SlideShare ist ein Scribd-Unternehmen logo
1 von 29
ELECTRÓNICA 
Componentes Electrónicos 
El diodo
Componentes electrónicos: El diodo 
• CONTENIDOS: 
• Introducción: representación de componentes eléctricos en 
diagrama V-I 
• Características eléctricas de un diodo semiconductor 
 Característica real 
 Linealización de la característica de un diodo 
• Interpretación de los datos de un catálogo 
• Diodos especiales 
• Asociación de diodos 
• Aplicaciones
Introducción: Representación del componentes eléctricos en diagrama V-I 
+ 
- 
V 
I I 
V 
Corto 
(R = 0) 
+ 
- 
V 
I I 
V 
Abierto 
(R = ∞) 
+ 
- 
V 
I I 
V 
Batería 
+ 
- 
I I 
V 
Resistencia 
(R) 
V 
I 
+ 
- 
V 
V 
Fuente 
Corriente 
I
CARACTERÍSTICA DEL DIODO 
Idealmente, permite corriente directa (se comporta como un cable) y bloquea o 
no permite la corriente inversa (se comporta como un cable roto) 
+ 
- 
V 
I 
P 
N 
I 
V 
¡¡ PRESENTA UN 
COMPORTAMIENTO 
NO LINEAL !! 
ANÉCDOTA 
Un símil hidráulico podría ser una válvula anti-retorno, permite pasar el agua 
(corriente) en un único sentido.
Funcionamiento de una válvula anti-retorno 
h1 
h2 
h1 - h2 
Caudal
Introducción a la física de estado sólido: semiconductores 
Semiconductor extrínseco: TIPO N 
Impurezas grupo V 
300ºK 
Electrones libres Átomos de impurezas ionizados 
Los portadores de carga en un semiconductor tipo N 
son electrones libres 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+
Introducción a la física de estado sólido: semiconductores 
Semiconductor extrínseco: TIPO P 
300ºK 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
Huecos libres Átomos de impurezas ionizados 
Los portadores de carga en un semiconductor tipo P 
son los huecos. 
Actúan como portadores de carga positiva.
La unión P-N 
La unión P-N en equilibrio 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- + 
+ 
+ 
+ 
+ 
+ 
+ + + 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
Semiconductor tipo P Semiconductor tipo N
La unión P-N 
La unión P-N en equilibrio 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
- 
- + 
- 
- 
+ 
+ 
+ + 
Semiconductor tipo P Semiconductor tipo N 
- + 
Zona de transición 
Al unir un semiconductor tipo P con uno de tipo N aparece una zona de 
carga espacial denominada ‘zona de transición’. Que actúa como una 
barrera para el paso de los portadores mayoritarios de cada zona.
La unión P-N 
La unión P-N polarizada inversamente 
P N 
- 
- 
- 
- 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
- 
- 
- 
- + 
+ 
+ + 
+ 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
+ 
La zona de transición se hace más grande. Con polarización inversa no hay 
circulación de corriente.
La unión P-N 
La unión P-N polarizada en directa 
P N 
- 
- 
- 
- 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
- 
- 
- 
- + 
+ 
+ + 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
+ 
+ 
La zona de transición se hace más pequeña. La corriente comienza a 
circular a partir de un cierto umbral de tensión directa.
La unión P-N 
La unión P-N polarizada en directa 
P N 
- 
- 
- 
- 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
- 
- 
- 
- + 
+ 
+ + 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
+ 
Concentración de huecos Concentración de electrones 
+ 
La recombinación electrón-hueco hace que la concentración de electrones 
en la zona P disminuya al alejarse de la unión.
La unión P-N 
Conclusiones: 
Aplicando tensión inversa no hay conducción de corriente 
Al aplicar tensión directa en la unión es posible la circulación 
de corriente eléctrica 
P N 
DIODO SEMICONDUCTOR
ánodo cátodo 
p n 
A K 
Símbolo 
i [mA] 
Ge Si 
IS = Corriente Saturación Inversa 
K = Cte. Boltzman 
VD = Tensión diodo 
q = carga del electrón 
T = temperatura (ºK) 
ID = Corriente diodo 
Silicio 
Germanio 
DIODO REAL 
 
  
 
 
  
V q 
    
 
 
K T 1 
D S 
D 
I I e 
V [Volt.] 
0 
1 
-0.25 0.25 
0.5
Ge: mejor en conducción 
Si: mejor en bloqueo 
Ge Si 
V [Volt.] 
0 
i [mA] 
1 
-0.25 0.25 
0.5 
30 
i [mA] 
Ge 
Si 
-4 0 1 
V [Volt.] 
DIODO REAL (Distintas escalas) 
-0.5 0 
-0.8 
i [A] 
V [Volt.] 
-0.5 0 
-10 
i [pA] 
V [Volt.] 
Ge 
Si
DIODO: DISTINTAS APROXIMACIONES 
I 
Solo tensión 
de codo 
Ge = 0.3 
Si = 0.6 
V 
I 
V 
Tensión de codo y 
Resistencia directa 
I 
V 
Ideal 
I 
Curva real 
(simuladores, 
análisis gráfico) 
V
DIODO: LIMITACIONES 
I 
Corriente máxima 
Límite térmico, 
sección del conductor 
V 
Tensión inversa 
máxima 
Ruptura de la Unión 
por avalancha 
600 V/6000 A 
200 V /60 A 
1000 V /1 A
DIODO: Parámetros facilitados por fabricantes 
VR = 1000V Tensión inversa máxima 
IOMAX (AV)= 1A Corriente directa máxima 
VF = 1V Caída de Tensión directa 
IR = 50 nA Corriente inversa 
VR = 100V Tensión inversa máxima 
IOMAX (AV)= 150mA Corriente directa máxima 
VF = 1V Caída de Tensión directa 
IR = 25 nA Corriente inversa 
Vd 
id 
iS 
VR 
IOmax 
NOTA: 
Se sugiere con un buscador obtener las 
hojas de características de un diodo (p.e. 
1N4007). Normalmente aparecerán varios 
fabricantes para el mismo componente.
DIODO: Parámetros facilitados por fabricantes 
Tiempo de recuperación inversa 
+ 
iS 
UE R 
UE 
Baja frecuencia 
iS 
Alta frecuencia 
trr = tiempo de recuperación inversa 
A alta frecuencia se aprecia un intervalo en el cual el diodo conduce 
corriente inversa.
DIODOS ESPECIALES 
Diodo Zener (Zener diode) La ruptura no es destructiva. 
(Ruptura Zener). 
En la zona Zener se comporta 
como una fuente de tensión 
(Tensión Zener). 
Necesitamos, un límite de 
corriente inversa. 
Podemos añadir al modelo lineal 
la resistencia Zener. 
Aplicaciones en pequeñas 
fuentes de tensión y referencias. 
I 
V 
Tensión 
Zener 
(VZ) 
Límite máximo 
Normalmente, límite 
de potencia máxima
DIODOS ESPECIALES 
Diodo LED (LED diode) Diodo emisor de Luz = Light Emitter Diode 
El semiconductor es un compuesto III-V (p.e. Ga As). Con la unión PN 
polarizada directamente emiten fotones (luz) de una cierta longitud de 
onda. (p.e. Luz roja) 
A K
DIODOS ESPECIALES 
Fotodiodos (Photodiode) 
i 
0 
V 
iopt 
Los diodos basados en compuestos III-V, presentan 
una corriente de fugas proporcional a la luz incidente 
(siendo sensibles a una determinada longitud de onda). 
Estos fotodiodos se usan en el tercer cuadrante. 
Siendo su aplicaciones principales: 
Sensores de luz (fotómetros) 
Comunicaciones 
COMENTARIO 
Los diodos normales presentan variaciones en la corriente 
de fugas proporcionales a la Temperatura y pueden ser 
usados como sensores térmicos 
i 
0 
V 
T1 
T2>T1 
El modelo puede ser una fuente de 
corriente dependiente de la luz o de 
la temperatura según el caso 
I = f(T)
DIODOS ESPECIALES 
Células solares (Solar Cell) 
i 
V V CA 
iCC 
Cuando incide luz en una unión PN, la 
característica del diodo se desplaza hacia el 4º 
cuadrante. 
En este caso, el dispositivo puede usarse como 
generador. 
Paneles de células 
solares 
Zona 
uso
DIODOS ESPECIALES 
Diodo Schottky (Schottky diode) 
•Unión Metal-semiconductor N. Produce el llamado efecto schottky. 
•La zona N debe estar poco dopada. 
•Dispositivos muy rápidos (capacidades asociadas muy bajas). 
•Corriente de fugas significativamente mayor. 
•Menores tensiones de ruptura. 
•Caídas directas mas bajas (tensión de codo  0.2 V). 
•Aplicaciones en Electrónica Digital y en Electrónica de Potencia 
El efecto Schottky fue predicho teóricamente en 
1938 por Walter H. Schottky
ASOCIACIÓN DE DIODOS 
DISPLAY 
Diodo de alta tensión 
(Diodos en serie) 
Puente rectificador 
+ 
- 
+ 
- 
Monofásico 
Trifásico
APLICACIONES DE DIODOS 
Detectores reflexión de objeto 
Detectores de barrera
APLICACIONES DE DIODOS 
Sensores de luz: Fotómetros 
Sensor de lluvia en vehículos 
Detectores de humo 
Turbidímetros 
Sensor de Color 
LED 
Fotodetector 
LED azul 
LED verde 
Objetivo 
LED rojo Fotodiodo 
LED
COMENTARIOS SOBRE CIRCUITOS 
Los diodos (y el resto de dispositivos electrónicos) son dispositivos 
no lineales. 
¡Cuidado, no se puede aplicar el principio de superposición! 
VE 
VS 
VE 
VMAX 
R 
VMAX 
EJEMPLO TÍPICO: 
RECTIFICADOR 
+ 
- 
ID 
VD 
VE 
t 
t 
VS 
t
TH 
R 
TH 
V 
Característica 
del diodo 
Característica del 
circuito lineal 
(RECTA DE CARGA) 
TH V 
PUNTO DE 
FUNCIONAMIENTO 
I 
V 
RECTA DE CARGA Y PUNTO DE FUNCIONAMIENTO 
+ 
- 
ID 
RTH 
CIRCUITO 
LINEAL 
V VD TH 
ID 
VD

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

Electronica analisis a pequeña señal fet
Electronica  analisis a pequeña señal fetElectronica  analisis a pequeña señal fet
Electronica analisis a pequeña señal fet
 
Circuitos rectificadores
Circuitos rectificadoresCircuitos rectificadores
Circuitos rectificadores
 
Circuito Integrado 555
Circuito Integrado 555Circuito Integrado 555
Circuito Integrado 555
 
Convertidores
ConvertidoresConvertidores
Convertidores
 
Red l, pi y t
Red l, pi y tRed l, pi y t
Red l, pi y t
 
Demodulador am (completo)
Demodulador am (completo)Demodulador am (completo)
Demodulador am (completo)
 
Cicuitos Rectificadores
Cicuitos RectificadoresCicuitos Rectificadores
Cicuitos Rectificadores
 
2.7. Recortadores con Diodos
2.7. Recortadores con Diodos2.7. Recortadores con Diodos
2.7. Recortadores con Diodos
 
1.3.1 polarizacion del jfet
1.3.1 polarizacion del jfet1.3.1 polarizacion del jfet
1.3.1 polarizacion del jfet
 
íNdice de modulación
íNdice de modulacióníNdice de modulación
íNdice de modulación
 
Convertidor boost
Convertidor boostConvertidor boost
Convertidor boost
 
Transistores
TransistoresTransistores
Transistores
 
La curva característica del diodo
La curva característica del diodoLa curva característica del diodo
La curva característica del diodo
 
Tema 4 -_ejercicios_resueltos
Tema 4 -_ejercicios_resueltosTema 4 -_ejercicios_resueltos
Tema 4 -_ejercicios_resueltos
 
Diodo, tipos y su curva característica
Diodo, tipos y su curva característicaDiodo, tipos y su curva característica
Diodo, tipos y su curva característica
 
2.2. Configuraciones de Diodos en Serie en DC
2.2. Configuraciones de Diodos en Serie en DC2.2. Configuraciones de Diodos en Serie en DC
2.2. Configuraciones de Diodos en Serie en DC
 
Circuitos recortadores
Circuitos recortadoresCircuitos recortadores
Circuitos recortadores
 
Carta de Smith y Ejemplos
Carta de Smith y EjemplosCarta de Smith y Ejemplos
Carta de Smith y Ejemplos
 
Transistores mosfet configuracion y polarizacion
Transistores mosfet configuracion y polarizacionTransistores mosfet configuracion y polarizacion
Transistores mosfet configuracion y polarizacion
 
Teoría Básica de Diodos
Teoría Básica de DiodosTeoría Básica de Diodos
Teoría Básica de Diodos
 

Andere mochten auch

Diodos semiconductores
Diodos semiconductoresDiodos semiconductores
Diodos semiconductoresTensor
 
Ficha tecnica diodo
Ficha tecnica diodoFicha tecnica diodo
Ficha tecnica diodoErikacp
 
conductores, semiconductores y aislantes
 conductores, semiconductores y aislantes conductores, semiconductores y aislantes
conductores, semiconductores y aislantesLuisf Muñoz
 

Andere mochten auch (7)

Ficha tecnica Diodo
Ficha tecnica DiodoFicha tecnica Diodo
Ficha tecnica Diodo
 
Diodo
DiodoDiodo
Diodo
 
Diodos semiconductores
Diodos semiconductoresDiodos semiconductores
Diodos semiconductores
 
Ficha tecnica diodo
Ficha tecnica diodoFicha tecnica diodo
Ficha tecnica diodo
 
Users técnico pc - 001
Users   técnico pc - 001Users   técnico pc - 001
Users técnico pc - 001
 
Fotodiodos
FotodiodosFotodiodos
Fotodiodos
 
conductores, semiconductores y aislantes
 conductores, semiconductores y aislantes conductores, semiconductores y aislantes
conductores, semiconductores y aislantes
 

Ähnlich wie Diodos semiconductores (20)

EL DIODO
EL DIODOEL DIODO
EL DIODO
 
Diodos
DiodosDiodos
Diodos
 
Diodos led
Diodos ledDiodos led
Diodos led
 
2 diodos
2 diodos2 diodos
2 diodos
 
Diodo
DiodoDiodo
Diodo
 
Diodo
DiodoDiodo
Diodo
 
Semiconductores ppt
Semiconductores pptSemiconductores ppt
Semiconductores ppt
 
Proyecto1- laboratorio de electronica 1
Proyecto1- laboratorio de electronica 1Proyecto1- laboratorio de electronica 1
Proyecto1- laboratorio de electronica 1
 
DIODOS DE UNION
DIODOS DE UNIONDIODOS DE UNION
DIODOS DE UNION
 
Practica 5 analogica
Practica 5 analogicaPractica 5 analogica
Practica 5 analogica
 
electronica analogik
electronica analogikelectronica analogik
electronica analogik
 
ElectróNica AnalogíCa 2
ElectróNica AnalogíCa 2ElectróNica AnalogíCa 2
ElectróNica AnalogíCa 2
 
2 diodos semiconductores_de_potencia
2 diodos semiconductores_de_potencia2 diodos semiconductores_de_potencia
2 diodos semiconductores_de_potencia
 
Teoría de Diodos
Teoría de DiodosTeoría de Diodos
Teoría de Diodos
 
Dioodos aplicaciones
Dioodos aplicacionesDioodos aplicaciones
Dioodos aplicaciones
 
Diodo
DiodoDiodo
Diodo
 
T2 diodo
T2 diodoT2 diodo
T2 diodo
 
Electronica 4ºEso
Electronica 4ºEsoElectronica 4ºEso
Electronica 4ºEso
 
ficha tecnica del diodo
ficha tecnica del diodoficha tecnica del diodo
ficha tecnica del diodo
 
Clase2 modelos-del-diodo
Clase2 modelos-del-diodoClase2 modelos-del-diodo
Clase2 modelos-del-diodo
 

Kürzlich hochgeladen

R1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en minaR1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en minaarkananubis
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxaylincamaho
 
Mapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMidwarHenryLOZAFLORE
 
Segunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxSegunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxMariaBurgos55
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxAlexander López
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxAlexander López
 
definicion segun autores de matemáticas educativa
definicion segun autores de matemáticas  educativadefinicion segun autores de matemáticas  educativa
definicion segun autores de matemáticas educativaAdrianaMartnez618894
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx241523733
 
El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.241514949
 
Arenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptxArenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptxJOSEFERNANDOARENASCA
 
Hernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptxHernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptxJOSEMANUELHERNANDEZH11
 
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptTEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptJavierHerrera662252
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafiosFundación YOD YOD
 
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfPARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfSergioMendoza354770
 
El uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELEl uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELmaryfer27m
 
El uso de las tic en la vida ,lo importante que son
El uso de las tic en la vida ,lo importante  que sonEl uso de las tic en la vida ,lo importante  que son
El uso de las tic en la vida ,lo importante que son241514984
 
Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..RobertoGumucio2
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA241531640
 
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxGoogle-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxAlexander López
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx241522327
 

Kürzlich hochgeladen (20)

R1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en minaR1600G CAT Variables de cargadores en mina
R1600G CAT Variables de cargadores en mina
 
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptxMedidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
Medidas de formas, coeficiente de asimetría y coeficiente de curtosis.pptx
 
Mapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptxMapa-conceptual-del-Origen-del-Universo-3.pptx
Mapa-conceptual-del-Origen-del-Universo-3.pptx
 
Segunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptxSegunda ley de la termodinámica TERMODINAMICA.pptx
Segunda ley de la termodinámica TERMODINAMICA.pptx
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
 
definicion segun autores de matemáticas educativa
definicion segun autores de matemáticas  educativadefinicion segun autores de matemáticas  educativa
definicion segun autores de matemáticas educativa
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx
 
El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.El uso de las TIC's en la vida cotidiana.
El uso de las TIC's en la vida cotidiana.
 
Arenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptxArenas Camacho-Practica tarea Sesión 12.pptx
Arenas Camacho-Practica tarea Sesión 12.pptx
 
Hernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptxHernandez_Hernandez_Practica web de la sesion 11.pptx
Hernandez_Hernandez_Practica web de la sesion 11.pptx
 
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.pptTEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
TEMA 2 PROTOCOLO DE EXTRACCION VEHICULAR.ppt
 
La era de la educación digital y sus desafios
La era de la educación digital y sus desafiosLa era de la educación digital y sus desafios
La era de la educación digital y sus desafios
 
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdfPARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
PARTES DE UN OSCILOSCOPIO ANALOGICO .pdf
 
El uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFELEl uso delas tic en la vida cotidiana MFEL
El uso delas tic en la vida cotidiana MFEL
 
El uso de las tic en la vida ,lo importante que son
El uso de las tic en la vida ,lo importante  que sonEl uso de las tic en la vida ,lo importante  que son
El uso de las tic en la vida ,lo importante que son
 
Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..Plan Sarmiento - Netbook del GCBA 2019..
Plan Sarmiento - Netbook del GCBA 2019..
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
 
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptxGoogle-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
Google-Meet-como-herramienta-para-realizar-reuniones-virtuales.pptx
 
FloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptxFloresMorales_Montserrath_M1S3AI6 (1).pptx
FloresMorales_Montserrath_M1S3AI6 (1).pptx
 

Diodos semiconductores

  • 2. Componentes electrónicos: El diodo • CONTENIDOS: • Introducción: representación de componentes eléctricos en diagrama V-I • Características eléctricas de un diodo semiconductor  Característica real  Linealización de la característica de un diodo • Interpretación de los datos de un catálogo • Diodos especiales • Asociación de diodos • Aplicaciones
  • 3. Introducción: Representación del componentes eléctricos en diagrama V-I + - V I I V Corto (R = 0) + - V I I V Abierto (R = ∞) + - V I I V Batería + - I I V Resistencia (R) V I + - V V Fuente Corriente I
  • 4. CARACTERÍSTICA DEL DIODO Idealmente, permite corriente directa (se comporta como un cable) y bloquea o no permite la corriente inversa (se comporta como un cable roto) + - V I P N I V ¡¡ PRESENTA UN COMPORTAMIENTO NO LINEAL !! ANÉCDOTA Un símil hidráulico podría ser una válvula anti-retorno, permite pasar el agua (corriente) en un único sentido.
  • 5. Funcionamiento de una válvula anti-retorno h1 h2 h1 - h2 Caudal
  • 6. Introducción a la física de estado sólido: semiconductores Semiconductor extrínseco: TIPO N Impurezas grupo V 300ºK Electrones libres Átomos de impurezas ionizados Los portadores de carga en un semiconductor tipo N son electrones libres + + + + + + + + + + + + + + + +
  • 7. Introducción a la física de estado sólido: semiconductores Semiconductor extrínseco: TIPO P 300ºK - - - - - - - - - - - - - - - - Huecos libres Átomos de impurezas ionizados Los portadores de carga en un semiconductor tipo P son los huecos. Actúan como portadores de carga positiva.
  • 8. La unión P-N La unión P-N en equilibrio - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + Semiconductor tipo P Semiconductor tipo N
  • 9. La unión P-N La unión P-N en equilibrio - - - - - - - - - - - - + + + + + + + + + + + - - + - - + + + + Semiconductor tipo P Semiconductor tipo N - + Zona de transición Al unir un semiconductor tipo P con uno de tipo N aparece una zona de carga espacial denominada ‘zona de transición’. Que actúa como una barrera para el paso de los portadores mayoritarios de cada zona.
  • 10. La unión P-N La unión P-N polarizada inversamente P N - - - - - - - - + + + + + + + - - - - + + + + + - - - - + + + + + La zona de transición se hace más grande. Con polarización inversa no hay circulación de corriente.
  • 11. La unión P-N La unión P-N polarizada en directa P N - - - - - - - - + + + + + + + - - - - + + + + - - - - + + + + + + La zona de transición se hace más pequeña. La corriente comienza a circular a partir de un cierto umbral de tensión directa.
  • 12. La unión P-N La unión P-N polarizada en directa P N - - - - - - - - + + + + + + + - - - - + + + + - - - - + + + + + Concentración de huecos Concentración de electrones + La recombinación electrón-hueco hace que la concentración de electrones en la zona P disminuya al alejarse de la unión.
  • 13. La unión P-N Conclusiones: Aplicando tensión inversa no hay conducción de corriente Al aplicar tensión directa en la unión es posible la circulación de corriente eléctrica P N DIODO SEMICONDUCTOR
  • 14. ánodo cátodo p n A K Símbolo i [mA] Ge Si IS = Corriente Saturación Inversa K = Cte. Boltzman VD = Tensión diodo q = carga del electrón T = temperatura (ºK) ID = Corriente diodo Silicio Germanio DIODO REAL        V q       K T 1 D S D I I e V [Volt.] 0 1 -0.25 0.25 0.5
  • 15. Ge: mejor en conducción Si: mejor en bloqueo Ge Si V [Volt.] 0 i [mA] 1 -0.25 0.25 0.5 30 i [mA] Ge Si -4 0 1 V [Volt.] DIODO REAL (Distintas escalas) -0.5 0 -0.8 i [A] V [Volt.] -0.5 0 -10 i [pA] V [Volt.] Ge Si
  • 16. DIODO: DISTINTAS APROXIMACIONES I Solo tensión de codo Ge = 0.3 Si = 0.6 V I V Tensión de codo y Resistencia directa I V Ideal I Curva real (simuladores, análisis gráfico) V
  • 17. DIODO: LIMITACIONES I Corriente máxima Límite térmico, sección del conductor V Tensión inversa máxima Ruptura de la Unión por avalancha 600 V/6000 A 200 V /60 A 1000 V /1 A
  • 18. DIODO: Parámetros facilitados por fabricantes VR = 1000V Tensión inversa máxima IOMAX (AV)= 1A Corriente directa máxima VF = 1V Caída de Tensión directa IR = 50 nA Corriente inversa VR = 100V Tensión inversa máxima IOMAX (AV)= 150mA Corriente directa máxima VF = 1V Caída de Tensión directa IR = 25 nA Corriente inversa Vd id iS VR IOmax NOTA: Se sugiere con un buscador obtener las hojas de características de un diodo (p.e. 1N4007). Normalmente aparecerán varios fabricantes para el mismo componente.
  • 19. DIODO: Parámetros facilitados por fabricantes Tiempo de recuperación inversa + iS UE R UE Baja frecuencia iS Alta frecuencia trr = tiempo de recuperación inversa A alta frecuencia se aprecia un intervalo en el cual el diodo conduce corriente inversa.
  • 20. DIODOS ESPECIALES Diodo Zener (Zener diode) La ruptura no es destructiva. (Ruptura Zener). En la zona Zener se comporta como una fuente de tensión (Tensión Zener). Necesitamos, un límite de corriente inversa. Podemos añadir al modelo lineal la resistencia Zener. Aplicaciones en pequeñas fuentes de tensión y referencias. I V Tensión Zener (VZ) Límite máximo Normalmente, límite de potencia máxima
  • 21. DIODOS ESPECIALES Diodo LED (LED diode) Diodo emisor de Luz = Light Emitter Diode El semiconductor es un compuesto III-V (p.e. Ga As). Con la unión PN polarizada directamente emiten fotones (luz) de una cierta longitud de onda. (p.e. Luz roja) A K
  • 22. DIODOS ESPECIALES Fotodiodos (Photodiode) i 0 V iopt Los diodos basados en compuestos III-V, presentan una corriente de fugas proporcional a la luz incidente (siendo sensibles a una determinada longitud de onda). Estos fotodiodos se usan en el tercer cuadrante. Siendo su aplicaciones principales: Sensores de luz (fotómetros) Comunicaciones COMENTARIO Los diodos normales presentan variaciones en la corriente de fugas proporcionales a la Temperatura y pueden ser usados como sensores térmicos i 0 V T1 T2>T1 El modelo puede ser una fuente de corriente dependiente de la luz o de la temperatura según el caso I = f(T)
  • 23. DIODOS ESPECIALES Células solares (Solar Cell) i V V CA iCC Cuando incide luz en una unión PN, la característica del diodo se desplaza hacia el 4º cuadrante. En este caso, el dispositivo puede usarse como generador. Paneles de células solares Zona uso
  • 24. DIODOS ESPECIALES Diodo Schottky (Schottky diode) •Unión Metal-semiconductor N. Produce el llamado efecto schottky. •La zona N debe estar poco dopada. •Dispositivos muy rápidos (capacidades asociadas muy bajas). •Corriente de fugas significativamente mayor. •Menores tensiones de ruptura. •Caídas directas mas bajas (tensión de codo  0.2 V). •Aplicaciones en Electrónica Digital y en Electrónica de Potencia El efecto Schottky fue predicho teóricamente en 1938 por Walter H. Schottky
  • 25. ASOCIACIÓN DE DIODOS DISPLAY Diodo de alta tensión (Diodos en serie) Puente rectificador + - + - Monofásico Trifásico
  • 26. APLICACIONES DE DIODOS Detectores reflexión de objeto Detectores de barrera
  • 27. APLICACIONES DE DIODOS Sensores de luz: Fotómetros Sensor de lluvia en vehículos Detectores de humo Turbidímetros Sensor de Color LED Fotodetector LED azul LED verde Objetivo LED rojo Fotodiodo LED
  • 28. COMENTARIOS SOBRE CIRCUITOS Los diodos (y el resto de dispositivos electrónicos) son dispositivos no lineales. ¡Cuidado, no se puede aplicar el principio de superposición! VE VS VE VMAX R VMAX EJEMPLO TÍPICO: RECTIFICADOR + - ID VD VE t t VS t
  • 29. TH R TH V Característica del diodo Característica del circuito lineal (RECTA DE CARGA) TH V PUNTO DE FUNCIONAMIENTO I V RECTA DE CARGA Y PUNTO DE FUNCIONAMIENTO + - ID RTH CIRCUITO LINEAL V VD TH ID VD