math
 
Math
MathMath
Math
 
Math
MathMath
Math
 
ข้อสอบคณิตศาสตร์
ข้อสอบคณิตศาสตร์ข้อสอบคณิตศาสตร์
ข้อสอบคณิตศาสตร์
 
008 math a-net
008 math a-net008 math a-net
008 math a-net
 
01062555 1611544156
01062555 161154415601062555 1611544156
01062555 1611544156
 
1
11
1
 
1
11
1
 
comp diff
comp diffcomp diff
comp diff
 
Compfuncdiff
CompfuncdiffCompfuncdiff
Compfuncdiff
 
6
66
6
 
ข้อสอบคณิตศาสตร์ Smart 1
ข้อสอบคณิตศาสตร์ Smart 1ข้อสอบคณิตศาสตร์ Smart 1
ข้อสอบคณิตศาสตร์ Smart 1
 
Ejercicios varios de algebra widmar aguilar
Ejercicios varios de  algebra   widmar aguilarEjercicios varios de  algebra   widmar aguilar
Ejercicios varios de algebra widmar aguilar
 
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
 
Algebra presentation
Algebra presentation Algebra presentation
Algebra presentation
 
F(x) terminology
F(x) terminologyF(x) terminology
F(x) terminology
 
Metodologia de la programación - expresiones
Metodologia de la programación - expresionesMetodologia de la programación - expresiones
Metodologia de la programación - expresiones
 

Mehr von Thanuphong Ngoapm

เฉลยข้อสอบคณิตศาสตร์ ระดับมัธยมต้น สพฐ. ปี 2566 (รอบแรก)คณิตม.ต้น66.pdf
เฉลยข้อสอบคณิตศาสตร์ ระดับมัธยมต้น สพฐ. ปี 2566 (รอบแรก)คณิตม.ต้น66.pdfเฉลยข้อสอบคณิตศาสตร์ ระดับมัธยมต้น สพฐ. ปี 2566 (รอบแรก)คณิตม.ต้น66.pdf
เฉลยข้อสอบคณิตศาสตร์ ระดับมัธยมต้น สพฐ. ปี 2566 (รอบแรก)คณิตม.ต้น66.pdfThanuphong Ngoapm
 
เฉลยข้อสอบแข่งขันคณิตศาสตร์ นานาชาติ ระดับชั้นมัธยมต้น รอบแรก สพฐ. ปี2565
เฉลยข้อสอบแข่งขันคณิตศาสตร์ นานาชาติ ระดับชั้นมัธยมต้น รอบแรก สพฐ. ปี2565เฉลยข้อสอบแข่งขันคณิตศาสตร์ นานาชาติ ระดับชั้นมัธยมต้น รอบแรก สพฐ. ปี2565
เฉลยข้อสอบแข่งขันคณิตศาสตร์ นานาชาติ ระดับชั้นมัธยมต้น รอบแรก สพฐ. ปี2565Thanuphong Ngoapm
 
การประยุกต์อินทิเกรทในคณิตศาสตร์แคลคูลัส.pdf
การประยุกต์อินทิเกรทในคณิตศาสตร์แคลคูลัส.pdfการประยุกต์อินทิเกรทในคณิตศาสตร์แคลคูลัส.pdf
การประยุกต์อินทิเกรทในคณิตศาสตร์แคลคูลัส.pdfThanuphong Ngoapm
 
อินทิกรัล แคลคูลัสสำหรับวิศวกรรมคอมพิวเตอร์
อินทิกรัล แคลคูลัสสำหรับวิศวกรรมคอมพิวเตอร์อินทิกรัล แคลคูลัสสำหรับวิศวกรรมคอมพิวเตอร์
อินทิกรัล แคลคูลัสสำหรับวิศวกรรมคอมพิวเตอร์Thanuphong Ngoapm
 
intro_linear_algebra_key6.1.pdf
intro_linear_algebra_key6.1.pdfintro_linear_algebra_key6.1.pdf
intro_linear_algebra_key6.1.pdfThanuphong Ngoapm
 
math_เครื่องกล_เฉลย.pdf
math_เครื่องกล_เฉลย.pdfmath_เครื่องกล_เฉลย.pdf
math_เครื่องกล_เฉลย.pdfThanuphong Ngoapm
 
เฉลยคณิต1_9วิชา_มีค.61.pdf
เฉลยคณิต1_9วิชา_มีค.61.pdfเฉลยคณิต1_9วิชา_มีค.61.pdf
เฉลยคณิต1_9วิชา_มีค.61.pdfThanuphong Ngoapm
 
เฉลยคณิต1_9วิชา_ธค.59.pdf
เฉลยคณิต1_9วิชา_ธค.59.pdfเฉลยคณิต1_9วิชา_ธค.59.pdf
เฉลยคณิต1_9วิชา_ธค.59.pdfThanuphong Ngoapm
 
เฉลยคณิต1_9วิชาสามัญ_ธค.58.pdf
เฉลยคณิต1_9วิชาสามัญ_ธค.58.pdfเฉลยคณิต1_9วิชาสามัญ_ธค.58.pdf
เฉลยคณิต1_9วิชาสามัญ_ธค.58.pdfThanuphong Ngoapm
 
ลำดับและอนุกรม_onet_เฉลย.pdf
ลำดับและอนุกรม_onet_เฉลย.pdfลำดับและอนุกรม_onet_เฉลย.pdf
ลำดับและอนุกรม_onet_เฉลย.pdfThanuphong Ngoapm
 
ความสัมพันธ์และฟังก์ชัน_onet_เฉลย.pdf
ความสัมพันธ์และฟังก์ชัน_onet_เฉลย.pdfความสัมพันธ์และฟังก์ชัน_onet_เฉลย.pdf
ความสัมพันธ์และฟังก์ชัน_onet_เฉลย.pdfThanuphong Ngoapm
 
ความน่าจะเป็น_onet_เฉลย.pdf
ความน่าจะเป็น_onet_เฉลย.pdfความน่าจะเป็น_onet_เฉลย.pdf
ความน่าจะเป็น_onet_เฉลย.pdfThanuphong Ngoapm
 
ตรีโกณ_onet_เฉลย.pdf
ตรีโกณ_onet_เฉลย.pdfตรีโกณ_onet_เฉลย.pdf
ตรีโกณ_onet_เฉลย.pdfThanuphong Ngoapm
 
สถิติ_onet_เฉลย.pdf
สถิติ_onet_เฉลย.pdfสถิติ_onet_เฉลย.pdf
สถิติ_onet_เฉลย.pdfThanuphong Ngoapm
 
เลขยกกำลัง_onet_เฉลย_.pdf
เลขยกกำลัง_onet_เฉลย_.pdfเลขยกกำลัง_onet_เฉลย_.pdf
เลขยกกำลัง_onet_เฉลย_.pdfThanuphong Ngoapm
 
การให้เหตุผล_onet_เฉลย.pdf
การให้เหตุผล_onet_เฉลย.pdfการให้เหตุผล_onet_เฉลย.pdf
การให้เหตุผล_onet_เฉลย.pdfThanuphong Ngoapm
 
จำนวนจริง_onet_เฉลย.pdf
จำนวนจริง_onet_เฉลย.pdfจำนวนจริง_onet_เฉลย.pdf
จำนวนจริง_onet_เฉลย.pdfThanuphong Ngoapm
 
เซต_onet_เฉลย.pdf
เซต_onet_เฉลย.pdfเซต_onet_เฉลย.pdf
เซต_onet_เฉลย.pdfThanuphong Ngoapm
 
analyticalof3rdPolynomial.pdf
analyticalof3rdPolynomial.pdfanalyticalof3rdPolynomial.pdf
analyticalof3rdPolynomial.pdfThanuphong Ngoapm
 

Mehr von Thanuphong Ngoapm (20)

เฉลยข้อสอบคณิตศาสตร์ ระดับมัธยมต้น สพฐ. ปี 2566 (รอบแรก)คณิตม.ต้น66.pdf
เฉลยข้อสอบคณิตศาสตร์ ระดับมัธยมต้น สพฐ. ปี 2566 (รอบแรก)คณิตม.ต้น66.pdfเฉลยข้อสอบคณิตศาสตร์ ระดับมัธยมต้น สพฐ. ปี 2566 (รอบแรก)คณิตม.ต้น66.pdf
เฉลยข้อสอบคณิตศาสตร์ ระดับมัธยมต้น สพฐ. ปี 2566 (รอบแรก)คณิตม.ต้น66.pdf
 
เฉลยข้อสอบแข่งขันคณิตศาสตร์ นานาชาติ ระดับชั้นมัธยมต้น รอบแรก สพฐ. ปี2565
เฉลยข้อสอบแข่งขันคณิตศาสตร์ นานาชาติ ระดับชั้นมัธยมต้น รอบแรก สพฐ. ปี2565เฉลยข้อสอบแข่งขันคณิตศาสตร์ นานาชาติ ระดับชั้นมัธยมต้น รอบแรก สพฐ. ปี2565
เฉลยข้อสอบแข่งขันคณิตศาสตร์ นานาชาติ ระดับชั้นมัธยมต้น รอบแรก สพฐ. ปี2565
 
การประยุกต์อินทิเกรทในคณิตศาสตร์แคลคูลัส.pdf
การประยุกต์อินทิเกรทในคณิตศาสตร์แคลคูลัส.pdfการประยุกต์อินทิเกรทในคณิตศาสตร์แคลคูลัส.pdf
การประยุกต์อินทิเกรทในคณิตศาสตร์แคลคูลัส.pdf
 
อินทิกรัล แคลคูลัสสำหรับวิศวกรรมคอมพิวเตอร์
อินทิกรัล แคลคูลัสสำหรับวิศวกรรมคอมพิวเตอร์อินทิกรัล แคลคูลัสสำหรับวิศวกรรมคอมพิวเตอร์
อินทิกรัล แคลคูลัสสำหรับวิศวกรรมคอมพิวเตอร์
 
intro_linear_algebra_key6.1.pdf
intro_linear_algebra_key6.1.pdfintro_linear_algebra_key6.1.pdf
intro_linear_algebra_key6.1.pdf
 
math_เครื่องกล_เฉลย.pdf
math_เครื่องกล_เฉลย.pdfmath_เครื่องกล_เฉลย.pdf
math_เครื่องกล_เฉลย.pdf
 
เฉลยคณิต1_9วิชา_มีค.61.pdf
เฉลยคณิต1_9วิชา_มีค.61.pdfเฉลยคณิต1_9วิชา_มีค.61.pdf
เฉลยคณิต1_9วิชา_มีค.61.pdf
 
เฉลยคณิต1_9วิชา_ธค.59.pdf
เฉลยคณิต1_9วิชา_ธค.59.pdfเฉลยคณิต1_9วิชา_ธค.59.pdf
เฉลยคณิต1_9วิชา_ธค.59.pdf
 
เฉลยคณิต1_9วิชาสามัญ_ธค.58.pdf
เฉลยคณิต1_9วิชาสามัญ_ธค.58.pdfเฉลยคณิต1_9วิชาสามัญ_ธค.58.pdf
เฉลยคณิต1_9วิชาสามัญ_ธค.58.pdf
 
ลำดับและอนุกรม_onet_เฉลย.pdf
ลำดับและอนุกรม_onet_เฉลย.pdfลำดับและอนุกรม_onet_เฉลย.pdf
ลำดับและอนุกรม_onet_เฉลย.pdf
 
ความสัมพันธ์และฟังก์ชัน_onet_เฉลย.pdf
ความสัมพันธ์และฟังก์ชัน_onet_เฉลย.pdfความสัมพันธ์และฟังก์ชัน_onet_เฉลย.pdf
ความสัมพันธ์และฟังก์ชัน_onet_เฉลย.pdf
 
ความน่าจะเป็น_onet_เฉลย.pdf
ความน่าจะเป็น_onet_เฉลย.pdfความน่าจะเป็น_onet_เฉลย.pdf
ความน่าจะเป็น_onet_เฉลย.pdf
 
ตรีโกณ_onet_เฉลย.pdf
ตรีโกณ_onet_เฉลย.pdfตรีโกณ_onet_เฉลย.pdf
ตรีโกณ_onet_เฉลย.pdf
 
สถิติ_onet_เฉลย.pdf
สถิติ_onet_เฉลย.pdfสถิติ_onet_เฉลย.pdf
สถิติ_onet_เฉลย.pdf
 
เลขยกกำลัง_onet_เฉลย_.pdf
เลขยกกำลัง_onet_เฉลย_.pdfเลขยกกำลัง_onet_เฉลย_.pdf
เลขยกกำลัง_onet_เฉลย_.pdf
 
การให้เหตุผล_onet_เฉลย.pdf
การให้เหตุผล_onet_เฉลย.pdfการให้เหตุผล_onet_เฉลย.pdf
การให้เหตุผล_onet_เฉลย.pdf
 
จำนวนจริง_onet_เฉลย.pdf
จำนวนจริง_onet_เฉลย.pdfจำนวนจริง_onet_เฉลย.pdf
จำนวนจริง_onet_เฉลย.pdf
 
เซต_onet_เฉลย.pdf
เซต_onet_เฉลย.pdfเซต_onet_เฉลย.pdf
เซต_onet_เฉลย.pdf
 
analyticalof3rdPolynomial.pdf
analyticalof3rdPolynomial.pdfanalyticalof3rdPolynomial.pdf
analyticalof3rdPolynomial.pdf
 
4thpolynoml.pdf
4thpolynoml.pdf4thpolynoml.pdf
4thpolynoml.pdf
 

Kürzlich hochgeladen

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 

Kürzlich hochgeladen (20)

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 

Function problem p

  • 1. 1 F ก F F ˆ กF 1. ก F { , , }A a b c= {0,1}B = ˆ กF F F ˈ ˆ กF ก B A [O-net ʾก ก 2548] 1. {( ,1),( ,0),( ,1)}a b c 2. {(0, ),(1, ),(1, )}b a c 3. {( ,1),( ,0)}b c 4. {(0, ),(1, )}c b
  • 2. 2 2. ˆ กF ( )y f x= F ก F [O-net ʾก ก 2548] 1. ( ) 1f x x= − 2. ( ) 1f x x= + 3. ( ) 1f x x= − 4. ( ) 1f x x= + -1 0 1 •• (0,1) ( )y f x= X Y
  • 3. 3 3. F {(1,0),(2,1),(3,5),(4,3),(5,2)}f = F (2) (3)f f+ F F ก F [O-net ʾก ก 2548]
  • 4. 4 4. ก F ( )n A ก A F 1 {( 1, 2),(0, 1),(1,2),(2, 3),(3,4)}r = − − − − 2 {( , ) | 1 }r x y y x= + = F 1 2( )n r r∩ F ก F [O-net ʾก ก 2548]
  • 5. 5 5. F {1,2,3,4}A = {( , ) | }r m n A A m n= ∈ × ≤ F ก F r F ก F F [O-net ʾก ก 2549] 1. 8 2. 10 3. 12 4. 16
  • 6. 6 6. ก F {( , ) | ,r a b a A b B= ∈ ∈ b F a } F {2,3,5}A = F F r ˈ ˆ กF B F ก F [O-net ʾก ก 2549] 1. {3,4,10} 2. {2,3,15} 3. {0,3,10} 4. {4,5,9}
  • 7. 7 7. ก ˆ กF F F ก X กก F 1 [O-net ʾก ก 2549] 1. 2 1y x= + 2. 2y x= − 3. 1y x= − 4. 1 2 x y   =    
  • 8. 8 8. ก F {1,2,3,4,5,6}A = {1,2,3,...,11,12}B = {( , ) | 2 } 2 a S a b A B b a= ∈ × = + ก S F ก F F [O-net ʾก ก 2550] 1. 1 2. 2 3. 3 4. 4
  • 9. 9 9. ก x F F ก ก 2 4 5 6y x x= − − + F ก X [O-net ʾก ก 2550] 1. 2 1 ( , ) 3 3 − − 2. 5 3 ( , ) 2 2 − − 3. 1 6 ( , ) 4 7 4. 1 3 ( , ) 2 2
  • 10. 10 10. F F 3x = ˈ F ก ˆ กF 2 2 ( ) ( 5) ( 10)f x x k x k= − + + + − k ˈ F f F F ก F F [O-net ʾก ก 2550] 1. -4 2. 0 3. 6 4. 14
  • 11. 11 11. ก F 2 ( ) 2 15f x x x= − − F F [O-net ʾก ก 2550] 1. ( ) 17f x ≥ − ก x 2. ( 3 2 3) 0f − − − > 3. (1 3 5) (1 3 5)f f+ + = − − 4. ( 1 3 5) ( 1 3 5)f f− + + = − − −
  • 12. 12 12. ก F {1,2}A = { , }B a b= F F F ˈ) ก F A B× [O-net ʾก ก 2551] 1. (2, )b 2. ( , )b a 3. ( ,1)a 4. (1,2)
  • 13. 13 13. F {1,99}A = F A F F ˈ ˆ กF [O-net ʾก ก 2551] 1. F ก 2. F F ก 3. 4. F
  • 14. 14 14. ก F r F ก F F ก F [O-net ʾก ก 2551] 1. r ˈ ˆ กF (1,1),(2,2) (3,3) F F ก 2. r ˈ ˆ กF ˈ ก 3. r F ˈ ˆ กF (3,3) (3, 1)− F ก 4. r F ˈ ˆ กF (1,1) ( 1,1)− F ก • 2 1 3 -1 -2 -3 1 2 3-1-2-3 • • • •
  • 15. 15 15. F F ˈ ก ˆ กF 2 2 2 1 3 2 1 x x y x x x − = + + + − [O-net ʾก ก 2551] 1. 2− 2. 1− 3. 0 4. 1
  • 16. 16 16. F a Fก ˆ กF (2 )x y a= F (3,16) F F [O-net ʾก ก 2551] 1. 2 2. 3 3. 4 4. 5
  • 17. 17 17. F 2 ( ) 2f x x x= − + + F F ก F [O-net ʾก ก 2552] 1. ( ) 0f x ≥ 1 2x− ≤ ≤ 2. กก ก ˆ กF f F 3. ˆ กF f F F ก 2 4. ˆ กF f F F ก 2
  • 18. 18 18. F F ˈ ˆ กF [O-net ʾก ก 2552] 1. {(1,2),(2,3),(3,2),(2,4)} 2. {(1,2),(2,3),(3,1),(3,3)} 3. {(1,3),(1,2),(1,1),(1,4)} 4. {(1,3),(2,1),(3,3),(4,1)}
  • 19. 19 19. F ( ) 3f x x= − ( ) 2 4g x x= − + − F f gD R∪ F [O-net ʾก ก 2552] 1. ( ],3−∞ 2. [ )2,− ∞ 3. [ ]2,3− 4. ( ),−∞ ∞
  • 20. 20 20. ก Fก ˆ กF f ˈ F 11 ( 11) 3 ( 3) (3)f f f− − − F [O-net ʾก ก 2552] 0-5-10 5 -5 X Y
  • 21. 21 21. F F ˈ ˆ กF [O-net ʾก ก 2553] 1. {(0,1),(0,2),(2,1),(1,3)} 2. {(0,2),(1,1),(2,2),(3,0)} 3. {(1,1),(2,0),(2,3),(3,1)} 4. {(1,2),(0,3),(1,3),(2,2)}
  • 22. 22 22. F F ˈ F ก ˈ [O-net ʾก ก 2553] 1. {( , ) | }x y y x≥ 2. {( , ) | }x y y x≤ 3. {( , ) | }x y y x≥ 4. {( , ) | }x y y x≤ 10 y x= y x= − Y X
  • 23. 23 23. F 2 ( ) 3 4f x x= − − F F F ก F [O-net ʾก ก 2553] 1. [ ]2,2fD = − [ ]0,3fR = 2. [ ]2,2fD = − [ ]1,3fR = 3. [ ]0,2fD = [ ]0,3fR = 4. [ ]0,2fD = [ ]1,3fR =
  • 24. 24 24. F ( 2) 2 1f x x− = − F 2 ( )f x F F ก F F [O-net ʾก ก 2553] 1. 2 2 1x − 2. 2 2 1x + 3. 2 2 3x + 4. 2 2 9x +
  • 25. 25 25. ˈ ก ˆ กF 2 ( ) 2 4 6f x x x= − − F F ก. ก F 1x = − . กก F F F ก F [O-net ʾก ก 2553] 1. ก. ก . ก 2. ก. ก . 3. ก. . ก 4. ก. .
  • 26. 26 26. F F [Entrance ก . ʾ 2520] ก. F x 2 ( ) 4 4f x x x= − − F ( )f x x= − . F x y ˈ 0x y+ > F x y x y+ ≤ + . F r A B⊂ × F r ˈ F ก A B . A B A B× ก F ก 7 . F F ˆ กF f ˈ ˆ กF g F g fo F
  • 27. 27 27. F {1,2,3,4}, {1,3,4,5}A B= = {(1,1),(2,3),(3,4),(4,5)}f = F F ก [Entrance ก . ʾ 2520] ก. 1 f f− o ˈ ˆ กF ก A B . f fo ˈ ˆ กF ก A A . 1 f f− o ˈ ˆ กF ก A A . 1 f f − o ˈ ˆ กF ก B A
  • 28. 28 28. F {1,2,3}, {2,3,4}A B= = ˆ กF 1 1− ก A B [Entrance ก . ʾ 2520] ก. {(1,3),(2,4),(3,3)} . {(2,2),(3,3),(4,1)} . {(1,1),(2,2),(3,3)} . {(1,2),(3,3),(2,3)} . F F ก
  • 29. 29 29. ก F {(1, 2),(0,0)}r = − F ( )P A F F r F F ( )P A [Entrance ก . ʾ 2521] ก. { ,{ 2},{ 2,0},{0, 2}}∅ − − − . { ,{1},{1,0},{0,1}}∅ . {{ 2},{ },{ 2,0}, }− ∅ − ∅ . { ,{1, 2},{0,0},{(1, 2),(0,0)}}∅ − −
  • 30. 30 30. ก F F 1 {( , ) | 3 }r x y R R y x= ∈ × = − 2 2 {( , ) | } 1 3 r x y R R y x = ∈ × = − + F F A B 1r 2r F F A B∩ F F [Entrance ก . ʾ 2521] ก. . . . o o o4− 2− 3 4− 2− 3 o o • o3 2− 3 o o
  • 31. 31 31. ก F ( ) 3f x x= 2 2 ; 0 ( ) 2 3 ; 0 x x h x x x − < =  − ≥ 2 ( ) 1g x x= + F F ( )(1)f h go o F F ก [Entrance ก . ʾ 2521] ก. 3 . 5 . 6 . 10 . F F ก
  • 32. 32 32. ก F 1 1 ( 1) 1 2 2 f x x+ = − F F 1 (2)f − F F ก [Entrance ก . ʾ 2521] ก. 6 . 4 . 2 . 0 . F F ก
  • 33. 33 33. F F 2 2 1 {( , ) | 2 }r x y R R y x= ∈ × ≤ − 2 2 {( , ) | }r x y R R y x= ∈ × ≥ F F 1 2r r∩ F F F [Entrance ก . ʾ 2521] ก. . . . (0, 2) ( 2,0) (0, 2)− ( 2,0)− (1,1) ( 1, 1)− − (0, 2) ( 2,0) (0, 2)− ( 2,0)− (1,1) ( 1, 1)− − Y X Y X (0, 2) ( 2,0) (0, 2)− ( 2,0)− (1,1) ( 1, 1)− − X Y (0, 2) ( 2,0) (0, 2)− ( 2,0)− (1,1) ( 1, 1)− − X Y
  • 34. 34 34. F ,x y ˈ ก ก x y a+ = 0a > ก F F [Entrance ก . ʾ 2522] ก. . . . . Y X a a a− a− Y X a a a− a− Y X a a a− a− Y X a a a− a− • • • • Y X a a a− a−
  • 35. 35 35. F 2 ( ) 7f x x= + x ˈ ( ) sing x x= 0 2x π≤ ≤ F F ก [Entrance ก . ʾ 2522] ก. 2 ( )( ) sin( 7)f g x x= +o 0 2x π≤ < . 1 ( ) 7f x x− = − x ˈ . 2 ( )( ) sin 7f g x x= +o 0 2x π≤ < . 1 1 ( ) sing x x− − = 0 2x π≤ < . 2 ( )( ) sin 7f g x x x+ = + + x ˈ
  • 36. 36 36. f ˈ ˆ กF 1 1− ก A B F F ก [Entrance ก . ʾ 2522] ก. A B ก F ก . A ก กก F B . B ก กก F A . A B⊂ . ก F ก F ก F F F A B
  • 37. 37 37. F A B= = {( , ) | 2}f x y A B y x= ∈ × = + F ก F [Entrance ก . ʾ 2523] ก. f ˈ F F F ˆ กF F x กก F F F F y F ก . f ˈ ˆ กF F F F ˆ กF 1 1− ก F ก ก x F ก ˆ กF กก F . f ˈ ˆ กF ก A B ก A B F ก . ก F . F . f F F ˆ กF one to one correspondence . F F ก
  • 38. 38 38. F F (1) F 3 3 ( )f x a x= − 0x > F ( )f f f f x x=o o o (2) F 2 ( ) x f x x = ( )g x x= x R∈ f g ก ก ก (3) F ( )f x x= x R∈ 1 f − ˈ ˆ กF 1 f f− = F ก F [Entrance ก . ʾ 2523] ก. F F (1)-(3) F ก F F . F F (1)-(3) F ก F 2 F F (1) (2) . F F (1)-(3) F ก F 2 F F (1) (3) . F F (1)-(3) F ก F 2 F F (2) (3) . F F (1)-(3) ก F ก F
  • 39. 39 39. F {1,2,3,4}A = F r ˈ F ก A A F F F ˈ ˆ กF F F F F ˈ ˆ กF [Entrance ก . ʾ 2523] ก. 1 {( , ) | }r x y A A y x= ∈ × = + . 2 2 {( , ) | }r x y A A y x= ∈ × = . 3 {(1,1),(2,4),(4,1)}r = . 4 {(1,1),(2,4),(3,3),(4,1)}r = . 5 {(1,2),(2,3),(3,4),(4,1)}r =
  • 40. 40 40. ก F 2 2 {( , ) | 2 1x y x by x− + = , ,x y b ˈ } F F F ก F [Entrance ก . ʾ 2523] ก. F 2b = − ก F ˈ ก . F 0b > ก F ˈ F . F 0b < ก F ˈ ก . F 0b = ก F ˈ F F ก ก x . ก ก F
  • 41. 41 41. ก F 2 2 {( , ) | 0} 4 9 x y r x y= − = F F F ก F [Entrance ก . ʾ 2524] ก. F 1r 1 1r r− ⊂ 1r ˈ ˆ กF ก R R F . F 2r 2r r⊂ 2r ˈ ˆ กF ก R R F . F 3r F ˈ F r 3 [ 1,1]rD = − F F F F 1 3r − F ˈ ˆ กF . ก F r ˈ F 2 F ก . F 4 3 {( , ) | } 2 r x y y x= = ˈ F r
  • 42. 42 42. ก 2 log 100 ( 1) {( , ) | 5 }x f x y y − − = = F F ก F [Entrance ก . ʾ 2524] ก. { | 9 11}fD x x= − ≤ ≤ { | 0 5}fR y y= ≤ ≤ . { | 9 11}fD x x= − < ≤ { | 0 5}fR y y= ≤ ≤ . { | 9 11}fD x x= − ≤ < { | 0 5}fR y y= ≤ < . { | 9 11}fD x x= − ≤ < { | 0 5}fR y y= < < . { | 9 11}fD x x= − < < { | 0 5}fR y y= < ≤
  • 43. 43 43. ก 2 2 1 {( , ) | 1}, {( , ) | } 1 f x y y x g x y y x = = − = = − F F ก F [Entrance ก . ʾ 2524] ก. 1 2 ( ) {( , ) | } 1 y f g x y x y − = = − o . 2 {( , ) | } 1 x f g x y y x = = − o . 1 ( )( ) }f g x x = − o . 1 2 2 1 {( , ) | 1 }g x y x y − = = − . F F ก
  • 44. 44 44. F 2 {( , ) | 2 2f x y y x x= = + − 3 2}x− < ≤ F (1) { | 3 6}fR y y= − ≤ ≤ (2) { |1 6}fR y y= < ≤ (3) F h f⊂ { | 1 1}hD x x= − ≤ < ( ) ( )h x f x= F 1 h− ˈ ˆ กF 1 1− F F ก F [Entrance ก . ʾ 2524] ก. F (1) ก F . F (2) ก F . F (3) ก F . F (1) (3) ก 2 F . F (2) (3) ก 2 F
  • 45. 45 45. ก F {( , ) | log 0}x y R R xy∈ × < ก ( ) ก F F F (ก F F ˈ F ) [Entrance ก . ʾ 2525] ก. . . . Y X Y X Y X Y X
  • 46. 46 46. F F ก [Entrance ก . ʾ 2525] ก. {( , ) | ,r x y x R y R= ∈ ∈ 3 } 2 1 x y x − = + ˈ ˆ กF 1 {( , ) | ,r x y x R y R− = ∈ ∈ 3 } 1 2 x y x − = − ˈ ˆ กF . F ( ) 5f x x= + 2 25 ( ) 5 x g x x − = − F f g= . {( , ) | 0 ,r x y x y Rπ= < < ∈ sin }x y e x= ˈ ˆ กF F . 2 2 ( ) 4, 2; ( ) 2 3f x x x g x x x= − ≥ = + − F 2 2 4 ( )( ) , 2 2 3 f x x x g x x − = ≥ + − . F ( ) 3f x x= − 3; 3 ( ) 3 ; 3 x x g x x x − ≥ =  − < F f g=
  • 47. 47 47. ก 2 1 ( ) 6, ( ) 3 f x x g x x = + = − F F ก [Entrance ก . ʾ 2525] ก. 2 6 ( )( ) ( 3) f g x x = − o . 2 1 ( )( ) 3 g f x x = − o . fR R= . {3} { | , 3}gR R x x R x= − = ∈ ≠ . {0} { | , 0}gR R x x R x= − = ∈ ≠
  • 48. 48 48. ก ˆ กF f g 3 ( ) ; 2 x f x x R + = ∈ ( ) ;g x x x R= ∈ 3x = F 1 1 [( )( ) ( )(2)]/ ( 2)f g x f g x− − − −o o F ก [Entrance ก . ʾ 2526] ก. 2 . 6 . 1 . 1 2
  • 49. 49 49. F ˆ กF f g ˈ R , , 0c R c∈ < ก ( )f x x c= − ( )g x c= − ก x F F [Entrance ก . ʾ 2526] ก. ( ) ( )f x g x x+ ≠ ก x R∈ . f g+ ˈ ˆ กF 1 1− . f gD R+ = . F f g+ F ˈ ˆ กF
  • 50. 50 50. ก F {1,2}A = F F ก F [Entrance ก . ʾ 2526] ก. F ก A A F ก 4 . ˆ กF ก A A F ก 4 . ˆ กF ก A A F ก 1 . F F ˆ กF ก A A F ˈ ˆ กF
  • 51. 51 51. F F ˈ F [Entrance ก . ʾ 2527] ก. 2 {( , ) | 1} {( , ) | 0}x y R R x y x y R R y x∈ × − > ∩ ∈ × + < . {( , ) | 2} {( , ) | 2 3 }x y I I y x x y R R y x∈ × = + ∩ ∈ × = − . {( , ) | } {( , ) | }x y R R y x x y R R y x∈ × > ∩ ∈ × < . {( , ) | 1 4} {( , ) | 2}x y R R x y x y R R y∈ × − ≤ − < ∩ ∈ × = −
  • 52. 52 52. ก F 2 {( , ) | 3}A x y R R y x= ∈ × < − {( , ) | 2 3( 1) 4 }B x y R R y x x= ∈ × + + > ก F F F ก F [Entrance ก . ʾ 2527] ก. ( 1, 2)− − ˈ A B′∩ . 3 3 ( , ) 2 4 − ˈ A B′∩ . 3 3 ( , ) 2 4 − ˈ A B′− . ( 1, 2)− − ˈ A B′−
  • 53. 53 53. F F F F ˈ ˆ กF [Entrance ก . ʾ 2527] ก. {( , ) | }, {1,2,3}x y A A y x A∈ × > = . 2 {( , ) | 1}x y R R x y∈ × = . {( , ) | 2}x y R R y x∈ × = − . {( , ) | 2}, { 2, 1,0,1,2}x y B B y x B∈ × = − = − −
  • 54. 54 54. F 2 ( ) 25, ( ) 2f x x g x x= − = 2 ( ) ( ) ( ) ( 25)(2 )h x f x g x x x= = − F ( )( )g h xo [Entrance ก . ʾ 2527] ก. { | 5}x x ≥ . { | 5 0x x− ≤ ≤ 5}x ≥ . { | 5x x ≤ − 5}x ≥ . { | 0}x x ≥
  • 55. 55 55. F 1 ( )( ) , ( ) 3 3 f g x x g x x= = −o ( ( )) 2 1g h x x= − F [Entrance ก . ʾ 2527] ก. 1 ( ) ( )f x g x− = ( ) 6 4h x x= + . 1 ( ) ( )f x g x− = ( ) 6 6h x x= + . ( ) 3 9f x x= + ( ) 6 4h x x= + . ( ) 3 9f x x= − ( ) 6 6h x x= +
  • 56. 56 56. ก F 2 {( , ) | 6 10}r x y R R x y y= ∈ × = − + F F ˈ [Entrance ก . ʾ 2528] ก. 1 r D R− = 1 { | 0}r R y y− = ≥ . 1 { | 0}r D x x− = ≥ 1 r R R− = . 1 r D R− = 1 { | 1}r R x x− = ≥ . 1 { | 1}r D y y− = ≥ 1 r R R− =
  • 57. 57 57. ก 3 F F F ก Y F F F F ก X F F F 3x y− = F F F ก ˈ F ก F [Entrance ก . ʾ 2528] ก. {( , ) | 0,0 3x y R R x y∈ × ≥ ≤ ≤ 3}y x≥ − . {( , ) | 0,0 3x y R R y x∈ × ≥ ≤ ≤ 3}x y≥ − . {( , ) | 3 0x y R R y∈ × − ≤ ≤ 3}y x≤ − . {( , ) | 3 0x y R R x∈ × − ≤ ≤ 3}x y≤ −
  • 58. 58 58. F F ˈ [Entrance ก . ʾ 2528] ก. F A ˈ ก :f A B→ ˈ ˆ กF 1 1− F B ˈ ก . F f ˈ ˆ กF 1 1− F F ˈ 1 1 f f f f− − =o o . 2 ( )g x x= 0x ≥ F ˈ ˆ กF 1 1− . ( ) x f x e= ˈ ˆ กF 1 1−
  • 59. 59 59. ก F 2 ( ) 1 f x x = − F F ˈ [Entrance ก . ʾ 2528] ก. { | 1}fD x x= ≠ { | 2 0}fR x x= − ≤ < . { | 1fD x x= ≠ 1}x ≠ − { | 2 0}fR x x= − ≤ ≤ . { | 1}fD x x= ≠ { | 2fR x x= ≤ − 0}x > . { | 1fD x x= ≠ 1}x ≠ − { | 2fR x x= ≤ − 0}x >
  • 60. 60 60. ˆ กF F ( ) 1f x x= + , ( )g x x= , 1 ( )h x x = F F ˈ ( ก กF f go Fก F g fR D⊂ ) [Entrance ก . ʾ 2528] ก. f ho F . h go F . g fo F . h fo F
  • 61. 61 61. ก F {( , ) | }r x y R R y x x= ∈ × = F r [Entrance ก . ʾ 2529] ก. 1 ; 0 {( , ) | } ; 0 x x r x y R R y x x −  ≥ = ∈ × =  − < . 1 ; 0 {( , ) | } ; 0 x x r x y R R y x x −  ≥ = ∈ × =  − − < . 1 ; 0 {( , ) | } ; 0 x x r x y R R y x x − − ≥ = ∈ × =  − < . 1 ; 0 {( , ) | } ; 0 x x r x y R R y x x − − ≥ = ∈ × =  − − <
  • 62. 62 62. ก F 2 2 1 {( , ) | 1}r x y R R x y= ∈ × + = 2 2 1 {( , ) | 1} 1 r x y R R y x = ∈ × = − + F A ˈ 1r B ˈ F 2r F A B− F F [Entrance ก . ʾ 2529] ก. [0,1] {1}∪ . (0,1] { 1}∪ − . (0,1] . { 1}−
  • 63. 63 63. F F [Entrance ก . ʾ 2529] ก. F f ˈ ˆ กF ก A B g ˈ ˆ กF ก B C F g fo ˈ ˆ กF ก A C . F ( )f x x= 2 ( )g x x= F g f f gD D≠o o . F 2 ( ) 4 3f x x x= − + ( )g x x= F f g g fR R≠o o . F 2 1 ( ) 3 x f x + = 3 2 ( ) 3 3g x x x x= − + F 1 1 1 1 (1) (1)f g g f− − − − =o o
  • 64. 64 64. F { | 0}R x R x+ = ∈ ≥ {0,1,2,3,...}N = :f R R+ + → ( ) 2f x x= (0) 1, ( 1) ( ( )),g g n f g n n N= + = ∈ F F [Entrance ก . ʾ 2529] ก. g ˈ ˆ กF F ก N R+ . f go ˈ ˆ กF F ก N R+ . g f gR R= o . ( ) 2,g n n N< ∀ ∈
  • 65. 65 65. F ( ) 1 x f x x = + F 1 ( )f x− F [Entrance ก . ʾ 2529] ก. 1 x x− . 1 x x− . 1 x x+ . 1 x x+
  • 66. 66 66. F 2 2 1 {( , ) | 4 4}r x y R R x y= ∈ × + = 2 {( , ) | log }r x y R R y x= ∈ × = F F [Entrance ก . ʾ 2530] ก. 1 1r rD R⊂ . 2 2r rD R⊂ . 1 2r rD D⊂ . 1 2r rR R⊂
  • 67. 67 67. F {( , ) | 3 2}f x y R R y x= ∈ × = − {( , ) | 2 7}g x y R R y x= ∈ × = + F F 1 1 ( )(2)g f− − o F F [Entrance ก . ʾ 2530] ก. 17 6 − . 7 2 − . 1 6 − . 7 2
  • 68. 68 68. ˆ กF F F ˈ ˆ กF F [Entrance ก . ʾ 2530] ก. 4logy x= . 2 , 1x y a a= > . sin 7y x= − . 3 5 2y x= − +
  • 69. 69 69. 2 2 ( ) ( ) 4y y x x+ − + = ก ˈ F [Entrance ก . ʾ 2531] ก. . . . Y X 2 1 1−2− 1 2 1− Y X 1 1−2− 1 2 1− Y X 1 1−2− 1 2 1− Y X 1 1−2− 1 2 1− 2 2 2 2
  • 70. 70 70. ˆ กF F F ˈ F F F “ก F A ≠ ∅ ˈ F :f A A→ F f ˈ ˆ กF F ” F ˈ [Entrance ก . ʾ 2531] ก. ( ) ,f n n n N= ∀ ∈ , N = . ( ) 2 ,f n n n N= ∀ ∈ , N = . ( ) 1 n f n n  =  + . 1 2( ) 2 n f n n +  =    F n ˈ ก F n ˈ F ก F n ˈ ก F n ˈ F ก
  • 71. 71 71. ก F 2 ( ) 10 , ( ) 1x f x g x x= = − {( , ) | ( )( )}r x y R R y f g x= ∈ × = o F F ก [Entrance ก . ʾ 2531] ก. [ 1,1], [0,1]r rD R= − = . [0,1], [1,10]r rD R= = . [ 1,1], [1,10]r rD R= − = . F F f go F
  • 72. 72 72. F 2 ( )f x x= ,A R⊆ R= 1 ( ) { | ( ) }f A x f x A− = ∈ F F [Entrance ก . ʾ 2531] ก. 1 ([ 25,0]) {0}f − − = . 1 ([ 1,1]) [ 1,1]f − − = − . 1 ([0,1]) [ 1,1]f − = − . 1 ([4,9]) [2,3]f − =
  • 73. 73 73. ก F {1,2,3,4,5}A = ˆ กF :f A A→ F , ( )x A f x x∈ > ( ) 3f x = F ก F F [Entrance ก . ʾ 2531] ก. 24 . 29 . 72 . 120
  • 74. 74 74. F 2 ; [ 2,3] ( ) 5 ; (3,8) x x f x x x  ∈ − =  − ∈ 2 ; ( 2,0] ( ) 4 ; (0,4] x x g x x x − ∈ − =  − ∈ F F A = F f B = 1 g− F A B′∩ F F [Entrance ก . ʾ 2532] ก. ( 2,0) [2,6]− ∪ . ( 2,0) (2,6)− ∪ . [2,6] . ( 2,0)−
  • 75. 75 75. ก F {2,5,6,7,8}D = F F D ˈ F F F ˈ ˆ กF [Entrance ก . ʾ 2532] ก. {( , ) | sin ( 5)} 6 x y y x π = − . {( , ) | 2}x y y x= − . 2 {( , ) | 4 }x y y x x= − . {( , ) |x y y = กก x F 4}
  • 76. 76 76. ก F 2 {( , ) | 4 }f x y R R y x= ∈ × = − {( , ) | 2}g x y R R y x= ∈ × = − {( , ) | 2 0h x y R R y x= ∈ × + + = 0}x ≤ F F F ˈ ˆ กF F F F [Entrance ก . ʾ 2533] ก. ( )f g h∩ ∩ . ( )f g h∩ ∪ . ( )f h g∩ ∪ . ( )f g h∪ ∪
  • 77. 77 77. ก F f g ˈ ˆ กF ก R R 2 ( ) 2 1 ; 1 ( ) 20 ; 1 x f x x g x x x = ≤ =  − > F n ˈ ก F F F ( )( ) 0g f n >o F n F ก F F [Entrance ก . ʾ 2533] ก. 1 . 2 . 3 . 4
  • 78. 78 78. F :f R R+ → R+ ˈ ก :g R R→ ก F 2 ( )( ) 3[ ( )] 2 ( ) 1g f x f x f x= − +o 2 ( ) 2g x x x= − + F F F [Entrance ก . ʾ 2533] ก. ( )(1) 2g f =o . ( )(1) 2gf = . ( )(1) 2 g f = . ( )(1) 2g f− =
  • 79. 79 79. ก F ( ) ; 3 ( ) ( ( 1)) ; 3 0 1 ; 0 f x x f x f f x x x x  < −  = + − ≤ <  + ≥ F 5h > F (3 ) ( ) ( 2) f h f h f + − − − F F ก F [Entrance ก . ʾ 2533]
  • 80. 80 80. ก F 21 ( ) 3 1 2 f x x= + ( ) 3g x x= − 2 ( ) 5 6h x x x= − + + F g U h = F f UR D∩ ˈ F F [Entrance ก . ʾ 2534] ก. ( 4,1)− . ( 1,5)− . (2,7) . (4,8)
  • 81. 81 81. ก ˆ กF f g ก R R ( ) 1 1 ( ) ( ) f x x g x f x = + = ( )( )g f xo F F ก F F [Entrance ก . ʾ 2534] ก. 1 x+ . 2 x+ . 1 1 x+ . 1 2 x+
  • 82. 82 82. F f g ˈ ˆ กF ก 2 {( , ) | 2 5} {( , ) | 2 3} f x y R R x y g x y R R x y = ∈ × + = = ∈ × − = F g fo F F [Entrance ก . ʾ 2535] ก. 2 {( , ) | 2}x y R R x y∈ × + = . 2 {( , ) | 4 11}x y R R x y∈ × + = . 2 {( , ) | 4 2 5}x y R R x x y∈ × + − = . 2 {( , ) | 4 12 2 4 0}x y R R x x y∈ × − + + =
  • 83. 83 83. ก F R ˈ F 2 2 {( , ) | 9 4 18 16 11 0}r x y R R x y x y= ∈ × + − + − = F r rD R∩ F ก F [Entrance ก . ʾ 2535] ก. [ 1,3]− . [ 5,1]− . [ 1,1]− . [ 5,3]−
  • 84. 84 84. F 1 ( ) 2 x f x x − = − ( )( 2) 3 6f g x x+ = +o F (2)g F ก F [Entrance ก . ʾ 2535] ก. 5 6 . 3 2 . 12 5 . 24 11
  • 85. 85 85. ก F {1,2}A = {1,2,3,...,10}B = F { | : ,N f f A B f= → ˈ 1 1− x A∈ F F ( ) }f x x= F N กก [Entrance ก . ʾ 2535]
  • 86. 86 86. F { 2, 1,0,1,2}A = − − F ˆ กF :f A A→ F ( ) 0f x > 0x < ( ) 0f x < 0x > F ก F F [Entrance ก . ʾ 2536] ก. 160 . 80 . 64 . 16
  • 87. 87 87. F R ˈ :f R R→ ก 1 ; 0 (1 ) 0 ; 0 1 ; 0 x x f x x x x − − <  − = =  − > F 2 ( )x y f y x∗ = − x y F F ( 2) (3)f− ∗ F F F [Entrance ก . ʾ 2536] ก. ( 4, 2]− − . ( 2,2]− . (2,4] . (4,6)
  • 88. 88 88. F R ˈ :f R R→ :g R R→ ก 2 1 ( ) x f x a + = ( ) 5g x bx= + F 1 ( )( 2) 27f g− − =o ( )(0) 15fg = F 3 ( 1) 4 (2)f g− − F F ก F [Entrance ก . ʾ 2536] ก. -35 . -33 . 37 . 39
  • 89. 89 89. F I ˈ F : , :f I I g I I→ → ก ( ) 2 ;f x x= ก x I∈ 0 ( ) 2 g x x   =   F :F I I→ ก F g f f= −o F F ˈ F [Entrance ก . ʾ 2536] ก. F F F . F F F . F F F . F F x ˈ F x ˈ
  • 90. 90 90. F R ˈ ก F 2 3 { | 4} 2 x A x R x − = ∈ < + F F (1) F a b ˈ ก A F 2 a b+ ˈ ก A (2) F :f A R→ ก 2 ( )f x x= F F f [0, )∞ F F ก F [Entrance ก . ʾ 2536] ก. ก . ก ก . ก ก ก . ก ก
  • 91. 91 91. ก F R ˈ I ˈ F 2 { | 2 8}A x I x= ∈ − < 1 { |1 0}B x R x = ∈ + > F F F F ˈ ˆ กF ก A B∩ B [Entrance ก . ʾ 2537] ก. {( 3,1),( 2,2),( 1,3),(1,4),(2,5)}− − − . {( 3,0),( 2,1),(1, 1),(2, 2),(3, 3)}− − − − − . {( 3,1),(0,2),(1,1),(2,3),(3,4)}− . {( 3,1),( 2,4),(1,5),(2,2),(3,1)}− −
  • 92. 92 92. F 2 1 {( , ) | 2 0}r x y x y= + − ≤ 2 2 {( , ) | ln 0}r x y y x= − ≥ F 1 2( )r r∩ F F [Entrance ก . ʾ 2537] ก. [1,2] . ( ,0]−∞ . 1 ( ,1] [ ,1] 2 −∞ ∪ . 1 ( , ] [1,2] 2 −∞ ∪
  • 93. 93 93. F ( ) 1f x x= − 1 2 ( )( ) 4 1g f x x− = −o F ก ( ) 0g x = ˈ F F [Entrance ก . ʾ 2537] ก. [ 4, 1]− − . [ 1,0]− . [0,4] . [4,6]
  • 94. 94 94. F 2 {( , ) |r x y y x= ≤ 2 }y x≥ F F 1 r− F F [Entrance ก . ʾ 2538] ก. [0,2] . [0,4] . ( ,0] [2, )−∞ ∪ ∞ . ( ,0] [4, )−∞ ∪ ∞
  • 95. 95 95. F ( ) (3 )(2 )f x x x= + − 1 ( ) 3 g x x = + F f g⋅ F F [Entrance ก . ʾ 2538] ก. ∅ . ( ,2]−∞ . ( 3,2)− . ( 3,2]−
  • 96. 96 96. F f g ˈ ˆ กF ก R R F 3 ( ) 1f x x= + 3 2 ( )( ) 3 3 2f g x x x x= + + +o F F 1 ( ) ( 7)g f − −o F ก F F [Entrance ก . ʾ 2538] ก. -1 . -2 . 1 . 3
  • 97. 97 97. F 1r 2r ˈ Fก 1 2 2 {( , ) | 3} {( , ) | 9 0 r x y R R y x r x y R R x y = ∈ × ≤ − = ∈ × + − ≤ F F ก [Entrance ก . ʾ 2538] ก. 1 2r r⊂ . 2 1r r⊂ . 1 1 2r r − ⊂ . 1 2 1r r− ⊂ 3}y ≥
  • 98. 98 98. ก F {1,2,3}A = { , }B a b= F { | }S r r A B= ⊂ × { |F r S r= ∈ ˈ ˆ กF ก 2}= F ( )n F F ก F [Entrance ก . ʾ 2538]
  • 99. 99 99. F A ก 8 B ก 6 A ก B ก F ก 3 F ˆ กF F ก ( )B A− ( )A B− F ก F F [Entrance ก . ʾ 2540] ก. 30 . 60 . 10 . 20
  • 100. 100 100. F {1,2,3,4,5}A = S ˈ ˆ กF f :f A A→ ˈ ˆ กF 1 1− F (1) 3f > F ก S F ก F F [Entrance ก . ʾ 2540] ก. 40 . 48 . 56 . 72
  • 101. 101 101. ก F 2 ( ) 2 1f x x x= + + 3 2 ( ) 3 3 9g x x x x= + + + F 1 ( )(7)f g− o F F ก F [Entrance ก . ʾ 2540] ก. 2− . 1− . 1 . 2
  • 102. 102 102. F I + ˈ ก ก F {( , ) | 2 12f x y x y= + = , }x y I + ∈ F f fo F ก F F [Entrance ก . ʾ 2540] ก. {(8,5),(4,4)} . {(5,8),(4,4)} . {(2,2),(4,4)} . {(6,3),(4,4)}
  • 103. 103 103. F {0,1,2,3}A = ( )P A F A F r ˈ F ก A ( )P A ก {( , ) | 2,r a B a a B= ≥ ∉ 1 }a B+ ∉ F r กก [Entrance ก . ʾ 2540]
  • 104. 104 104. F F 2 4 {( , ) | 2 } ( 1) 4 r x y R R y x = ∈ × = − − − F F F r [Entrance ก . ʾ 2541] ก. ( ,2) [3, )−∞ ∪ ∞ . ( ,2) (3, )−∞ ∪ ∞ . ( ,2] [3, )−∞ ∪ ∞ . ( ,2] (3, )−∞ ∪ ∞
  • 105. 105 105. F ( ) 10 ,x f x x= ˈ ก ,a b ˈ ก F f F 1 1 ( ) ( ) f ab f b − − F F [Entrance ก . ʾ 2541] ก. 10log a . 101 log a+ . 1 logb a+ . 1 loga b+
  • 106. 106 106. F 2 {( , ) | 2 1}f x y R R y x x= ∈ × = + + 2 1 {( , ) | } 1 g x y R R y x = ∈ × = − ( )h g f fg= +o F h F F [Entrance ก . ʾ 2541] ก. { | 1}x x ≠ . { | ( 2) 0}x x x − ≠ . 2 { | ( 1)( 2) 0}x x x− − ≠ . 2 { | ( 1)( 2) 0}x x x x− + ≠
  • 107. 107 107. F 1 ( ) 1 f x x = + 1x ≠ − F I ˈ ˆ กF ก ก F ( )( )g f f f I= +o F ( )g x F ก F F [Entrance ก . ʾ 2541] ก. 1 . 2 ( 1) ( 2) x x + + . 2 ( 1) ( 2) x x x + + + . 2 ( 1) ( 2) x x x + − +
  • 108. 108 108. ก F 2 2 , 1 ( ) ( 1) , 1 2 ( 1) , 2 x f x x x x x ≤ −  = − − < <  + ≥ ก ( ) 4 0f x − = ˈ ˈ F F F [Entrance ก . ʾ 2541] ก. ( 3,5)− . ( 6, 1)− − . ( 5,4)− . (1,6)
  • 109. 109 109. ก F { |S x x I= ∈ 5}x ≤ 3 2 2 4 4 ( ) ; , 4 x x x a f x a S b S x bx − − + = ∈ ∈ + + F ( , )a b S S∈ × F (1) 0f = F ก F [Entrance 1 , 2541] ก. 15 . 18 . 20 . 22
  • 110. 110 110. ก F 2 {( , ) | log( 1) log( 2) log(4 )}f x y y x x x= = + + + − − 1 {( , ) | 2x g x y y − = = 0}x ≥ F f gD R∩ ˈ F [Entrance 1 , 2541] ก. [0,1.5) . [0.5,2.5) . [1,3) . [1.5,4)
  • 111. 111 111. F {1,2,3}A = { , , , }B a b c d= F ก { : |f A B f→ F ˈ ˆ กF 1 1}− F ก F [Entrance 1 , 2541] ก. 40 . 34 . 30 . 24
  • 112. 112 112. ก F r ˈ F 2 2 1 {( , ) | } 1 x r x y y x − = = + F F ก F [Entrance 1 , 2542] ก. 1[ 1,1], [ 1,1]r r D D −= − = − . 1[ 1,1], [0,1]r r D D −= − = . 1[0,1], [ 1,1]r r D D −= = − . 1[0,1], [0,1]r r D D −= =
  • 113. 113 113. ก 0, 0 ( ) 1, 0 x f x x < =  ≥ F {( , ) | (1 )x g x y y f e= = − 0}y > F F F ก [Entrance 1 , 2542] ก. g gD R ′⊂ . g gD R′ ⊂ . [1, )g gD R⊂ ∪ ∞ . [1, )g gD R⊂ ∩ ∞
  • 114. 114 114. F ( ) 1f x x= − F 30 2 10 ( )( ) n f f n = ∑ o F F [Entrance 1 , 2542] ก. 9028 . 9030 . 9128 . 9170
  • 115. 115 115. F ( ) 4f x x= 2 ( ) 1 g x x = − F F x F ( )( ) ( )( )f g x g f x=o o F ก F [Entrance 1 , 2542]
  • 116. 116 116. ก F ( ) 1 x f x x = − 2 ( ) 1g x x= − F g fA D= o gB D= F A B′∪ F F [Entrance 1 , 2542] ก. { 1,1}R − − . ( 1, )− ∞ . 1 ( ,1) (1, ) 2 ∪ ∞ . ( 1,1) (1, )− ∪ ∞
  • 117. 117 117. F 1 ( ) sin , ( ) cosf x x g x x− = = ( ) ( )( )h x f g x= o F F (1) h ( ( )) ( ) 2 g h x g x π − = (2) h ˈ ˆ กF F F F ˈ [Entrance 1 , 2542] ก. (1) ก (2) ก . (1) ก (2) . (1) (2) ก . (1) (2)
  • 118. 118 118. F {1,2,3}A = {3,4}B = F { | : |S f f A B A B f= ∪ → × ˈ ˆ กF F } F ก S F ก F F [Entrance 1 , 2542] ก. 120 . 240 . 360 . 480
  • 119. 119 119. ก F 7 ( ) ( ), 3 3 24 x f x xπ + = − < ≤ ( 6) ( )f x f x+ = ก x R∈ F 1 ( ) sin , [0, ]g x A x A π− = + ∈ 2 cos 5 A = F F 1 ( )(5)g f− o F ก F F [Entrance 1 , 2542] ก. 1 10 . 1 5 . 1 5 − . 1 10 −
  • 120. 120 120. ก F 2 {( , ) | 9 }r x y y x= = − 2 1 {( , ) | } 9 s x y y x = = − F F 1. 1r s D R −∩ = ∅ 2. 1 (0, )r s R D −∩ = ∞ F F ก [Entrance 1 , 2543] ก. (1) (2) ก . (1) ก (2) . (1) (2) ก . (1) (2)
  • 121. 121 121. F , :f g R R→ ก ( ) 1 x f x x = + ( )g x = F กก F F ก x ( F (1.01) 2, ( 6) 6, ( 7.99) 7g g g= − = − − = − ˈ F ) F ( ) ( )( )F x f g x= o ( ) ( )( )G x g f x= o F F F ˈ [Entrance 1 , 2543] ก. ( , )FD = −∞ ∞ . (0,1)FR = . ( ) 1; 0G x x= > . ( ) 0; 0G x x= <
  • 122. 122 122. F {1,2,3,4,5}A = { , }B a b= F { | :S f f A B= → ˈ ˆ กF } ก S F ก F F [Entrance 1 , 2543] ก. 22 . 25 . 27 . 30
  • 123. 123 123. F 2 ( ) ( 1)f x x= + ( ) 1g x x= + F f g g fD R′∩o o F F [Entrance 1 , 2543] ก. [0,1) . [0,2) . [1, )∞ . [2, )∞
  • 124. 124 124. F ( )( ) 3 14f g x x= −o 1 ( 2) 2 3 f x x+ = − F 1 ( )( )g f x− o F ก F F [Entrance 1 , 2543] ก. 3 4x − . 3 6x − . 3 8x − . 3 10x −
  • 125. 125 125. F ,A B F ˈ ก {1,2,3,4,5,6}A = {{1},{1,2},{1,2,3},{1,2,3,4}}B = { : | ( )F f B A f x x= → ∉ ก }x B∈ ก F F ก F F [Entrance 1 , 2544] ก. 24 . 60 . 100 . 120
  • 126. 126 126. ก F 2 1 {( , ) | } 1 r x y y x = = − F F (1) ( , 1) (1, )rD = −∞ − ∪ ∞ (2) 1 1 {( , ) | } x r x y y x − + = = ± F F ก [Entrance 1 , 2544] ก. (1) (2) . (1) (2) . (1) (2) . (1) (2)
  • 127. 127 127. ก F ( ) , 1 1 x f x x x = ≠ − + ( ) , 1 1 x g x x x = ≠ − F F [Entrance 1 , 2544] ก. 1 ( ) ( ) , 1f g x x x− = ≠o . 1 1 ( )( ) , 1f g x x x− − = ≠ −o . 1 ( )( ) , 1 1 2 x f g x x x − = ≠ + o . 1 ( )( ) , 1 1 2 x g f x x x − = ≠ − + o
  • 128. 128 128. ก F ( ) 2sin 2 x f x = 2 ( ) 1g x x= − ( )f g g fR D R∩ − o F F [Entrance 1 , 2544] ก. ( 1,1)− . ( 2,2)− . [2, 3] [1,2]− ∪ . [ 2, 1] ( 3,2]− − ∪
  • 129. 129 129. ก F {1,2,3,4}A = { : | ( ) 1S f A A f x x= → ≤ + ก }x A∈ ˆ กF ˈ ก S F ก F [Entrance 1 , 2544]
  • 130. 130 130. F 3 2 2 2 {( , ) | 2 3 0}r x y R R x xy x y= ∈ × + − + = F F 1 r− F ก F [Entrance 1 , 2544] ก. 1 1 ( , ] 3 2 − . 1 1 [ , ) 2 3 − . 1 1 ( , ) ( , ) 3 3 −∞ − ∪ − ∞ . ( , )−∞ ∞
  • 131. 131 131. ก F 2 ( ) 4f x x= − 2 1 ( ) 9 g x x = − F F ˈ ก g fR o [Entrance 1 , 2544] ก. 1 2 . 1 4 . 1 8 . 1 14
  • 132. 132 132. ก F ( 1) 3 2 ( )f x x f x+ = + + (3 1) 2 8g x x− = + F (0) 1f = F 1 ( (2))g f− [Entrance 1 , 2544] ก. 1− . 0 . 1 . 2
  • 133. 133 133. ก F 1 {( , ) | 1}x y r x y e + = ≤ 2 {( , ) | ln( 3 5) 0}r x y x y= − + ≥ ˈ ก 1 2r r∩ F ก x F ก F F [Entrance 1 , 2545] ก. 1.5 F . 2 F . 2.5 F . 3 F
  • 134. 134 134. ก F I ˈ F ,f g ˈ ˆ กF ก I I ก ( ) 2f x x= ( ) 2 x g x x   =   g f f−o ˈ ˆ กF ก I I F F [Entrance 1 , 2545] ก. F . F F F . F F F . F F F x ˈ F x ˈ
  • 135. 135 135. ก F ( ) 5 ( )f x g x= − ( ) 5 2g x x= + F [ , ]f gD a b=o F 4( )a b+ F ก F F [Entrance 1 , 2545] ก. 15 . 20 . 25 . 30
  • 136. 136 136. ก F ,f g ˈ ˆ กF F 1 ( ( )) 2f g x x− = + ก x R∈ F F (1) (2 ) (2( 1))f x g x= − ก x R∈ (2) 1 ( ( ))g f x− ˈ ˆ กF R F F ก [Entrance 1 , 2545] ก. (1) ก (2) ก . (1) ก (2) . (1) (2) ก . (1) (2)
  • 137. 137 137. ก F 21 ( ) 36 4 3 f x x= − F { | [ 3,3]A x x= ∈ − ( ) {0,1, 2,3}}f x ∈ F ก A F ก F [Entrance 1 , 2545]
  • 138. 138 138. ก F k ˈ F {( , ) | }r x y R R x k x y k y+ + = ∈ × + = + F F (1) F 1k = F r ˈ ˆ กF (2) F 1k = − F r ˈ ˆ กF F F ก [Entrance 1 , 2545] ก. (1) ก (2) ก . (1) ก (2) . (1) (2) ก . (1) (2)
  • 139. 139 139. ก F 2 2 , 1 ( ) ( 1) , 1 2 1 , 2 x f x x x x x ≤ −  = − − < <  + ≥ F k ˈ F F ( ) 5g x > F ( )( )g f ko F F ก F F [Entrance 1 , 2545] ก. 5 . 6 . 7 . 8
  • 140. 140 140. ก F ( ) , 0f x x x= ≥ ,0 1 ( ) 1, 1 x x g x x x ≤ < =  + ≥ F F (1) 1 g f − o ˈ ˆ กF fR (2) 1 f g− o ˈ ˆ กF gR F F ก [Entrance 1 , 2545] ก. (1) ก (2) ก . (1) ก (2) . (1) (2) ก . (1) (2)
  • 141. 141 141. ก F {1,2}, {1,2,3,...,10}A B= = 1:1 { | :f f A B→ x A∈ ( ) }f x x= ก F ก F F [Entrance 1 , 2546] ก. 16 . 17 . 18 . 19
  • 142. 142 142. ก F 2 ( ) ( 1)f x x= − − ก 1x ≤ ( ) 1g x x= − ก 1x ≤ F F (1) 1 ( ) 1f x x− = − ก 0x ≤ (2) 1 1 1 3 ( )( ) 4 4 g f− − − =o F F ก [Entrance 1 , 2546] ก. (1) (2) ก . (1) ก (2) . (1) (2) ก . (1) (2)
  • 143. 143 143. ก F f g ˈ ˆ กF ( ) 0f x < ก x F 2 ( )( ) 2[ ( )] 2 ( ) 4g f x f x f x= + −o 1 1 ( ) 3 x g x− + = F F F (1) g fo ˈ ˆ กF (2) (100) (100) 300f g+ = F F ก [Entrance 1 , 2546] ก. (1) (2) ก . (1) ก (2) . (1) (2) ก . (1) (2)
  • 144. 144 144. ก F {( , ) | 0 ,0 5r x y x y= ≤ ≤ ≤ 2 2 2 6 8}x y x y− − + ≤ F F (1) [0,3]rD = (2) F 0 c< (3, )c r∈ F 5c = F F ก [Entrance 1 , 2546] ก. (1) (2) ก . (1) ก (2) . (1) (2) ก . (1) (2)
  • 145. 145 145. ก F 0a > 2 ( ) , 0f x ax x= ≥ 3 ( )g x x= F 1 ( )(4) 2f g− =o F 1 1 (64) (64) f g − − F F ก F [Entrance 1 , 2546]
  • 146. 146 146. ก F ,f g ˈ ˆ กF [0, )fD = ∞ 1 2 ( ) , 0f x x x− = ≥ 1 2 ( ) ( ( )) 1 , 0g x f x x− = + ≥ F 0a > ( ) ( ) 19f a g a+ = F 1 1 ( ) ( )f a g a− + F ก F F [Entrance 1 , 2546] ก. 273 . 274 . 513 . 514
  • 147. 147 147. ก F 0a > 3 (10) ( ) 1 x a g x x − =  − F ( 2.5, )gR = − ∞ F F F (1) 1 ( 1) log 2g a− − = (2) 1 3 log(4 ) ( ) 1 x g x x −  =  − F F ก [Entrance 1 , 2546] ก. (1) ก (2) ก . (1) ก (2) . (1) (2) ก . (1) (2) 1x < 1x ≥ 0x < 0x ≥
  • 148. 148 148. F 2 4 {( , ) | } 2 x r x y y x − = = − F F (1) 4 rR∈ (2) 1 [0,4) (4, )r R − = ∪ ∞ F F ก [Entrance 1 , 2546] ก. (1) ก (2) ก . (1) ก (2) . (1) (2) ก . (1) (2)
  • 149. 149 149. ก F ( ) 10x f x = 2 ( ) 100 3g x x= − F ก ˈ ก g fR o F F [Entrance 1 , 2547]
  • 150. 150 150. ก F {( , ) |r x y x y= ≥ 2 2 2 3}y x x= + − F F (1) [1, )rD = ∞ (2) ( , )rR = −∞ ∞ F F ก [Entrance 1 , 2547] ก. (1) ก (2) ก . (1) ก (2) . (1) (2) ก . (1) (2)
  • 151. 151 151. ก F 2 ( )f x ax b= + ( 1) 6g x x c− = + , ,a b c ˈ F F ( ) ( )f x g x= 1,2x = ( )(1) 8f g+ = F 1 ( )(16)f g− o F F ก F F [Entrance 1 , 2547] ก. 31 9 . 61 9 . 10 . 20
  • 152. 152 152. ก F 1 ( ) 1 1 x f x x − =  + − F F (1) 1 ( ) ( )f x f x− ≠ ก (1, )x ∈ ∞ (2) 0a ≥ 2 F 1 ( )f a a− = F F ก [Entrance 1 , 2547] ก. (1) ก (2) ก . (1) ก (2) . (1) (2) ก . (1) (2) [0,1]x ∈ (1, )x ∈ ∞
  • 153. 153 153. ก F 2 ( ) 1 x f x x = − ( 1,1)x ∈ − F F (1) 2 1 1 1 4 ( ) 2 0 x f x x − − − +  =    (2) f ˈ ˆ กF F ( 1,1)− F F ˈ [Entrance 1 , 2547] ก. (1) ก (2) ก . (1) ก (2) . (1) (2) ก . (1) (2) 0x ≠ 0x =
  • 154. 154 154. F {1,2,3,4}A = {1,2,3,4,5}B = F f ˈ ˆ กF ก A B (1) 2f = (2)f m= m ˈ F ˆ กF f ก F F ก F [Entrance 1 , 2548] 1. 75 2. 150 3. 425 4. 500
  • 155. 155 155. ก F 5 ( ) 1h x x= − 5 ( )g x x= F f ˈ ˆ กF ( ( )) ( )f g x h x= F (5)f F F [A-net ก F ʾ 2549]
  • 156. 156 156. ก F {1,2,{1,2},(1,2)}A = (1,2) F ( )B A A A= × − ก B F ก F [A-net ก F ʾ 2549]
  • 157. 157 157. ก F 2 1 1 4 ( ) 2 0 x f x x − + +  =    F 1 2 ( ) 3 f a− = F a F F ก F [A-net ก F ʾ 2549] 0x ≠ 0x =
  • 158. 158 158. ก F {1,2,3,4,5}A = { , }B a b= ˆ กF ก A B ก ˆ กF [A-net ก F ʾ 2549]
  • 159. 159 159. ก F 2 2 {( , ) | 16}r x y R R x y= ∈ × + = 2 2 {( , ) | 3 2 0}s x y R R xy x y= ∈ × + + + = F F ˈ r sD D− [A-net ʾ 2550] 1. [ 4, 1]− − 2. [ 3,0]− 3. [ 2,1]− 4. [ 1,2]−
  • 160. 160 160. ก F ,f g ˈ ˆ กF 3 ( ) ( 1) 3f x x= − + 1 2 ( ) 1, 0g x x x− = − ≥ F 1 ( ) 0g f a− =o F 2 a F F [A-net ʾ 2550] 1. [10,40] 2. [40,70] 3. [70,100] 4. [100,130]
  • 161. 161 161. ก F ( ) 3 5f x x= + 2 ( ) 3 3 1h x x x= + − F g ˈ ˆ กF F f g h=o F (5)g F F [A-net ʾ 2550]
  • 162. 162 162. ก F f g ˈ ˆ กF 2 ( ) 1f x x= + ( )g x ax= (0,1)a ∈ F k ˈ F ( )( ) ( )( )f g k g f k=o o F 1 2 1 ( )( )f g k − o F F ก F F [A-net ʾ 2551] 1. 1 2. 2 3. 3 4. 4
  • 163. 163 163. ก F f g ˈ ˆ กF 3 1 ; 0 ( ) 1 ; 0 x x f x x x − < =  − ≥ 2 ( ) 4 13g x x x= + + F a ˈ ก ( ) 25g a = 1 1 ( 2 ) (13 )f a f a− − − + F F ก F F [A-net ʾ 2551] 1. 0 2. 2 3. 4 4. 6
  • 164. 164 164. ก F {( , ) | ( 2)( 1) 1}r x y x y= − − = 2 2 {( , ) | ( 1) }s x y xy y= = + F F F ˈ r sR R∩ [A-net ʾ 2551] 1. ( , 1)−∞ − 2. 1 ( 2, ) 2 − − 3. 1 ( , 2) 2 4. (1, )∞
  • 165. 165 165. ก F 2 2 {( , ) | 1}A x y x y= + > 2 2 {( , ) | 4 9 1}B x y x y= + < 2 2 {( , ) | 1}C x y y x= − > F F [A-net ʾ 2551] 1. A B A− = 2. B C B− = 3. ( )B A C∩ ∪ = ∅ 4. ( )A B C∩ ∪ = ∅
  • 166. 166 166. ก F ( ) 3 1f x x= − 2 1 2 , 0 ( ) , 0 x x g x x x −  ≥ =  − < F 1 ( (2) ( 8))f g g− + − F ก F F [PAT1 ʾ 2552] 1. 1 2 3 − 2. 1 2 3 + 3. 1 2 3 − − 4. 1 2 3 + −
  • 167. 167 167. ก F [ 2, 1] [1,2]A = − − ∪ {( , ) | 1}r x y A A x y= ∈ × − = − F , 0a b > ,r ra D b R∈ ∈ F a b+ F ก F F [PAT1 ʾ 2552] 1. 2.5 2. 3 3. 3.5 4. 4
  • 168. 168 168. ก F 2 ( ) 1f x x= − ( , 1] [0,1]x ∈ −∞ − ∪ ( ) 2x g x = ( ,0]x ∈ −∞ F F ก [PAT1 ʾ 2552] 1. g fR D⊂ 2. f gR D⊂ 3. f ˈ ˆ กF 1 1− 4. g F ˈ ˆ กF 1 1−
  • 169. 169 169. ก F {1,2,3,4}A = { , , }B a b c= { | :S f f A B= → ˈ ˆ กF } ก F ก F F [PAT1 ʾ 2552] 1. 12 2. 24 3. 36 4. 39
  • 170. 170 170. ก F ( ) 5f x x= − 2 ( )g x x= F a ˈ ( ) ( )g f a f g a=o o F ( )( )fg a F F ก F F [PAT1 ก ก ʾ 2552] 1. 25− 2. 18− 3. 18 4. 25
  • 171. 171 171. ก F 2 ( ) 1f x x x= + + ,a b ˈ F 0b ≠ F ( ) ( )f a b f a b+ = − F 2 a F F F [PAT1 ก ก ʾ 2552] 1. (0,0.5) 2. (0.5,1) 3. (1,1.5) 4. (1.5,2)
  • 172. 172 172. ก F {( , ) | [ 1,1]r x y x= ∈ − 2 }y x= F F ก. 1 {( , ) | [0,1]r x y x− = ∈ }y x= ± . ก r ก 1 r− ก 2 F F ก [PAT1 ก ก ʾ 2552] 1. ก. ก . ก 2. ก. ก . 3. ก. . ก 4. ก. .
  • 173. 173 173. ก F n ˈ F :{1,2,..., } {1,2,..., }f n n→ ˈ ˆ กF 1 1− F ก (1) (2) ... ( ) (1) (2)... ( )f f f n f f f n+ + + = F F ก ˈ F (1) ( )f f n− F ก F F [PAT1 ก ก ʾ 2552] 1. 2 2. 5 3. 8 4. 11
  • 174. 174 174. ก F [ 2,2]S = − 2 2 {( , ) | 2 2}r x y S S x y= ∈ × + = F F F F ˈ r rD R− [PAT1 ʾ 2552] 1. ( 1.4, 1.3)− − 2. ( 1.3, 1.2)− − 3. (1.2,1.4) 4. (1.4,1.5)
  • 175. 175 175. F 1 ( )f x x = ( ) 2 ( )g x f x= F 1 (3) (3)g f f g− +o o F F [PAT1 ʾ 2552]
  • 176. 176 176. F 3 ( )f x x= ( ) 1 x g x x = + F 1 1 ( )(2)f g− − + F F [PAT1 ʾ 2552]
  • 177. 177 177. ก F 1 1 ( ) 1 x y f x x + = = − x ˈ F F ก 1 2 1 3 2( ), ( ),...y f y y f y= = 1( )n ny f y −= 2,3,4,...n = 2553 2010y y+ ก F F [PAT1 ʾ 2553] 1. 1 1 x x − + 2. 2 1 1 x x + − 3. 2 1 2 x x + 4. 2 1 2 1 x x x + − −
  • 178. 178 178. F f g ˈ ˆ กF ก 2 1 ( ) 4 x f x x − = − ( ) ( ) 1g x f x x= − − F F ก. (2, )gD = ∞ . F 0x > F ( ) 0g x = 1 F F F F ก F [PAT1 ʾ 2553] 1. ก. ก . ก 2. ก. ก F . 3. ก. F . ก 4. ก. .
  • 179. 179 179. F A ˈ ก F F ก F F ก 10 B ˈ ก F F ก F F ก 10 C ˈ ˆ กF :f A B→ ˈ ˆ กF F . . . a ( )f a F F ก 1 ก F a A∈ ก C F ก F [PAT1 ʾ 2553]
  • 180. 180 180. ก R ˈ F 2 ( ) 1f x x= − ( ) 2 1g x x= + ก x F ( )(1)f g⊗ F ก F [PAT1 ʾ 2553] F :f R R→ :g R R→ ˈ ˆ กF ก ก ก ⊗ f g ( )( ) ( ( )) ( ( ))f g x f g x g f x⊗ = − ก x
  • 181. 181 181. F f g ˈ ˆ กF F ˈ 3 ( ) 6 x f x x + = + 1 6 ( )( ) 1 x f g x x − − = − o F ( ) 2g a = F a F F F [PAT1 ก ก ʾ 2553] 1. [ 1,1)− 2. [1,3) 3. [3,5) 4. [5,7)
  • 182. 182 182. F R F 1 2 3 4, , , ,f f f f g h ˈ ˆ กF ก R R 1 ( ) 1f x x= + 2 ( ) 1f x x= − 2 3 ( ) 4f x x= + 2 4 ( ) 4f x x= − 1 2( )( ) ( )( ) 2f g x f h x+ =o o 3 4( )( ) ( )( ) 4f g x f h x x+ =o o F ( )(1)g ho F ก F [PAT1 ก ก ʾ 2553]
  • 183. 183 183. F R F F F ˈ ˆ กF [PAT1 ʾ 2553] 1. F 2 1 {( , ) | 4r x y R R x y= ∈ × = − 0}xy ≥ 2. F 2 2 2 {( , ) | 4r x y R R x y= ∈ × + = 0}xy > 3. F 3 {( , ) | 1}r x y R R x y= ∈ × − = 4. F 4 {( , ) | 1}r x y R R x y= ∈ × − =
  • 184. 184 184. F I F :f I I→ ˈ ˆ กF ( 1) ( ) 3 2f n f n n+ = + + n I∈ F ( 100) 15,000f − = F (0)f F ก F [PAT1 ʾ 2553]
  • 185. 185 185. F R F {( , ) | 3 5}f x y R R y x= ∈ × = − {( , ) | 2 1}g x y R R y x= ∈ × = + F a R∈ 1 1 ( )( ) 4g f a− =o F ( )(2 )f g ao F ก F [PAT1 ʾ 2553]
  • 186. 186 186. F R F :f R R→ ˈ ˆ กF F ก 1 1 x f x x −  =  +  ก 1x ≠ − F F ก F [PAT1 ʾ 2554] 1. ( )( )f f x x= − ก x 2. 1 ( ) 1 x f x f x +  − =   −  ก 1x ≠ 3. 1 ( )f f x x   =    ก 0x ≠ 4. ( )2 2 ( )f x f x− − = − − ก x
  • 187. 187 187. ก F I F 4 3 2 5 2 2 75 ( ) 270 x x a x f x x b x − + − = + − ,a b I∈ F {( , ) | (3) 0}A x y I I f= ∈ × = 2 2 {( , ) | 2 3}B x y I I a ab b= ∈ × − + < F ก A B∩ F ก F [PAT1 ʾ 2554]
  • 188. 188 188. ก F R F :f R R→ ˈ ˆ กF 2 ( ) (1 ) 2xf x f x x x+ − = − x R∈ F F 54 25 ( ( )) x x f x = +∑ F ก F [PAT1 ʾ 2554]
  • 189. 189 189. ก F I F :f I I→ ˈ ˆ กF (1) (1) 1f = (2) (2 ) 4 ( ) 6f x f x= + (3) ( 2) ( ) 12 12f x f x x+ = + + F F (7) (16)f f+ F ก F [PAT1 ʾ 2554]
  • 190. 190 190. ก F 1 {( , ) | } 5 3 r x y R R y x = ∈ × = − − R r [PAT1 ʾ 2554] 1. { | 2 8}x R x∈ − < < 2. { | 6 3}x R x∈ − < < 3. { | 0 3}x R x∈ < < 4. { | 8}x R x∈ <
  • 191. 191 191. F R F :f R R→ ˈ ˆ กF F ก 0 , 1 ( ) 1 , 1 1 x f x x x x = −  = − ≠ − + F { | ( )( ) cot 75 }A x R f f x= ∈ = o o F F F ˈ F [PAT1 ʾ 2554] 1. ( 3, 2)A ∩ − − 2. ( 4, 3)A ∩ − − 3. (2,3)A ∩ 4. (3, 4)A ∩
  • 192. 192 192. ก F ( ) 1 3f x x= − S ˈ x F ก ก ( )( )f f x x=o ก ก S [PAT1 ʾ 2554]
  • 193. 193 193. ก F :f N N→ F ก ก ( ) ( ) ( ) 4f x y f x f y xy+ = + + (1) 4f = F (20)f [PAT1 ʾ 2554]
  • 194. 194 194. ก R F {( , ) | 1 0}r x y R R x y y x= ∈ × + − − = F F ก. r ˈ F { | 1}rD x R x= ∈ ≠ − . F 1 r− ˈ ˆ กF F F ก F [PAT1 ʾ 2555] 1. ก. ก . ก 2. ก. ก F . 3. ก. F . ก 4. ก. .
  • 195. 195 195. ก F R ก 2 ( ) 3g x x x= + + ก x F :f R R→ ˈ ˆ กF F ก 2 2 ( )( ) 2( )(1 ) 6 10 17 2( )( ) ( )(1 ) 6 2 13 f g x f g x x x f g x f g x x x + − = − + + − = − + o o o o F (383)f F ก F [PAT1 ʾ 2555]
  • 196. 196 196. ก F R F I F f g ˈ ˆ กF ก R R 3 2 ( 5) 2f x x x x+ = − + ก x 1 (2 1) 4g x x− − = + ก x F F (ก) ( )(0) 169f g− < − ( ) { | ( )( ) 5 0}x I g f x∈ + =o ˈ F F F ก F [PAT1 ʾ 2555] 1. (ก) ก ( ) ก 2. (ก) ก F ( ) 3. (ก) F ( ) ก 4. (ก) ( )
  • 197. 197 197. ก F 2 2 2 8 {( , ) | } 1 x r x y I I y x − = ∈ × = + I ก r rD R− F ก F F [PAT1 ʾ 2555] 1. 2 2. 4 3. 5 4. 7
  • 198. 198 198. ก F {1, 2,3,..., }A k= k ˈ ก F {( , ) | 0 7}B a b A A b a= ∈ × < − ≤ F k F ก F F ก B F ก 714 [PAT1 ʾ 2555]
  • 199. 199 199. F R ก F {( , ) | 12 1 3}r x y R R x y= ∈ × − + + = F F (ก) ( 1,8)r rD R∩ ⊂ − ( ) { | 8 12}r rD R x R x− = ∈ < ≤ F F ก [PAT1 ʾ 2556] 1. (ก) ก ( ) ก 2. (ก) ก F ( ) 3. (ก) F ( ) ก 4. (ก) ( )
  • 200. 200 200. F A B ˈ ก A B F ก 4 5 ก A B∪ F ก 7 F F (ก) F A B∩ 4 F ( ) F ก A B− B A− 64 F F F ก F [PAT1 ʾ 2556] 1. (ก) ก ( ) ก 2. (ก) ก F ( ) 3. (ก) F ( ) ก 4. (ก) ( )
  • 201. 201 201. F R F F (ก) F 2 2 {( , ) | 4, 0}x y R R x y xy∈ × + = > ˈ ˆ กF ( ) F 2 2, 0 ( ) , 0 x x f x x x − ≤ =  > 2 (3 1) 2 3g x x x− = + x R∈ F F 1 ( )(25) 14g f − =o F F ก F [PAT1 ʾ 2556] 1. (ก) ก ( ) ก 2. (ก) ก F ( ) 3. (ก) F ( ) ก 4. (ก) ( )
  • 202. 202 202. ก F 1 1 , 2 ( ) 1 1 1 , 2 2 x x f x x x  < =   + ≥  F 1 ( ( ( ))) 3 f f f − ก F F [PAT1 ʾ 2556] 1. 6− 2. 6 3. 3− 4. 3
  • 203. 203 203. , {0,1, 2,3,...}x y ∈ ก F ( , )F x y ˈ ก (1, 1) , 0, 0 ( , ) 1 , 0 ( ( 1, ), 1), 0, 0 F y x y F x y x y F F x y y x y − = ≠  + =  − − ≠ ≠ F (1, 2) (3,1)F F+ F ก F [PAT1 ʾ 2556]
  • 204. 204 204. ก F R F :f R R→ ˈ ˆ กF F ก ( )( ) 4 (4 ( ))f f x x f x= + −o ก x F F (4)f F ก F [PAT1 ʾ 2556]
  • 205. 205 205. F R F f ˈ ˆ กF F ˈ 2 2 4 4 ( ) 1 x x f x x + + = + 1x ≠ F F ˆ กF f ˈ F F [PAT1 ʾ 2557] 1. 2 { | 6 7 0}x R x x∈ + − ≥ 2. 2 { | 3 10 0}x R x x∈ + − ≥ 3. 2 { | 12 0}x R x x∈ + − ≥ 4. 2 { | 6 16 0}x R x x∈ − − ≥
  • 206. 206 206. F I F {( , ) | 21 4 }A x y I I xy y x= ∈ × − = − F ก A F ก F F [PAT1 ʾ 2557] 1. 5 2. 4 3. 3 4. 2
  • 207. 207 207. ก F 3 2 ( ) 3f x x ax bx= + + + 2 ( ) 3g x bx x a= + + a b ˈ F (3) 0f = 2x − ( )f x F ก 5 F F ( )(1)g fo F ก F [PAT1 ʾ 2557]
  • 208. 208 208. F R F :f R R→ :g R R→ ˈ ˆ กF F ( )( ) 4 5f g x x= −o 1 ( ) 2 1g x x− = + ก x F F (ก) 1 4( )(2 1) ( ) 1f g x g x− + = +o ( ) 1 1 1 ( ( ))( ) ( ) 1g f g x f x− − − = +o o F F ก F [PAT1 ʾ 2557] 1. (ก) ก ( ) ก 2. (ก) ก F ( ) 3. (ก) F ( ) ก 4. (ก) ( )
  • 209. 209 209. ก F R F :f R R→ :g R R→ ˈ ˆ กF F ก ( ( )) 2 15f x g y x y+ = + + ก x y F F (ก) ( )( ) 2 15g f x x= +o ก x y ( ) (25 (57)) 75g f+ = F F ก F [PAT1 ʾ 2557] 1. (ก) ก ( ) ก 2. (ก) ก F ( ) 3. (ก) F ( ) ก 4. (ก) ( )
  • 210. 210 210. F R a ˈ 0a ≠ F :f R R→ :g R R→ ˈ ˆ กF ( ) 2f x ax= + 3 ( ) 3 ( 1)g x x x x= − − ก x F 1 1 ( )(1) 1f g− − =o F ( )( )g f ao F ก F [PAT1 ʾ 2557]
  • 211. 211 211. F R F :f R R→ ˈ ˆ กF F :g R R→ ˈ ˆ กF ( ) 2 ( ) 5g x f x= + ก x F a ˈ 1 1 ( )(1 ) ( )(1 )f g a g f a− − + = +o o F F 2 a F ก F [PAT1 ก ʾ 2557]
  • 212. 212 212. F R F S′ F S F 2 2 {( , ) | 1 4}f x y R R y x y= ∈ × + − = 4 {( , ) | 1 }g x y R R y x= ∈ × = − F A ˈ F f B ˈ g F F (ก) A B′⊂ ( ) ( ) ( )A B B A− ∩ − = ∅ F F ก F [PAT1 ʾ 2558] 1. (ก) ก ( ) ก 2. (ก) ก F ( ) 3. (ก) F ( ) ก 4. (ก) ( )
  • 213. 213 213. ก F R F ,f g h ˈ ˆ กF ก R R 1 ( ) 2 5,( )( ) 4f x x f g x x− = − =o ( )( )g h xo F 1x − F F ก 21− F c ˈ ก F F ก 3 2 ( ) 3 2h x c x x− = − − F F (ก) ( )( ) 23f h c =o ( ) ( )( ) 35h g c+ = F F ก F [PAT1 ʾ 2558] 1. (ก) ก ( ) ก 2. (ก) ก F ( ) 3. (ก) F ( ) ก 4. (ก) ( )
  • 214. 214 214. F R F F F F ˈ ˆ กF [PAT1 ʾ 2558] 1. F 1 {( , ) | 1 0}r x y R R xy= ∈ × + = 2. F 2 {( , ) | tan }r x y R R y x= ∈ × = 3. F 2 2 3 {( , ) | 1}r x y R R x y= ∈ × = + 4. F 4 {( , ) | 2 }r x y R R y x= ∈ × = − 5. F 2 5 {( , ) | } 1 y r x y R R x y = ∈ × = +
  • 215. 215 215. F f g ˈ ˆ กF 9 , 0 ( ) 7 , 4 x x f x x x  − ≤ =  − > 2 , 1 ( ) 4 , 1 x x g x x x + < =  − ≥ F F (ก) F 0x ≤ F ( )( ) 9 4g f x x= − −o ( ) F 4 6x< ≤ F ( )( ) 3g f x x= −o ( ) F 6x > F ( )( ) 9g f x x= −o F F ก F [PAT1 ʾ 2558] 1. F (ก) F ( ) ก F F ( ) 2. F (ก) F ( ) ก F F ( ) 3. F ( ) F ( ) ก F F (ก) 4. F (ก) F ( ) F ( ) ก F 5. F (ก) F ( ) F ( ) F
  • 216. 216 216. ก F I R F 2 2 {( , ) | } 4 2 1 x r x y R R y x x + = ∈ × = − − + 2 { | }rA x x I D= ∈ ∩ F ก ก A F ก F F [PAT1 ʾ 2558] 1. 6 2. 10 3. 19 4. 29 5. 30