Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Bat dang thuc ltdh

9.805 Aufrufe

Veröffentlicht am

hehehe

Veröffentlicht in: Geräte & Hardware
  • Als Erste(r) kommentieren

Bat dang thuc ltdh

  1. 1. Chuyên đề: MỘT SỐ KỸ THUẬT CHỨNG MINH BẤT ĐẲNG THỨC Biên soạn: HUỲNH CHÍ HÀOKỹ thuật 1: SỬ DỤNG BẤT ĐẲNG THỨC CÔ-SI.Kết hợp thủ thuật : Tách, ghép và phân nhómBài 1:Cho a, b,c là ba số dương thỏa mãn điều kiện a + b + c = 3Chứng minh rằng: a3 b3 c3 3 + + ≥ (1) (a + b)(a + c) (b + c)(b + a ) (c + a )(c + b) 4Hướng dẫn:+ Dự đoán dấu "=" xảy ra.+ Sử dụng giả thiết biến đổi bđt về bđt đồng bậc.+ Sử dụng kỹ thuật tách ghép và phân nhóm. Bổ sung thêm một số số hạng để sau khi sử dụng bđt Cô-si ta khử được mẫu số của biểu thức phân thức.Bài giải:Sử dụng giả thiết a + b + c = 3 để đưa bđt về bđt đồng bậc 1 ở hai vế a3 b3 c3 (a + b + c) (1) ⇔ + + ≥ (a + b)(a + c) (b + c)(b + a ) (c + a )(c + b) 4Áp dụng bất đẳng thức Cô-si ta có: a3 a+b a+c ⎛ a3 ⎞ ⎛ a + b ⎞ ⎛ a + c ⎞ 3a ⎟⎜ + + ≥ 33 ⎜ ⎜ ⎟ ⎟⎜ ⎟⎜ ⎟⎝ ⎟= ⎟ (a + b ) ( a + c ) 8 8 ⎜(a + b)(a + c)⎠ ⎝ 8 ⎠ ⎜ 8 ⎠ ⎜ ⎝ ⎟⎜ ⎟ 4Chứng minh tương tự ta cũng được: b3 b+c b+a ⎛ b3 ⎞ ⎛ b + c ⎞⎛ b + a ⎞ 3b ⎟⎜ + + ⎜ ≥ 33 ⎜ ⎟ ⎟⎜ ⎟ (b + c)(b + a ) 8 8 ⎜ ⎝ ⎟⎜ ⎟⎝ ⎟ ⎟⎜ ⎜(b + c)(b + a )⎠ ⎜ 8 ⎠⎝ 8 ⎠ ⎟= 4 ⎟ c3 c+a c+b ⎛ c3 ⎞ ⎛ c + a ⎞ ⎛ c + b ⎞ 3c ⎟⎜ + + ≥ 33 ⎜ ⎟ ⎟⎜ ⎜(c + a )(c + b)⎠ ⎜ 8 ⎠⎝ 8 ⎠ = 4 ⎜ ⎟⎝ ⎟⎜ ⎟ ⎟ ⎟ ( c + a ) (c + b) 8 8 ⎜ ⎝ ⎟Cộng vế với vế các bđt trên và biến đổi ta được bđt: a3 b3 c3 a+b+c 3 + + ≥ = (đpcm) (a + b)(a + c) (b + c)(b + a ) (c + a )(c + b) 4 4Đẳng thức xảy ra ⇔ a = b = c = 1
  2. 2. Bài tập tương tự:Bài 1:Cho a, b,c là ba số dương thỏa mãn điều kiện abc = 1Chứng minh rằng: a3 b3 c3 3 + + ≥ (1 + b)(1 + c) (1 + c)(1 + a ) (1 + a )(1 + b) 4Bài 2:Cho a, b,c là ba số dương thỏa mãn điều kiện ab + bc + ca = abcChứng minh rằng: a2 b2 c2 a+b+c + + ≥ a + bc b + ca c + ab 4Bài 3:Cho a, b,c là ba số dương thỏa mãn điều kiện abc = 1Chứng minh rằng: a2 b2 c2 3 + + ≥ b+c c+a a+b 2Bài toán có liên quan:Cho a, b,c là ba số dương thỏa mãn điều kiện abc = 1Chứng minh rằng: 1 1 1 3 + 3 + 3 ≥ a ( b + c ) b ( c + a ) c (a + b ) 2 3Bài 4:Cho a, b,c là ba số dương thỏa mãn điều kiện a + b + c = 1Chứng minh rằng: a3 b3 c3 1 2 + + ≥ (b + c) (c + a )2 (a + b) 4Bài 2:Cho a, b,c là ba số dương thỏa mãn điều kiện a + b + c = 3Chứng minh rằng: a3 b3 c3 + + ≥ 1 (1) b (2c + a ) c (2a + b) a (2b + c)Hướng dẫn:+ Dự đoán dấu "=" xảy ra.+ Sử dụng giả thiết biến đổi bđt về bđt đồng bậc.+ Sử dụng kỹ thuật tách ghép và phân nhóm. Bổ sung thêm một số số hạng để sau khi sử dụng bđt Cô-si ta khử được mẫu số của biểu thức phân thức.Bài giải:Sử dụng giả thiết a + b + c = 3 để đưa bđt về bđt đồng bậc 1 ở hai vế a3 b3 c3 a+b+c (1) ⇔ + + ≥ b (2c + a ) c (2a + b) a (2b + c) 3Áp dụng bất đẳng thức Cô-si ta có:
  3. 3. 9a 3 ⎛ 9a 3 ⎞ ⎟ + 3b + (2c + a ) ≥ 3 3 ⎜ ⎟ ⎜ b (2c + a )⎠ (3b)(2c + a ) = 9a ⎜ ⎟ b (2c + a ) ⎝ ⎟Chứng minh tương tự ta cũng được: 9b3 ⎛ 9b3 ⎞ ⎟ ⎜ + 3c + (2a + b) ≥ 3 3 ⎜ ⎟ c (2a + b) ⎜ c (2a + b)⎠ (3c)(2a + b) = 9b ⎜ ⎝ ⎟ ⎟ 9c 3 ⎛ 9c3 ⎞ ⎟ ⎜ + 3a + (2b + c) ≥ 3 3 ⎜ ⎟ a (2b + c) ⎜ a (2b + c)⎠ (3a )(2b + c) = 9c ⎜ ⎝ ⎟ ⎟Cộng vế với vế các bđt trên ta được bđt: ⎡ a3 b3 c3 ⎤ 9⎢ + + ⎥ + 6 (a + b + c) ≥ 9 (a + b + c) ⎢ b (2c + a ) c (2a + b) a (2b + c) ⎥ ⎣ ⎦ a3 b3 c3 a+b+c ⇒ + + ≥ =1 b (2c + a ) c (2a + b) a (2b + c) 3Đẳng thức xảy ra ⇔ a = b = c = 1Bài 3:Cho a, b,c là ba số dương thỏa mãn điều kiện a 2 + b2 + c2 = 1Chứng minh rằng: a3 b3 c3 1 + + ≥ b + 2c c + 2a a + 2b 3Bài giải:Sử dụng giả thiết a 2 + b2 + c2 = 1 để đưa bđt về bđt đồng bậc 2 ở hai vế a3 b3 c3 a 2 + b2 + c 2 (1) ⇔ + + ≥ b + 2c c + 2a a + 2b 3Áp dụng bất đẳng thức Cô-si ta có: 9a 3 9a 3 + a ( b + 2c ) ≥ 2 .a (b + 2c) = 6a 2 (b + 2c) b + 2cChứng minh tương tự ta cũng được: 9b 3 9b3 + b (c + 2a ) ≥ 2 .b (c + 2a ) = 6b2 (c + 2a ) c + 2a 9c3 9c3 + c (a + 2b) ≥ 2 .c (a + 2ab) = 6c2 (a + 2b) (a + 2b)Cộng vế với vế các bđt trên ta được bđt:
  4. 4. ⎛ 3 b3 c3 ⎞ ⎜ a 9⎜ + + ⎟ ⎟ + 3 (ab + bc + ca ) ≥ 6 (a 2 + b2 + c2 ) ⎟ ⎜ b + 2c c + 2a a + 2b ⎠ ⎝ ⎛ 3 b3 c3 ⎞ ⎜ a ⎟ ⎟ ≥ 6 (a + b + c ) − 3 (ab + bc + ca ) ≥ 3 (a + b + c ) 2 2 2 2 2 2 ⇒ 9⎜ + + ⎟ ⎜ b + 2c c + 2a a + 2b ⎠ ⎝ a3 b3 c3 a 2 + b 2 + c2 1 ⇒ + + ≥ = b + 2c c + 2a a + 2b 3 3 3Đẳng thức xảy ra ⇔ a = b = c = 3Bài tập tương tựCho a, b,c là ba số dương thỏa mãn điều kiện a 2 + b2 + c2 = 1Chứng minh rằng: a3 b3 c3 1 + + ≥ a+b b+c c+a 2Bài 4:Cho a, b,c là ba số dương thỏa mãn điều kiện ab + bc + ca = 1Chứng minh rằng: a b c 3 + + ≤ (1) 1+a 2 1+b 2 1+c 2 2Hướng dẫn:+ Sử dụng giả thiết biến đổi bđt về bđt đồng bậc.+ Sử dụng kỹ thuật đánh giá biểu thức đại diệnBài giải:Sử dụng giả thiết ab + bc + ca = 1 để đưa bđt về bđt đồng bậc 0 ở hai vếÁp dụng bất đẳng thức Cô-si ta có: a a a a 1⎛ a a ⎞⎟ = = . ≤ ⎜⎜ + ⎟ ⎟ 1+a 2 2 a + ab + bc + ca a+b a+c 2 ⎜a + b a + c⎠ ⎝Chứng minh tương tự ta cũng được: b 1⎛ b ⎜ b ⎞⎟ ≤ ⎜ + ⎟ ⎟ 1+b 2 2 ⎜b + c b + a⎠ ⎝ c 1⎛ c c ⎞ ⎟ ≤ ⎜ ⎜c + a + a + b⎠ ⎜ ⎟ ⎟ 1+c 2 2⎝Cộng vế với vế các bđt trên ta được bđt: a b c 1 ⎛a + b b + c c + a ⎞ 3 ⎟= + + ≤ ⎜⎜ + + ⎟ ⎟ 1+a 2 1+ b 2 1+ c 2 2 ⎜a + b b + c c + a ⎠ 2 ⎝ 3Đẳng thức xảy ra ⇔ a = b = c = 3
  5. 5. Bài 5:Cho ba số dương a, b,c thỏa mãn a + b + c = 2Tìm giá trị lớn nhất của biểu thức: ab bc ac S= + + 2c + ab 2a + bc 2b + acBài giải:Ta lần lượt có:⎧⎪ ab ab ab ab ⎛ 1 1 ⎞⎪⎪ ⎜ ⎟⎪ 2c + ab = c (a + b + c) + ab = (c + a )(c + b) ≤ 2 ⎜ c + a + c + b ⎠⎪ ⎜ ⎝ ⎟ ⎟⎪⎪⎪⎪ bc bc bc ⎛ bc ⎜ 1 1 ⎞⎪⎨ = = ≤ + ⎟ ⎜ ⎟ ⎟⎪ 2a + bc⎪ a (a + b + c) + bc (a + b)(a + c) 2 ⎜a + b a + c⎠ ⎝⎪⎪⎪⎪ ca ca ca ca ⎛ 1 1 ⎞ ⎜ ⎟⎪ 2b + ac = b (a + b + c) + ca = (b + c)(b + a ) ≤ 2 ⎜ b + c + b + a ⎠⎪⎪ ⎜ ⎝ ⎟ ⎟⎪⎩ bc + ca bc + ab ca + ab a+b+c⇒S≤ + + = =1 2 (a + b) 2 (c + a ) 2 (c + b) 2 2Đẳng thức xảy ra ⇔ a = b = c = 3Vậy Max S = 1 .Bài tập tương tựCho ba số dương a, b,c thỏa mãn a + b + c = 2Chứng minh rằng: ab bc ac 1 + + ≤ c + ab a + bc b + ac 2Kỹ thuật 2: SỬ DỤNG BẤT ĐẲNG THỨC ĐỒNG BẬC DẠNG CỘNG MẪU SỐ.Dạng 1: 1) ∀x, y > 0 ta luôn có: ⎛1 1⎞ ⎟ ⎜ ( x + y)⎜ + ⎟ ≥ 4 ⎜x y⎠ ⎝ ⎟ Đẳng thức xảy ra ⇔ x = y 2) ∀x, y, y > 0 ta luôn có: ⎛1 1 1⎞ ( x + y + x )⎜ + + ⎟ ≥ 9 ⎜ ⎟ ⎟ ⎜ ⎝x y y⎠ Đẳng thức xảy ra ⇔ x = y = z
  6. 6. Dạng 2: 1) ∀x, y > 0 ta luôn có: 1 1 4 + ≥ x y x+y Đẳng thức xảy ra ⇔ x = y 2) ∀x, y, z > 0 ta luôn có: 1 1 1 9 + + ≥ x y z x+y+z Đẳng thức xảy ra ⇔ x = y = zBài 1: Cho a,b,c là các số dương.Chứng minh rằng: ab bc ca a+b+c + + ≤ a + b + 2c b + c + 2a c + a + 2b 4Bài giảiBiến đổi và áp dụng bất đẳng thức cộng mẫu số ta được: ab 1 1⎛ 1 1 ⎞⎟ = ab. ≤ ab. ⎜⎜ + ⎟ ⎟ a + b + 2c (a + c) + (b + c) 4 ⎜a + c b + c⎠ ⎝Tương tự ta cũng được: bc 1 1⎛ 1 1 ⎞ ⎟ = bc. ≤ bc. ⎜⎜ + ⎟ ⎟ b + c + 2a (b + a ) + (c + a ) 4 ⎜b + a c + a ⎠ ⎝ ca 1 1⎛ 1 ⎜ 1 ⎞⎟ = ca. ≤ ca. ⎜ ⎜c + b + a + b⎠ ⎟ ⎟ c + a + 2b (c + b) + (a + b) 4⎝Cộng vế với vế các bđt trên ta được bđt ab bc ca 1 ⎛ bc + ca ca + ab ab + bc ⎞ a + b + c ⎟= + + ≤ ⎜ ⎜ + + ⎟ ⎟ a + b + 2c b + c + 2a c + a + 2b 4 ⎜ a + b ⎝ b+c a+c ⎠ 4Dấu đẳng thức xảy ra ⇔ a = b = c > 0Bài 2:Cho a,b,c là các số dương.Chứng minh rằng: ab bc ca a+b+c + + ≤ a + 3b + 2c b + 3c + 2a c + 3a + 2b 6Bài giảiBiến đổi và áp dụng bất đẳng thức cộng mẫu số ta được: ab 1 1⎛ 1 ⎜ 1 1⎞⎟ = ab. ≤ ab. ⎜ ⎜ a + c + b + c + 2b ⎠ ⎟ ⎟ a + 3b + 2c (a + c) + (b + c) + 2b 9⎝Tương tự ta cũng được: bc 1 1⎛ 1 1 1⎞ ⎟ = bc. ≤ bc. ⎜ ⎜ b + a + c + a + 2c ⎠ ⎜ ⎟ ⎟ b + 3c + 2a (b + a ) + (c + a ) + 2c 9⎝ ca 1 1⎛ 1 ⎜ 1 1⎞⎟ = ca. ≤ ca. ⎜⎜ + + ⎟ ⎟ c + 3a + 2b (c + b) + (a + b) + 2a 9 ⎝ c + b a + b 2a ⎠
  7. 7. Cộng vế với vế các bđt trên ta được bđt ab bc ca 1 ⎜ a + b + c bc + ca ca + ab ab + bc ⎞ a + b + c ⎛ ⎟ + + ≤ ⎜ + + + ⎟= ⎟a + 3b + 2c b + 3c + 2a c + 3a + 2b 9 ⎜ ⎝ 2 a+b b+c a+c ⎠ 6Dấu đẳng thức xảy ra ⇔ a = b = c > 0Bài 3: 1 1 1Cho a,b,c là các số dương thỏa mãn+ + = 4 .Chứng minh rằng: a b c 1 1 1 + + ≤1 2a + b + 2c a + 2b + c a + b + 2cBài giải:Biến đổi và áp dụng bất đẳng thức cộng mẫu số ta được: 1 1 1⎛ 1 ⎜ 1 ⎞ ⎟ ≤ 1 ⎛ 2 + 1 + 1⎞ ⎟ = ≤ ⎜ ⎜ + ⎟ ⎜ ⎟ 2a + b + c (a + b) + (a + c) 4 ⎝ a + b a + c ⎠ 16 ⎜ a b c ⎠ ⎟ ⎝ ⎟ 1 1 1⎛ 1 ⎜ 1 ⎞ ⎟ 1 ⎛ 1 2 1⎞ ⎟ = ≤ ⎜ + ⎜ ⎜ ⎟ ≤ 16 ⎜ a + b + c ⎠ ⎟ a + 2b + c (a + b) + (b + c) 4 ⎝ a + b b + c ⎠ ⎝ ⎟ ⎟ 1 1 1⎛ 1 ⎜ 1 ⎞ ⎟ 1 ⎛ 1 1 2⎞ ⎟ = ≤ ⎜ + ⎜ ⎜ a + b + 2c (a + c) + (b + c) 4 ⎝ a + c b + c ⎠ ⎟ ≤ 16 ⎜ a + b + c ⎠ ⎟ ⎝ ⎟ ⎟Cộng vế với vế các bđt trên ta được bđt 1 1 1 1 ⎛ 1 1 1⎞ 1⎟ + + ⎜ ≤ ⎜ + + ⎟ = .4 = 1 ⎟2a + b + 2c a + 2b + c a + b + 2c 4 ⎝ a b c ⎠ 4 3Dấu đẳng thức xảy ra ⇔ a = b = 4Bài 4:Cho a,b là các số dương thỏa mãn a + b < 1 .Chứng minh rằng: 1 1 1 9 + + ≥ 1−a 1− b a + b 2Nhận xét : (1 − a ) + (1 − b) + (a + b) = 2Áp dụng bất đẳng thức dạng 2 ta được: 1 1 1 9 2 + + ≥ = (đpcm) 1 − a 1 − b a + b (1 − a ) + (1 − b) + (a + b) 9 1Dấu đẳng thức xảy ra ⇔ a = b = 3Bài toán có liên quan:Cho a,b là các số dương thỏa mãn a + b < 1 . Tìm giá trị nhỏ nhất của biểu thức a2 b2 1 S= + +a+b+ 1−a 1− b a+b 5Kết quả: min S = 2
  8. 8. Bài 5:Cho a, b, C là các số dương thỏa mãn a + b + c = 1 .Chứng minh rằng: 1 1 1 9 + + ≥ 1+a 1+b 1+c 4Nhận xét : (1 + a ) + (1 + b) + (1 + c) = 4Áp dụng bất đẳng thức dạng 2 ta được: 1 1 1 9 9 + + ≥ = (đpcm) 1 + a 1 + b 1 + c (1 + a ) + (1 + b) + (1 + c) 4 1Dấu đẳng thức xảy ra ⇔ a = b = . 3Bài toán có liên quan:Cho a, b, c là các số dương thỏa mãn a + b + c = 1 . Tìm giá trị lớn nhất của biểu thức a b c S= + + a +1 b +1 c +1 3Kết quả: Max S = 4Kỹ thuật 3: SỬ DỤNG CÁC BẤT ĐẲNG THỨC TRONG DÃY BẤT ĐẲNG THỨC BẬC BADãy bất đẳng thức đồng bậc bậc ba: 3 ab (a + b) ⎛ a + b ⎞ 3 (a + b)(a 2 + ab + b2 ) a 3 + b3 (a 2 + b2 ) ≤⎜ ⎜ 2 ⎠ ⎟ ≤ ⎟ ≤ ≥ (1) 2 ⎝ ⎟ 6 2 (a + b) 3Dấu bằng xảy ra ⇔ a = bBài 1:Cho a, b, c là các số thực dương. Chứng minh rằng: b+c c+a a+b + + ≤2 a + 3 4 (b + c ) b + 3 4 (c + a ) c + 3 4 (a 3 + b3 ) 3 3 3 3Bài giải:Sử dụng bất đẳng thức (1) ta có 3 4 (b 3 + c 3 ) ≥ b + cDo đó: 3 4 (b 3 + c 3 ) ≥ b + c ⇒ a + 3 4 (b 3 + c 3 ) ≥ a + b + c 1 1 b+c b+c ⇒ ≤ ⇒ ≤ a + 3 4 (b 3 + c 3 ) a+b+c a + 3 4 (b 3 + c 3 ) a + b + cChứng minh tương tự ta cũng được: c+a c+a ≤ b + 3 4 (c + a ) a + b + c 3 3 a+b a+b ≤ c + 3 4 (a + b 3 3 ) a+b+c
  9. 9. Cộng vế với vế các bất đẳng thức trên ta được bđt b+c c+a a+b 2 (a + b + c ) + + ≤ =2 a + 3 4 (b3 + c 3 ) b + 3 4 (c3 + a 3 ) c + 3 4 (a 3 + b3 ) a+b+cDấu đẳng thức xảy ra ⇔ a = b = c > 0Bài 2:Cho a, b, c là các số thực dương. Chứng minh rằng: 1 1 1 1 3 3 + 3 3 + 3 3 ≤ a + b + abc b + c + abc c + a + abc abcBài giảiSử dụng bất đẳng thức (1) ta có a 3 + b3 ≥ ab (a + b)Do đó: 1 1 a 3 + b3 + abc ≥ ab (a + b + c) ⇒ ≤ a + b + abc ab (a + b + c) 3 3Chứng minh tương tự ta cũng được: 1 1 ≤ b + c + abc bc (a + b + c) 3 3 1 1 ≤ c + a + abc ca (a + b + c) 3 3Cộng vế với vế các bất đẳng thức trên ta được bđt 1 1 1 1 ⎛1 1 1⎞⎟ 1 + 3 + 3 ≤ ⎜ + ⎜ ab bc + ca ⎠ = abc ⎟ ⎟ 3 3 3 3 a + b + abc b + c + abc c + a + abc a + b + c ⎝Dấu đẳng thức xảy ra ⇔ a = b = c > 0Bài toán có liên quan:Cho ba số dương a, b, c thỏa mãn điều kiện abc = 1Tìm giá trị nhỏ nhất của biểu thức: 1 1 1 S= 3 + 3 + 3 a + b + 1 b + c + 1 c + a3 + 1 3 2Kết quả: Max S = 1Bài 4:Cho a, b, c là các số thực dương thỏa mãn điều kiện abc = 1 . Chứng minh rằng: a 3 + b3 b3 + c3 c3 + a 3 + 2 + 2 ≥2 a 2 + ab + b2 b + bc + c2 c + ca + a 2Bài giải: a 2 + b2 a+bSử dụng bất đẳng thức (1) ta có 2 2 ≥ a + ab + b 3Suy ra:
  10. 10. a 3 + b3 b3 + c3 c3 + a 3 a+b b+c c+a 2 2 2 2 + 2 2 + 2 2 ≥ + + = (a + b + c) ≥ 3. 3 abc = 2a + ab + b b + bc + c c + ca + a 3 3 3 3 3Dấu đẳng thức xảy ra ⇔ a = b = c = 1Bài toán có liên quan:Cho x, y, z là các số thực dương thỏa mãn điều kiện xyz = 1 . Chứng minh rằng: x 9 + y9 y 9 + z9 z9 + x 9 + 6 + 6 ≥2 x 6 + x 3 y 3 + y9 y + y 3 z3 + z6 z + z3 x 3 + x 6Kỹ thuật 4: SỬ DỤNG BẤT ĐẲNG THỨC PHỤ TRỢBài 1:Cho các số dương a, b,c thỏa mãn điều kiện abc = 1Chứng minh rằng: 1 + a 2 + b2 1 + b2 + c 2 1 + c2 + a 2 + + ≥3 3 ab bc caBài giải:Áp dụng bất đẳng thức Cô-si ta có: 1 + a 3 + b3 ≥ 3 3 1.a 3 .b3 = 3ab (Tạm gọi là bđt phụ trợ) 1 + a 3 + b3 3Suy ra: 1 + a 3 + b3 ≥ 3 3 1.a 3 .b3 = 3ab ⇒ ≥ ab abChứng minh tương tự ta cũng được: 1 + b3 + c3 3 ≥ bc bc 1 + c3 + a 3 3 ≥ ca caCộng vế với vế các bất đẳng thức trên ta được bđt 1 + a 2 + b2 1 + b2 + c 2 1 + c2 + a 2 3 3 3 3 3 3 + + ≥ + + ≥ 33 . . =3 3 ab bc ca ab bc ca ab bc caDấu đẳng thức xảy ra ⇔ a = b = c = 1Bài 2:Cho ba số dương a, b, c. Chứng minh bất đẳng thức: 2 a 2 b 2 c 1 1 1 3 2 + 3 2 + 3 2 ≤ 2 + 2 + 2 a +b b +c c +a a b cBài giảiÁp dụng bất đẳng thức Cô-si ta có: a 3 + b2 ≥ 2 a 3 b2 = 2ab b 2 a 1Suy ra: a 3 + b2 ≥ 2 a 3 b2 = 2ab b ⇒ 3 2 ≤ a +b abChứng minh tương tự ta cũng được:
  11. 11. 2 b 1 3 2 ≤ b +c bc 2 c 1 3 2 ≤ c +a caCộng vế với vế các bất đẳng thức trên ta được bđt 2 a 2 b 2 c 1 1 1 1 1 1 3 2 + 3 2 + 3 2 ≤ + + ≤ 2 + 2 + 2 a +b b +c c +a ab bc ca a b cDấu đẳng thức xảy ra ⇔ a = b = c > 0Bài 3:Cho ba số dương a, b, c. Chứng minh bất đẳng thức: a2 b2 c2 + 2 + 2 ≥1 a 2 + 2bc b + 2ca c + 2abBài giải:Áp dụng bất đẳng thức : b2 + c2 ≥ 2bcTa có : 1 1 a2 a2b2 + c2 ≥ 2bc ⇒ a 2 + 2bc ≤ a 2 + b2 + c2 ⇒ ≥ 2 ⇒ 2 ≥ 2 a 2 + 2bc a + b2 + c2 a + 2bc a + b2 + c2Chứng minh tương tự ta cũng được: b2 b2 ≥ 2 b2 + 2ca a + b2 + c2 c2 b2 ≥ c2 + 2ab a 2 + b2 + c2Cộng vế với vế các bất đẳng thức trên ta được bđt a2 b2 c2 a2 b2 c2 + 2 + 2 ≥ 2 + 2 + 2 =1 a 2 + 2bc b + 2ca c + 2ab a + b2 + c2 a + b2 + c2 a + b2 + c2Dấu đẳng thức xảy ra ⇔ a = b = c > 0Bài 4: 3Cho ba số dương a, b, c thỏa mãn điều kiện a + b + c = . Chứng minh bất đẳng thức: 4 3 a + 3b + 3 b + 3c + 3 c + 3a ≤ 3Bài giải: a + 3b + 1 + 1 a + 3b + 2Áp dụng bất đẳng thức Cô-si ta có : 3 a + 3b = 3 (a + 3b).1.1 ≤ = 3 3Chứng minh tương tự ta cũng được: b + 3c + 2 3 b + 3c ≤ 3 c + 3a + 2 3 c + 3a ≤ 3Cộng vế với vế các bất đẳng thức trên ta được bđt 4 (a + b + c ) + 6 3 a + 3b + 3 b + 3c + 3 c + 3a ≤ =3 3
  12. 12. 1Dấu đẳng thức xảy ra ⇔ a = b = c = 4Bài 5:Cho ba số dương a, b, c. Chứng minh bất đẳng thức: ab bc ca a+b+c + + ≤ a+b b+c c+a 2Bài giải: 2 ab a+bÁp dụng bất đẳng thức Cô-si ta có : a + b ≥ 2 ab ⇒ (a + b) ≥ 4ab ⇒ ≥ a+b 4Chứng minh tương tự ta cũng được: bc b+c ≥ b+c 4 ca c+a ≥ c+a 4Cộng vế với vế các bất đẳng thức trên ta được bđt ab bc ca a+b b+c c+a a+b+c + + ≤ + + = a+b b+c c+a 4 4 4 2Dấu đẳng thức xảy ra ⇔ a = b = c > 0Bài toán có liên quan:Cho ba số dương a, b, c thỏa mãn điều kiện a + b + c = 3 . Tìm giá trị lớn nhất của biểu thức ab bc ca S= + + a+b b+c c+a 3Kết quả: Max S = 2Bài 6:Cho ba số dương a, b, c. Chứng minh bất đẳng thức: a3 b3 c3 3 + + 3 3 ≥1 a 3 + (b + c ) b3 + (c + a )3 c + (a + b )Bài giải: 1 + x + 1 − x − x2 x2Áp dụng bất đẳng thức Cô-si ta có : 1 + x 3 ≥ (1 + x )(1 − x + x 2 ) ≤ = 1+ 2 2Vận dụng bđt trên ta sẽ được: a3 1 1 1 a2 3 = ≥ 2 ≥ 2 2 = a 3 + (b + c) ⎛b + c⎞ 3 1 ⎛b + c⎞ b +c a 2 + b2 + c 2 1+⎜⎜ ⎟ 1+ ⎜ ⎟ ⎟ 1+ ⎟ ⎟ 2⎜ a ⎠ ⎝ ⎟ 2 ⎝ a ⎠ aChứng minh tương tự ta cũng được: b3 b2 ≥ 2 b3 + (c + a )3 a + b2 + c 2 c3 c2 3 ≥ 2 c 3 + (a + b ) a + b2 + c 2
  13. 13. Cộng vế với vế các bất đẳng thức trên ta được bđt: a3 b3 c3 a2 b2 c2 3 + + 3 3 ≥ 2 + 2 + 2 =1 a 3 + (b + c ) b3 + (c + a )3 c + (a + b) a + b 2 + c 2 a + b 2 + c 2 a + b 2 + c2 Ngày soạn 30/04/2009. -------------------Hết------------------

×