SlideShare ist ein Scribd-Unternehmen logo
1 von 13
Downloaden Sie, um offline zu lesen
, fujii@icrr.u-tokyo.ac.jp
Max Malacari, Justin Albury, Jose Bellido, Ladislav Chytka,
John Farmer, Petr Hamal, Pavel Horvath, Miroslav Hrabovsky, Dusan Mandat, John
Matthews, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera,
Petr Schovanek, Stan Thomas, Petr Travnicek
The FAST Collaboration, http://www.fast-project.org
2018 9 14 2018 1
FAST 6
Fine pixelated camera
Low-cost and simplified telescope
✦ Target : > 1019.5 eV, ultra-high energy cosmic rays (UHECR) and neutral particles
✦ Huge target volume ⇒ Fluorescence detector array
Too expensive to cover a huge area
2
Single or few pixels and smaller optics
Fluorescence detector Array of Single-pixel Telescopes
Segmented mirror telescope
Variable angles of elevation – steps.
15 deg 45 deg
3
20 km
Fluorescence detector Array of Single-pixel Telescopes
✦ Each telescope: 4 PMTs, 30°×30° field of view
(FoV)
✦ Reference design: 1 m2 aperture, 15°×15°
FoV per PMT
✦ Each station: 12 telescopes, 48 PMTs,
30°×360° FoV.
✦ Deploy on a triangle grid with 20 km spacing,
like “Surface Detector Array”.
✦ With 500 stations, a ground coverage is
150,000 km2.
✦ 100 million USD for detectors
5 years: 5100 events (E > 57 EeV),
650 events (E > 100 EeV)
ce Detectors
ope Array:700 km2
ale) 3
Pierre Auger: 3000 km2 Telescope Array:700 km2
(not drawn to scale) 3
TA
700 km2
Auger
3000 km2
57 EeV
(same scale)
16
56 EeV zenith 500
1
2
3
1
3 2
PhotonsatdiaphragmPhotonsatdiaphragm
Photonsatdiaphragm
60 stations
17,000 km2
FAST - progress in design and construction
UV Plexiglass Segmented primary mirror8 inch PMT camera
(2 x 2)
1m2 aperture
FOV = 25°x 25°
variable
tilt
Joint Laboratory of Optics Olomouc – Malargue November 20153
Prototype - October 2015
15°
45°
UV band-pass
filter
Installation and observation with FAST prototypes
4
‣ 4 PMTs (20 cm, R5912-03MOD, base E7694-01)
‣ 1 m2 aperture of the UV band-pass filter (ZWB3),
segmented mirror of 1.6 m diameter
‣ 2 telescopes has been installed to cover 30°× 60° FoV
‣ remote operation and automatic shutdown
TA FD
FAST prototypes (2 telescopes)
Real-time cloud monitor by all sky-camera
monitor camera for shutters
Clear Cloudy
JSPS grant-in-aid for scientific research 15H05443
D. Mandat, TF et al., JINST 12, T07001 (2017)
Observation time and sky monitor
5
Bright
Dark
All sky camera
Sky quality
monitor
2018/Aug/12
‣ 421 hours operation by 2018/Sep
DAQ setup for the FAST prototypes
6
✦ Receiving the external triggers from TA FD
✦ Common field-of-view (FoV) with FAST and TA FD
✦ Observe a UV vertical laser at the distance of 21 km.
✦ Implemented internal trigger (2 adjacent PMTs),
successful to detect a vertical laser in a test operation
Time (100 ns)
0 100 200 300 400 500 600 700 800
-30
-20
Time (100 ns)
0 100 200 300 400 500 600 700 800
-30
-20
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
-10
0
10
20
30
PMT 2
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
-20
-10
0
10
20
30
40
PMT 4
Time window 80 µs
p.e./100ns
TA FD FoV
A vertical laser at 21 km away
FAST1FAST2
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
5
10
15
20
25
PMT1
PMT2
PMT3
PMT4
Simulation (Preliminary)
Data/MC comparison with vertical UV laser
7
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
5
10
15
20
PMT 1
PMT 2
PMT 3
PMT 4
11
imulation - example
) aperture input 0.5W 0.43W/PMT1, <0.001W/PMT234 (eff: 86%)
(PMT 4)Directional characteristic (PMT2)
A UV vertical laser at 21 km awaySpot-size
50 mm offsetfocal plane
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-10
0
10
20
30
40
PMT1
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-20
-10
0
10
20
30
40
50
PMT3
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000/(100ns)p.e.N
0
10
20
30
40
50
60
PMT2
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-20
-10
0
10
20
30
40
50
PMT4
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-40
-20
0
20
40
60
80
100
120
PMT5
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-20
0
20
40
60
80
PMT7
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-30
-20
-10
0
10
20
30
PMT6
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-10
0
10
20
30
PMT8
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-10
0
10
20
30
40
PMT1
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-20
-10
0
10
20
30
40
50
PMT3
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
0
10
20
30
40
50
60
PMT2
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-20
-10
0
10
20
30
40
50
PMT4
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-40
-20
0
20
40
60
80
100
120
PMT5
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-20
0
20
40
60
80
PMT7
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-30
-20
-10
0
10
20
30
PMT6
Time(100ns)
0 100 200 300 400 500 600 700 800 900 1000
/(100ns)p.e.N
-10
0
10
20
30
PMT8
Atmospheric monitoring, UHECR detections
8
Time (100 ns)
200 250 300 350 400 450
/(100ns)p.e.N
-20
0
20
40
60
80
100
120 PMT 1
PMT 2
PMT 3
PMT 4
PMT 5
PMT 6
PMT 7
PMT 8
Event 283
UHECR event search
25 events (201 hours), in time coincidence with TA FD and significant
signals of > 2PMTs with FAST
rtant source of systematic uncertainty in the energy scales of both experiments. A
minary comparison between a set of 250 laser shots measured at the TA site and
ations of the expected laser signal under varying aerosol attenuation conditions, is
n in Fig. 7. (Note that this series of laser shots has been correctly calibrated to the
aser energy, as there is a seasonal drift in the pulse energy of the TA CLF laser of
⇠ 40%.) While this comparison is preliminary, it demonstrates FAST’s excellent
tivity to vertical laser shots and highlights the potential for FAST contributions to
bservatory’s atmospheric monitoring e↵orts.
Time bin [100 ns]
0 100 200 300 400 500 600 700 800 900 1000
/100nsp.eN
0
5
10
15
20
25
30
35
Rayleigh
= 0.04∞VAOD
= 0.1∞VAOD
Measured trace
e 7: Average signal from 250 CLF traces measured at the TA site, compared with
xpectation from simulations for 3 di↵erent aerosol atmospheres. An aerosol scale
t of 1 km was assumed for all atmospheres, consistent with the TA assumption.
Infrastructure Requirements; Site Selection
T has a number of requirements for a candidate site: AC power, a container or
ing for housing, a network connection, and a view of the CLF. An external trigger
an existing FD building would also be useful. Placing FAST adjacent to an existing
uilding meets all these requirements, provided conduits for the necessary cabling.
this in mind, we are considering two possible locations for the installation of the
Atmospheric monitor
Clear
Dirty
log(E/eV)= 18.30,
Rp: 2.3 km
2018/01/18
(Preliminary)
Preliminary
Time [100 ns]
200 220 240 260 280 300 320 340 360 380 400
/100nsp.e.N
-50
0
50
100
150
200
PMT 1
PMT 2
PMT 3
PMT 4
PMT 5
PMT 6
PMT 7
PMT 8
log(E/eV)= 19.28,
Rp: 6.1 km
2018/05/15
(Preliminary)
✦ Install the FAST prototypes at Auger and TA for a study of systematic
uncertainties and a cross calibration.
✦ Profile reconstruction with geometry given by surface detector array (1° in
direction, 100 m in core location).
✦ Energy: 10%, Xmax : 35 g/cm2 at 1019.5 eV
✦ Independent check of Energy and Xmax scale between Auger and TA
Possible application of the FAST prototypes
9
1. Introduction
The hybrid detector of the Pierre Auger Observatory [1] consists of 1600
surface stations – water Cherenkov tanks and their associated electronics – and
24 air fluorescence telescopes. The Observatory is located outside the city of
Malarg¨ue, Argentina (69◦
W, 35◦
S, 1400 m a.s.l.) and the detector layout is
shown in Fig. 1. Details of the construction, deployment and maintenance of
the array of surface detectors are described elsewhere [2]. In this paper we will
concentrate on details of the fluorescence detector and its performance.
Figure 1: Status of the Pierre Auger Observatory as of March 2009. Gray dots show the
positions of surface detector stations, lighter gray shades indicate deployed detectors, while
a r t i c l e i n f o
Article history:
Received 25 December 2011
Received in revised form
25 May 2012
Accepted 25 May 2012
Available online 2 June 2012
Keywords:
Ultra-high energy cosmic rays
Telescope Array experiment
Extensive air shower array
a b s t r a c t
The Telescope Array (TA) experiment, located in the western desert of Utah, USA,
observation of extensive air showers from extremely high energy cosmic rays. The
surface detector array surrounded by three fluorescence detectors to enable simulta
shower particles at ground level and fluorescence photons along the shower trac
detectors and fluorescence detectors started full hybrid observation in March, 2008
describe the design and technical features of the TA surface detector.
& 2012 Elsevier B.V.
1. Introduction
The main aim of the Telescope Array (TA) experiment [1] is to
explore the origin of ultra high energy cosmic rays (UHECR) using
their energy spectrum, composition and anisotropy. There are two
major methods of observation for detecting cosmic rays in the
energy region above 1017.5
eV. One method which was used at the
High Resolution Fly’s Eye (HiRes) experiment is to detect air
fluorescence light along air shower track using fluorescence
detectors. The other method, adopted by the AGASA experiment,
is to detect air shower particles at ground level using surface
detectors deployed over a wide area ( $ 100 km
2
).
The AGASA experiment reported that there were 11 events
above 1020
eV in the energy spectrum [2,3]. However, the
existence of the GZK cutoff [4,5] was reported by the HiRes
experiment [6]. The Pierre Auger experimen
suppression on the cosmic ray flux at energy a
[7] using an energy scale obtained by fluores
scopes (FD). The contradiction between results f
detectors and those from surface detector arrays
be investigated by having independent ener
both techniques. Hybrid observations with SD
us to compare both energy scales. Information ab
and impact timing from SD observation impro
reconstruction of FD observations. Observatio
detectors have a nearly 100% duty cycle, which
especially for studies of anisotropy. Correlations
directions of cosmic rays and astronomical objec
region should give a key to exploring the origin o
their propagation in the galactic magnetic field.
Fig. 1. Layout of the Telescope Array in Utah, USA. Squares denote 507 SDs. There are three subarrays controlled by three communication towers den
three star symbols denote the FD stations.
T. Abu-Zayyad et al. / Nuclear Instruments and Methods in Physics Research A 689 (2012) 87–9788
Auger collab., NIM-A (2010)
]2
[g/cmmaxReconstructed X
400 500 600 700 800 900 1000 1100 1200 1300 1400
Entries
0
100
200
300
400
500
600
eV19.5
10
f = 1.17
Proton EPOS
Iron EPOS
Including Xmax
resolution
ProtonIron
TA collab., NIM-A (2012)
Identical
simplified FD
Telescope Array
Experiment
Pierre Auger Observatory
log(E(eV))
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6
Efficiency
0
0.2
0.4
0.6
0.8
1 Proton
Iron
log(E(eV))
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6
EnergyResolution[%]
0
5
10
15
20
25
Proton
Iron
log(E(eV))
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6
]2
Resolution[g/cmmaxX
0
20
40
60
80
100
Proton
Iron
Energy
Xmax
TF et al., Astropart.Phys., 74, pp64-72 (2016)
Installation plan in Auger
✦ Location: Los Leones site at Auger
✦ Uninstall MIDAS and install FAST telescope
to detect distant lasers
✦ Official approval is expected in next Auger
collaboration meeting in November 2018.
✦ The telescopes are being constructed in Czech
republic.
✦ Plan to install 1st telescope in February 2019 10
FAST meeting
2018/Jun @ Olomouc
d detector of the Pierre Auger Observatory [1] consists of 1600
ns – water Cherenkov tanks and their associated electronics – and
cence telescopes. The Observatory is located outside the city of
gentina (69◦
W, 35◦
S, 1400 m a.s.l.) and the detector layout is
1. Details of the construction, deployment and maintenance of
urface detectors are described elsewhere [2]. In this paper we will
n details of the fluorescence detector and its performance.
s of the Pierre Auger Observatory as of March 2009. Gray dots show the
ace detector stations, lighter gray shades indicate deployed detectors, while
es empty positions. Light gray segments indicate the fields of view of 24
scopes which are located in four buildings on the perimeter of the surface
wn is a partially completed infill array near the Coihueco station and the
Central Laser Facility (CLF, indicated by a white square). The description
also the description of all other atmospheric monitoring instruments of the
servatory is available in [3].
tion of ultra-high energy ( 1018
eV) cosmic rays using nitrogen
mission induced by extensive air showers is a well established
d previously by the Fly’s Eye [4] and HiRes [5] experiments. It is
he Telescope Array [6] project that is currently under construction,
en proposed for the satellite-based EUSO and OWL projects.
articles generated during the development of extensive air showers
heric nitrogen molecules, and these molecules then emit fluores-
the ∼ 300 − 430 nm range. The number of emitted fluorescence
oportional to the energy deposited in the atmosphere due to
ic energy losses by the charged particles. By measuring the rate
7
FDLIDAR
MIDAS
Mirror polishing
JSPS grant-in-aid for scientific research, 18H01225
LIDAR MIDAS
Summary and future plans
11
Fluorescence detector Array of Single-pixel Telescopes (FAST)
Optimization to detect UHECR with economical fluorescence
telescopes.
10×statistics compared to Auger and TA×4 with Xmax
UHECR astronomy for nearby universe, directional
anisotropy for energy spectrum and mass composition
Time (100 ns)
0 100 200 300 400 500 600 700 800
/(100ns)p.e.N
0
5
10
15
20
PMT 1
PMT 2
PMT 3
PMT 4
Time [100 ns]
200 220 240 260 280 300 320 340 360 380 400
/100nsp.e.N
-50
0
50
100
150
200
PMT 1
PMT 2
PMT 3
PMT 4
PMT 5
PMT 6
PMT 7
PMT 8
Laser
UHECR
✦ Stable remote observation with two FAST telescopes at TA site.
✦ 421 hours observation by 2018/Sep
✦ A distant laser and 1019.3 eV shower detected
✦ Continue to operate the prototype and search for UHECRs in a
coincidence with the TA detectors.
✦ Installing 3rd telescope in Telescope Array site in October 2018
✦ Plan to install 1st telescope in Pierre Auger Observatory in 2019 http://www.fast-project.org
12
Backup pockets
http://www.fast-project.org
13

Weitere ähnliche Inhalte

Was ist angesagt?

The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -Toshihiro FUJII
 
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告Toshihiro FUJII
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...Toshihiro FUJII
 
TH4.T05.3_IGARSS-2011-3233-BOUCHER.ppt
TH4.T05.3_IGARSS-2011-3233-BOUCHER.pptTH4.T05.3_IGARSS-2011-3233-BOUCHER.ppt
TH4.T05.3_IGARSS-2011-3233-BOUCHER.pptgrssieee
 
Sano_IGARSS2011.ppt
Sano_IGARSS2011.pptSano_IGARSS2011.ppt
Sano_IGARSS2011.pptgrssieee
 
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran Inc.
 
Simulating X-ray Observations with yt
Simulating X-ray Observations with ytSimulating X-ray Observations with yt
Simulating X-ray Observations with ytJohn ZuHone
 
Orbit determination of a non transmitting satellite
Orbit determination of a non transmitting satelliteOrbit determination of a non transmitting satellite
Orbit determination of a non transmitting satelliteClifford Stone
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm lineCosmoAIMS Bassett
 
Overview of hyperspectral remote sensing of impervious surfaces
Overview of hyperspectral remote sensing of impervious surfacesOverview of hyperspectral remote sensing of impervious surfaces
Overview of hyperspectral remote sensing of impervious surfaceszhengspace
 
Challenging the Isotropic Cosmos
Challenging the Isotropic CosmosChallenging the Isotropic Cosmos
Challenging the Isotropic CosmosCosmoAIMS Bassett
 
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONSTH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONSgrssieee
 
2007 t hz astronomy with sofia
2007 t hz astronomy with sofia2007 t hz astronomy with sofia
2007 t hz astronomy with sofiaSean Casey, USRA
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptgrssieee
 
Departmental Seminar-PiFM 151109
Departmental Seminar-PiFM 151109Departmental Seminar-PiFM 151109
Departmental Seminar-PiFM 151109Avinash Warankar
 

Was ist angesagt? (20)

The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -
 
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
 
TH4.T05.3_IGARSS-2011-3233-BOUCHER.ppt
TH4.T05.3_IGARSS-2011-3233-BOUCHER.pptTH4.T05.3_IGARSS-2011-3233-BOUCHER.ppt
TH4.T05.3_IGARSS-2011-3233-BOUCHER.ppt
 
SSC13-IV-8
SSC13-IV-8SSC13-IV-8
SSC13-IV-8
 
Sano_IGARSS2011.ppt
Sano_IGARSS2011.pptSano_IGARSS2011.ppt
Sano_IGARSS2011.ppt
 
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
 
Simulating X-ray Observations with yt
Simulating X-ray Observations with ytSimulating X-ray Observations with yt
Simulating X-ray Observations with yt
 
Orbit determination of a non transmitting satellite
Orbit determination of a non transmitting satelliteOrbit determination of a non transmitting satellite
Orbit determination of a non transmitting satellite
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm line
 
Overview of hyperspectral remote sensing of impervious surfaces
Overview of hyperspectral remote sensing of impervious surfacesOverview of hyperspectral remote sensing of impervious surfaces
Overview of hyperspectral remote sensing of impervious surfaces
 
Oceansat
OceansatOceansat
Oceansat
 
Challenging the Isotropic Cosmos
Challenging the Isotropic CosmosChallenging the Isotropic Cosmos
Challenging the Isotropic Cosmos
 
GAIA @SpaceUpParis
GAIA @SpaceUpParisGAIA @SpaceUpParis
GAIA @SpaceUpParis
 
2D Microtremor Array
2D Microtremor Array2D Microtremor Array
2D Microtremor Array
 
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONSTH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS
 
2007 t hz astronomy with sofia
2007 t hz astronomy with sofia2007 t hz astronomy with sofia
2007 t hz astronomy with sofia
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.ppt
 
Internal soiling test method development
Internal soiling test method developmentInternal soiling test method development
Internal soiling test method development
 
Departmental Seminar-PiFM 151109
Departmental Seminar-PiFM 151109Departmental Seminar-PiFM 151109
Departmental Seminar-PiFM 151109
 

Ähnlich wie FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画

Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Toshihiro FUJII
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...Toshihiro FUJII
 
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Toshihiro FUJII
 
Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Ahmed Ammar Rebai PhD
 
Some possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentSome possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentAhmed Ammar Rebai PhD
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013AREA Science Park
 
Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Ahmed Ammar Rebai PhD
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告Toshihiro FUJII
 
Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FASTToshihiro FUJII
 
igarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.pptigarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.pptgrssieee
 
Fukao Plenary.ppt
Fukao Plenary.pptFukao Plenary.ppt
Fukao Plenary.pptgrssieee
 
NTN channel model relative work.pptx
NTN channel model relative work.pptxNTN channel model relative work.pptx
NTN channel model relative work.pptxssuser60a6ab1
 
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrumAn absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrumSérgio Sacani
 
Behalf Of Pamela Collaboration
Behalf Of Pamela CollaborationBehalf Of Pamela Collaboration
Behalf Of Pamela Collaborationahmad bassiouny
 
2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMag2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMagNanoFrontMag-cm
 
igarss_2011_cfosat.ppt
igarss_2011_cfosat.pptigarss_2011_cfosat.ppt
igarss_2011_cfosat.pptgrssieee
 
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublishedAPE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublishedRainer Wilhelm
 
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.pptNineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.pptgrssieee
 
ConorWilman_Manchester_Investigation of an effective low-cost THz TDS system
ConorWilman_Manchester_Investigation of an effective low-cost THz TDS systemConorWilman_Manchester_Investigation of an effective low-cost THz TDS system
ConorWilman_Manchester_Investigation of an effective low-cost THz TDS systemConor Wilman
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Toshihiro FUJII
 

Ähnlich wie FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画 (20)

Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
 
Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...
 
Some possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentSome possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experiment
 
Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013Talents up grazioli cesare_20_05_2013
Talents up grazioli cesare_20_05_2013
 
Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...Towards the identification of the primary particle nature by the radiodetecti...
Towards the identification of the primary particle nature by the radiodetecti...
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FAST
 
igarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.pptigarss_2011_presentation_brcic.ppt
igarss_2011_presentation_brcic.ppt
 
Fukao Plenary.ppt
Fukao Plenary.pptFukao Plenary.ppt
Fukao Plenary.ppt
 
NTN channel model relative work.pptx
NTN channel model relative work.pptxNTN channel model relative work.pptx
NTN channel model relative work.pptx
 
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrumAn absorption profile centred at 78 megahertz in the sky-averaged spectrum
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
 
Behalf Of Pamela Collaboration
Behalf Of Pamela CollaborationBehalf Of Pamela Collaboration
Behalf Of Pamela Collaboration
 
2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMag2016.06.21 lab282 NanoFrontMag
2016.06.21 lab282 NanoFrontMag
 
igarss_2011_cfosat.ppt
igarss_2011_cfosat.pptigarss_2011_cfosat.ppt
igarss_2011_cfosat.ppt
 
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublishedAPE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
 
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.pptNineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
 
ConorWilman_Manchester_Investigation of an effective low-cost THz TDS system
ConorWilman_Manchester_Investigation of an effective low-cost THz TDS systemConorWilman_Manchester_Investigation of an effective low-cost THz TDS system
ConorWilman_Manchester_Investigation of an effective low-cost THz TDS system
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
 

Mehr von Toshihiro FUJII

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...Toshihiro FUJII
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)Toshihiro FUJII
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究Toshihiro FUJII
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdfToshihiro FUJII
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Toshihiro FUJII
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究Toshihiro FUJII
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告Toshihiro FUJII
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告Toshihiro FUJII
 

Mehr von Toshihiro FUJII (8)

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 

Kürzlich hochgeladen

Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 

Kürzlich hochgeladen (20)

Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 

FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画

  • 1. , fujii@icrr.u-tokyo.ac.jp Max Malacari, Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav Hrabovsky, Dusan Mandat, John Matthews, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Stan Thomas, Petr Travnicek The FAST Collaboration, http://www.fast-project.org 2018 9 14 2018 1 FAST 6
  • 2. Fine pixelated camera Low-cost and simplified telescope ✦ Target : > 1019.5 eV, ultra-high energy cosmic rays (UHECR) and neutral particles ✦ Huge target volume ⇒ Fluorescence detector array Too expensive to cover a huge area 2 Single or few pixels and smaller optics Fluorescence detector Array of Single-pixel Telescopes Segmented mirror telescope Variable angles of elevation – steps. 15 deg 45 deg
  • 3. 3 20 km Fluorescence detector Array of Single-pixel Telescopes ✦ Each telescope: 4 PMTs, 30°×30° field of view (FoV) ✦ Reference design: 1 m2 aperture, 15°×15° FoV per PMT ✦ Each station: 12 telescopes, 48 PMTs, 30°×360° FoV. ✦ Deploy on a triangle grid with 20 km spacing, like “Surface Detector Array”. ✦ With 500 stations, a ground coverage is 150,000 km2. ✦ 100 million USD for detectors 5 years: 5100 events (E > 57 EeV), 650 events (E > 100 EeV) ce Detectors ope Array:700 km2 ale) 3 Pierre Auger: 3000 km2 Telescope Array:700 km2 (not drawn to scale) 3 TA 700 km2 Auger 3000 km2 57 EeV (same scale) 16 56 EeV zenith 500 1 2 3 1 3 2 PhotonsatdiaphragmPhotonsatdiaphragm Photonsatdiaphragm 60 stations 17,000 km2
  • 4. FAST - progress in design and construction UV Plexiglass Segmented primary mirror8 inch PMT camera (2 x 2) 1m2 aperture FOV = 25°x 25° variable tilt Joint Laboratory of Optics Olomouc – Malargue November 20153 Prototype - October 2015 15° 45° UV band-pass filter Installation and observation with FAST prototypes 4 ‣ 4 PMTs (20 cm, R5912-03MOD, base E7694-01) ‣ 1 m2 aperture of the UV band-pass filter (ZWB3), segmented mirror of 1.6 m diameter ‣ 2 telescopes has been installed to cover 30°× 60° FoV ‣ remote operation and automatic shutdown TA FD FAST prototypes (2 telescopes) Real-time cloud monitor by all sky-camera monitor camera for shutters Clear Cloudy JSPS grant-in-aid for scientific research 15H05443 D. Mandat, TF et al., JINST 12, T07001 (2017)
  • 5. Observation time and sky monitor 5 Bright Dark All sky camera Sky quality monitor 2018/Aug/12 ‣ 421 hours operation by 2018/Sep
  • 6. DAQ setup for the FAST prototypes 6 ✦ Receiving the external triggers from TA FD ✦ Common field-of-view (FoV) with FAST and TA FD ✦ Observe a UV vertical laser at the distance of 21 km. ✦ Implemented internal trigger (2 adjacent PMTs), successful to detect a vertical laser in a test operation Time (100 ns) 0 100 200 300 400 500 600 700 800 -30 -20 Time (100 ns) 0 100 200 300 400 500 600 700 800 -30 -20 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 -10 0 10 20 30 PMT 2 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N -20 -10 0 10 20 30 40 PMT 4 Time window 80 µs p.e./100ns TA FD FoV A vertical laser at 21 km away FAST1FAST2
  • 7. Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 5 10 15 20 25 PMT1 PMT2 PMT3 PMT4 Simulation (Preliminary) Data/MC comparison with vertical UV laser 7 Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 5 10 15 20 PMT 1 PMT 2 PMT 3 PMT 4 11 imulation - example ) aperture input 0.5W 0.43W/PMT1, <0.001W/PMT234 (eff: 86%) (PMT 4)Directional characteristic (PMT2) A UV vertical laser at 21 km awaySpot-size 50 mm offsetfocal plane
  • 8. Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -10 0 10 20 30 40 PMT1 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -20 -10 0 10 20 30 40 50 PMT3 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000/(100ns)p.e.N 0 10 20 30 40 50 60 PMT2 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -20 -10 0 10 20 30 40 50 PMT4 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -40 -20 0 20 40 60 80 100 120 PMT5 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -20 0 20 40 60 80 PMT7 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -30 -20 -10 0 10 20 30 PMT6 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -10 0 10 20 30 PMT8 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -10 0 10 20 30 40 PMT1 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -20 -10 0 10 20 30 40 50 PMT3 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N 0 10 20 30 40 50 60 PMT2 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -20 -10 0 10 20 30 40 50 PMT4 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -40 -20 0 20 40 60 80 100 120 PMT5 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -20 0 20 40 60 80 PMT7 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -30 -20 -10 0 10 20 30 PMT6 Time(100ns) 0 100 200 300 400 500 600 700 800 900 1000 /(100ns)p.e.N -10 0 10 20 30 PMT8 Atmospheric monitoring, UHECR detections 8 Time (100 ns) 200 250 300 350 400 450 /(100ns)p.e.N -20 0 20 40 60 80 100 120 PMT 1 PMT 2 PMT 3 PMT 4 PMT 5 PMT 6 PMT 7 PMT 8 Event 283 UHECR event search 25 events (201 hours), in time coincidence with TA FD and significant signals of > 2PMTs with FAST rtant source of systematic uncertainty in the energy scales of both experiments. A minary comparison between a set of 250 laser shots measured at the TA site and ations of the expected laser signal under varying aerosol attenuation conditions, is n in Fig. 7. (Note that this series of laser shots has been correctly calibrated to the aser energy, as there is a seasonal drift in the pulse energy of the TA CLF laser of ⇠ 40%.) While this comparison is preliminary, it demonstrates FAST’s excellent tivity to vertical laser shots and highlights the potential for FAST contributions to bservatory’s atmospheric monitoring e↵orts. Time bin [100 ns] 0 100 200 300 400 500 600 700 800 900 1000 /100nsp.eN 0 5 10 15 20 25 30 35 Rayleigh = 0.04∞VAOD = 0.1∞VAOD Measured trace e 7: Average signal from 250 CLF traces measured at the TA site, compared with xpectation from simulations for 3 di↵erent aerosol atmospheres. An aerosol scale t of 1 km was assumed for all atmospheres, consistent with the TA assumption. Infrastructure Requirements; Site Selection T has a number of requirements for a candidate site: AC power, a container or ing for housing, a network connection, and a view of the CLF. An external trigger an existing FD building would also be useful. Placing FAST adjacent to an existing uilding meets all these requirements, provided conduits for the necessary cabling. this in mind, we are considering two possible locations for the installation of the Atmospheric monitor Clear Dirty log(E/eV)= 18.30, Rp: 2.3 km 2018/01/18 (Preliminary) Preliminary Time [100 ns] 200 220 240 260 280 300 320 340 360 380 400 /100nsp.e.N -50 0 50 100 150 200 PMT 1 PMT 2 PMT 3 PMT 4 PMT 5 PMT 6 PMT 7 PMT 8 log(E/eV)= 19.28, Rp: 6.1 km 2018/05/15 (Preliminary)
  • 9. ✦ Install the FAST prototypes at Auger and TA for a study of systematic uncertainties and a cross calibration. ✦ Profile reconstruction with geometry given by surface detector array (1° in direction, 100 m in core location). ✦ Energy: 10%, Xmax : 35 g/cm2 at 1019.5 eV ✦ Independent check of Energy and Xmax scale between Auger and TA Possible application of the FAST prototypes 9 1. Introduction The hybrid detector of the Pierre Auger Observatory [1] consists of 1600 surface stations – water Cherenkov tanks and their associated electronics – and 24 air fluorescence telescopes. The Observatory is located outside the city of Malarg¨ue, Argentina (69◦ W, 35◦ S, 1400 m a.s.l.) and the detector layout is shown in Fig. 1. Details of the construction, deployment and maintenance of the array of surface detectors are described elsewhere [2]. In this paper we will concentrate on details of the fluorescence detector and its performance. Figure 1: Status of the Pierre Auger Observatory as of March 2009. Gray dots show the positions of surface detector stations, lighter gray shades indicate deployed detectors, while a r t i c l e i n f o Article history: Received 25 December 2011 Received in revised form 25 May 2012 Accepted 25 May 2012 Available online 2 June 2012 Keywords: Ultra-high energy cosmic rays Telescope Array experiment Extensive air shower array a b s t r a c t The Telescope Array (TA) experiment, located in the western desert of Utah, USA, observation of extensive air showers from extremely high energy cosmic rays. The surface detector array surrounded by three fluorescence detectors to enable simulta shower particles at ground level and fluorescence photons along the shower trac detectors and fluorescence detectors started full hybrid observation in March, 2008 describe the design and technical features of the TA surface detector. & 2012 Elsevier B.V. 1. Introduction The main aim of the Telescope Array (TA) experiment [1] is to explore the origin of ultra high energy cosmic rays (UHECR) using their energy spectrum, composition and anisotropy. There are two major methods of observation for detecting cosmic rays in the energy region above 1017.5 eV. One method which was used at the High Resolution Fly’s Eye (HiRes) experiment is to detect air fluorescence light along air shower track using fluorescence detectors. The other method, adopted by the AGASA experiment, is to detect air shower particles at ground level using surface detectors deployed over a wide area ( $ 100 km 2 ). The AGASA experiment reported that there were 11 events above 1020 eV in the energy spectrum [2,3]. However, the existence of the GZK cutoff [4,5] was reported by the HiRes experiment [6]. The Pierre Auger experimen suppression on the cosmic ray flux at energy a [7] using an energy scale obtained by fluores scopes (FD). The contradiction between results f detectors and those from surface detector arrays be investigated by having independent ener both techniques. Hybrid observations with SD us to compare both energy scales. Information ab and impact timing from SD observation impro reconstruction of FD observations. Observatio detectors have a nearly 100% duty cycle, which especially for studies of anisotropy. Correlations directions of cosmic rays and astronomical objec region should give a key to exploring the origin o their propagation in the galactic magnetic field. Fig. 1. Layout of the Telescope Array in Utah, USA. Squares denote 507 SDs. There are three subarrays controlled by three communication towers den three star symbols denote the FD stations. T. Abu-Zayyad et al. / Nuclear Instruments and Methods in Physics Research A 689 (2012) 87–9788 Auger collab., NIM-A (2010) ]2 [g/cmmaxReconstructed X 400 500 600 700 800 900 1000 1100 1200 1300 1400 Entries 0 100 200 300 400 500 600 eV19.5 10 f = 1.17 Proton EPOS Iron EPOS Including Xmax resolution ProtonIron TA collab., NIM-A (2012) Identical simplified FD Telescope Array Experiment Pierre Auger Observatory log(E(eV)) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 Efficiency 0 0.2 0.4 0.6 0.8 1 Proton Iron log(E(eV)) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 EnergyResolution[%] 0 5 10 15 20 25 Proton Iron log(E(eV)) 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 ]2 Resolution[g/cmmaxX 0 20 40 60 80 100 Proton Iron Energy Xmax TF et al., Astropart.Phys., 74, pp64-72 (2016)
  • 10. Installation plan in Auger ✦ Location: Los Leones site at Auger ✦ Uninstall MIDAS and install FAST telescope to detect distant lasers ✦ Official approval is expected in next Auger collaboration meeting in November 2018. ✦ The telescopes are being constructed in Czech republic. ✦ Plan to install 1st telescope in February 2019 10 FAST meeting 2018/Jun @ Olomouc d detector of the Pierre Auger Observatory [1] consists of 1600 ns – water Cherenkov tanks and their associated electronics – and cence telescopes. The Observatory is located outside the city of gentina (69◦ W, 35◦ S, 1400 m a.s.l.) and the detector layout is 1. Details of the construction, deployment and maintenance of urface detectors are described elsewhere [2]. In this paper we will n details of the fluorescence detector and its performance. s of the Pierre Auger Observatory as of March 2009. Gray dots show the ace detector stations, lighter gray shades indicate deployed detectors, while es empty positions. Light gray segments indicate the fields of view of 24 scopes which are located in four buildings on the perimeter of the surface wn is a partially completed infill array near the Coihueco station and the Central Laser Facility (CLF, indicated by a white square). The description also the description of all other atmospheric monitoring instruments of the servatory is available in [3]. tion of ultra-high energy ( 1018 eV) cosmic rays using nitrogen mission induced by extensive air showers is a well established d previously by the Fly’s Eye [4] and HiRes [5] experiments. It is he Telescope Array [6] project that is currently under construction, en proposed for the satellite-based EUSO and OWL projects. articles generated during the development of extensive air showers heric nitrogen molecules, and these molecules then emit fluores- the ∼ 300 − 430 nm range. The number of emitted fluorescence oportional to the energy deposited in the atmosphere due to ic energy losses by the charged particles. By measuring the rate 7 FDLIDAR MIDAS Mirror polishing JSPS grant-in-aid for scientific research, 18H01225 LIDAR MIDAS
  • 11. Summary and future plans 11 Fluorescence detector Array of Single-pixel Telescopes (FAST) Optimization to detect UHECR with economical fluorescence telescopes. 10×statistics compared to Auger and TA×4 with Xmax UHECR astronomy for nearby universe, directional anisotropy for energy spectrum and mass composition Time (100 ns) 0 100 200 300 400 500 600 700 800 /(100ns)p.e.N 0 5 10 15 20 PMT 1 PMT 2 PMT 3 PMT 4 Time [100 ns] 200 220 240 260 280 300 320 340 360 380 400 /100nsp.e.N -50 0 50 100 150 200 PMT 1 PMT 2 PMT 3 PMT 4 PMT 5 PMT 6 PMT 7 PMT 8 Laser UHECR ✦ Stable remote observation with two FAST telescopes at TA site. ✦ 421 hours observation by 2018/Sep ✦ A distant laser and 1019.3 eV shower detected ✦ Continue to operate the prototype and search for UHECRs in a coincidence with the TA detectors. ✦ Installing 3rd telescope in Telescope Array site in October 2018 ✦ Plan to install 1st telescope in Pierre Auger Observatory in 2019 http://www.fast-project.org