SlideShare ist ein Scribd-Unternehmen logo
1 von 29
Transmisión del Impulso Nervioso Sinapsis
Introducción El Sistema Nervioso está formado por Tejido Nervioso. Las Funciones del tejido nervioso son recibir estímulos procedentes del ambiente interno y externo, para analizarlos e integrarlos y producir respuestas adecuadas y coordinadas en varios órganos efectores
Tejido Nervioso Las Neuronas poseen las propiedades de irritabilidad y conductividad, lo que permite la aparición del impulso nervioso que puede transmitirse a lo largo de distancias importantes.  Al recibir las neuronas el estímulo de distintas formas de energía (lumínica, térmica, mecánica etc.) mediante los receptores sensoriales, estos estímulos se transmiten bajo la forma de impulsos nerviosos hacia los centros del Sistema Nervioso Central, donde actúan sobre otras células nerviosas. Desde el Sistema Nervioso Central se enviarán nuevos impulsos nerviosos en forma de respuestas hacia los órganos efectores (músculos ó glándulas) utilizando las vías del Sistema Nervioso Periférico.
Tipos de Neuronas Multipolares :  corresponde a la mayoría de las neuronas, presenta  numerosas dendritas  que se proyectan del cuerpo celular. Se ve en neuronas intermedias, de integración y motoras. Bipolares :  sólo tienen una dendrita, que sale del cuerpo celular, opuesto al origen del axón. Poco frecuentes, actúan como receptores de los sentidos del olfato, la vista y el equilibrio. Unipolares o Pseudounipolares : son la mayoría de las neuronas sensitivas, tienen una sola dendrita que nace junto al axón de un tallo común del cuerpo celular; este tallo está formado por  la fusión de la primera parte de la dendrita y el axón de una neurona bipolar, fusión que se produce durante el período embrionario. Las neuronas se clasifican también según la función en Sensitivas (transmiten impulsos producidos por los receptores de los sentidos), Motoras o Efectoras (transmiten los impulsos que llevan las respuestas hacia los órganos encargados de realizarlas) y de Asociación (unen entre si neuronas de diferentes tipos).
Soma o Cuerpo Celular El Cuerpo Celular o Soma presenta un retículo endoplásmico rugoso muy desarrollado (forma la sustancia de Nissl) abundantes ribosomas libres, cisternas del complejo de Golgi , abundantes mitocondrias. El Núcleo suele ser central, redondo, de aspecto vacío. Posee Neurofibrillas (neurofilamentos), Microtúbulos y filamentos de Actina que forman parte del citoesqueleto y proporcionan sostén mecánico a la neurona, sobre todo en el axón.
Soma o Cuerpo Celular Las proteínas sólo son sintetizadas en el Soma o cuerpo de la célula y la porción proximal de las dendritas y son transportadas desde aquí hacia el axón. En el cuerpo celular, además,  se generan los potenciales de acción,  gracias a la integración de estímulos que llegan (aferentes). A continuación los potenciales de acción viajan a lo largo del axón para influir en otras neuronas u órganos efectores. En general, los cuerpos celulares de todas las neuronas se encuentran en el sistema nervioso central, salvo los de las neuronas aferentes sensitivas y los de las neuronas efectoras  del sistema  autónomo que, en ambos casos, se encuentran formando grupos llamados ganglios en localizaciones periféricas. Soma de una neurona teñido, al Microscopio Electrónico
Soma Neuronal al Microscopio Electrónico
Dendritas y Axones La mayoría de las neuronas poseen gran cantidad de Dendritas, salvo excepciones. Ellas aumentan la superficie de contacto lo que les permite recibir estímulos de otras neuronas . Estas pueden estar recubiertas por pequeñas salientes llamadas espinas, que aumentan aun más la superficie receptiva  en las sinapsis. Respecto al Axón, nunca sale más de un axón de cada neurona. A lo largo de su recorrido puede emitir ramas colaterales que viajan en forma casi perpendicular al tronco principal. Cerca de la zona terminal el axón se divide en un ramillete de ramificaciones terminales  denominado telodendrón o telendrón que suele terminar en el botón sináptico. El citoplasma del axón es continuación del pericarion y contiene mitocondrias, retículo endoplásmico liso, microtúbulos y gran cantidad de microfilamentos. No posee sustancia  de Nissl A izquierda un manojo de axones entrecruzados.  A derecha una Neurona Piramidal Axón Dendritas Soma Neuronal
Axón o Fibra Nerviosa Los Axones de las neuronas son también llamadas Fibras Nerviosas. Existen fibras nerviosas mielinizadas y fibras nerviosas no mielinizadas. Las Fibras Mielinizadas son las que presentan Mielina, una cobertura externa al axón conformada por colesterol, proteínas, fosfolípidos, esfingomielina y construida por la membrana celular de la célula de Schwann si se trata de una fibra del SNP, o por un oligodendrocito si se trata de una fibra del SNC. La mielina no rodea el axón en toda su longitud. No encontramos la vaina ni en el cono de origen ni en los extremos terminales . Así mismo esa vaina no es continua sino interrumpida.  Cada interrupción recibe el nombre de Nodo o Nódulo de Ranvier. Los axones de pequeño diámetro están envueltas sólo por el citoplasma de las células de Schwann, por lo que se dice que esta fibras son no mielinizadas o amielinicas. Las células de Schwann les proporcionan sostén estructural y metabólico a los delicados axones.  La mielinización aumenta la velocidad de conducción del axón. En todas las fibras nerviosas, la velocidad de conducción del impulso nervioso es proporcional al diámetro de los axones y a la presencia de mielina. Las fibras de diámetro grande o mielinizadas presentan mayor velocidad de transmisión.
Corte Transversal de las Fibras Mielinizadas Vaina de Mielina Célula de Schwann Axón
Telodendron o Terminal Axónico El extremo terminal del axón recibe el nombre de Terminal Axónica, Botón Terminal o Telodendron. Las terminales del axón forman sinapsis con las dendritas o somas de otras neuronas.  Cuando un impulso nervioso llega al telodendron presináptico,  a partir de las vesículas sinápticas se liberan neurotransmisores en la hendidura sináptica. A continuación, los neurotransmisores se unen a proteínas receptoras específicas lo que provoca la generación de señales eléctricas o químicas en la célula postsináptica.
Neurona Motora en Esquema y al Microscopio Ramificaciones terminales
Transmisión del Impulso Nervioso. Sinapsis La Sinapsis es una Unión intercelular altamente especializada que establece comunicación entre las neuronas o entre neuronas y células glandulares o musculares .  Existen varios tipos de Sinapsis según diversos criterios de clasificación: Fisiológico:  Según el tipo de  respuesta: Sinapsis exitatoria (tipo I) y Sinapsis inhibitoria (tipo II) Bioquímico : Según la naturaleza del neurotransmisor (adrenérgicas, colinérgicas, serotoninérgicas, gabaérgicas, etc.) Morfológico  :respecto a las zonas de la neurona en donde se produce la sinapsis. Típicamente, las sinapsis son conformadas por un axón (zona presináptica) y una dendrita (postsináptica). En ese caso se habla de una sinapsis Axodendrítica. Sin embargo  en el SNC existen muchas combinaciones : Axosomática:  la sinapsis se establece entre un axón de una neurona y el cuerpo neuronal de otra. Axoaxónica:  la sinapsis ocurre entre un axón de una neurona y el axón de otra neurona Dendrodendrítica:  la sinapsis ocurre entre las dendritas de dos neuronas. Tipos de Sinapsis 1) axosomáticas y unión neuromuscular, 2) axodendrítica, 3) axoaxónica, 4) dendrodendrítica
Sinapsis Las funciones del sistema nervioso dependen de una capacidad de la neurona, la excitabilidad, que supone un cambio de la permeabilidad de la membrana plasmática como respuesta a los estímulos, de manera que se despolariza y la onda de despolarización, llamada Potencial de Acción, se propaga por la membrana plasmática. Luego sigue la Repolarización, mediante lo cual la membrana restablece su potencial de reposo. La Despolarización de una neurona induce la liberación de sustancias químicas transmisoras, llamadas Neurotransmisores, que inician un potencial de acción en una neurona vecina o en  una célula blanco, (célula muscular, epitelio glandular) mediante la sinapsis.
Irritabilidad Neuronal Se han formulado diversas teorías de la irritabilidad, pero la más ampliamente aceptada se basa en la existencia de potenciales eléctricos a través de las membranas plasmáticas, los denominados Potenciales de Membrana. Los iones sodio (Na+) y potasio (K+) no se distribuyen por igual dentro y fuera de las células. En las células nerviosas, la concentración interna de K+ es unas 20 veces mayor que la concentración externa; y la concentración de Na+ fuera de la célula es unas 10 veces mayor que dentro. Este estado es esencial para la conducción de los impulsos nerviosos.  La distribución desigual de los iones de sodio y potasio es mantenida por la Bomba de Sodio Potasio que evacua activamente el Na+ del interior de la célula y lo sustituye por K+. Esos iones están en permanente movimiento circulando a través de los canales de Na+ y K+. El funcionamiento de la bomba requiere energía en forma de ATP. Si el intercambio Na+ y K+ fuera el único proceso implicado en la distribución iónica, no se originaría un potencial de membrana, puesto que el intercambio en cantidades iguales de los iones Na+ y K+ no alteraría la proporción, a través de la membrana, de las cargas positivas y negativas. Debe intervenir otro factor. Arriba de estas líneas, representación de la Bomba de Na+/K+. A la Izquierda los canales de Na+ y K+
Potencial de Reposo Este factor es la presencia de una mayor cantidad de proteína en el interior de la célula que fuera de ella. La mayoría de las proteínas tienen un número excesivo de grupos cargados negativamente, y son las proteínas existentes en el interior de la célula las principalmente responsables de la compensación de las cargas positivas de los iones de potasio. Las moléculas de estas proteínas son de gran tamaño y no pueden atravesar la membrana celular. Constituyen, por tanto, cargas inmóviles o «fijadas».  Fuera de la célula, en cambio, las cargas positivas de los iones Na+ son principalmente compensadas por los iones cloruro (Cl-) Los iones cloruro son de pequeño tamaño y difunden a través de la membrana celular. Como la cantidad de CI- dentro de la célula es reducida, estos tienden a difundir al interior de aquélla para «igualar» sus concentraciones en ambos lados de la membrana celular, pero, al realizarlo, alteran el equilibrio de cargas eléctricas: recuérdese que las proteínas cargadas negativamente deben permanecer dentro de la célula.  La cara interna de la membrana se hace así negativo respecto al exterior, resultando el potencial de membrana. En las células nerviosas, el Potencial de Membrana mide generalmente unos -70 mV. En otras palabras, si asignamos arbitrariamente el valor de cero al potencial fuera de la célula, entonces el potencial interno es -70 mV. Es el denominado Potencial de Reposo, puesto que existe en una neurona inactiva o en reposo.
Potencial de Acción Un Impulso Nervioso es iniciado por la  despolarización parcial  de una pequeña región de la membrana celular; desaparece en una determinada proporción la diferencia de cargas eléctricas, y el potencial de membrana se aproxima a cero.  La despolarización ocurre por la recepción de un impulso procedente de otra célula nerviosa . En la región despolarizada de la membrana ocurren toda una serie de cambios rápidos. 1.  El estímulo inicial , provoca la Despolarización parcial de la membrana. El potencial se aproxima a cero. 2. Si el estímulo es lo suficientemente intenso, se alcanza un potencial umbral en el que  aumenta de modo abrupto la permeabilidad de la membrana al Na+, que penetra en la célula a lo largo de su gradiente de concentración . Esto origina la inversión local inmediata en la polarización de la membrana y el denominado Potencial de Acción. El exterior es entonces negativo respecto del interior del axón. 3.  El restablecimiento resulta de un segundo cambio en la permeabilidad de la membrana. El K+ sale precipitadamente y se restablece el Potencial de Reposo.  A veces abandona la célula un exceso de K+ con producción de una hiperpolarización pasajera; su interior es aún más negativo que de ordinario. Durante este período de restablecimiento la neurona no responde a ulteriores estímulos; se denomina a este fenómeno Periodo Refractario.
Potencial de Acción Un axón es capaz de conducir un impulso en ambas direcciones. Durante su funcionamiento normal, sin embargo, la mayoría de neuronas sólo conducen en una dirección, alejándose del cuerpo celular. Cuando una neurona es estimulada, conduce o no, según se alcance el Potencial Umbral, del que resulta un potencial de acción.  Todas las respuestas son iguales y no presentan una graduación de intensidades. Es el denominado Principio del Todo o Nada de la conducción nerviosa. Las velocidades de conducción son extremadamente rápidas, y miden 20 m/seg o más en los animales activos. ¡Algunos axones de mamífero poseen una velocidad de conducción de hasta 100 m/seg!
Potencial de Acción La función del sistema nervioso estriba en transmitir información desde una parte del cuerpo a otra, y lo realiza por la transferencia de energía eléctrica: el Impulso Nervioso.  Las condiciones para la génesis de tal impulso dependen de la existencia del Potencial de Reposo, en particular de la distribución desigual de cargas + y -, y de la distribución desigual de Na+ y K+ a ambos lados de la membrana celular.  El Potencial de Acción es el responsable de la propagación del impulso nervioso. Las diferencias instantáneas de cargas eléctricas determinan un flujo de cargas a lo largo de las superficies interna y externa de la membrana y provocan la despolarización de regiones adyacentes. Cuando se alcanzan en estas regiones vecinas los potenciales umbral, se producen movimientos rápidos de Na+ con la producción, en ellas también, de potenciales de acción. Estos, a su vez, estimulan áreas adyacentes inactivas, y así sucesivamente. Por consiguiente, el potencial de acción se mueve a lo largo de la fibra nerviosa como en una especie de reacción en cadena.
Bomba de Na+/K+ Aun cuando un solo impulso ejerce un efecto muy escaso sobre la distribución de iones a través de la membrana de una fibra nerviosa, muchas células nerviosas, especialmente en el cerebro, conducen de modo repetido; y algunas de ellas descargan impulsos con una frecuencia de varios centenares de veces por segundo. Después de algunos millares de impulsos, los gradientes de concentración del Na+ y K+ quedarían muy agotados si no existieran medios para reponerlos. La bomba de sodio/potasio existente en la membrana restablece los gradientes de estos iones después de una serie de impulsos, y mantiene así los gradientes necesarios para generar un impulso.  La bomba depende de un suministro continuo de ATP, y la supresión por venenos de las reacciones respiratorias generadoras de ATP pronto suspende el funcionamiento de una célula nerviosa. En el hombre y en muchos otros animales, el sistema nervioso es incapaz de obtener cantidades suficientes de ATP de la glucólisis anaerobia, y requiere un suministro continuo de oxígeno y azúcar de la sangre para satisfacer sus necesidades energéticas. La insuficiencia de uno u otro determina la pérdida del conocimiento o la muerte.
Bomba de Na+/ K+
Sinapsis Eléctrica y Sinapsis química Existen dos tipos de sinapsis, la de tipo Eléctrico y la de tipo Químico. Las de tipo eléctrico se realizan en los músculos y aparecieron primero en la evolución de los organismos. La Sinapsis eléctrica corresponde a las uniones Gap o Nexus, observables en los tejidos epiteliales y en el músculo estriado cardiaco. En ella el espacio sináptico es notoriamente inferior al encontrado en las sinapsis químicas.
Sinapsis Química Todas las sinapsis químicas constan de tres elementos, una zona presináptica, otra postsináptica y una hendidura de entre 20-50 nm que separa a ambas zonas y llena de proteínas que adhieren la membrana pre y postsináptica una a la otra. La zona presináptica está conformada por lo regular por un botón axónico (Telodendron). El botón contiene en su citoplasma docenas de pequeñas esferas llamadas Vesículas Sinápticas de 50 nm de diámetro. Estas vesículas están repletas de Neurotransmisores, es decir substancias químicas que actúan como mensajeros para comunicarse con otras neuronas a través de la hendidura sináptica. El botón también contiene otro tipo de vesículas, menos numerosas, más grandes (100 nm de diámetro) y llenas de péptidos en lugar de neurotransmisores. Son conocidas como Vesículas Claras.  Luego de atravesar la hendidura sináptica el neurotransmisor entra en contacto con la membrana postsináptica, la cual está cubierta por receptores que abren sus canales y permiten convertir la señal química intercelular en una señal intracelular que viaja a través de la membrana de la neurona y llega nuevamente a un axón donde el ciclo comienza de nuevo.  Los receptores sólo responden a un cierto neurotransmisor, de modo que funcionan como "cerraduras" químicas esperando por su llave.
Sinapsis Química - Resumen Las Sinapsis Químicas son el tipo de sinapsis mas abundante en el Tejido Nervioso y se compone de 3 sectores característicos: 1. Estructuras presinápticas (terminal axónico expandido con vesículas presinápticas que contienen a los neurotransmisores) 2. Hendidura Sináptica o Espacio Intesináptico (espacio de 30 nm aprox, que separa las membranas pre y postsinápticas) 3. Estructuras postsinápticas: condensaciones en la membrana plasmática de la célula postsináptica que corresponden a los receptores específicos para cada tipo de neurotransmisor. El mecanismo de conducción del impulso nervioso implica la liberación de un neurotransmisor por la neurona presináptica. Este difunde a través del espacio intercelular para inducir la excitación o inhibición de la otra neurona o célula efectora de la sinapsis.  La naturaleza química de los neurotransmisores y la morfología de la sinapsis son muy variables en las distintas partes del sistema nervioso, pero los principios de la transmisión sináptica y la estructura de la sinapsis es similar.
Sinapsis Excitatorias e Inhibitorias Algunos neurotransmisores provocan una hiperpolarización de la membrana postsináptica, mientras que otros determinan su despolarización parcial. Los primeros se denominan Sinapsis Inhibitorias, puesto que requieren un estímulo más intenso que el necesario para alcanzar el potencial umbral. Los segundos son las Sinapsis Excitatorias, ya que tienden a producir un potencial de acción. Si los neurotransmisores permanecieran en el espacio sináptico después de haber sido liberados, seguirían ejerciendo sus efectos potentes sobre la  membrana postsináptica y no serían posibles cambios rápidos en las respuestas del sistema nervioso. En cambio, ciertas enzimas liberadas en el espacio sináptico destruyen rápidamente los neurotransmisores.
Neurotransmisores Existen muchas moléculas que cumplen el rol de neurotransmisores; hasta la fecha se han descubierto mas de 50. Entre los neurotransmisores más importantes se encuentran el glutamato (Glu), el ácido gamma-aminobutírico (GABA), la Adrenalina y Noradrenalina, las endorfinas, la Serotonina, La Dopamina y la acetilcolina (Ach). Los neurotransmisores son sintetizados en el retículo endoplásmico rugoso (REG) del soma neuronal. La síntesis de los neurotransmisores se produce a partir de substancias conocidas como precursores. Casi todos los medicamentos hechos para alterar la química cerebral, como los antipsicóticos o los que inhiben los efectos del mal de Parkinson no son neurotransmisores sino precursores. Existen muchas sustancias que modifican la acción de estos neurotransmisores, pueden impedir que el neurotransmisor ejerza su efecto, uniéndose al receptor correspondiente e inactivándolo, o bien pueden aumentar su efecto, por ejemplo impidiendo que sea destruido o retirado. Estas sustancias modifican el funcionamiento del sistema nervioso de muchas maneras distintas. Algunas de ellas son fármacos que se administran para tratar alguna alteración del sistema nervioso, otras son drogas que se toman con el fin de experimentar sus efectos.  El transmisor químico dopamina se forma a partir de los precursores tirosina y L-dopa y es almacenada en vesículas de las terminales nerviosas. Cuando un impulso nervioso causa que las vesículas se vacíen los receptores para dopamina en la membrana de la célula receptora son influenciados de tal manera que el mensaje es llevado al interior de la célula.
Unión Neuromuscular o Placa Motora La Unión Neuromuscular o Placa Motora es la unión intercelular que conecta a las neuronas motoras con las células musculares efectoras. Una neurona motora puede inervar desde unas pocas a más de mil fibras musculares, dependiendo de la precisión del movimiento del músculo.
Unión Neuromuscular o Placa Motora Arriba. Placa Motora o unión neuromuscular entre una neurona motora y una fibra muscular esquelética.   La neurona motora constituye, junto con las fibras musculares que inerva, a la unidad motora. Una neurona motora típicamente tiene un sólo axón largo que se ramifica al llegar al músculo. Al final de cada rama, el axón emerge de la vaina de mielina y se inserta en un surco en la superficie de una fibra muscular, formando la placa o unión neuromuscular. Como ocurre con la mayoría de las sinapsis entre las neuronas, la señal pasa a través de la placa neuromuscular por medio de un neurotransmisor -en este caso la acetilcolina-. Sin embargo, a diferencia de la transmisión sináptica entre las neuronas, ésta es una relación directa y exacta que implica solamente excitación. La acetilcolina se combina con receptores, despolariza la membrana de la célula muscular e inicia un potencial de acción que activa la maquinaria contráctil
Unión Neuromuscular o Placa Motora Imagen Izquierda: Esquema y fotografia de una unión Neuromuscular. Imagen derecha: Microfotografia de una neurona motora (N) y su unión fcon la fibra muscular formando la placa motora (MJ)

Weitere ähnliche Inhalte

Was ist angesagt?

Sistema nervioso somatico
Sistema nervioso somaticoSistema nervioso somatico
Sistema nervioso somatico
Pepe Rodríguez
 
Sistema nervioso autonomo
Sistema nervioso autonomoSistema nervioso autonomo
Sistema nervioso autonomo
Jose Mouat
 

Was ist angesagt? (20)

Sistema nervioso somatico
Sistema nervioso somaticoSistema nervioso somatico
Sistema nervioso somatico
 
Estructura y funcionamiento neuronal
Estructura y funcionamiento neuronalEstructura y funcionamiento neuronal
Estructura y funcionamiento neuronal
 
El cerebelo-y-sus-conexiones- alejandra caceres
El cerebelo-y-sus-conexiones- alejandra caceres El cerebelo-y-sus-conexiones- alejandra caceres
El cerebelo-y-sus-conexiones- alejandra caceres
 
Via Olfatoria
Via OlfatoriaVia Olfatoria
Via Olfatoria
 
6. el cerebelo y sus conexiones
6. el cerebelo y sus conexiones6. el cerebelo y sus conexiones
6. el cerebelo y sus conexiones
 
Cerebelo
CerebeloCerebelo
Cerebelo
 
Organización del sistema nervioso
Organización del sistema nerviosoOrganización del sistema nervioso
Organización del sistema nervioso
 
importancia pares craneales
importancia pares cranealesimportancia pares craneales
importancia pares craneales
 
Vias sensitivas y motoras
Vias  sensitivas y motoras Vias  sensitivas y motoras
Vias sensitivas y motoras
 
Corteza cerebral
Corteza cerebralCorteza cerebral
Corteza cerebral
 
Percepcion
PercepcionPercepcion
Percepcion
 
Neurona y neuroglia
Neurona y neurogliaNeurona y neuroglia
Neurona y neuroglia
 
Tema 10 nervioso
Tema 10 nerviosoTema 10 nervioso
Tema 10 nervioso
 
EL OJO: Neurofisiología central de la visión
EL OJO:  Neurofisiología central de la visión EL OJO:  Neurofisiología central de la visión
EL OJO: Neurofisiología central de la visión
 
Embriologia-Sistema Nervioso
Embriologia-Sistema NerviosoEmbriologia-Sistema Nervioso
Embriologia-Sistema Nervioso
 
Sinapsis
SinapsisSinapsis
Sinapsis
 
Sistema nervioso autónomo
Sistema nervioso autónomoSistema nervioso autónomo
Sistema nervioso autónomo
 
Sistema nervioso autónomo
Sistema nervioso autónomo Sistema nervioso autónomo
Sistema nervioso autónomo
 
Sistema nervioso autonomo
Sistema nervioso autonomoSistema nervioso autonomo
Sistema nervioso autonomo
 
Taller 3 sinapsis
Taller 3 sinapsisTaller 3 sinapsis
Taller 3 sinapsis
 

Andere mochten auch

Barorreceptores y quimiorreceptores
Barorreceptores y quimiorreceptoresBarorreceptores y quimiorreceptores
Barorreceptores y quimiorreceptores
infomedla
 
Entropia y neguentropia
Entropia y neguentropiaEntropia y neguentropia
Entropia y neguentropia
Russel Gama
 
Sentido del gusto y olfato
Sentido del gusto y olfatoSentido del gusto y olfato
Sentido del gusto y olfato
Omar Rubalcava
 
Sinapsis y tipos de sinapsis
Sinapsis y tipos de sinapsisSinapsis y tipos de sinapsis
Sinapsis y tipos de sinapsis
Magditita
 
Lesiones del tallo encefálico
Lesiones del tallo encefálicoLesiones del tallo encefálico
Lesiones del tallo encefálico
Lauren Surí
 

Andere mochten auch (20)

IMPULSO NERVIOSO Y SINAPSIS
IMPULSO NERVIOSO Y SINAPSISIMPULSO NERVIOSO Y SINAPSIS
IMPULSO NERVIOSO Y SINAPSIS
 
Bioelectricidad
BioelectricidadBioelectricidad
Bioelectricidad
 
Anestesicos Locales
Anestesicos Locales Anestesicos Locales
Anestesicos Locales
 
Anestesicos locales
Anestesicos localesAnestesicos locales
Anestesicos locales
 
Barorreceptores y quimiorreceptores
Barorreceptores y quimiorreceptoresBarorreceptores y quimiorreceptores
Barorreceptores y quimiorreceptores
 
Neurotransmisores
NeurotransmisoresNeurotransmisores
Neurotransmisores
 
Neuronasy neurotransmisores
Neuronasy neurotransmisoresNeuronasy neurotransmisores
Neuronasy neurotransmisores
 
Nervios espinales
Nervios espinalesNervios espinales
Nervios espinales
 
Entropia
Entropia Entropia
Entropia
 
Entropia y neguentropia
Entropia y neguentropiaEntropia y neguentropia
Entropia y neguentropia
 
Expo Sinstesis de ATP
Expo Sinstesis de ATPExpo Sinstesis de ATP
Expo Sinstesis de ATP
 
Sentido del gusto y olfato
Sentido del gusto y olfatoSentido del gusto y olfato
Sentido del gusto y olfato
 
Tema 5 TERMODINAMICA Y EQUILIBRIO
Tema 5 TERMODINAMICA Y EQUILIBRIOTema 5 TERMODINAMICA Y EQUILIBRIO
Tema 5 TERMODINAMICA Y EQUILIBRIO
 
Sinapsis y tipos de sinapsis
Sinapsis y tipos de sinapsisSinapsis y tipos de sinapsis
Sinapsis y tipos de sinapsis
 
Anatomia Nervios craneales
Anatomia Nervios cranealesAnatomia Nervios craneales
Anatomia Nervios craneales
 
MAPA MENTAL LEYES DE LA TERMODINÁMICA
MAPA MENTAL LEYES DE LA TERMODINÁMICAMAPA MENTAL LEYES DE LA TERMODINÁMICA
MAPA MENTAL LEYES DE LA TERMODINÁMICA
 
Sistema nervioso en los animales
Sistema nervioso en los animalesSistema nervioso en los animales
Sistema nervioso en los animales
 
La función del ATP.
La función del ATP.La función del ATP.
La función del ATP.
 
Fisiología del Sistema Inmunológico
Fisiología del Sistema InmunológicoFisiología del Sistema Inmunológico
Fisiología del Sistema Inmunológico
 
Lesiones del tallo encefálico
Lesiones del tallo encefálicoLesiones del tallo encefálico
Lesiones del tallo encefálico
 

Ähnlich wie TransmisióN Del Impulso Nervioso. Sinapsis

Transmisindelimpulsonervioso sinapsis-0pdf
Transmisindelimpulsonervioso sinapsis-0pdfTransmisindelimpulsonervioso sinapsis-0pdf
Transmisindelimpulsonervioso sinapsis-0pdf
xiocorod
 
Tejido nervioso
Tejido nerviosoTejido nervioso
Tejido nervioso
Juan Opazo
 
Sistema Nervioso histologia
Sistema Nervioso histologiaSistema Nervioso histologia
Sistema Nervioso histologia
Lucy Chan
 
Neuronas y neurotransmisores
Neuronas y neurotransmisoresNeuronas y neurotransmisores
Neuronas y neurotransmisores
Ana Quintero
 
Neuronasyneurotransmisores 1118
Neuronasyneurotransmisores 1118Neuronasyneurotransmisores 1118
Neuronasyneurotransmisores 1118
Sole Frias Garcia
 
Relacion en animale ssin endocrino
Relacion en animale ssin endocrinoRelacion en animale ssin endocrino
Relacion en animale ssin endocrino
Julio Sanchez
 

Ähnlich wie TransmisióN Del Impulso Nervioso. Sinapsis (20)

Transmisindelimpulsonervioso sinapsis-0pdf
Transmisindelimpulsonervioso sinapsis-0pdfTransmisindelimpulsonervioso sinapsis-0pdf
Transmisindelimpulsonervioso sinapsis-0pdf
 
Transmisión del impulso nervioso (Prof. Verónica Rosso)
Transmisión del impulso nervioso (Prof. Verónica Rosso)Transmisión del impulso nervioso (Prof. Verónica Rosso)
Transmisión del impulso nervioso (Prof. Verónica Rosso)
 
5 neuronas y sinapsis
5 neuronas y sinapsis5 neuronas y sinapsis
5 neuronas y sinapsis
 
La neurona
La neuronaLa neurona
La neurona
 
Tejido nervioso trabajo1
Tejido nervioso trabajo1Tejido nervioso trabajo1
Tejido nervioso trabajo1
 
Tejido nervioso
Tejido nerviosoTejido nervioso
Tejido nervioso
 
Tema 8 Tejido Nervioso
Tema 8 Tejido NerviosoTema 8 Tejido Nervioso
Tema 8 Tejido Nervioso
 
Tejido nervioso
Tejido nerviosoTejido nervioso
Tejido nervioso
 
Unidad 5 y 6 (sistema nervioso)
Unidad 5 y 6 (sistema nervioso)Unidad 5 y 6 (sistema nervioso)
Unidad 5 y 6 (sistema nervioso)
 
PRACTICA- DOLOR.pptx
PRACTICA- DOLOR.pptxPRACTICA- DOLOR.pptx
PRACTICA- DOLOR.pptx
 
Tema ocho silvia
Tema ocho silviaTema ocho silvia
Tema ocho silvia
 
Mariela mijares tarea 9
Mariela mijares tarea 9Mariela mijares tarea 9
Mariela mijares tarea 9
 
Sistema Nervioso histologia
Sistema Nervioso histologiaSistema Nervioso histologia
Sistema Nervioso histologia
 
9 tejido nervioso
9  tejido nervioso 9  tejido nervioso
9 tejido nervioso
 
Neuronas y neurotransmisores
Neuronas y neurotransmisoresNeuronas y neurotransmisores
Neuronas y neurotransmisores
 
19.TEJIDO_NERVIOSO (1).pdf
19.TEJIDO_NERVIOSO (1).pdf19.TEJIDO_NERVIOSO (1).pdf
19.TEJIDO_NERVIOSO (1).pdf
 
La neurona
La neuronaLa neurona
La neurona
 
TEJIDO NERVIOSO
TEJIDO NERVIOSOTEJIDO NERVIOSO
TEJIDO NERVIOSO
 
Neuronasyneurotransmisores 1118
Neuronasyneurotransmisores 1118Neuronasyneurotransmisores 1118
Neuronasyneurotransmisores 1118
 
Relacion en animale ssin endocrino
Relacion en animale ssin endocrinoRelacion en animale ssin endocrino
Relacion en animale ssin endocrino
 

Mehr von Verónica Rosso

Desarrollo Del EmbrióN Humano
Desarrollo Del EmbrióN HumanoDesarrollo Del EmbrióN Humano
Desarrollo Del EmbrióN Humano
Verónica Rosso
 
Propiedades Y Reacciones (Organica)
Propiedades Y Reacciones (Organica)Propiedades Y Reacciones (Organica)
Propiedades Y Reacciones (Organica)
Verónica Rosso
 
RegulacióN De La Temperatura
RegulacióN De La TemperaturaRegulacióN De La Temperatura
RegulacióN De La Temperatura
Verónica Rosso
 
Propiedades Y Reacciones (Organica) Segunda Parte
Propiedades Y Reacciones (Organica) Segunda PartePropiedades Y Reacciones (Organica) Segunda Parte
Propiedades Y Reacciones (Organica) Segunda Parte
Verónica Rosso
 
Trabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol AvogadroTrabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol Avogadro
Verónica Rosso
 
QuíMica OrgáNica Nomenclatura
QuíMica OrgáNica NomenclaturaQuíMica OrgáNica Nomenclatura
QuíMica OrgáNica Nomenclatura
Verónica Rosso
 
QuíMica OrgáNica 2°Parte
QuíMica OrgáNica 2°ParteQuíMica OrgáNica 2°Parte
QuíMica OrgáNica 2°Parte
Verónica Rosso
 
Trabajo PráCtico Estado Gaseoso
Trabajo PráCtico Estado GaseosoTrabajo PráCtico Estado Gaseoso
Trabajo PráCtico Estado Gaseoso
Verónica Rosso
 
Trabajo PráCtico Reacciones QuíMicas
Trabajo PráCtico Reacciones QuíMicasTrabajo PráCtico Reacciones QuíMicas
Trabajo PráCtico Reacciones QuíMicas
Verónica Rosso
 

Mehr von Verónica Rosso (20)

Desarrollo Del EmbrióN Humano
Desarrollo Del EmbrióN HumanoDesarrollo Del EmbrióN Humano
Desarrollo Del EmbrióN Humano
 
MoléCulas BiolóGicas
MoléCulas BiolóGicasMoléCulas BiolóGicas
MoléCulas BiolóGicas
 
Sistema Reproductor
Sistema ReproductorSistema Reproductor
Sistema Reproductor
 
Sistema Inmunitario
Sistema InmunitarioSistema Inmunitario
Sistema Inmunitario
 
Propiedades Y Reacciones (Organica)
Propiedades Y Reacciones (Organica)Propiedades Y Reacciones (Organica)
Propiedades Y Reacciones (Organica)
 
Sistema Excretor
Sistema ExcretorSistema Excretor
Sistema Excretor
 
RegulacióN De La Temperatura
RegulacióN De La TemperaturaRegulacióN De La Temperatura
RegulacióN De La Temperatura
 
Propiedades Y Reacciones (Organica) Segunda Parte
Propiedades Y Reacciones (Organica) Segunda PartePropiedades Y Reacciones (Organica) Segunda Parte
Propiedades Y Reacciones (Organica) Segunda Parte
 
NutricióN
NutricióNNutricióN
NutricióN
 
Sistema Respiratorio
Sistema RespiratorioSistema Respiratorio
Sistema Respiratorio
 
Sistema Digestivo
Sistema DigestivoSistema Digestivo
Sistema Digestivo
 
IsomeríA
IsomeríAIsomeríA
IsomeríA
 
Sistema Endocrino
Sistema EndocrinoSistema Endocrino
Sistema Endocrino
 
Trabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol AvogadroTrabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol Avogadro
 
QuíMica OrgáNica Nomenclatura
QuíMica OrgáNica NomenclaturaQuíMica OrgáNica Nomenclatura
QuíMica OrgáNica Nomenclatura
 
QuíMica OrgáNica 2°Parte
QuíMica OrgáNica 2°ParteQuíMica OrgáNica 2°Parte
QuíMica OrgáNica 2°Parte
 
Aparato Respiratorio
Aparato RespiratorioAparato Respiratorio
Aparato Respiratorio
 
Sistema Nervioso
Sistema NerviosoSistema Nervioso
Sistema Nervioso
 
Trabajo PráCtico Estado Gaseoso
Trabajo PráCtico Estado GaseosoTrabajo PráCtico Estado Gaseoso
Trabajo PráCtico Estado Gaseoso
 
Trabajo PráCtico Reacciones QuíMicas
Trabajo PráCtico Reacciones QuíMicasTrabajo PráCtico Reacciones QuíMicas
Trabajo PráCtico Reacciones QuíMicas
 

Kürzlich hochgeladen

Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
241521559
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
silviayucra2
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
FagnerLisboa3
 

Kürzlich hochgeladen (10)

Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptx
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdf
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 

TransmisióN Del Impulso Nervioso. Sinapsis

  • 1. Transmisión del Impulso Nervioso Sinapsis
  • 2. Introducción El Sistema Nervioso está formado por Tejido Nervioso. Las Funciones del tejido nervioso son recibir estímulos procedentes del ambiente interno y externo, para analizarlos e integrarlos y producir respuestas adecuadas y coordinadas en varios órganos efectores
  • 3. Tejido Nervioso Las Neuronas poseen las propiedades de irritabilidad y conductividad, lo que permite la aparición del impulso nervioso que puede transmitirse a lo largo de distancias importantes. Al recibir las neuronas el estímulo de distintas formas de energía (lumínica, térmica, mecánica etc.) mediante los receptores sensoriales, estos estímulos se transmiten bajo la forma de impulsos nerviosos hacia los centros del Sistema Nervioso Central, donde actúan sobre otras células nerviosas. Desde el Sistema Nervioso Central se enviarán nuevos impulsos nerviosos en forma de respuestas hacia los órganos efectores (músculos ó glándulas) utilizando las vías del Sistema Nervioso Periférico.
  • 4. Tipos de Neuronas Multipolares : corresponde a la mayoría de las neuronas, presenta numerosas dendritas que se proyectan del cuerpo celular. Se ve en neuronas intermedias, de integración y motoras. Bipolares : sólo tienen una dendrita, que sale del cuerpo celular, opuesto al origen del axón. Poco frecuentes, actúan como receptores de los sentidos del olfato, la vista y el equilibrio. Unipolares o Pseudounipolares : son la mayoría de las neuronas sensitivas, tienen una sola dendrita que nace junto al axón de un tallo común del cuerpo celular; este tallo está formado por la fusión de la primera parte de la dendrita y el axón de una neurona bipolar, fusión que se produce durante el período embrionario. Las neuronas se clasifican también según la función en Sensitivas (transmiten impulsos producidos por los receptores de los sentidos), Motoras o Efectoras (transmiten los impulsos que llevan las respuestas hacia los órganos encargados de realizarlas) y de Asociación (unen entre si neuronas de diferentes tipos).
  • 5. Soma o Cuerpo Celular El Cuerpo Celular o Soma presenta un retículo endoplásmico rugoso muy desarrollado (forma la sustancia de Nissl) abundantes ribosomas libres, cisternas del complejo de Golgi , abundantes mitocondrias. El Núcleo suele ser central, redondo, de aspecto vacío. Posee Neurofibrillas (neurofilamentos), Microtúbulos y filamentos de Actina que forman parte del citoesqueleto y proporcionan sostén mecánico a la neurona, sobre todo en el axón.
  • 6. Soma o Cuerpo Celular Las proteínas sólo son sintetizadas en el Soma o cuerpo de la célula y la porción proximal de las dendritas y son transportadas desde aquí hacia el axón. En el cuerpo celular, además, se generan los potenciales de acción, gracias a la integración de estímulos que llegan (aferentes). A continuación los potenciales de acción viajan a lo largo del axón para influir en otras neuronas u órganos efectores. En general, los cuerpos celulares de todas las neuronas se encuentran en el sistema nervioso central, salvo los de las neuronas aferentes sensitivas y los de las neuronas efectoras del sistema autónomo que, en ambos casos, se encuentran formando grupos llamados ganglios en localizaciones periféricas. Soma de una neurona teñido, al Microscopio Electrónico
  • 7. Soma Neuronal al Microscopio Electrónico
  • 8. Dendritas y Axones La mayoría de las neuronas poseen gran cantidad de Dendritas, salvo excepciones. Ellas aumentan la superficie de contacto lo que les permite recibir estímulos de otras neuronas . Estas pueden estar recubiertas por pequeñas salientes llamadas espinas, que aumentan aun más la superficie receptiva en las sinapsis. Respecto al Axón, nunca sale más de un axón de cada neurona. A lo largo de su recorrido puede emitir ramas colaterales que viajan en forma casi perpendicular al tronco principal. Cerca de la zona terminal el axón se divide en un ramillete de ramificaciones terminales denominado telodendrón o telendrón que suele terminar en el botón sináptico. El citoplasma del axón es continuación del pericarion y contiene mitocondrias, retículo endoplásmico liso, microtúbulos y gran cantidad de microfilamentos. No posee sustancia de Nissl A izquierda un manojo de axones entrecruzados. A derecha una Neurona Piramidal Axón Dendritas Soma Neuronal
  • 9. Axón o Fibra Nerviosa Los Axones de las neuronas son también llamadas Fibras Nerviosas. Existen fibras nerviosas mielinizadas y fibras nerviosas no mielinizadas. Las Fibras Mielinizadas son las que presentan Mielina, una cobertura externa al axón conformada por colesterol, proteínas, fosfolípidos, esfingomielina y construida por la membrana celular de la célula de Schwann si se trata de una fibra del SNP, o por un oligodendrocito si se trata de una fibra del SNC. La mielina no rodea el axón en toda su longitud. No encontramos la vaina ni en el cono de origen ni en los extremos terminales . Así mismo esa vaina no es continua sino interrumpida. Cada interrupción recibe el nombre de Nodo o Nódulo de Ranvier. Los axones de pequeño diámetro están envueltas sólo por el citoplasma de las células de Schwann, por lo que se dice que esta fibras son no mielinizadas o amielinicas. Las células de Schwann les proporcionan sostén estructural y metabólico a los delicados axones. La mielinización aumenta la velocidad de conducción del axón. En todas las fibras nerviosas, la velocidad de conducción del impulso nervioso es proporcional al diámetro de los axones y a la presencia de mielina. Las fibras de diámetro grande o mielinizadas presentan mayor velocidad de transmisión.
  • 10. Corte Transversal de las Fibras Mielinizadas Vaina de Mielina Célula de Schwann Axón
  • 11. Telodendron o Terminal Axónico El extremo terminal del axón recibe el nombre de Terminal Axónica, Botón Terminal o Telodendron. Las terminales del axón forman sinapsis con las dendritas o somas de otras neuronas. Cuando un impulso nervioso llega al telodendron presináptico, a partir de las vesículas sinápticas se liberan neurotransmisores en la hendidura sináptica. A continuación, los neurotransmisores se unen a proteínas receptoras específicas lo que provoca la generación de señales eléctricas o químicas en la célula postsináptica.
  • 12. Neurona Motora en Esquema y al Microscopio Ramificaciones terminales
  • 13. Transmisión del Impulso Nervioso. Sinapsis La Sinapsis es una Unión intercelular altamente especializada que establece comunicación entre las neuronas o entre neuronas y células glandulares o musculares . Existen varios tipos de Sinapsis según diversos criterios de clasificación: Fisiológico: Según el tipo de respuesta: Sinapsis exitatoria (tipo I) y Sinapsis inhibitoria (tipo II) Bioquímico : Según la naturaleza del neurotransmisor (adrenérgicas, colinérgicas, serotoninérgicas, gabaérgicas, etc.) Morfológico :respecto a las zonas de la neurona en donde se produce la sinapsis. Típicamente, las sinapsis son conformadas por un axón (zona presináptica) y una dendrita (postsináptica). En ese caso se habla de una sinapsis Axodendrítica. Sin embargo en el SNC existen muchas combinaciones : Axosomática: la sinapsis se establece entre un axón de una neurona y el cuerpo neuronal de otra. Axoaxónica: la sinapsis ocurre entre un axón de una neurona y el axón de otra neurona Dendrodendrítica: la sinapsis ocurre entre las dendritas de dos neuronas. Tipos de Sinapsis 1) axosomáticas y unión neuromuscular, 2) axodendrítica, 3) axoaxónica, 4) dendrodendrítica
  • 14. Sinapsis Las funciones del sistema nervioso dependen de una capacidad de la neurona, la excitabilidad, que supone un cambio de la permeabilidad de la membrana plasmática como respuesta a los estímulos, de manera que se despolariza y la onda de despolarización, llamada Potencial de Acción, se propaga por la membrana plasmática. Luego sigue la Repolarización, mediante lo cual la membrana restablece su potencial de reposo. La Despolarización de una neurona induce la liberación de sustancias químicas transmisoras, llamadas Neurotransmisores, que inician un potencial de acción en una neurona vecina o en una célula blanco, (célula muscular, epitelio glandular) mediante la sinapsis.
  • 15. Irritabilidad Neuronal Se han formulado diversas teorías de la irritabilidad, pero la más ampliamente aceptada se basa en la existencia de potenciales eléctricos a través de las membranas plasmáticas, los denominados Potenciales de Membrana. Los iones sodio (Na+) y potasio (K+) no se distribuyen por igual dentro y fuera de las células. En las células nerviosas, la concentración interna de K+ es unas 20 veces mayor que la concentración externa; y la concentración de Na+ fuera de la célula es unas 10 veces mayor que dentro. Este estado es esencial para la conducción de los impulsos nerviosos. La distribución desigual de los iones de sodio y potasio es mantenida por la Bomba de Sodio Potasio que evacua activamente el Na+ del interior de la célula y lo sustituye por K+. Esos iones están en permanente movimiento circulando a través de los canales de Na+ y K+. El funcionamiento de la bomba requiere energía en forma de ATP. Si el intercambio Na+ y K+ fuera el único proceso implicado en la distribución iónica, no se originaría un potencial de membrana, puesto que el intercambio en cantidades iguales de los iones Na+ y K+ no alteraría la proporción, a través de la membrana, de las cargas positivas y negativas. Debe intervenir otro factor. Arriba de estas líneas, representación de la Bomba de Na+/K+. A la Izquierda los canales de Na+ y K+
  • 16. Potencial de Reposo Este factor es la presencia de una mayor cantidad de proteína en el interior de la célula que fuera de ella. La mayoría de las proteínas tienen un número excesivo de grupos cargados negativamente, y son las proteínas existentes en el interior de la célula las principalmente responsables de la compensación de las cargas positivas de los iones de potasio. Las moléculas de estas proteínas son de gran tamaño y no pueden atravesar la membrana celular. Constituyen, por tanto, cargas inmóviles o «fijadas». Fuera de la célula, en cambio, las cargas positivas de los iones Na+ son principalmente compensadas por los iones cloruro (Cl-) Los iones cloruro son de pequeño tamaño y difunden a través de la membrana celular. Como la cantidad de CI- dentro de la célula es reducida, estos tienden a difundir al interior de aquélla para «igualar» sus concentraciones en ambos lados de la membrana celular, pero, al realizarlo, alteran el equilibrio de cargas eléctricas: recuérdese que las proteínas cargadas negativamente deben permanecer dentro de la célula. La cara interna de la membrana se hace así negativo respecto al exterior, resultando el potencial de membrana. En las células nerviosas, el Potencial de Membrana mide generalmente unos -70 mV. En otras palabras, si asignamos arbitrariamente el valor de cero al potencial fuera de la célula, entonces el potencial interno es -70 mV. Es el denominado Potencial de Reposo, puesto que existe en una neurona inactiva o en reposo.
  • 17. Potencial de Acción Un Impulso Nervioso es iniciado por la despolarización parcial de una pequeña región de la membrana celular; desaparece en una determinada proporción la diferencia de cargas eléctricas, y el potencial de membrana se aproxima a cero. La despolarización ocurre por la recepción de un impulso procedente de otra célula nerviosa . En la región despolarizada de la membrana ocurren toda una serie de cambios rápidos. 1. El estímulo inicial , provoca la Despolarización parcial de la membrana. El potencial se aproxima a cero. 2. Si el estímulo es lo suficientemente intenso, se alcanza un potencial umbral en el que aumenta de modo abrupto la permeabilidad de la membrana al Na+, que penetra en la célula a lo largo de su gradiente de concentración . Esto origina la inversión local inmediata en la polarización de la membrana y el denominado Potencial de Acción. El exterior es entonces negativo respecto del interior del axón. 3. El restablecimiento resulta de un segundo cambio en la permeabilidad de la membrana. El K+ sale precipitadamente y se restablece el Potencial de Reposo. A veces abandona la célula un exceso de K+ con producción de una hiperpolarización pasajera; su interior es aún más negativo que de ordinario. Durante este período de restablecimiento la neurona no responde a ulteriores estímulos; se denomina a este fenómeno Periodo Refractario.
  • 18. Potencial de Acción Un axón es capaz de conducir un impulso en ambas direcciones. Durante su funcionamiento normal, sin embargo, la mayoría de neuronas sólo conducen en una dirección, alejándose del cuerpo celular. Cuando una neurona es estimulada, conduce o no, según se alcance el Potencial Umbral, del que resulta un potencial de acción. Todas las respuestas son iguales y no presentan una graduación de intensidades. Es el denominado Principio del Todo o Nada de la conducción nerviosa. Las velocidades de conducción son extremadamente rápidas, y miden 20 m/seg o más en los animales activos. ¡Algunos axones de mamífero poseen una velocidad de conducción de hasta 100 m/seg!
  • 19. Potencial de Acción La función del sistema nervioso estriba en transmitir información desde una parte del cuerpo a otra, y lo realiza por la transferencia de energía eléctrica: el Impulso Nervioso. Las condiciones para la génesis de tal impulso dependen de la existencia del Potencial de Reposo, en particular de la distribución desigual de cargas + y -, y de la distribución desigual de Na+ y K+ a ambos lados de la membrana celular. El Potencial de Acción es el responsable de la propagación del impulso nervioso. Las diferencias instantáneas de cargas eléctricas determinan un flujo de cargas a lo largo de las superficies interna y externa de la membrana y provocan la despolarización de regiones adyacentes. Cuando se alcanzan en estas regiones vecinas los potenciales umbral, se producen movimientos rápidos de Na+ con la producción, en ellas también, de potenciales de acción. Estos, a su vez, estimulan áreas adyacentes inactivas, y así sucesivamente. Por consiguiente, el potencial de acción se mueve a lo largo de la fibra nerviosa como en una especie de reacción en cadena.
  • 20. Bomba de Na+/K+ Aun cuando un solo impulso ejerce un efecto muy escaso sobre la distribución de iones a través de la membrana de una fibra nerviosa, muchas células nerviosas, especialmente en el cerebro, conducen de modo repetido; y algunas de ellas descargan impulsos con una frecuencia de varios centenares de veces por segundo. Después de algunos millares de impulsos, los gradientes de concentración del Na+ y K+ quedarían muy agotados si no existieran medios para reponerlos. La bomba de sodio/potasio existente en la membrana restablece los gradientes de estos iones después de una serie de impulsos, y mantiene así los gradientes necesarios para generar un impulso. La bomba depende de un suministro continuo de ATP, y la supresión por venenos de las reacciones respiratorias generadoras de ATP pronto suspende el funcionamiento de una célula nerviosa. En el hombre y en muchos otros animales, el sistema nervioso es incapaz de obtener cantidades suficientes de ATP de la glucólisis anaerobia, y requiere un suministro continuo de oxígeno y azúcar de la sangre para satisfacer sus necesidades energéticas. La insuficiencia de uno u otro determina la pérdida del conocimiento o la muerte.
  • 22. Sinapsis Eléctrica y Sinapsis química Existen dos tipos de sinapsis, la de tipo Eléctrico y la de tipo Químico. Las de tipo eléctrico se realizan en los músculos y aparecieron primero en la evolución de los organismos. La Sinapsis eléctrica corresponde a las uniones Gap o Nexus, observables en los tejidos epiteliales y en el músculo estriado cardiaco. En ella el espacio sináptico es notoriamente inferior al encontrado en las sinapsis químicas.
  • 23. Sinapsis Química Todas las sinapsis químicas constan de tres elementos, una zona presináptica, otra postsináptica y una hendidura de entre 20-50 nm que separa a ambas zonas y llena de proteínas que adhieren la membrana pre y postsináptica una a la otra. La zona presináptica está conformada por lo regular por un botón axónico (Telodendron). El botón contiene en su citoplasma docenas de pequeñas esferas llamadas Vesículas Sinápticas de 50 nm de diámetro. Estas vesículas están repletas de Neurotransmisores, es decir substancias químicas que actúan como mensajeros para comunicarse con otras neuronas a través de la hendidura sináptica. El botón también contiene otro tipo de vesículas, menos numerosas, más grandes (100 nm de diámetro) y llenas de péptidos en lugar de neurotransmisores. Son conocidas como Vesículas Claras. Luego de atravesar la hendidura sináptica el neurotransmisor entra en contacto con la membrana postsináptica, la cual está cubierta por receptores que abren sus canales y permiten convertir la señal química intercelular en una señal intracelular que viaja a través de la membrana de la neurona y llega nuevamente a un axón donde el ciclo comienza de nuevo. Los receptores sólo responden a un cierto neurotransmisor, de modo que funcionan como "cerraduras" químicas esperando por su llave.
  • 24. Sinapsis Química - Resumen Las Sinapsis Químicas son el tipo de sinapsis mas abundante en el Tejido Nervioso y se compone de 3 sectores característicos: 1. Estructuras presinápticas (terminal axónico expandido con vesículas presinápticas que contienen a los neurotransmisores) 2. Hendidura Sináptica o Espacio Intesináptico (espacio de 30 nm aprox, que separa las membranas pre y postsinápticas) 3. Estructuras postsinápticas: condensaciones en la membrana plasmática de la célula postsináptica que corresponden a los receptores específicos para cada tipo de neurotransmisor. El mecanismo de conducción del impulso nervioso implica la liberación de un neurotransmisor por la neurona presináptica. Este difunde a través del espacio intercelular para inducir la excitación o inhibición de la otra neurona o célula efectora de la sinapsis. La naturaleza química de los neurotransmisores y la morfología de la sinapsis son muy variables en las distintas partes del sistema nervioso, pero los principios de la transmisión sináptica y la estructura de la sinapsis es similar.
  • 25. Sinapsis Excitatorias e Inhibitorias Algunos neurotransmisores provocan una hiperpolarización de la membrana postsináptica, mientras que otros determinan su despolarización parcial. Los primeros se denominan Sinapsis Inhibitorias, puesto que requieren un estímulo más intenso que el necesario para alcanzar el potencial umbral. Los segundos son las Sinapsis Excitatorias, ya que tienden a producir un potencial de acción. Si los neurotransmisores permanecieran en el espacio sináptico después de haber sido liberados, seguirían ejerciendo sus efectos potentes sobre la membrana postsináptica y no serían posibles cambios rápidos en las respuestas del sistema nervioso. En cambio, ciertas enzimas liberadas en el espacio sináptico destruyen rápidamente los neurotransmisores.
  • 26. Neurotransmisores Existen muchas moléculas que cumplen el rol de neurotransmisores; hasta la fecha se han descubierto mas de 50. Entre los neurotransmisores más importantes se encuentran el glutamato (Glu), el ácido gamma-aminobutírico (GABA), la Adrenalina y Noradrenalina, las endorfinas, la Serotonina, La Dopamina y la acetilcolina (Ach). Los neurotransmisores son sintetizados en el retículo endoplásmico rugoso (REG) del soma neuronal. La síntesis de los neurotransmisores se produce a partir de substancias conocidas como precursores. Casi todos los medicamentos hechos para alterar la química cerebral, como los antipsicóticos o los que inhiben los efectos del mal de Parkinson no son neurotransmisores sino precursores. Existen muchas sustancias que modifican la acción de estos neurotransmisores, pueden impedir que el neurotransmisor ejerza su efecto, uniéndose al receptor correspondiente e inactivándolo, o bien pueden aumentar su efecto, por ejemplo impidiendo que sea destruido o retirado. Estas sustancias modifican el funcionamiento del sistema nervioso de muchas maneras distintas. Algunas de ellas son fármacos que se administran para tratar alguna alteración del sistema nervioso, otras son drogas que se toman con el fin de experimentar sus efectos. El transmisor químico dopamina se forma a partir de los precursores tirosina y L-dopa y es almacenada en vesículas de las terminales nerviosas. Cuando un impulso nervioso causa que las vesículas se vacíen los receptores para dopamina en la membrana de la célula receptora son influenciados de tal manera que el mensaje es llevado al interior de la célula.
  • 27. Unión Neuromuscular o Placa Motora La Unión Neuromuscular o Placa Motora es la unión intercelular que conecta a las neuronas motoras con las células musculares efectoras. Una neurona motora puede inervar desde unas pocas a más de mil fibras musculares, dependiendo de la precisión del movimiento del músculo.
  • 28. Unión Neuromuscular o Placa Motora Arriba. Placa Motora o unión neuromuscular entre una neurona motora y una fibra muscular esquelética. La neurona motora constituye, junto con las fibras musculares que inerva, a la unidad motora. Una neurona motora típicamente tiene un sólo axón largo que se ramifica al llegar al músculo. Al final de cada rama, el axón emerge de la vaina de mielina y se inserta en un surco en la superficie de una fibra muscular, formando la placa o unión neuromuscular. Como ocurre con la mayoría de las sinapsis entre las neuronas, la señal pasa a través de la placa neuromuscular por medio de un neurotransmisor -en este caso la acetilcolina-. Sin embargo, a diferencia de la transmisión sináptica entre las neuronas, ésta es una relación directa y exacta que implica solamente excitación. La acetilcolina se combina con receptores, despolariza la membrana de la célula muscular e inicia un potencial de acción que activa la maquinaria contráctil
  • 29. Unión Neuromuscular o Placa Motora Imagen Izquierda: Esquema y fotografia de una unión Neuromuscular. Imagen derecha: Microfotografia de una neurona motora (N) y su unión fcon la fibra muscular formando la placa motora (MJ)