SlideShare ist ein Scribd-Unternehmen logo
1 von 39
Downloaden Sie, um offline zu lesen
Critical Reviews in Plant Sciences, 21(3):167–204 (2002)




Genetic, Molecular, and Genomic Approaches to
Improve the Value of Plant Foods and Feeds
Gad Galili,1* Shmuel Galili,2 Efraim Lewinsohn,2 and Yaakov Tadmor 2
1Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100 Israel, and 2Institute of
Field and Garden Crops, Agricultural Research Organization, PO Box 6, Bet Dagan 50250 Israel

Referee: Dr. T.J. Higgins, Chief Research Scientist, CSIRO, Divistion of Plant Industry, Clunies Ross Street, Box 1600, Canberra,
           2601, Australia


*   This review was written as an equal contribution of four scientists studying different disciplines of food and feed quality. These
    include amino acid and storage protein metabolism (GG, Email: gad.galili@weizmann.ac.il); ruminant and non-ruminant animals
    feeding (SG, Email: vclidg@netvision.net.il); secondary metabolism (EL, Email: twefraim@netvision.net.il); lipids and minerals
    (YT, Email: tadmory@netvision.net.il).


       ABSTRACT: Recent advances in gene isolation, plant transformation, and genetic engineering are being used
       extensively to alter metabolic pathways in plants by tailormade modifications to single or multiple genes. Many
       of these modifications are directed toward increasing the nutritional value of plant-derived foods and feeds. These
       approaches are based on rapidly growing basic knowledge, understanding, and predictions of metabolic fluxes and
       networks. Some of the predictions appear to be accurate, while others are not, reflecting the fact that plant
       metabolism is more complex than we presently understand. Tailor-made modifications of plant metabolism has
       so far been directed into improving the levels of primary metabolites that are essential for growth and development
       of humans and their livestock. Yet, the list of improved metabolites is expected to grow tremendously after new
       discoveries in nutritional, medical, and health sciences. Despite our extensive knowledge of metabolic networks,
       many of the genes encoding enzymes, particularly those involved in secondary metabolism, are still unknown.
       These genes are being discovered at an accelerated rate by recent advances in genetic and genomics approaches.
       In the present review, we discuss examples in which the nutritional and health values of plant-derived foods and
       feeds were improved by metabolic engineering. These include modifications of the levels of several essential
       amino acids, lipids, fatty acids, minerals, nutraceuticals, antinutritional compounds, and aromas.


I. INTRODUCTION                                                           is also a great demand by the public in Western
                                                                          countries for fortified plant foods to improve hu-
    The classic role of agricultural crops as the                         man health and life expectancy. The demands for
major food supplier to feed a growing and hungry                          this category include a number of exotic health
population is still substantial, but today there is                       compounds such as essential oils and exotic anti-
also a great demand to increase the nutritional                           oxidants, which may improve life, especially dur-
quality of this food. Improved nutritional quality                        ing the elder life stages. Besides the nutritional
may help solve problems encountered in cases                              aspect, the value of plant foods depends also on
were plant foods are the major or sole source of                          its taste and structure. Thus, improving the taste
food, that is, plant foods in many developing                             and aroma of foods are also important areas in
countries as well as plant feeds for livestock,                           crop breeding.
which are consumed as human foods. The de-                                     As is the case with other agronomic traits, the
mands for these sectors focus particularly on im-                         major approach to improving the value of plant
proving the levels of essential amino acids, min-                         foods and feeds is by classic genetics and breeding.
erals, and basic vitamins to allow the healthy                            This approach has been tremendously successful;
growth of humans and livestock. In addition, with                         however, it is a relatively slow process and de-
the developed awareness of human health, there                            pends on the relatively narrow genetic variability
0735-2689/02/$.50
© 2002 by CRC Press LLC
                                                                                                                                         167
within many crop plants. During the last 2 or so        protein amino acids and therefore have to obtain
decades, other approaches for tailormade improve-       these “essential” amino acids in their diet. Al-
ments of food and feed quality have developed and       though ruminant animals (such as cattle and sheep)
are being incorporated into plant breeding together     also cannot synthesize essential amino acids, they
with classic genetics. These include DNA-marker-        have special microbial flora in their rumen, which
assisted breeding, direct gene transfer, and, more      metabolize nonessential amino acids into essen-
recently, the use of genomics.                          tial amino acids and incorporate them into micro-
     The strategies for enhancing the value of plant    bial proteins that later become available for nutri-
foods and feeds include altering metabolic pathways     tion. However, these microbial proteins, although
using genes for enzymes responsible for the biosyn-     of better nutritional quality than plant proteins,
thesis of specific phytochemicals. Such studies de-     provide only ~65% of the total protein required
pend on existing metabolic knowledge, which is not      for intensive milk production (Leng, 1990). Hence,
always accurate. So-called tailormade perturbation      ruminant animals also suffer from limitations in
of metabolic pathways does not always result in the     essential amino acids. Moreover, attempts to im-
expected changes. Thus, an essential part of a gene     prove the nutritional quality of foods for ruminant
technology based approach to enhanced value of          animals require specific considerations, based on
plant foods and feeds depends on the full knowledge     the nature of their rumen microbial flora (see
of the relevant biochemical pathway.                    Section III.B.5).
     Many aspects of the nutritive value of plants           Lysine and methionine are the most impor-
and how to improve it have already been dis-            tant essential amino acids because they are present
cussed (for examples see Abelson and Hines, 1999;       in limiting levels in the major feed and food crops.
Agarwal and Rao, 2000; Baucher et al., 1998;            Cereal grains generally contain low levels of lysine
Brink and Beynen, 1992; Dillard and German,             (Shotwell and Larkins, 1989), while legumes are
2000; Dixon and Steele, 1999; Dunwell, 1999;            generally deficient in methionine (Duke, 1981).
Dunwell, 2000; Galili, 1995; Gaskell et al., 1999;      Due to the vital nutritional significance of lysine
Giddings et al., 2000; Grima-Pettenati and Goffner,     and methionine, most efforts have focused on
1999; Grusak, 1999; Grusak and DellaPenna,              enhancing the levels of these two essential amino
1999; Hefford, 1997; Mandal and Mandal, 2000;           acids in their free or protein-bound forms.
Marriott, 2000; Merchen and Trigemeyer, 1992;
Miflin et al., 1999; Ohlrogge and Benning, 2000;
Serageldin, 1999; Shotwell and Larkins, 1989;           A. Breeding of High-Lysine Cereals: The
Teferedegne, 2000; Van Duyn and Pivonka, 2000;          Story of “Quality Protein Maize”
Williamson et al., 1999). Here we focus and at-
tempt to provide a critical opinion on selected              Cereal grains represent the main dietary source
improvements to the nutritional value of plants         of protein for human and livestock worldwide.
for foods and feeds. These include essential amino      Maize is one of the most important cereal crops,
acids, fatty acids and lipids, minerals, vitamins       providing between 50 and 70% of the dietary
and health products, antinutritional factors, as well   proteins for humans, depending on geographical
as aroma and flavor. We discuss new genetic and         distribution. It is also one of the major crops used
genomic approaches that are promising for the           for livestock feeding. Because maize is very low
genetic introgression of foreign genes into culti-      in lysine, a large effort was made to identify high-
vated species as well as the identification of novel    lysine corn varieties. These efforts resulted in the
genes regulating plant metabolism.                      discovery of the high-lysine opaque2 mutants
                                                        (Mertz, 1997; Mertz et al., 1964). These lines are
                                                        characterized by low levels of lysine-poor seed
II. IMPROVING THE LEVELS OF                             storage proteins (called zeins), and by a compen-
ESSENTIAL AMINO ACIDS                                   satory increase in lysine-rich, non-zein, seed pro-
                                                        teins, as well as free lysine. Rat feeding trials
     Non-ruminant animals (such as humans, poul-        showed that opaque2 flour, together with miner-
try, and swine) cannot synthesize 10 out of the 20      als and vitamins, promoted a fourfold increase in


168
growth rate over that in rats grown on normal          requirement. The molecular mechanism underly-
maize flour (Mertz et al., 1964). Moreover, the        ing the QPM genotype has been studied in detail,
opaque2 flour was found to have 90% the value          particularly by Larkins and associates (Burnett
of milk protein when fed to Guatemalan children        and Larkins, 1999; Lopes et al., 1995; Or et al.,
(Bressani, 1966). A diet based solely on opaque2       1993; Sun et al., 1997), and is not discussed here.
flour was also later shown to cure children who        The production of one of the high-lysine proteins
suffered from the protein deficiency disease,          in the maize kernel, the translation factor EF-1α,
kwashiorkor (Harpstead, 1971). Success with            is positively correlated with lysine levels in dif-
opaque2 maize stimulated extensive research to         ferent QPM lines (Habben et al., 1995). This can
identify similar mutants in other cereals. Similar     be used to rapidly screen and select outstanding
high-lysine mutants were found in barley (Doll et      QPM lines adapted to various growth conditions
al., 1974; Munck et al., 1970), and sorghum (Singh     and geographical locations.
and Axtell, 1973).
      However, despite the initial optimism, subse-
quent detailed field analyses showed that the high-    B. Improving Free Amino Acid
lysine mutations in these cereals were associated      Synthesis and Accumulation
with inferior agronomic traits that could not be
easily overcome. The undesirable traits included       1. Regulation of Lysine and Methionine
reduced yield and protein content as well as soft      Synthesis
endosperm that caused disease and insect suscep-
tibility, kernel breakage, and poor food process-           The essential amino acids lysine, methionine,
ing (Glover, 1992; Munck, 1992). Commercial            isoleucine, and threonine are synthesized from
utilization of the opaque2 mutants seemed un-          aspartate by several different branches of the as-
likely until 1992, when researchers at the Maize       partate-family pathway (Figure 1) (Galili, 1995).
and Wheat Improvement Center (CIMMYT) in               Methionine receives its sulfur moiety from cys-
Mexico and the University of Natal in South Af-        teine (Figure 1) (Ravanel et al., 1998). Lysine
rica (Geevers and Lake, 1992; Glover, 1992) could      regulates its own synthesis mostly by feedback
genetically separate the inferior agronomic traits     inhibiting the activity of dihydrodipicolinate syn-
from the benefits of the opaque2 mutation. This        thase (DHPS); threonine synthesis is primarily
resulted in high-lysine “Quality Protein Maize”        regulated by the sensitivity of aspartate kinase to
(QPM) lines with normal kernel properties. Since       feedback inhibition by lysine and threonine (Galili,
this important discovery, high-lysine QPM culti-       1995); methionine synthesis is subjected to a more
vars have been used extensively in Brazil              complex control, but it has been suggested that a
(Magnavaca et al., 1993), and interest in such         major point of regulation of methionine produc-
cultivars is increasing in North America (Bockholt     tion occurs by the competition between cystathion-
and Rooney, 1992). A recent analysis of a number       ine γ-synthase and threonine synthase for their
of QPM cultivars, adapted to the conditions of         common substrate, phosphohomoserine (Figure 1)
Canada (Zarkadas et al., 2000), looks quite prom-      (see Ravanel et al., 1998 for detailed discussion
ising. Total grain protein in these cultivars ranged   of this competition).
from 8.0 to 10.2%, which is similar to the 7.9 to
10.3% range in leading non-QPM cultivars. Lysine
content in the QPM lines ranged between 4.43           2. Improving the Level of Free Lysine in
and 4.58 g lysine/100 g protein, which is signifi-     Grain Crops
cantly higher than that the levels in the non-QPM
cultivars (between 3.43 and 4.21 g of lysine/100           Conceptually, the synthesis of lysine can be
g protein). The lysine levels in these QPM lines       enhanced by reducing the sensitivity of DHPS to
was calculated to supply around 70% of the opti-       feedback inhibition by lysine (Figure 1). This has
mal human protein requirement, whereas the best        been proven in studies where recombinant genes
non-QPM cultivars supply less than 50% of the          encoding bacterial feedback-insensitive DHPS



                                                                                                      169
FIGURE 1. A diagram of the aspartate-family biosynthetic pathway of the essential amino acids lysine, threonine,
methionine, and isoleucine. Curved arrows with a (-) sign represent major feedback inhibition loops by the end
product amino acids. Dashed arrows with a (+) sign represent enzyme activiation. Enzyme abbreviations: AK,
aspartate kinase; ASD, aspartic semialdehyde dehydrogenase; HSD, homoserine dehydrogenase; HSK, homoserine
kinase; TS, threonine synthase; TDH, threonine dehydratase; DHPS, dihydrodipicolinate synthase; DHPR,
dihydrodipicolinate reductase; PDA, ∆′ piperidine dicarboxilate acylase; ADA acyldiaminopimelate aminotrans-
ferase; ADD, acyldiaminopimelate deacylase; DEP, Diaminopimelate epimerase; DDC, diaminopimelate decarboxilase;
CGS, cystathionine γ-synthase; CBL, cystationine b-lyase; MS; methionine synthse; SAMS; S-adenosylmethionine
synthase.




170
enzymes were expressed in transgenic dicot and         second, some of the catabolic products of lysine,
monocot plants (Galili, 1995; Brinch-Pedersen et       such as glutamate and the products of γ-amino
al., 1996; Mazur et al., 1999). Constitutive ex-       butyric acid and α-amino adipic acid act as neu-
pression of genes for bacterial enzymes in plants      rotransmitters in animals and may be toxic at high
resulted in amino acid overproduction, but in many     levels (Bonaventure et al., 1985; Karlsen et al.,
cases this expression was also associated with         1982; Reichenbach and Wohlrab, 1985; Welinder
abnormal phenotypes and partial sterility (Ben         et al., 1982). Therefore, the reduction of lysine
Tzvi-Tzchori et al., 1996; Frankard et al., 1992;      catabolism may be an important trait to be consid-
Shaul and Galili, 1992; Shaul and Galili, 1993).       ered in breeding for high-lysine crops. Lysine
To overcome these problems, the bacterial en-          catabolism can be reduced by antisense, co-sup-
zymes were produced in a seed-specific manner,         pression, or knockout of genes encoding enzymes
using seed storage protein promoters to control        in this part of the pathway.
expression of the genes. Seed-specific expression           The use of seed storage protein gene promot-
of the bacterial DHPS gene was first performed in      ers for the expression of the bacterial DHPS gene
tobacco plants, using the bean phaseolin promoter      is based on the assumption that amino acid syn-
(Karchi et al., 1994). Lysine synthesis was en-        thesis and storage protein production are subject
hanced specifically in the developing seeds of         to concerted spatial and temporal regulation of
these transgenic plants, but its level in mature       expression during seed development. This is ap-
seeds was not higher than in nontransgenic plants.     parently true for dicot plants in which seed stor-
Seed-specific expression of the bacterial DHPS         age protein genes are expressed in the developing
gene was correlated with a significant elevation in    embryo and utilization of such promoters to ex-
the activity of lysine ketoglutarate reductase         press the bacterial DHPS results in lysine over-
(LKR), the first enzyme in the α-amino adipic          production. However, whether this is also true for
acid pathway, which catabolizes lysine in              monocot plants, in which storage protein synthe-
glutamate, α-amino adipic acid, and acetyl CoA         sis occurs mainly in the endosperm, is still debat-
(Arruda et al., 2000; Galili et al., 2001). These      able. Falco and associates (Mazur et al., 1999)
results were the first indirect and unexpected evi-    have expressed a bacterial feedback-insensitive
dence that lysine catabolism may be an important       DHPS gene in transgenic maize, using either en-
factor regulating free lysine accumulation in seeds.   dosperm or embryo-specific promoters. Increased
Moreover, it also suggested that lysine autoregu-      free lysine levels were detected only when DHPS
lates its own catabolism, at least in seeds, by        production was controlled by the embryo-specific
stimulating LKR activity (Arruda et al., 2000;         promoter. This study raises an important funda-
Galili et al., 2001; Karchi et al., 1995; Karchi et    mental issue. If amino acid biosynthesis in mono-
al., 1994). In subsequent studies, bacterial DHPSs     cot seeds occurs mostly in the developing em-
have been expressed in a seed-specific manner in       bryo, a mechanism should exist for rapid delivery
a number of transgenic crop plants, including          of the amino acids into the endosperm to support
soybean, rapeseed, maize, and narbon beans (Falco      the massive process of storage protein synthesis.
et al., 1995; Mazur et al., 1999; M. Meixner,          If amino acids are synthesized in the endosperm
S. Gillandt, K. Waigand, G. Galili, and T. Pickardt,   tissues, then lysine level may be regulated by
unpublished). In contrast to tobacco, all of these     additional factors, such as lysine catabolism. The
transgenic crops showed significant elevation of       significance of lysine catabolism in dicot and
free lysine levels, and nearly doubled total seed      monocot seeds was discovered as a consequence
lysine in soybean and rapeseed. Lysine overpro-        of this transgenic approach (see previous para-
duction in these plants was also associated with       graph). However, this still does not provide a full
increased levels of various catabolic products,        explanation for the results of Falco and associates
showing that most if not all seeds possess an          (Mazur et al., 1999), because embryo-specific,
active process of lysine catabolism. The negative      but not endosperm-specific, expression of the bac-
effects of lysine catabolism are twofold: first it     terial DHPS was accompanied by increased lev-
reduces the extent of free lysine accumulation;        els of lysine catabolic products.



                                                                                                      171
Another strategy for the production of high-       tion of relatively minor increases in methionine
lysine plants is to introduce genes encoding lysine-   levels over that in nontransgenic plants (Galili,
rich proteins. These proteins will serve as a lysine   1995; Karchi et al., 1993), suggesting that other
sink and may reduce the problem of lysine ca-          regulatory factors exist. Methionine synthesis was
tabolism. In maize, a variety of genes for natural,    thought to be regulated by competition between
modified, and synthetic proteins were tested, and      cystathionine γ-synthase and threonine synthase
the most successful encoded hordothionine (HT12)       for their common substrate phosphohomoserine
and barley high lysine protein 8 (BHL8), contain-      (Figure 1) (Ravanel et al., 1998). Threonine syn-
ing 28 and 24% lysine, respectively. These pro-        thase activity is also negatively regulated by
teins accumulated to between 3 to 6% of total          S-adenosyl methionine (SAM), a direct product
grain proteins, and when introduced together with      of methionine (Figure 1), further implicating au-
a bacterial DHPS resulted in a marked elevation        toregulation of methionine synthesis by modulat-
of total lysine to over 0.7% of seed dry weight        ing metabolite flux via the threonine synthase/
(Jung and Falco, 2000), compared with around           cystathionine γ-synthase branch point (Ravanel et
0.2% in wild-type maize. If this dramatic eleva-       al., 1998). Yet, despite extensive studies, the regu-
tion of lysine levels does not interfere with yield    lation of metabolite flux via this branch point is
and other grain quality factors, then the commer-      still unclear. Constitutive overexpression of cys-
cial application of transgenic maize expressing        tathionine γ-synthase in transgenic Arabidopsis
these high-lysine proteins (either alone or together   caused a severalfold increase in free methionine
with a bacterial feedback-insensitive DHPS) for        in rosette leaves (Gakiere et al., 2000; Tarczynski
feeding human and nonruminant livestock looks          et al., 2001). A more dramatic ~40-fold elevation
very promising. The suitability of such transgenic     in free methionine was reported in rosette leaves
plants for ruminant feeding depends on whether         of the Arabidopsis mto1 mutant, which possesses
the high-lysine proteins are stable inside the ru-     a point mutation in the coding region of the cys-
men.                                                   tathionine γ-synthase gene (Chiba et al., 1999;
                                                       Inba et al., 1994). Yet, in both the transgenic and
                                                       mutant Arabidopsis plants, no overproduction of
3. Improving Methionine Levels in Grain                methionine was observed in mature plants
Crops                                                  (Chiba et al., 1999; Gakiere et al., 2000; Inba
                                                       et al., 1994). This suggests that methionine
     Methionine synthesis is far more complicated      synthesis is differentially regulated during
than that of lysine. Methionine receives its carbon    plant development. Inhibition of threonine
skeleton from the aspartate family pathway, while      synthase activity by an antisense approach
its sulfur moiety is derived from cysteine, whose      resulted in a huge overaccumulation of free
synthesis is also subject to a complex regulation.     methionine both in Arabidopsis and potato
The regulation of sulfate uptake and incorpora-        (Batlem et al., 2000; Zeh et al., 2001). More-
tion into cysteine and other sulfur compounds has      over, the increase in methionine was much
been reviewed recently (Bick and Leustek, 1998;        higher than the decrease in threonine, suggest-
Saito, 2000) and is not discussed here. Rather, we     ing that the reduction in threonine synthase
focus on efforts to manipulate the carbon flux into    activity somehow triggers the channeling of
methionine, as well as on attempts to express          more aspartate into methionine, despite the
methionine-rich proteins in transgenic plants.         feedback sensitivity of AK. Although the com-
Because methionine synthesis diverges from the         plexity of methionine synthesis is not under-
threonine branch of the aspartate-family pathway       stood, these results are promising from a nu-
(Figure 1), it is expected that plants possessing a    tritional point of view, suggesting that it is
feedback-insensitive aspartate kinase will also        possible to manipulate methionine levels in
overproduce methionine because they possess            plants.
increased flux toward threonine (Galili, 1995).             Attempts to increase methionine levels in
Yet, such an approach has resulted in the produc-      transgenic plants by expressing genes encod-



172
ing methionine-rich proteins were performed             4. Improving Lysine and Methionine
in a number of plant species, using a variety of        Levels in Forage Crops
genes. These attempts have been discussed in
detail in several reviews (see, for example,                 In forage crops the main consumed part is the
Muntz et al., 1998; Tabe and Higgins, 1998).            vegetative tissue, and therefore efforts to increase
In most cases, genes for methionine-rich 2S             the essential amino acid content in vegetative
storage proteins were used. In soybean, whose           tissues were mainly conducted by constitutive
grain methionine level amounts more than half           expression of recombinant constructs expressing
of the FAO standard for nutritionally balanced          seed vacuolar storage proteins, fused to the 35S
food protein, expression of the gene for Brazil         promoter. These storage proteins which stably
nut 2S albumin raised seed methionine con-              accumulate in seeds vacuoles, failed to accumu-
tent to 100% of the FAO standard. Expression            late in the protease-rich vegetative vacuoles, due
of the same gene in transgenic narbon beans,            to their efficient degradation (Saalbach et al.,
whose seed methionine level is only 40% of              1994). Preventing the trafficking of the seed stor-
the FAO standard, doubled seed methionine               age proteins from the endoplasmic reticulum (ER)
content (Saalbach et al., 1995a; Saalbach et            to the vegetative vacuole by engineering of an ER
al., 1995b). Unfortunately, this Brazil nut pro-        retention signal (KDEL) into the C-terminus of
tein was subsequently found to be allergenic            these proteins only partially solved their stability
in some people, reducing the usefulness of              problems (Khan et al., 1996; Tabe et al., 1995;
this protein as a target for increasing plant           Wandelt et al., 1992). More successful results
nutritional quality. In another study, a differ-        were obtained by using two methionine-rich seed
ent 2S albumin, derived from sunflower, was             storage proteins of maize, namely, the 15-kDa
used to significantly increase seed methionine          β-zein and the 10-kDa δ-zein, which naturally
content in transgenic lupin, an important grain         accumulate in ER-derived protein bodies (Shotwell
crop for animal feeding in Australia that con-          and Larkins, 1989), Maize β-zein and δ-zein genes,
tains less than half of the methionine recom-           constitutively expressed alone in transgenic to-
mended by FAO. Expression of the sunflower              bacco plants, accumulated in novel ER-derived
albumin doubled seed methionine content                 protein bodies and were moderately stable (Bagga
reaching 80% of the FAO standard (Molvig et             et al., 1995). Co-expression of the two proteins
al., 1997). Notably, rat feeding experiments            together significantly increased their stability
with these transgenic lupin grains showed not           (Bagga et al., 1997). Stability problems associ-
only an increased of methionine availability,           ated with the expression of seed storage proteins
but also an increased in their general dietary          in vegetative tissues suggest that expression of
value (Molvig et al., 1997).                            genes for other types of nutritionally balanced
     Although expression of genes for methion-          proteins should also be tried. Inasmuch as a num-
ine-rich proteins seems to be a promising ap-           ber of plants also naturally accumulate vegetative
proach to increasing overall methionine avail-          storage proteins (VSPs) to high levels inside veg-
ability in foods and feeds, it is still not enough to   etative vacuoles (Staswick, 1994), such proteins
increase methionine content to 100% of the FAO          may be better targets for nutritional improvement
recommendation. Müntz and associates                    of forage crops than seed storage proteins. VSPs
(D. Demidov, C. Horstmann, M. Meixner,                  may also have additional beneficial effects, such
T. Pickardt, I. Saalbach, G. Galili, and K. Müntz,      as enhancement of shoot regrowth after cutting of
unpublished) have therefore combined the ex-            forage crops (Avice et al., 1997; Corbel et al.,
pression of a Brazil nut protein together with a        1999). Galili and associates (Guenoune et al.,
bacterial feedback-insensitive aspartate kinase         1999) overexpressed the soybean VSPα gene,
in narbon bean seeds, which controls the carbon         fused to the Cauliflower mosaic virus (CaMV)
flux for free methionine synthesis (Galili, 1995).      35S promoter, in transgenic tobacco plants. This
This combined approach raised methionine con-           protein was highly stable in vacuoles of both
tent in the seeds to 100% of the FAO standard.          vegetative and seed tissues. The level of the soy-



                                                                                                       173
bean VSPα ranged between 2 and 6% of the                 specific proteins. Barry and associates (McNabb
soluble proteins in leaves of the transgenic plants,     et al., 1994) found that the degradation of vicilin
causing a significant increase of total soluble lysine   and Rubisco small subunit occurred in single
by about 15%. This suggests that VSPs can serve          phase, whereas the degradation of the Rubisco
as excellent protein sources for improving the           large subunit, ovalbumin and sunflower albumin
nutritional quality of forage crops.                     8 was biphasic. The half-life inside the rumen
                                                         fluid varied between 10 min for vicilin to 69.3 h
                                                         for the second component of the sunflower albu-
5. Improving Protein Quality for                         min 8. Comparing the in situ degradation rates of
Ruminants Feeding                                        several proteins having different proportions of
                                                         sulfur-containing amino acids, White and associ-
     Specific approaches to increase the content of      ates (Hancock et al., 1994) concluded that the
essential amino acids in transgenic plants should        stability of a protein to rumen degradation posi-
take into consideration the target uses of these         tively correlates with the degree of cross-linking
plants. Nonruminant animals depend absolutely            by disulfide bonds.
on the dietary essential amino acids, but can effi-           Searches for stable proteins as targets for
ciently absorb both free and protein-bound amino         expression in transgenic plants for ruminant feed-
acids. The situation with ruminant animals is more       ing assume that the stability of a given protein
complex due to the special microbial flora in their      will be similar when produced in different plant
rumen. Although the rumen micro-flora can pro-           species. This may, however, not be always the
duce essential amino acids, it can also degrade          case. Galili and Guenoune (Guenoune et al., 2002)
intake proteins and convert their amino acids into       studied the rumen stability of either VSPs from
other nitrogenous compounds. Thus, when feed-            soybean or recombinant genes for soybean VSPs,
ing ruminants with dietary proteins either bal-          expressed in transgenic tobacco plants. The soy-
anced or enriched for essential amino acids, it is       bean-derived proteins were much more stable to
important to minimize their degradation by the           rumen proteolysis than those produced in the
rumen micro-flora. As much as 40% of the di-             transgenic tobacco.
etary protein may be lost from the rumen of ani-              In the rumen, protein stability can be increased
mals grazing on temperate legumes due to micro-          by moderate amounts of condensed tannins (CT),
bial degradation (Ulyatt et al., 1988). This             which are produced by some forage crops. CT
phenomenon can also limit the availability of            form reversible associations with proteins; the
lysine and methionine for young ruminants                formation of these protein-tannin complexes mak-
(Merchen and Trigemeyer, 1992) and for lactat-           ing protein unavailable for ruminal microbial
ing dairy cows (Rulquin and Verite, 1993). Thus,         deamination (for review see Aerts et al., 1999).
proteins with optimal lysine and methionine con-         However, excess CT, as it occurs in several tem-
tent for ruminant nutrition should be highly resis-      perate and tropical forages, can be detrimental to
tant to degradation in the rumen.                        the overall nutritive value of the crop because it
     Analyzing various proteins by SDS PAGE              prevents forage intake and digestion by the ani-
after in vitro or in situ rumen digestions, Spencer      mal. The amount of CT necessary to prevent pro-
et al. (Spencer et al., 1988) showed that some           tein degradation, but not to reduce intake, must be
plant and animal proteins, such as bovine serum          established for each forage crop species, and spe-
albumin (BSA) and pea albumins, are highly stable        cies containing optimal CT levels may be excel-
to rumen proteolysis. In contrast, other proteins        lent targets for transformation with genes encod-
such as casein and vicilin were rapidly degraded         ing proteins rich in essential amino acids.
(McNabb et al., 1994; Spencer et al., 1988; Tabe         Alternatively, it may be possible to modify CT
et al., 1993). Recent studies (Hancock et al., 1994;     structure and concentration in forage crops by
McNabb et al., 1994; Tabe et al., 1993) used             molecular approaches. This research is underway
Western blot analysis to follow more accurately          but is still at a very early stage (Robbins et al.,
the in vitro and in situ rumen degradation rates of      1998).



174
Because animal feeds undergo different types        γ-linolenic acid (abundant in Evening Primrose,
of processing, stability of the transgenic proteins     Oenothera biennis), as well as the omega-3
under these conditions should also be considered.       α-linolenic acid, largely present in linseed, Linum
Galili and associates (Galili et al., 1999) showed      usitatissimum (Table 1). EFAs function mainly as
that both leaf and seed storage proteins of wheat       components of cellular membranes, and as pre-
were completely degraded during ensiling. Com-          cursors to eicosanoids, including prostaglandins
plete degradation was also shown for a Bacillus         and leukotrienes (Newton, 1998).
thuringiensis toxin in transgenic corn plants (Fear-         The incidences of chronic degenerative dis-
ing et al., 1997). Degradation of the transgenic        eases such as coronary diseases and cancer have
proteins may be less problematic when the feeds         been increasing in developed countries. These
are supplied as hay (Khoudi et al., 1999).              diseases were very rare in developing countries
                                                        and unknown among traditional Eskimos. The
                                                        rate of increase of these diseases in the latter two
III. IMPROVING LIPIDS AND FATTY ACID                    societies is associated with adaptation to a mod-
COMPOSITION AND CONTENT                                 ern diet. Deficiency and unbalanced EFAs in the
                                                        body cause many of the diseases. Thus, searching
     Lipids are an important class of natural prod-     for ways to increase the content of specific EFAs
ucts, which includes fat-soluble steroids, prostag-     in human diets is of high nutritional priority.
landins, triglycerides, waxes, and long-chain fatty
acids. Many of these compounds are essential to
the human diet (e.g., essential fatty acids, fat-       A. Synthesis of Lipids
soluble vitamins) and therefore are of great inter-
est to the food industry. Fatty acids are an impor-          Significant progress has been made in the last
tant component of lipids in plants, animals, and        3 decades on the genetics and physiology of lipids
microorganisms. They are composed of long, even-        metabolism. These have been reviewed in detail
numbered carbon chains with a carboxylic group          by several authors (Harwood, 1996; Harwood,
at one end of the chain and a methyl group at the       1997; Ohlrogge and Browse, 1995; Ohlrogge and
other. Saturated fatty acids with 16 (palmitic acid)    Jaworski, 1997; Weselake and Taylor, 1999).
and 18 (stearic acid) carbon atoms are the most         Genes encoding key enzymes of fatty acid and
common in nature.                                       lipid biosynthesis have been cloned and charac-
     Higher plants produce more than 200 differ-        terized from a number of plants (Murphy, 1999;
ent fatty acids. There are many questions about         Napier et al., 1999), where lipid synthesis is ini-
the nature of the enzymes involved in their syn-        tiated in the plastids. The first step is the carboxy-
thesis (Somerville et al., 2000). The synthesis of      lation of acetyl-CoA to malonyl-CoA (Figure 2,
fatty acids in plants takes place in various or-        reaction 1), catalyzed by the enzyme, acetyl-CoA
ganelles and in some cases involves the move-           carboxylase (ACCase). Next, an elongation cycle,
ment of lipids from one cellular compartment to         catalyzed by several enzymes, attaches a series of
another (Ohlrogge and Browse, 1995; Ohlrogge            two carbon additions to the growing chain (Fig-
and Jaworski, 1997; Padley et al., 1994). Although      ure 2, reaction 2). Typically, the elongation ends
fatty acid metabolism in plants has many features       by production of saturated fatty acids of 16 or 18
in common with other organisms, the plant path-         carbons. Among the most common terminating
ways are complex and not well understood.               reactions are hydrolysis of the acyl moiety from
     Fats are broadly divided into saturated and        acyl carrier protein by a thioesterase (Figure 2,
polyunsaturated classes. Within the polyunsatu-         reaction 3), transfer of the acyl moiety from acyl
rated fatty acids are two families of essential fatty   carrier protein directly onto a glycerolipid by an
acids (EFAs). They are termed essential because         acyl-transferase (Figure 2, reaction 4), or double
our bodies need them but cannot manufacture             bond formation on the acyl moiety by an acyl-
them (Simopolus, 1999). Major EFAs are the              ACP desaturase (Figure 2, reaction 5) (Somerville
omega-6 linoleic acid, its omega-6 derivative           et al., 2000).



                                                                                                         175
TABLE 1. Selected Fatty Acids




1      (n-3) and (n-6) indicate omega-3 and omega-6 EFAs, respectively. In (n-3) EFAs the double bond occurs
       at the third carbon from the methyl end of the fatty acid, while in (n-6) EFAs the double bond occurs at the
       sixth carbon from the methyl end.
2      The first number indicates the number of carbons of the fatty acids. The second number indicates the total
       number of double bonds. The numbers after theDsign indicate the position of the double bond from the
       COOH terminus.


B. Modification of Seed Oil Content and                     with a modified seed composition to be approved
Composition                                                 for nonrestrictive commercial cultivation in the
                                                            USA was a rapeseed (Brassica napus) cultivar
     Increased oil content is a frequently requested        enriched in lauric acid. It was first grown com-
added value trait in feed grain and seeds                   mercially in 1995 (Voelker et al., 1996). Lauric
     (Goss and Kerr, 1992; Mazur et al., 1999).             acid is a 12-carbon saturated fatty acid that is a
Lipids are substantially more reduced organic               very important raw material in the confectionery
molecules than carbohydrates, thus their oxida-             industry. Lauric acid is normally obtained from
tion has a higher potential for producing energy.           coconut or palm oil. Although both plants yield
Indeed, lipids contribute twice as many calories            relatively high levels of lauric acid, they are lim-
as carbohydrates on a weight basis. Increasing of           ited in their agricultural utility. Davies and asso-
oil content was achieved mainly by combining                ciates (Voelker et al., 1996) have demonstrated
several “oil-increasing” alleles in one genetic             the feasibility of engineering rapeseed to produce
background via classic and advanced breeding                lauric acid by introducing the gene encoding an
methods. However, the involvement of around 30              acyl-ACP thioesterase (Figure 2, reaction 3) from
reactions and a large number of enzymes (and                California bay (Umbellularia california). This
genes) in converting acetyl-CoA to triacylglycerol          enzyme prevents the production of long-chain
render the classic genetic approaches quite diffi-          fatty acids by cleaving the fatty acids from the
cult.                                                       enzyme complex after it reaches 12 carbons in
                                                            length, resulting in the accumulation of lauric
                                                            acid, naturally absent in rapeseed. The expression
1. High Lauric Acid Oil                                     of this acyl-ACP thioesterase gene in transgenic
                                                            rapeseed resulted in a high level of lauric acid in
    Lipid composition in plants has also been               the seeds, reaching 40% of total oil fatty acids
manipulated by genetic engineering tools (Mazur             (Murphy, 1996; Voelker et al., 1996). This novel
et al., 1999; Miflin et al., 1999; Murphy, 1996;            compound in rapeseed is incorporated to the
Murphy, 1999). In fact, the first transgenic crop           triacylglycerols and can be recovered by standard



176
FIGURE 2. Schematic overview of fatty acids and lipids biosynthesis. The first step is the formation of malonyl-CoA
from acetyl-CoA (1). Next, fatty acids elongate by an elongation cycle in which two carbons are added from malonyl
CoA at each cycle (2). The elongated acyl-acyl carier protein (acyl-ACP) then follows three major termination steps.
Realease of the fatty acid and ACP from acyl-ACP by thioesterase terminates the fatty acid elongation process (3).
Transfer of the fatty acid from acyl-ACP to a glycerol molecule by acyltransferase yields saturated lipids (4).
Termination of the elongation reaction can also occur by desaturation before or after acetyltransferase action,
yielding unsaturated lipids (5).

                                                                                                               177
processing methods. Transgenic rapeseed lauric         The plastidic form that is heteromeric, and the
oil is now marketed for use in confectionery in        cytosolic form that is homomeric (HO). The ex-
North America under the ‘Laurical’ trademark.          pression of the plastidic ACCase is strongly nega-
This work demonstrates the feasibility of produc-      tively auto-regulated (Somerville et al., 2000).
ing large amounts of transgene-modified plant          Thus, Roesler et al. (Roesler et al., 1997) ex-
oils to supplement or replace existing sources.        pressed an Arabidopsis thaliana gene encoding
     Lipids are usually stored as triacylglycerols,    the HO cytosolic ACCase in seeds of transgenic
three fatty acids esterified to glycerol (Padley et    rapeseed, and targeted the enzyme to the plastids,
al., 1994). Seed oils predominantly contain C18        using a transit peptide from the small subunit of
unsaturated fatty acids (Hilditch and Williams,        Rubisco. The plastid-localized HO-ACCase was
1964). Saturated fatty acids are normally found        biotinylated at a level comparable to cytosolic
only in the sn-1 and sn-3 positions (sn-1 = R1, sn-3   HO-ACCase and its activity in mature seeds was
= R3; figure 2) of the triacylglycerol (Frentzen,      10- to 20-fold higher than the endogenous ACCase
1998; Padley et al., 1994). Even in oilseed species    activity. ACCase overexpression altered rapeseed
that produce triacylglycerol with elevated levels      fatty acid composition, mostly increasing oleic
of saturated fatty acids, the saturated fatty acids    acid. However, total seed oil content was increased
are mainly located in position sn-1 and sn-3.          by only about 5% above to the control plants.
Analysis of the ‘high-laurate’ rapeseed oil showed     This study indicates that ACCase by itself is not
that lauric acid was found almost exclusively at       the rate-limiting factor in oil accumulation. The
the sn-1 and sn-3 positions (Voelker et al., 1996).    reason for the increase in oleic acid in these
Coconut (Cocos nucifera) oil, for example, con-        transgenic plants is unclear, highlighting the com-
tains mostly tri-saturated lipids (Padley et al.,      plexity of lipid synthesis and the intricate regula-
1994). Knutzon et al. (Knutzon et al., 1995) iso-      tion of this process in plants. In order to increase
lated the saturated fatty acid acyltransferase gene    oil content utilizing genetic engineering tools we
from coconut. Co-expression of the genes of the        need to learn more about the rate limiting factors
coconut acyltransferase and California bay acyl-       that dictate its accumulation (see below).
ACP thioesterase in rapeseed facilitated efficient
lauric acid deposition at the sn-2 position, result-
ing in the accumulation of tri-laurin, and further     3. Expression of sn-2 Acyl-Transferase
increased total lauric acid levels above 50%
(Knutzon et al., 1999). This demonstrates that              Zou et al. (Zou et al., 1997) attempted to
once a limiting factor in metabolism is known and      increase oil content in transgenic plants by ma-
understood it can be overcome by a rational ex-        nipulating the level of sn-2 acyl-transferase (Fig-
perimental design. The content of lauric acid in       ure 2, reaction 4), an advanced step in
the laurate rapeseed could not be increased be-        triacylglycerol biosynthesis. Constitutive ex-
cause the lauric acid was positioned exclusively       pression of a yeast sn-2 acyl-transferase in
in sn-1 and sn-3 and not in sn-2. Introducing the      transgenic Arabidopsis and rapeseed resulted
gene for the coconut enzyme into the high-laurate      in a substantial increase (8 to 48%) in total seed
rapeseed enabled the incorporation of more laurate     oil content (Zou et al., 1997) as well as in-
into the triacylglycerol fraction leading to higher    creases in both proportions and amounts of very
increase in lauric acid.                               long-chain fatty acids in seed triacylglycerols.
                                                       Furthermore, the transgenic plants exhibited
                                                       elevated activities of lysophosphatidic acid
2. Overexpression of ACCase                            acyltransferase in developing seeds and in-
                                                       creased proportions of very long-chain fatty
   Another attempt to alter plant oil content and      acids in the sn-2 position of triacylglycerols.
composition was by increasing the activity of          These results illustrate the potential of genetic
ACCase (Figure 2, reaction 1) (Roesler et al.,         engineering to increase oil content and compo-
1997). ACCase appears in two forms in the cell.        sition in plants.



178
C. Essential Fatty Acids                              region of microsomal desaturases (Michaelson et
                                                      al., 1998a), and from Caenorhabditis elegans uti-
     Unsaturated fatty acids, especially the EFAs,    lizing a similar procedure (Michaelson et al.,
are widely marketed as health food supplements.       1998b). The functionality of the cloned genes had
EFAs accumulate in a limited number of plants,        been confirmed by the ability of their products to
including seeds of borage (starflower; Borago         desaturate dihomo-GLA to AA in yeast. In a more
officinalis L.) and evening primrose. Borage seeds    recent study (Parker-Barnes et al., 2000), a cDNA
contain 20 to 25% γ-linolenic acid (GLA; Table        library, made from the fungus M. alpina, was
1), a very uncommon n-6 fatty acid (Gibson et al.,    expressed in yeast and screened for the ability to
1992), but borage produces low oil yields (about      elongate n-6 and n-3 polyunsaturated fatty acids.
one-tenth of the yield of rapeseed). GLA is not       The protein product of one clone could convert
produced by the major oil seed crops; however,        GLA (n-6) to dihomo-GLA (C20:3 n-6), and
many of these crop plants produce significant         stearidonic acid (C18:4 n-3) to eicosatetraeonic
amounts of the related fatty acid, linoleic acid      acid (C20:4 n-3). Yeast cells, co-transformed with
(Table 1). Desaturation of linoleic acid to GLA is    the elongase and the ∆5 desaturase from M. alpina
catalyzed by ∆6 desaturase, which is not present      (Michaelson et al., 1998a), produced the expected
in major oil crops. The first attempt to increase     AA (C20:4 n-6) and the C20:5 n-3 EPA (Parker-
GLA involved the constitutive expression of           Barnes et al., 2000). The availability of a recom-
cyanobacterial ∆ 6 fatty acid desaturase in           binant polyunsaturated fatty acid specific elonga-
transgenic tobacco as a model system (Reddy and       tion enzyme, as well as desaturases, offers exciting
Thomas, 1996). This study demonstrated the fea-       possibilities for producing a wide range of EFA in
sibility of engineering the production of ‘novel’     oil seed crops. Such transgenic crops should help
polyunsaturated fatty acids in transgenic plants,     satisfy the demands of the nutraceutical and phar-
although the GLA yield was poor. A more suc-          maceutical industries in the near future. To achieve
cessful attempt followed the cloning of the gene      the efficient production of novel EFA by transgenic
encoding ∆6 fatty acid desaturase from borage,        plants, we need more efforts on the identification
and its constitutive expression in transgenic to-     and characterization of key genes involved in the
bacco (Sayanova et al., 1997). This resulted in the   biosynthesis of EFA, and the targeting of the
accumulation of GLA up to 13% of total leaf           transgene products into the storage oil fraction
lipids. Seed-specific expression of ∆6 fatty acid     and not to the membrane fraction, where they
desaturase could cause an increase in GLA pro-        might affect membrane properties or signaling
duction in oil seed crops, and sunflower, which       functions.
contains 50 to 70% linoleic acid, is a suitable
candidate.
     Very long-chain unsaturated EFAs, such as        D. Increasing the Cooking and Frying
arachidonic acid (AA C20:4 n-6), eicosapentenoic      Quality of Oil
acid (EPA C20:5 n-3), and docosahexenoic acid
(DHA C22:5 n-3), are also considered to be nutri-         Plant oils are not only important as direct
tionally beneficial because of their function as      food components. The quality of oil for cooking
cholesterol-lowering agents (Newton, 1998). EPA       and frying is also dependent on the characteristics
is naturally present in fish oils and other marine    of the oils used. Oleic acid (Table 1) is more
organisms (Padley et al., 1994). AA is found in       stable for frying and cooking than are the poly-
significant amounts in animal liver and adrenal       unsaturated forms, linoleic and linolenic acids
glands and is also produced by the filamentous        (Table 1) (Kinney, 1996; Mazur et al., 1999).
fungus Mortierelaa alpina (Padley et al., 1994).      Chemical hydrogenation is widely used in the
The gene responsible for the ∆5 desaturation of       food industry to raise the oleic acid concentra-
dihomo-GLA (Table 1) to AA (Table 1) was iso-         tion; however, the chemical hydrogenation also
lated from a M. alpina cDNA library, using PCR        increases the levels of undesired trans-fatty acids.
with primers from the conserved histidine box         To enhance the production of oleic acid in soy-



                                                                                                     179
bean seeds, the soybean FAD2 gene, encoding a           lated in cereals and legumes (Ertl et al., 1998;
specific enzyme that inserts a second double bond       Larson et al., 2000; Larson et al., 1998; Raboy,
at ∆12 into oleic acid (18:1 ∆9), has been silenced     1998; Raboy et al., 2000; Raboy et al., 1998;
(Mazur et al., 1999). This increased oleic acid         Wilcox et al., 2000). Seeds produced by “low
from 25% of total seed oil in the wild type to 85%      phytic acid” crops have total phosphorous levels
in the transgenic plants. The transgenic lines          similar to standard crops, but greatly reduced lev-
showed unchanged agronomic properties and are           els of phytic acid phosphorous (Raboy, 1997;
an example of the power of genetic engineering to       Raboy, 1998). When monogastric animals con-
alter seed oil content and composition without          sume “low phytic acid” grain, they absorb a much
altering plant performance in the field.                larger fraction of grain phosphorous than when
                                                        they consume standard grain, and excrete propor-
                                                        tionally less phosphorous (Ertl et al., 1998; Huff
IV. IMPROVING THE CONTENT AND                           et al., 1998; Sugiura et al., 1999).
AVAILABILITY OF ESSENTIAL                                    Utilizing paper electrophoresis and colorimet-
MINERALS                                                ric screening methods, chemical mutagenesis of a
                                                        maize synthetic Flint/Dent population, referred to
A. Phosphorous and Complexed Metals                     as “Early ACR”, gave rise to two phenotypic
                                                        classes of mutants (Raboy, 1997; Raboy and
     A large proportion of the nutritionally impor-     Gerbasi, 1996; Raboy et al., 2000). In low phytic
tant minerals in seeds are associated with the          acid 1 (lpa-1) mutants, the decrease in phytic acid
chelating agent phytic acid, which renders them         phosphorous is matched by an increase in inor-
unavailable to humans and livestock due to the          ganic P, the sum of which remains constant. No
low solubility of the complexes. The minerals are       other large or obvious change in seed phospho-
zinc, iron, magnesium, and possibly calcium, as         rous chemistry is observed. In low phytic acid 2
well as the phosphorous, which is an integral part      (lpa-2) mutants, however, only ~75% of the re-
of the phytic acid molecule. The most critical          duction in phytic acid phosphorous is matched by
antinutritional effect of phytic acid is related to     an increase in inorganic P. The remainder of the
phosphorous availability. As much as 50 to 80%          P is present in intermediate inositol phosphates.
of the total seed phosphorous is not utilized and       The molecular nature of the lpa-1 and lpa-2 mu-
excreted in the manure (Reddy et al., 1989). Fur-       tants in maize is still unknown. However, it is
thermore, it has been shown that phytic acid may        tempting to hypothesize that lpa-1 mutants are
also interfere with zinc absorption in humans,          perturbed in myo-inositol metabolism (an early
weanling swine and rats (Couzy et al., 1993; Lei        step in the pathway to phytic acid), while the lpa-
et al., 1993; Zhou et al., 1992), as well as iron and   2 mutants are perturbed in myo-inositol phos-
magnesium absorption in humans (Brink and               phate metabolism (later steps in the pathway).
Beynen, 1992; Hurrell et al., 1992). The possible            The lpa-1 mutant has now been crossed to a
chelating effect of phytic acid on the mineral          large number of standard inbred lines and an
cation, calcium, is less conclusive (Mitchell and       increasing numbers of hybrids have been synthe-
Edwards, 1996), although at least one study             sized. To date, lpa-1’s effect on seed phospho-
(Jongbloed and Kemme, 1994) suggests phytic             rous fractions appears stable across genetic back-
acid may increase retention of dietary calcium in       grounds. In field trials of the first 14 near-isogenic
swine.                                                  hybrid pairs, each pair consisting of homozygous
                                                        wild-type and homozygous lpa-1 iso-hybrids, an
                                                        effect on yield similar in extent was observed for
1. Low Phytic Acid Plant Mutants                        seed dry weight as mentioned above (Ertl et al.,
                                                        1998). A significant component of the yield loss
     An alternative approach to improve phospho-        appears to be an effect of homozygosity for lpa-
rous availability is by classic genetic means. Sev-     1 on seed dry weight. The immediate issue with
eral low phytic acid (lpa) mutants have been iso-       “low phytic acid/high available P” maize is lower



180
yield, but stress response, disease susceptibility,      lished results). These preliminary results indicate
and storage problems still need to be addressed.         that lpa grains may benefit ruminant animals too.
     Mutants of both the lpa-1 and lpa-2 pheno-               Mineral (iron, zinc, and calcium) absorption
typic classes have also been isolated and mapped         also increased when animals were fed with lpa
in barley (Larson et al., 1998), an lpa-1-like mu-       grains (Li et al., 2000; Sugiura et al., 1999). Brown
tant has been isolated and mapped in rice (Larson        and associates (Mendoza et al., 1998) measured
et al., 2000), and an lpa mutant was identified          iron absorption from tortillas prepared with lpa
recently in soybean (Wilcox et al., 2000). The           corn vs. wild-type corn. They concluded that the
genes encoding the enzyme D -myo-inositol                consumption of lpa strains of maize might im-
3-monophosphate synthase (MIPS) in maize, bar-           prove iron absorption in human populations that
ley, and rice have been cloned (Larson and Raboy,        consume maize-based diets. In a recent pilot study
1999; Larson et al., 2000). The isolation of simi-       that analyzed the effect of lpa-1 corn on zinc
lar mutants in these three cereals, and the isola-       absorption, a comparison of the fractional absorp-
tion of MIPS genes, represent the first phase in a       tion of Zn (FAZ) between individuals consuming
comparative genomics approach. MIPS catalyzes            normal and lpa-1 corn was conducted
the conversion of glucose 6-P to L-myo-inositol          (M. Hambridge, unpublished results). FAZ was
1-P, is the only known source of the inositol ring       consistently and significantly greater on the lpa
(Loewus, 1990), and is a critical step in pathways       corn diet. An average FAZ from polenta prepared
beginning with inositol. In maize there are mul-         from lpa-1 corn was 78% greater than polenta
tiple MIPS sequences and one maps to the same            from normal corn. This increase in FAZ is of
site on chromosome 1S as lpa-1. It is assumed            sufficient magnitude to suggest that substitution
that in maize, lpa-1 is a MIPS mutant. MIPS is a         of lpa-1 in diets in which corn is a major staple
single-copy gene in barley and rice and maps to          will have a beneficial impact on Zn bioavailability.
sites not linked to barley and rice lpa-1 loci (Larson        The next generation of lpa types will have a
et al., 2000; Larson et al., 1998), so the nature of     further reduction in phytic acid and a yield similar
this mutation in these crops is still unclear.           to that of the normal varieties. This will be
     The lpa mutations in a number of crops are          achieved by selecting for better mutants or by
being tested in animal feeding trials. These trials      genetic engineering of the seed phytic acid me-
will evaluate whether the lpa types will save phos-      tabolism.
phorous supplements, reduce manure phospho-
rous contamination, and increase mineral absorp-
tion, especially in human societies where maize          2. Utilization of Phytase to Breakdown
serves as the staple food. Organoleptic analysis of      Phytic Acid
lpa-1 sweet corn had shown no significant effect
of lpa-1 on flavor (Tadmor et al., 2001). Feed                In contrast to the situation in vertebrate mono-
trials had been conducted with poultry (Douglas          gastric metabolism, phytic acid complexes can be
et al., 2000; Ertl et al., 1998; Li et al., 2000;        biodegraded by a number of bacteria and fungi. This
Waldroup et al., 2000; Yan et al., 2000), swine          degradation is catalyzed by an enzyme termed
(Spencer et al., 2000), and rainbow trout (Sugiura       phytase. Indeed, the utilization of natural or recom-
et al., 1999). These studies demonstrated that the       binant phytases has provided an important solution
apparent availability of phosphorous in lpa grains       to the antinutritional characteristics of phytic acid.
was higher than that in ordinary grains and that         Supplementation of animal diets with industrially
the fecal phosphorous content was significantly          produced phytase, extracted mainly from fungi
decreased. In a study conducted at the Montana           (Shmeleva et al., 2000), or recombinant phytases
State University, heifers were fed with hay pre-         produced in bacteria (Sunitha et al., 2000; Yo et al.,
pared from normal and three lpa barley varieties.        1999), was shown to increase animals phosphorous
The average daily gain of the heifers fed with the       uptake by up to 42% (Lei and Stahl, 2000) (http://
lpa barley was 20% higher (p<0.001) than that of         www.dfrc.ars.usda.gov/Research_Summaries/
those fed with normal barley (V. Raboy, unpub-           RS98_pdfs/wwwpp19-20.pdf).



                                                                                                          181
An additional way to increase phosphorous           cessed at high temperatures, the stability of the
availability is by overexpressing phytase genes in       recombinant phytase to such processing tempera-
transgenic plants. Pen and associates (Pen et al.,       tures is extremely important. Indeed, the recom-
1993) overexpressed the Aspergillus niger phytase        binant A. niger phytase appears not to be stable
genes, fused to a signal peptide of tobacco PR-S         enough to withstand the elevated temperatures
protein (in order to direct it to the apoplasm for       involved in soybean processing. This might be
increased protein stability) under the control of        solved either by using a yeast phytase gene that is
CaMV 35S promoter, in transgenic tobacco. The            stable at 80oC (Nakamura et al., 2000) or by
A. niger phytase was stable and accumulated up           transforming the A. niger phytase gene into low
to 1% of the total soluble protein in seeds. Phytase     trypsin inhibitor lines that can be used without
activity in the transgenic plants was found to be        heat processing (Clarke and Wiseman, 2000).
stable for up to 1 year of storage. In vitro experi-          Expression of phytase genes has not been
ments, which simulate the digestive tract of poul-       restricted to dicot plants. Two A. niger phytase
try, showed that the addition of milled transgenic       gene constructs were introduced into transgenic
phytase seeds resulted in release of inorganic           wheat under the control of the constitutive
phosphate. Furthermore, the feeding of young             ubiquitin-1 promoter (Brinch-Pedersen et al.,
chickens showed that addition of either milled           2000). To ensure protein stability, the phytase
transgenic seeds, or industrially produced A. niger      gene, in one construct, was fused to an α-amy-
phytase, or inorganic phosphate had a compa-             lase signal peptide. The second construct was
rable effects on growth rate of the animals (Pen et      similar to that of first, but lacked the signal
al., 1993). The transgenic phytase was extremely         peptide. An immunoreacting polypeptide of the
stable in the transgenic tobacco leaves and accu-        size expected for the A. niger phytase was de-
mulated, in the extracellular fluid, at up to 14.4%      tected in both seed and leaf tissues, but not in
of total soluble proteins in mature leaves               those of the embryo. The heterologous phytase
(Verwoerd et al., 1995). The gene for A. niger           was exclusively present in the pericarp-seed coat-
phytase was also introduced into transgenic al-          aleurone fraction up to 25 days after pollination,
falfa plants (http://www.dfrc.ars.usda.gov/              and thereafter it accumulated in the endosperm.
Research_Summaries/RS97_pdfs/FH3.pdf).                   The secreted and nonsecreted phytases provided
Phytase concentration in the best performing             around 4-fold and 1.6-fold increase phytase ac-
transgenic lines ranged from 0.85 to 1.8% of total       tivity, compared with control nontransformed
soluble protein. The transgenic alfalfa plants were      plants. The authors concluded that a functional
vegetatively propagated to produce about 7500            A. niger phytase can be produced in significant
plants for a field test (http://www.dfrc.ars.usda.gov/   amounts in wheat grains that could be used to
Research_Summaries/RS98_pdfs/wwwpp19-                    improve the nutritional quality of monogastric
20.pdf). The results indicated that economically         animal diets.
significant bioavailable phosphorous was present              Animal feeding trials were conducted to
in the transgenic alfalfa in its second year in field    compare the efficacy of genetically engineered
plots. Feeding trials with chickens and swine in-        microbial and plant phytases for enhancing the
dicates that phytase-overexpressing transgenic           utilization of phytic acid-bound phosphorous in
alfalfa does not require inorganic phosphorous supple-   corn-soybean meal-based diets fed to young
mentation in the feeds (http://www.dfrc.ars.usda.gov/    broilers (Zhang et al., 2000). The addition of
Research_Summaries/RS98_pdfs/wwwpp21-22.pdf).            both sources of phytase resulted in similar in-
Similar results in improving phosphorous utiliza-        creases (P < 0.05) of body weight gain; feed
tion were also reported in feeding experiments           intake; gain:feed; apparent retention of dry
utilizing soybean seeds transformed with the             matter, phosphorous, and calcium; and toe ash
A. niger gene (Denbow et al., 1998). In addition,        measurements. Phosphorous excretion de-
A. niger phytase was found to be stable in soy-          creased as phytase addition increased. No sig-
bean cell-suspension culture (Li et al., 1997).          nificant abnormalities were seen in any of the
Because some plant feeds for livestock are pro-          40 broilers necropsies.



182
B. Iron                                                   ered. Iron availability depends not only on its stor-
                                                          age, but also on its absorption from the soil and
     Nearly 30% of the world population suffers           transport within the plant (Grusak and DellaPenna,
from iron deficiency (WHO, 1992) and it is more           1999). Moreover, iron uptake in many plants occurs
prevalent in developing countries where plant-            via transporters that may not be entirely iron-spe-
based diets are common (Craig, 1994). Iron con-           cific. Briat and associates (Van Wuytswinkel et al.,
tent is limited in most major crops. Moreover,            1999) constitutively overexpressed a soybean fer-
even in crops that are rich in iron, such as spinach      ritin gene in transgenic tobacco plants using the
and legumes, iron is complexed with phytic and            CaMV 35S promoter. The expression of the ferritin
oxalic acids and therefore is inefficiently absorbed      gene not only increased leaf iron content, but also
by humans. However, phytic and oxalic acids are           activated iron transport systems as indicated by an
not the only storage forms of iron. In animals,           increase in root ferric reductase activity. The expres-
plants, and bacteria, iron is also stored in ferritins,   sion of ferritin genes could result in accumulation of
a family of iron storage proteins (Theil, 1987).          toxic metals in plants (Briat, 1999). Thus, the min-
The bioavailability of iron to mammals appears to         eral content of transgenic plants, expressing a re-
be efficient when it is provided as an iron-ferritin      combinant ferritin gene, should be thoroughly ex-
complex (Beard et al., 1996; Theil et al., 1997).         amined for mineral toxicity before they are released.
     In attempts to increase iron availability in         The expression of the transgenic ferritin gene spe-
plant-based diets, Goto and associates (Goto et           cifically in the seed, as was reported by Gotto et al.
al., 1999) transformed rice with a soybean ferritin       (1999), may overcome problems of excess accumu-
gene, under the control of an endosperm-specific          lation of toxic metals.
gebe promoter. This resulted in the stable accu-
mulation of the soybean ferritin in seeds of the
transgenic rice and up to a threefold increase in         V. PLANT PRODUCTS WITH IMPROVED
seed iron content. A meal-size portion of such a          QUALITY OBTAINED BY REDIRECTING
ferritin-fortified rice is predicted to provide 30 to     SECONDARY METABOLISM
50% of the daily adult iron requirement (Goto et
al., 1999). Expression of a recombinant ferritin          A. Vitamins and Neutraceuticals
gene may be only a partial solution for iron for-
tification of plant foods because other factors,          1. The Terpenoid Pathway, Carotenoids,
such as iron transport efficiency to plant seeds          Vitamins A and E
and its association with phytic acid complexes
may limit level and availability. Indeed, Potrykus             Many important metabolites are synthesized in
and associates have transformed rice with three           plants at least partially via the terpenoid pathway.
genes encoding a French bean ferritin, a fungal           They include the phytol chain found in chlorophyll,
heat-stable phytase and a rice metallothionin-like        as well as plant growth regulators such as gibberel-
protein (a protein that helps iron absorption in the      lins, abscisic acid, and cytokinins; accessory photo-
human digestive tract) (Gura, 1999). Such                 synthetic pigments, chromophores, and vitamins such
transgenic plants could help solve iron deficiency        as carotenoids, and tocopherols (Figure 3) (Croteau
in humans. Unfortunately, because commercially            et al., 2000). Using metabolic engineering, the caro-
grown indica rice strains are very difficult to           tenoid pathway has been modified not only to pro-
transform, most of the studies on rice used the           duce valuable compounds and pigments (Hirschberg,
japonica strains. Thus, these genes will have to be       1999; Mann et al., 2000), but also to enhance the
transferred from the “japonica” into the “indica”         nutritional value and quality of foods. Using gene
strains, which can be performed by classic breed-         shuffling and recombinant genes, novel carotenoids
ing.                                                      have been produced in bacteria, illustrating the po-
     Although the utilization of ferritin to produce      tential of engineering the terpenoid pathway to pro-
iron-fortified plant foods looks promising, there are     duce unique carotenoids (Albrecht et al., 2000;
several physiological and safety issues to be consid-     Schmidt-Dannert et al., 2000). Nonetheless, direct



                                                                                                            183
FIGURE 3. Schematic diagram of the terpenoid pathway in plants. Bolded arrows indicate successful engineering
of key enzymatic steps in the pathway as indicated in the text. Monoterpenes (such as S-linalool; reaction # 3),
diterpenes (such as gibberelin and tocopherols; reactions # 5 and # 6) and tetraterpenes (such as carotenoids;
reactions # 7) are generally synthesized in plastids from glyceraldehyde-3-phosphate/deoxyxylulose phosphate
(DOXP) via isopentenyl diphosphate (IPP) (reaction # 1). Sesquiterpenes (such as artemisinin; reactions # 4) are
synthesized in the plant cytosol from the mevalonic acid (MVA) pathway via IPP (reaction # 2). Abbreviations of
enzymes: (LIS) S-Linalool synthase; (FPP synthase) farnesyl diphosphate synthase; (CMT) γ-tocopherol
C-methyltransferase; (PS) phytoene synthase; (PD) phytoene desaturase; (BC) β-carotene cyclase.



184
commercial application of these results is not trivial.   2000). Conversely, the inhibition of the phytoene
Constitutive manipulation of the terpenoid pathway        synthase gene in tomato has resulted in decreased
in plants might have undesired results. Attempts to       carotene and xanthophyll levels (Fraser et al.,
increase carotenoid levels by overexpressing              1995).
phytoene-synthase in tomato plants, utilizing the             The manipulation of the carotenoid pathway
CaMV 35S promoter, resulted in dwarf phenotypes           has also been accomplished in rice, a major world
due to a reduction of key diterpene derivatives such      food source. Rice contains poor levels of β-caro-
as gibberellic acid, and an accompanied reduction of      tene in the endosperm, which is the major tissue
chlorophyll levels, presumably due to lack of phytol      consumed as food after mechanical processing of
(Figure 3, reaction # 5) (Fray, 1995). The careful        the grain. Immature rice endosperm is able to
selection of terpenoid pathway genes and specific         synthesize the carotenoid precursor geranylgeranyl
promoters were more successful (see below), show-         diphosphate (Figure 3), but normally lacks caro-
ing that it should be possible to manipulate terpe-       tenoids. The accumulation of the noncolored caro-
noids to improve the nutritional quality of foods.        tenoid precursor phytoene (Figure 3) occurs in
                                                          transgenic rice plants expressing a daffodil (Nar-
                                                          cissus pseudonarcissus) phytoene synthase gene
a. Carotenoids and Vitamin A                              under the control of an endosperm-specific pro-
                                                          moter (Burkhardt et al., 1997). By combining this
     Carotenoids are tetraterpene pigments, essen-        gene with genes encoding a bacterial phytoene
tial in photosynthesis, but often accumulating in         desaturase and daffodil lycopene β-cyclase,
nonphotosynthetic tissues at high levels, impart-         β-carotene was produced in the endosperm, yield-
ing color and antioxidant properties to fruits. Pro-      ing the so-called “Golden Rice” (Figure 3, reac-
vitamin A (β-carotene and other cyclic caro-              tions #7) (Ye, 2000). Some transgenic rice geno-
tenoids) is converted into retinol (vitamin A) in         types also accumulated substantial levels of
humans. Vitamin A deficiency is one of the lead-          xanthophylls, such as lutein and zeaxanthin, prob-
ing causes of night blindness in humans and has           ably due to endogenous activities of cyclases and
also been correlated with increased occurrence of         hydroxylases in the endosperm tissue (Ye, 2000).
several diseases such as diarrhea, respiratory ail-       As for ferritin (see Section V.B), the rice species
ments, tuberculosis, malaria, and ear infections.         japonica was used for this proof of concept ex-
According to the World Health Organization                periment. The next step will be to transfer these
(WHO), around 2.8 million children under 5 years          genes into the indica rice varieties, the species
of age currently exhibit a severe clinical manifes-       grown in Asia.
tation of vitamin A deficiency known as xe-                   Because the precursor of carotenoids,
rophthalmia (Humphrey et al., 1992).                      geranylgeranyl diphosphate, is ubiquitous and
     Our knowledge in the biosynthesis of terpe-          often abundant in many plant tissues, this gene
noids has been applied to the production of plant         technology is promising for carotenoid-rich plant
foods rich in lycopene and provitamin A. Lyco-            products with enhanced or modified color and
pene is a noncyclic tetraterpene, and normally a          nutritional value. For example, transgenic rape-
precursor of other carotenoids such as the carotenes      seed producing high α- and β-carotene levels have
and xanthophylls (Figure 3), but often accumulat-         been produced using a bacterial phytoene syn-
ing in fruits such as tomatoes, papayas, and wa-          thase gene fused to a seed-specific promoter
termelons (Van den Berg et al., 2000). Besides            (Shewmaker et al., 1999).
the utilization of genes introgressed from a wild
relative, marker-assisted breeding has been used
to obtain high-lycopene tomatoes (Chen et al.,            b. Vitamin E
1999). Additionally, using genetic engineering,
the manipulation of the carotenoid pathway has                 Vitamin E was discovered 75 years ago as a
resulted in plant products enriched in provitamin         fat-soluble dietary factor effective in preventing
A at the expense of the pigment lycopene (Romer,          fetal death (Combs, 1992). Although vitamin E is



                                                                                                         185
the generic descriptor for all tocopherols that quali-   B. Phenolic Compounds, Stilbenes and
tatively exhibit the biological activity of α-toco-      Phytoestrogens
pherol, other tocopherols also have vitamin E
activity. Still, the most active tocopherol is           1. Resveratrol
α-tocopherol (Combs, 1992; Lambert, 1994;
Traber and Sies, 1996), produced only by plants               Several plants, including grapevine, pine, and
and is most concentrated in plant oils, especially       peanuts, produce the stilbene-type phytoalexin
wheat germ oil (Combs, 1992). Vitamin E defi-            resveratrol when attacked by pathogens. This
ciency not only causes fetal death, but also sev-        compound appears to be one of the health-pro-
eral other disorders, such as mammalian infertil-        moting factors of grapevine that are associated
ity, kidney and liver damage, cardiovascular             with reduced risk of heart diseases (popularly
diseases, and cancer (Combs, 1992; Dowd and              known as “The French Paradox”) and long rec-
Zheng, 1995; Sies and Stahl, 1995; Stampfer et           ognized by folklore medicine. Clinical studies
al., 1993). Tocopherols are antioxidants that pre-       have demonstrated the beneficial effect of
vent the autooxidation of highly unsaturated fatty       resveratrol, isolated from red wine, on cardio-
acids mediated by molecular oxygen. Thus, one            vascular disease and confirmed the involvement
of the roles of vitamin E in humans may be the           of resveratrol in fighting arteriosclerosis and
preservation of membranes from oxidative dam-            vascular tissue diseases (Das et al., 1999;
age (Burton and Ignold, 1981; Combs, 1992; Erin          Pendurthi et al., 1999; Zou et al., 1999).
et al., 1985).                                           Resveratrol has also been shown to inhibit cellu-
     Seeds normally contain γ-tocopherol, but not        lar processes associated with tumor initiation,
α-tocopherol. The gene encoding the γ-toco-              promotion, and progression (Mgbonyebi et al.,
pherol specific C-methyltransferase, an enzyme           1998; Park et al., 2001).
that converts γ-tocopherol to α-tocopherol by a               Resveratrol is synthesized from the ubiqui-
single methylation, is not highly expressed in           tous precursors malonyl CoA and coumaryl CoA
seeds. High α-tocopherol crop plants have been           by stilbene synthase. The gene encoding this
produced by classic breeding programs (Galliher          enzyme was cloned from grapevine and intro-
et al., 1985; Hallauer and Miranda, 1988). Im-           duced into tobacco (Hain et al., 1993). Due to
proving α-tocopherol production in seeds by              the availability of malonyl CoA and coumaryl-
genetic engineering was achieved when the                CoA, resveratrol was readily accumulated after
Arabidopsis gene encoding γ-tocopherol specific          induction of the transgenic tissues, rendering the
C-methyltransferase was cloned in an elegant             transgenic plants more resistant to fungal attack
series of experiments (Shintani and DellaPenna,          than the nontransgenic controls (Hain et al.,
1998). This genomics-based approach is de-               1993). Thus, the overexpression of only one gene
scribed in detail later (see Section VII.B).             led to the diversion of the existing metabolic
Constitutive overexpression of the γ-tocopherol          flow to the production of a novel metabolite
C-methyltransferase gene in transgenic                   (Gustine, 1995; Hain et al., 1993). Using this
Arabidopsis caused a significant conversion of           approach, the stilbene synthase gene therefore
γ-tocopherol to α-tocopherol in the seeds (Fig-          could be used to produce resveratrol in foods
ure 3, reactions # 6) (Shintani and DellaPenna,          already associated with anticancer properties, or
1998). It is highly likely that this transgenic          to create “functional foods” with health benefits.
approach will be applicable to many other seeds.         The metabolic engineering for the production of
This approach, however, does not cause an in-            a phytoalexin, originally intended to introduce
crease in the levels of total tocopherols, but only      fungal resistance into plants, could lead to the
converts most of the γ-tocopherol already present        production of functional foods. Moreover, be-
into α-tocopherol. Nevertheless, with the advent         cause resveratrol can be generated in grape cell
of genes that control total tocopherol content, it       suspension cultures, it may also be possible to
may be possible to obtain food products with             produce resveratrol to be marketed as a food
increased total tocopherol levels.                       supplement.



186
2. Flavonoids                                             lites. The different proportions of the volatile com-
                                                          ponents, their thresholds for perception by human’s
     Many members of the Fabaceae accumulate a            nose, and the presence or absence of trace compo-
number isoflavonoid compounds, such as the                nents often determine aroma properties (Thomson,
isoflavones genistein and daidzein, as well as their      1987). Breeding programs of fruits and vegetables
glycosides that exist in soybeans (Jung et al., 2000).    have been focused traditionally on desirable
Several health benefits have been assigned to these       agronomical characteristics, such as yield and
compounds, at times referred to as phytoestrogens.        resistance to environmental stresses, pests, and
Phytoestrogens are associated with relief of meno-        pathogens (Stevens and Rick, 1986). Breeding for
pausal symptoms, reduction of osteoporosis, im-           improved fruit flavor was mainly directed toward
provement of blood cholesterol levels, and lower-         controlling sugar/acid ratios and improving tex-
ing the risk of certain hormone-related cancers,          ture and storage characteristics (Jones and Scott,
and coronary heart disease (see Dixon and Steele,         1983; Stevens and Rick, 1986). Conventional
1999). The biochemical basis of these effects has         breeding to improve the aromas of agricultural
not been fully established, but the weak estrogenic       products is often impeded by the large number of
activity of isoflavones may be a factor conferring        genes involved, the significant environmental and
these properties. The potential for metabolic engi-       developmental effects, and the lack of simple and
neering of the isoflavonoid pathway has been rec-         cheap methodologies to probe both aroma prefer-
ognized (Dixon and Steele, 1999).                         ences of the public and the complex chemistry.
     Isoflavones are synthesized by a branch of the
phenylpropanoid pathway and normally play a role
in plant defense against fungal attacks (Dixon and        1. Modification of the Early Steps of the
Paiva, 1995). They also help to establish a symbiotic     Terpenoid Pathway
association between legumes and nitrogen fixing
rhizobial bacteria (Dixon and Paiva, 1995). The                Monoterpenes are key determinants of the
branching of the flavonoid metabolic pathway to           aromas of many aromatic plants, vegetables, and
isoflavones occurs by the action of the enzyme            fruits. Therefore, the potential of genetic engi-
isoflavone synthase. Isoflavone synthase, a member        neering to modify the early steps of the terpe-
of the cytochrome P450 family, oxidizes the fla-          noid pathway in order to modify aroma has been
vanone intermediates naringenin and liquiritigenin        noted (Haudenschild and Croteau, 1998;
into genistein and daidzein, respectively (Jung et al.,   Lewinsohn, 1996). Linalool is an acyclic monot-
2000). Naringenin is synthesized by most plants as        erpene alcohol that imparts an aroma with a
an intermediate to other flavonoids, such as the          sweet floral alcoholic note. Linalool is a major
common anthocyanin pigments (Croteau et al., 2000).       component of the scent of many flowers (Dob-
Overexpression of the soybean isoflavone synthase         son, 1993; Knudsen et al., 1993) and is also
gene in transgenic Arabidopsis, tobacco, and maize        present in many edible fruits, such as guava,
plants, which naturally do not produce isoflavones,       peach, plum, pineapple, and passionfruit
resulted in the production of genistein and its deriva-   (Bernreuther and Schreier, 1991). Linalool is a
tives, possibly through the conversion of endogenous      chiral compound, naturally appearing in two
naringenin (Yu et al., 2000). These results prove that    forms (S- and R-linalool) that differ in their
by metabolic engineering, it is possible to produce       aroma. The enzyme that catalyzes the formation
health-associated isoflavones in nonlegume plants.        of S-linalool from the ubiquitous precursor
                                                          geranyl diphosphate (Figure 3, reaction # 3) has
                                                          been purified (Pichersky et al., 1995), and its
C. Improving the Flavor and Aroma of                      gene (LIS) cloned from the flowers of a small
Plant Foods                                               Californian annual plant Clarkia breweri
                                                          (Dudareva et al., 1996). This gene is a promising
    The aromas of fruits, vegetables, and other           candidate for future attempts to manipulate
foods are due to the mixtures of volatile metabo-         monoterpene metabolism in transgenic plants.



                                                                                                          187
Many modern tomato varieties have impaired         the increased production of flavor compounds
aromas, as they lack many of the common                 derived from the degradation of fatty acids, such
volatiles, such as linalool, present in the older       as cis-3-hexenol, 1-hexanol, hexanal, and cis-3-
tomato varieties. Metabolic engineering to modify       hexenal. These compounds impart a fresh aroma
the aroma of tomato fruits has been described           sensation (Wang et al., 1996). In another study,
recently (Lewinsohn et al., 2001). The Clarkia          the levels and ratios of short-chain aldehydes and
LIS gene under the control of the late-ripening         alcohols were modified by the respective repres-
specific promoter E8 has been transformed into          sion and overexpression of a tomato alcohol de-
tomatoes and this has resulted in fruits that pro-      hydrogenase gene in transgenic tomato fruits
duce S-linalool (Figure 3, reaction #3). Unexpect-      (Prestage et al., 1999; Speirs, 1998). As a result,
edly, the expression of LIS also caused the accu-       minute changes in aroma were detected by taste
mulation of 8-hydroxylinalool, a linalool               panelists.
derivative possibly produced by allylic hydroxy-
lation of the linalool via an unknown endogenous
enzyme.                                                 D. Antinutritional Compounds
     Notably, although only a small fraction of the
metabolic flow through the terpenoid pathway                 Many natural products are induced in plants as
was diverted into linalool in these transgenic          a result of fungal attacks and are often considered
plants, this was sufficient to change the aroma,        important in plant protection. Some of these de-
because the threshold levels for the perception of      fense metabolites have beneficial human health
linalool are very low (6 ppb) (Buttery et al., 1971).   properties (see Section VI.B.1), while others have
In fact, many other volatiles also have very low        toxic effects. It is usually recommended that in-
thresholds of detection (Buttery et al., 1971), and     fected plant products not be consumed. This is not
therefore aroma enhancement may be relatively           only due to the presence of mycotoxins produced
easily achieved by diverting only a small fraction      by pathogens, but also to the possible presence of
of the metabolic flow to their production, with         plant-derived compounds that are toxic to humans
negligible perturbation of the general metabolism       (Kuc, 1995). Plants bred for pest resistance, by
of the plant. The potential of genetic engineering      incorporating genes from wild relatives, must be
for the improvement of aroma and taste proper-          tested carefully to avoid the inclusion of toxic traits
ties of agricultural products is just beginning to be   (Kuc, 1995). Another important antinutritional agent
investigated. With the discovery of other genes         is lignin, which is not discussed in the present
encoding key enzymes involved in the production         review because it has been discussed in a number
of volatile aroma chemicals, the potential to uti-      of recent reviews (Baucher et al., 1998; Grima-
lize genetic engineering for the manipulation of        Pettenati and Goffner, 1999).
crops is very promising.

                                                        1. Furanocoumarins
2. Modification of Lipid-Derived Volatiles
                                                             The furanocoumarins psoralen, bergapten, and
     Many of the volatiles that affect the aroma of     xanthotoxin are found in many food crops of the
fresh produce are formed by degradation of lipids       Apiaceae, Rutaceae, and Moraceae, including cel-
(Croteau and Karp, 1991). Therefore, another            ery, parsnip, parsley, citrus, and figs (Beier and
approach to improve tomato fruit aroma was to           Nigg, 1992). These metabolites have antimicrobial
modify the oxidation pattern of the lipids that are     and insecticidal properties but are also potent pho-
naturally degraded into aroma compounds.                tosensitizing toxins for humans. They cause severe
Overexpressing a yeast gene encoding ∆ 9                dermatitis, blistering, and other serious damage to
desaturase in transgenic tomato plants elevated         the skin in the presence of UV light or solar radia-
the levels of saturated and unsaturated fatty acids     tion (Beier and Nigg, 1992). At low doses,
in the fruits. These changes were associated with       furanocoumarins can have therapeutical and cos-



188
metic value, and they are sometimes added to sun         verts xanthosine to form 7-methyl xanthosine.
lotions as photosensitizers. Furanocoumarins are         After hydrolysis of the ribose moiety, 7-
also used to treat psoriasis, vitiligo, and other skin   methylxanthine is formed, which after two se-
disorders.                                               quential N-methylations give rise to theobromine
     Fungal infections and other stress conditions       (the major alkaloid of cacao beans), and caffeine
during the growing season can markedly increase          (Waldhauser et al., 1997). The gene for xanthosine-
plant furanocoumarin levels. Because of their            N7-methyltransferase, the first enzyme in this path-
antimicrobial and insecticidal activities, plant         way, was silenced by antisense, resulting in virtu-
breeders developed lines of celery with high             ally caffeine-free transgenic coffee plants (http://
psoralen levels (Kuc, 1995). These lines had to be       www.nbiap.vt.edu/biomon/datacat.htm). These
removed from the market when toxicological data          “naturally” caffeine-free products do not require
concerning psoralens became widely available and         decaffeination. Field experiments designed to test
accepted. Well-intentioned efforts to protect plants     the performance of these plants are currently un-
by increasing their natural defense compounds            der way. One could envision similar experiments
had serious health repercussions.                        to lower caffeine content in other plants.


2. Nitrogen Compounds: Alkaloids and                     b. Glucosinolates
Glucosinolates
                                                               Glucosinolates, also called mustard oil glyco-
a. Caffeine                                              sides, are anionic thioglucosides normally associ-
                                                         ated with plant defense due to their insecticidal and
     Caffeine (trimethylxanthine) is an odorless,        antibacterial properties. They occur in many plant
bitter purine alkaloid. The most common caffeine         families, but they are particularly common in the
containing plants are tea (Thea sinensis                 Brassicaceae. Plants that contain glucosinolates also
fam. Theaceae) and coffee (Coffea spp. Fam.              contain thioglucosidase (myrosinase) enzymes that
Rubiaceae), but it also occurs in other unrelated        cleave the sugar moiety and release the free agly-
families (Samuelsson, 1992). The average cup of          cones. The free aglycones are nonstable and de-
coffee contains about 100 mg of caffeine. Caf-           compose into sulfur-containing volatiles that im-
feine has a stimulating effect on the central ner-       part a typical pungent odor and biting taste. The hot
vous system, heart, blood vessels, and kidneys.          flavor of mustard seed and horseradish, as well as
Its potent stimulatory action makes it a valuable        the more subtle flavors of rutabaga and cauliflower,
antidote to respiratory depression induced by drug       are consequences of the presence of such com-
overdose (e.g., from morphine or barbiturates).          pounds.
People who use caffeine can show improved motor                By the 1960s, rapeseed varieties were bred to
performance, decreased fatigue, enhanced sen-            contain oil low in erucic acid, which is associated
sory activity, and increased alertness. This may         with myocardial toxicity. Rapeseed meal protein
partly explain the compulsion of many adults to          has a favorable balance of amino acids, but its use
consume coffee or other caffeine-containing bev-         in rations was limited by its glucosinolate con-
erages as part of their “morning ritual”. Caffeine       tent. Canadian breeders developed “double low”
intake can also cause irritability, nervousness or       rapeseed: (low erucic acid, low glucosinolate con-
anxiety, jitteriness, headaches, and insomnia. By        tent), which has become a major oil crop.
the mid-1980s decaffeinated coffee and soft drinks             Glucosinolates are derived from amino acids
had become widely available, giving consumers            via aldoxime and thiohydroximic acid intermediates
the choice of regulating their caffeine intake.          (Figure 4) (Luckner, 1990). Indole glucosinolates
Caffeine is removed from the coffee beans. Caf-          still present in rapeseed are derived from tryptophan.
feine is synthesized from the pool of free purines       They adversely affect the quality of rapeseed oil and
available for nucleic acid biosynthesis through          meal. The pathway from tryptophan to glucosinolates
the action of a 7-N-methyltransferase that con-          has been diverted in transgenic rapeseed by



                                                                                                          189
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas
8.mejoramiento del valor nutricional de plantas

Weitere ähnliche Inhalte

Was ist angesagt?

Tondini_IL44-15 Effects of nutritional technologies on cattle digestibility
Tondini_IL44-15 Effects of nutritional technologies on cattle digestibilityTondini_IL44-15 Effects of nutritional technologies on cattle digestibility
Tondini_IL44-15 Effects of nutritional technologies on cattle digestibilitySara Tondini
 
Application of biotechnology in functional foods
Application of biotechnology in functional foodsApplication of biotechnology in functional foods
Application of biotechnology in functional foodsJohnson Mwove
 
Probiotics- unfolding their potential in boosting poultry industry
Probiotics- unfolding their potential in boosting poultry industryProbiotics- unfolding their potential in boosting poultry industry
Probiotics- unfolding their potential in boosting poultry industryX S
 
Biofortification in fruit crops
Biofortification in fruit cropsBiofortification in fruit crops
Biofortification in fruit cropsNishant Kadge
 
Rapporteur summary slides wednesday
Rapporteur summary slides wednesdayRapporteur summary slides wednesday
Rapporteur summary slides wednesdayHarvest Plus
 
M.S. Swaminathan presents: Achieving the Zero Hunger Challenge & the Role of ...
M.S. Swaminathan presents: Achieving the Zero Hunger Challenge & the Role of ...M.S. Swaminathan presents: Achieving the Zero Hunger Challenge & the Role of ...
M.S. Swaminathan presents: Achieving the Zero Hunger Challenge & the Role of ...Harvest Plus
 
NUTRITIONAL IMPROVEMENT IN CEREAL CROPS
NUTRITIONAL IMPROVEMENT IN CEREAL CROPSNUTRITIONAL IMPROVEMENT IN CEREAL CROPS
NUTRITIONAL IMPROVEMENT IN CEREAL CROPSSURAJ LAMSAL
 
Hambidge nutrition fe zn
Hambidge nutrition fe znHambidge nutrition fe zn
Hambidge nutrition fe znHarvest Plus
 
Functional food and Nutraceuticals
 Functional food and Nutraceuticals Functional food and Nutraceuticals
Functional food and NutraceuticalsSourav Rout
 

Was ist angesagt? (20)

Tondini_IL44-15 Effects of nutritional technologies on cattle digestibility
Tondini_IL44-15 Effects of nutritional technologies on cattle digestibilityTondini_IL44-15 Effects of nutritional technologies on cattle digestibility
Tondini_IL44-15 Effects of nutritional technologies on cattle digestibility
 
BIOFORTIFICATION : A SUSTAINABLE AGRICULTURAL STRATEGY FOR REDUCING MALNUTRI...
BIOFORTIFICATION : A SUSTAINABLE AGRICULTURAL  STRATEGY FOR REDUCING MALNUTRI...BIOFORTIFICATION : A SUSTAINABLE AGRICULTURAL  STRATEGY FOR REDUCING MALNUTRI...
BIOFORTIFICATION : A SUSTAINABLE AGRICULTURAL STRATEGY FOR REDUCING MALNUTRI...
 
Application of biotechnology in functional foods
Application of biotechnology in functional foodsApplication of biotechnology in functional foods
Application of biotechnology in functional foods
 
BIOFORTIFICATION
BIOFORTIFICATION BIOFORTIFICATION
BIOFORTIFICATION
 
Prebiotics in poultry
Prebiotics in poultryPrebiotics in poultry
Prebiotics in poultry
 
Lyons agronomics
Lyons agronomicsLyons agronomics
Lyons agronomics
 
Precision feeding in livestock
Precision feeding in livestockPrecision feeding in livestock
Precision feeding in livestock
 
2 credit seminr
2 credit seminr2 credit seminr
2 credit seminr
 
Probiotics- unfolding their potential in boosting poultry industry
Probiotics- unfolding their potential in boosting poultry industryProbiotics- unfolding their potential in boosting poultry industry
Probiotics- unfolding their potential in boosting poultry industry
 
Harvest plus
Harvest plusHarvest plus
Harvest plus
 
Biofortification
BiofortificationBiofortification
Biofortification
 
Biofortification in fruit crops
Biofortification in fruit cropsBiofortification in fruit crops
Biofortification in fruit crops
 
Rapporteur summary slides wednesday
Rapporteur summary slides wednesdayRapporteur summary slides wednesday
Rapporteur summary slides wednesday
 
Dr. kasote irri-091119
Dr. kasote irri-091119Dr. kasote irri-091119
Dr. kasote irri-091119
 
Biofortification, crop adoption and health information: Impact pathways in Mo...
Biofortification, crop adoption and health information: Impact pathways in Mo...Biofortification, crop adoption and health information: Impact pathways in Mo...
Biofortification, crop adoption and health information: Impact pathways in Mo...
 
M.S. Swaminathan presents: Achieving the Zero Hunger Challenge & the Role of ...
M.S. Swaminathan presents: Achieving the Zero Hunger Challenge & the Role of ...M.S. Swaminathan presents: Achieving the Zero Hunger Challenge & the Role of ...
M.S. Swaminathan presents: Achieving the Zero Hunger Challenge & the Role of ...
 
NUTRITIONAL IMPROVEMENT IN CEREAL CROPS
NUTRITIONAL IMPROVEMENT IN CEREAL CROPSNUTRITIONAL IMPROVEMENT IN CEREAL CROPS
NUTRITIONAL IMPROVEMENT IN CEREAL CROPS
 
Basic and applied aspects of biotechnology
Basic and applied aspects of biotechnologyBasic and applied aspects of biotechnology
Basic and applied aspects of biotechnology
 
Hambidge nutrition fe zn
Hambidge nutrition fe znHambidge nutrition fe zn
Hambidge nutrition fe zn
 
Functional food and Nutraceuticals
 Functional food and Nutraceuticals Functional food and Nutraceuticals
Functional food and Nutraceuticals
 

Andere mochten auch

Trabajo ingles
Trabajo inglesTrabajo ingles
Trabajo inglesDAVID01XS
 
'How can we support older workers?' an ILC-UK European policy debate, support...
'How can we support older workers?' an ILC-UK European policy debate, support...'How can we support older workers?' an ILC-UK European policy debate, support...
'How can we support older workers?' an ILC-UK European policy debate, support...ILC- UK
 
ProfCat 2011:two - Darren Toms Coaching
ProfCat 2011:two - Darren Toms CoachingProfCat 2011:two - Darren Toms Coaching
ProfCat 2011:two - Darren Toms CoachingProfitability Catalyst
 
7.4 notes1[1]
7.4 notes1[1]7.4 notes1[1]
7.4 notes1[1]nglaze10
 
Idesco DESCoder Tutorial Presentation
Idesco DESCoder Tutorial PresentationIdesco DESCoder Tutorial Presentation
Idesco DESCoder Tutorial PresentationIdesco Oy
 
Places that i love
Places that i lovePlaces that i love
Places that i loveMorags007
 
Walla Faces Spring Release slideshow
Walla Faces Spring Release slideshowWalla Faces Spring Release slideshow
Walla Faces Spring Release slideshowdebhig
 
Roger Quesnell Duo at Walla Faces
Roger Quesnell Duo at Walla FacesRoger Quesnell Duo at Walla Faces
Roger Quesnell Duo at Walla Facesdebhig
 
RESERVE Cap e report Produtos JEUNESSE
RESERVE Cap e report Produtos JEUNESSERESERVE Cap e report Produtos JEUNESSE
RESERVE Cap e report Produtos JEUNESSESérgioAffonso Silva
 
Gary Winston and the Real Deal @ Walla Faces
Gary Winston and the Real Deal @ Walla FacesGary Winston and the Real Deal @ Walla Faces
Gary Winston and the Real Deal @ Walla Facesdebhig
 
Powerpoint dansa amb helena
Powerpoint dansa amb helenaPowerpoint dansa amb helena
Powerpoint dansa amb helenaestelpastor
 
02May14 - The demographic implications of Scottish independence
02May14 - The demographic implications of Scottish independence02May14 - The demographic implications of Scottish independence
02May14 - The demographic implications of Scottish independenceILC- UK
 
2012 Ford Mustang For Sale NE | Ford Dealer Nebraska
2012 Ford Mustang For Sale NE | Ford Dealer Nebraska2012 Ford Mustang For Sale NE | Ford Dealer Nebraska
2012 Ford Mustang For Sale NE | Ford Dealer NebraskaSidDillon Crete
 
Technology and ageing: Home Sweet Home
Technology and ageing: Home Sweet HomeTechnology and ageing: Home Sweet Home
Technology and ageing: Home Sweet HomeILC- UK
 
Eksamen1
Eksamen1Eksamen1
Eksamen1mvaage
 

Andere mochten auch (20)

Trabajo ingles
Trabajo inglesTrabajo ingles
Trabajo ingles
 
Email List Building
Email List BuildingEmail List Building
Email List Building
 
'How can we support older workers?' an ILC-UK European policy debate, support...
'How can we support older workers?' an ILC-UK European policy debate, support...'How can we support older workers?' an ILC-UK European policy debate, support...
'How can we support older workers?' an ILC-UK European policy debate, support...
 
ProfCat 2011:two - Darren Toms Coaching
ProfCat 2011:two - Darren Toms CoachingProfCat 2011:two - Darren Toms Coaching
ProfCat 2011:two - Darren Toms Coaching
 
Decimals
DecimalsDecimals
Decimals
 
7.4 notes1[1]
7.4 notes1[1]7.4 notes1[1]
7.4 notes1[1]
 
Idesco DESCoder Tutorial Presentation
Idesco DESCoder Tutorial PresentationIdesco DESCoder Tutorial Presentation
Idesco DESCoder Tutorial Presentation
 
Places that i love
Places that i lovePlaces that i love
Places that i love
 
Walla Faces Spring Release slideshow
Walla Faces Spring Release slideshowWalla Faces Spring Release slideshow
Walla Faces Spring Release slideshow
 
Fff9
Fff9Fff9
Fff9
 
Roger Quesnell Duo at Walla Faces
Roger Quesnell Duo at Walla FacesRoger Quesnell Duo at Walla Faces
Roger Quesnell Duo at Walla Faces
 
1Q 2013 NIFCU$ Perspectives and Commentary
1Q 2013 NIFCU$ Perspectives and Commentary1Q 2013 NIFCU$ Perspectives and Commentary
1Q 2013 NIFCU$ Perspectives and Commentary
 
RESERVE Cap e report Produtos JEUNESSE
RESERVE Cap e report Produtos JEUNESSERESERVE Cap e report Produtos JEUNESSE
RESERVE Cap e report Produtos JEUNESSE
 
Gary Winston and the Real Deal @ Walla Faces
Gary Winston and the Real Deal @ Walla FacesGary Winston and the Real Deal @ Walla Faces
Gary Winston and the Real Deal @ Walla Faces
 
Allstaff 2011q1 fb
Allstaff 2011q1 fbAllstaff 2011q1 fb
Allstaff 2011q1 fb
 
Powerpoint dansa amb helena
Powerpoint dansa amb helenaPowerpoint dansa amb helena
Powerpoint dansa amb helena
 
02May14 - The demographic implications of Scottish independence
02May14 - The demographic implications of Scottish independence02May14 - The demographic implications of Scottish independence
02May14 - The demographic implications of Scottish independence
 
2012 Ford Mustang For Sale NE | Ford Dealer Nebraska
2012 Ford Mustang For Sale NE | Ford Dealer Nebraska2012 Ford Mustang For Sale NE | Ford Dealer Nebraska
2012 Ford Mustang For Sale NE | Ford Dealer Nebraska
 
Technology and ageing: Home Sweet Home
Technology and ageing: Home Sweet HomeTechnology and ageing: Home Sweet Home
Technology and ageing: Home Sweet Home
 
Eksamen1
Eksamen1Eksamen1
Eksamen1
 

Ähnlich wie 8.mejoramiento del valor nutricional de plantas

Bio fortification through Genetic Engineering
Bio fortification through Genetic EngineeringBio fortification through Genetic Engineering
Bio fortification through Genetic EngineeringBalaji Rathod
 
Transgenic crops for food quality.
Transgenic crops for food quality.Transgenic crops for food quality.
Transgenic crops for food quality.Sheetal Mehla
 
Breeding for nutritional quality in pulses
Breeding for nutritional quality in pulsesBreeding for nutritional quality in pulses
Breeding for nutritional quality in pulsesDhanuja Kumar
 
Regulation of Phytonutrient Level in Plant
Regulation of Phytonutrient Level in PlantRegulation of Phytonutrient Level in Plant
Regulation of Phytonutrient Level in PlantMd. Nazrul Islam
 
Biofortification by Y. Pooja
Biofortification by Y. PoojaBiofortification by Y. Pooja
Biofortification by Y. PoojaPoojaHorti
 
BIOTECHNOLOGY IN ANIMAL FEED.ppt
BIOTECHNOLOGY IN ANIMAL FEED.pptBIOTECHNOLOGY IN ANIMAL FEED.ppt
BIOTECHNOLOGY IN ANIMAL FEED.pptDr.hema hassan
 
Holistic Livestock Healthcare - Nuffield Canada
Holistic Livestock Healthcare - Nuffield CanadaHolistic Livestock Healthcare - Nuffield Canada
Holistic Livestock Healthcare - Nuffield Canadax3G9
 
Phytochemicals and fetal epigenome
Phytochemicals and fetal epigenomePhytochemicals and fetal epigenome
Phytochemicals and fetal epigenomeTevfik Yoldemir
 
Biotechnology in animal nutrition, physiology and health
Biotechnology in animal nutrition, physiology and healthBiotechnology in animal nutrition, physiology and health
Biotechnology in animal nutrition, physiology and healthmillylh
 
Enhancing nutritional quality of the diets
Enhancing nutritional quality of the dietsEnhancing nutritional quality of the diets
Enhancing nutritional quality of the dietsAkansha Bhatnagar
 
Role of Plant Bio-technology in Agriculture.pdf
Role of Plant Bio-technology in Agriculture.pdfRole of Plant Bio-technology in Agriculture.pdf
Role of Plant Bio-technology in Agriculture.pdfindrajitkumar4806
 
Genetically Modified Organisms (GMO).pptx
Genetically Modified Organisms (GMO).pptxGenetically Modified Organisms (GMO).pptx
Genetically Modified Organisms (GMO).pptxNicholePino2
 
Superfoods - What They Are, How to Market Them
Superfoods - What They Are, How to Market ThemSuperfoods - What They Are, How to Market Them
Superfoods - What They Are, How to Market ThemMark Klingman
 

Ähnlich wie 8.mejoramiento del valor nutricional de plantas (20)

Bio fortification through Genetic Engineering
Bio fortification through Genetic EngineeringBio fortification through Genetic Engineering
Bio fortification through Genetic Engineering
 
Transgenic crops for food quality.
Transgenic crops for food quality.Transgenic crops for food quality.
Transgenic crops for food quality.
 
Zinc iron wheat biofortification
Zinc iron wheat biofortificationZinc iron wheat biofortification
Zinc iron wheat biofortification
 
Breeding for nutritional quality in pulses
Breeding for nutritional quality in pulsesBreeding for nutritional quality in pulses
Breeding for nutritional quality in pulses
 
Regulation of Phytonutrient Level in Plant
Regulation of Phytonutrient Level in PlantRegulation of Phytonutrient Level in Plant
Regulation of Phytonutrient Level in Plant
 
Biofortification by Y. Pooja
Biofortification by Y. PoojaBiofortification by Y. Pooja
Biofortification by Y. Pooja
 
BIOTECHNOLOGY IN ANIMAL FEED.ppt
BIOTECHNOLOGY IN ANIMAL FEED.pptBIOTECHNOLOGY IN ANIMAL FEED.ppt
BIOTECHNOLOGY IN ANIMAL FEED.ppt
 
Holistic Livestock Healthcare - Nuffield Canada
Holistic Livestock Healthcare - Nuffield Canada  Holistic Livestock Healthcare - Nuffield Canada
Holistic Livestock Healthcare - Nuffield Canada
 
Holistic Livestock Healthcare - Nuffield Canada
Holistic Livestock Healthcare - Nuffield CanadaHolistic Livestock Healthcare - Nuffield Canada
Holistic Livestock Healthcare - Nuffield Canada
 
Phytochemicals and fetal epigenome
Phytochemicals and fetal epigenomePhytochemicals and fetal epigenome
Phytochemicals and fetal epigenome
 
Phytochemicals and fetal epigenome
Phytochemicals and fetal epigenomePhytochemicals and fetal epigenome
Phytochemicals and fetal epigenome
 
Biotechnology in animal nutrition, physiology and health
Biotechnology in animal nutrition, physiology and healthBiotechnology in animal nutrition, physiology and health
Biotechnology in animal nutrition, physiology and health
 
Nourishing Plants and People Bruulsema 19 Nov 10
Nourishing Plants and People Bruulsema 19 Nov 10Nourishing Plants and People Bruulsema 19 Nov 10
Nourishing Plants and People Bruulsema 19 Nov 10
 
Uns tariq sh
Uns tariq shUns tariq sh
Uns tariq sh
 
Enhancing nutritional quality of the diets
Enhancing nutritional quality of the dietsEnhancing nutritional quality of the diets
Enhancing nutritional quality of the diets
 
Role of Plant Bio-technology in Agriculture.pdf
Role of Plant Bio-technology in Agriculture.pdfRole of Plant Bio-technology in Agriculture.pdf
Role of Plant Bio-technology in Agriculture.pdf
 
Nutrigenomics
NutrigenomicsNutrigenomics
Nutrigenomics
 
Genetically Modified Organisms (GMO).pptx
Genetically Modified Organisms (GMO).pptxGenetically Modified Organisms (GMO).pptx
Genetically Modified Organisms (GMO).pptx
 
Preservation of Milk and Dairy Products by Using Biopreservatives
Preservation of Milk and Dairy Products by Using BiopreservativesPreservation of Milk and Dairy Products by Using Biopreservatives
Preservation of Milk and Dairy Products by Using Biopreservatives
 
Superfoods - What They Are, How to Market Them
Superfoods - What They Are, How to Market ThemSuperfoods - What They Are, How to Market Them
Superfoods - What They Are, How to Market Them
 

Kürzlich hochgeladen

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 

Kürzlich hochgeladen (20)

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 

8.mejoramiento del valor nutricional de plantas

  • 1. Critical Reviews in Plant Sciences, 21(3):167–204 (2002) Genetic, Molecular, and Genomic Approaches to Improve the Value of Plant Foods and Feeds Gad Galili,1* Shmuel Galili,2 Efraim Lewinsohn,2 and Yaakov Tadmor 2 1Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100 Israel, and 2Institute of Field and Garden Crops, Agricultural Research Organization, PO Box 6, Bet Dagan 50250 Israel Referee: Dr. T.J. Higgins, Chief Research Scientist, CSIRO, Divistion of Plant Industry, Clunies Ross Street, Box 1600, Canberra, 2601, Australia * This review was written as an equal contribution of four scientists studying different disciplines of food and feed quality. These include amino acid and storage protein metabolism (GG, Email: gad.galili@weizmann.ac.il); ruminant and non-ruminant animals feeding (SG, Email: vclidg@netvision.net.il); secondary metabolism (EL, Email: twefraim@netvision.net.il); lipids and minerals (YT, Email: tadmory@netvision.net.il). ABSTRACT: Recent advances in gene isolation, plant transformation, and genetic engineering are being used extensively to alter metabolic pathways in plants by tailormade modifications to single or multiple genes. Many of these modifications are directed toward increasing the nutritional value of plant-derived foods and feeds. These approaches are based on rapidly growing basic knowledge, understanding, and predictions of metabolic fluxes and networks. Some of the predictions appear to be accurate, while others are not, reflecting the fact that plant metabolism is more complex than we presently understand. Tailor-made modifications of plant metabolism has so far been directed into improving the levels of primary metabolites that are essential for growth and development of humans and their livestock. Yet, the list of improved metabolites is expected to grow tremendously after new discoveries in nutritional, medical, and health sciences. Despite our extensive knowledge of metabolic networks, many of the genes encoding enzymes, particularly those involved in secondary metabolism, are still unknown. These genes are being discovered at an accelerated rate by recent advances in genetic and genomics approaches. In the present review, we discuss examples in which the nutritional and health values of plant-derived foods and feeds were improved by metabolic engineering. These include modifications of the levels of several essential amino acids, lipids, fatty acids, minerals, nutraceuticals, antinutritional compounds, and aromas. I. INTRODUCTION is also a great demand by the public in Western countries for fortified plant foods to improve hu- The classic role of agricultural crops as the man health and life expectancy. The demands for major food supplier to feed a growing and hungry this category include a number of exotic health population is still substantial, but today there is compounds such as essential oils and exotic anti- also a great demand to increase the nutritional oxidants, which may improve life, especially dur- quality of this food. Improved nutritional quality ing the elder life stages. Besides the nutritional may help solve problems encountered in cases aspect, the value of plant foods depends also on were plant foods are the major or sole source of its taste and structure. Thus, improving the taste food, that is, plant foods in many developing and aroma of foods are also important areas in countries as well as plant feeds for livestock, crop breeding. which are consumed as human foods. The de- As is the case with other agronomic traits, the mands for these sectors focus particularly on im- major approach to improving the value of plant proving the levels of essential amino acids, min- foods and feeds is by classic genetics and breeding. erals, and basic vitamins to allow the healthy This approach has been tremendously successful; growth of humans and livestock. In addition, with however, it is a relatively slow process and de- the developed awareness of human health, there pends on the relatively narrow genetic variability 0735-2689/02/$.50 © 2002 by CRC Press LLC 167
  • 2. within many crop plants. During the last 2 or so protein amino acids and therefore have to obtain decades, other approaches for tailormade improve- these “essential” amino acids in their diet. Al- ments of food and feed quality have developed and though ruminant animals (such as cattle and sheep) are being incorporated into plant breeding together also cannot synthesize essential amino acids, they with classic genetics. These include DNA-marker- have special microbial flora in their rumen, which assisted breeding, direct gene transfer, and, more metabolize nonessential amino acids into essen- recently, the use of genomics. tial amino acids and incorporate them into micro- The strategies for enhancing the value of plant bial proteins that later become available for nutri- foods and feeds include altering metabolic pathways tion. However, these microbial proteins, although using genes for enzymes responsible for the biosyn- of better nutritional quality than plant proteins, thesis of specific phytochemicals. Such studies de- provide only ~65% of the total protein required pend on existing metabolic knowledge, which is not for intensive milk production (Leng, 1990). Hence, always accurate. So-called tailormade perturbation ruminant animals also suffer from limitations in of metabolic pathways does not always result in the essential amino acids. Moreover, attempts to im- expected changes. Thus, an essential part of a gene prove the nutritional quality of foods for ruminant technology based approach to enhanced value of animals require specific considerations, based on plant foods and feeds depends on the full knowledge the nature of their rumen microbial flora (see of the relevant biochemical pathway. Section III.B.5). Many aspects of the nutritive value of plants Lysine and methionine are the most impor- and how to improve it have already been dis- tant essential amino acids because they are present cussed (for examples see Abelson and Hines, 1999; in limiting levels in the major feed and food crops. Agarwal and Rao, 2000; Baucher et al., 1998; Cereal grains generally contain low levels of lysine Brink and Beynen, 1992; Dillard and German, (Shotwell and Larkins, 1989), while legumes are 2000; Dixon and Steele, 1999; Dunwell, 1999; generally deficient in methionine (Duke, 1981). Dunwell, 2000; Galili, 1995; Gaskell et al., 1999; Due to the vital nutritional significance of lysine Giddings et al., 2000; Grima-Pettenati and Goffner, and methionine, most efforts have focused on 1999; Grusak, 1999; Grusak and DellaPenna, enhancing the levels of these two essential amino 1999; Hefford, 1997; Mandal and Mandal, 2000; acids in their free or protein-bound forms. Marriott, 2000; Merchen and Trigemeyer, 1992; Miflin et al., 1999; Ohlrogge and Benning, 2000; Serageldin, 1999; Shotwell and Larkins, 1989; A. Breeding of High-Lysine Cereals: The Teferedegne, 2000; Van Duyn and Pivonka, 2000; Story of “Quality Protein Maize” Williamson et al., 1999). Here we focus and at- tempt to provide a critical opinion on selected Cereal grains represent the main dietary source improvements to the nutritional value of plants of protein for human and livestock worldwide. for foods and feeds. These include essential amino Maize is one of the most important cereal crops, acids, fatty acids and lipids, minerals, vitamins providing between 50 and 70% of the dietary and health products, antinutritional factors, as well proteins for humans, depending on geographical as aroma and flavor. We discuss new genetic and distribution. It is also one of the major crops used genomic approaches that are promising for the for livestock feeding. Because maize is very low genetic introgression of foreign genes into culti- in lysine, a large effort was made to identify high- vated species as well as the identification of novel lysine corn varieties. These efforts resulted in the genes regulating plant metabolism. discovery of the high-lysine opaque2 mutants (Mertz, 1997; Mertz et al., 1964). These lines are characterized by low levels of lysine-poor seed II. IMPROVING THE LEVELS OF storage proteins (called zeins), and by a compen- ESSENTIAL AMINO ACIDS satory increase in lysine-rich, non-zein, seed pro- teins, as well as free lysine. Rat feeding trials Non-ruminant animals (such as humans, poul- showed that opaque2 flour, together with miner- try, and swine) cannot synthesize 10 out of the 20 als and vitamins, promoted a fourfold increase in 168
  • 3. growth rate over that in rats grown on normal requirement. The molecular mechanism underly- maize flour (Mertz et al., 1964). Moreover, the ing the QPM genotype has been studied in detail, opaque2 flour was found to have 90% the value particularly by Larkins and associates (Burnett of milk protein when fed to Guatemalan children and Larkins, 1999; Lopes et al., 1995; Or et al., (Bressani, 1966). A diet based solely on opaque2 1993; Sun et al., 1997), and is not discussed here. flour was also later shown to cure children who The production of one of the high-lysine proteins suffered from the protein deficiency disease, in the maize kernel, the translation factor EF-1α, kwashiorkor (Harpstead, 1971). Success with is positively correlated with lysine levels in dif- opaque2 maize stimulated extensive research to ferent QPM lines (Habben et al., 1995). This can identify similar mutants in other cereals. Similar be used to rapidly screen and select outstanding high-lysine mutants were found in barley (Doll et QPM lines adapted to various growth conditions al., 1974; Munck et al., 1970), and sorghum (Singh and geographical locations. and Axtell, 1973). However, despite the initial optimism, subse- quent detailed field analyses showed that the high- B. Improving Free Amino Acid lysine mutations in these cereals were associated Synthesis and Accumulation with inferior agronomic traits that could not be easily overcome. The undesirable traits included 1. Regulation of Lysine and Methionine reduced yield and protein content as well as soft Synthesis endosperm that caused disease and insect suscep- tibility, kernel breakage, and poor food process- The essential amino acids lysine, methionine, ing (Glover, 1992; Munck, 1992). Commercial isoleucine, and threonine are synthesized from utilization of the opaque2 mutants seemed un- aspartate by several different branches of the as- likely until 1992, when researchers at the Maize partate-family pathway (Figure 1) (Galili, 1995). and Wheat Improvement Center (CIMMYT) in Methionine receives its sulfur moiety from cys- Mexico and the University of Natal in South Af- teine (Figure 1) (Ravanel et al., 1998). Lysine rica (Geevers and Lake, 1992; Glover, 1992) could regulates its own synthesis mostly by feedback genetically separate the inferior agronomic traits inhibiting the activity of dihydrodipicolinate syn- from the benefits of the opaque2 mutation. This thase (DHPS); threonine synthesis is primarily resulted in high-lysine “Quality Protein Maize” regulated by the sensitivity of aspartate kinase to (QPM) lines with normal kernel properties. Since feedback inhibition by lysine and threonine (Galili, this important discovery, high-lysine QPM culti- 1995); methionine synthesis is subjected to a more vars have been used extensively in Brazil complex control, but it has been suggested that a (Magnavaca et al., 1993), and interest in such major point of regulation of methionine produc- cultivars is increasing in North America (Bockholt tion occurs by the competition between cystathion- and Rooney, 1992). A recent analysis of a number ine γ-synthase and threonine synthase for their of QPM cultivars, adapted to the conditions of common substrate, phosphohomoserine (Figure 1) Canada (Zarkadas et al., 2000), looks quite prom- (see Ravanel et al., 1998 for detailed discussion ising. Total grain protein in these cultivars ranged of this competition). from 8.0 to 10.2%, which is similar to the 7.9 to 10.3% range in leading non-QPM cultivars. Lysine content in the QPM lines ranged between 4.43 2. Improving the Level of Free Lysine in and 4.58 g lysine/100 g protein, which is signifi- Grain Crops cantly higher than that the levels in the non-QPM cultivars (between 3.43 and 4.21 g of lysine/100 Conceptually, the synthesis of lysine can be g protein). The lysine levels in these QPM lines enhanced by reducing the sensitivity of DHPS to was calculated to supply around 70% of the opti- feedback inhibition by lysine (Figure 1). This has mal human protein requirement, whereas the best been proven in studies where recombinant genes non-QPM cultivars supply less than 50% of the encoding bacterial feedback-insensitive DHPS 169
  • 4. FIGURE 1. A diagram of the aspartate-family biosynthetic pathway of the essential amino acids lysine, threonine, methionine, and isoleucine. Curved arrows with a (-) sign represent major feedback inhibition loops by the end product amino acids. Dashed arrows with a (+) sign represent enzyme activiation. Enzyme abbreviations: AK, aspartate kinase; ASD, aspartic semialdehyde dehydrogenase; HSD, homoserine dehydrogenase; HSK, homoserine kinase; TS, threonine synthase; TDH, threonine dehydratase; DHPS, dihydrodipicolinate synthase; DHPR, dihydrodipicolinate reductase; PDA, ∆′ piperidine dicarboxilate acylase; ADA acyldiaminopimelate aminotrans- ferase; ADD, acyldiaminopimelate deacylase; DEP, Diaminopimelate epimerase; DDC, diaminopimelate decarboxilase; CGS, cystathionine γ-synthase; CBL, cystationine b-lyase; MS; methionine synthse; SAMS; S-adenosylmethionine synthase. 170
  • 5. enzymes were expressed in transgenic dicot and second, some of the catabolic products of lysine, monocot plants (Galili, 1995; Brinch-Pedersen et such as glutamate and the products of γ-amino al., 1996; Mazur et al., 1999). Constitutive ex- butyric acid and α-amino adipic acid act as neu- pression of genes for bacterial enzymes in plants rotransmitters in animals and may be toxic at high resulted in amino acid overproduction, but in many levels (Bonaventure et al., 1985; Karlsen et al., cases this expression was also associated with 1982; Reichenbach and Wohlrab, 1985; Welinder abnormal phenotypes and partial sterility (Ben et al., 1982). Therefore, the reduction of lysine Tzvi-Tzchori et al., 1996; Frankard et al., 1992; catabolism may be an important trait to be consid- Shaul and Galili, 1992; Shaul and Galili, 1993). ered in breeding for high-lysine crops. Lysine To overcome these problems, the bacterial en- catabolism can be reduced by antisense, co-sup- zymes were produced in a seed-specific manner, pression, or knockout of genes encoding enzymes using seed storage protein promoters to control in this part of the pathway. expression of the genes. Seed-specific expression The use of seed storage protein gene promot- of the bacterial DHPS gene was first performed in ers for the expression of the bacterial DHPS gene tobacco plants, using the bean phaseolin promoter is based on the assumption that amino acid syn- (Karchi et al., 1994). Lysine synthesis was en- thesis and storage protein production are subject hanced specifically in the developing seeds of to concerted spatial and temporal regulation of these transgenic plants, but its level in mature expression during seed development. This is ap- seeds was not higher than in nontransgenic plants. parently true for dicot plants in which seed stor- Seed-specific expression of the bacterial DHPS age protein genes are expressed in the developing gene was correlated with a significant elevation in embryo and utilization of such promoters to ex- the activity of lysine ketoglutarate reductase press the bacterial DHPS results in lysine over- (LKR), the first enzyme in the α-amino adipic production. However, whether this is also true for acid pathway, which catabolizes lysine in monocot plants, in which storage protein synthe- glutamate, α-amino adipic acid, and acetyl CoA sis occurs mainly in the endosperm, is still debat- (Arruda et al., 2000; Galili et al., 2001). These able. Falco and associates (Mazur et al., 1999) results were the first indirect and unexpected evi- have expressed a bacterial feedback-insensitive dence that lysine catabolism may be an important DHPS gene in transgenic maize, using either en- factor regulating free lysine accumulation in seeds. dosperm or embryo-specific promoters. Increased Moreover, it also suggested that lysine autoregu- free lysine levels were detected only when DHPS lates its own catabolism, at least in seeds, by production was controlled by the embryo-specific stimulating LKR activity (Arruda et al., 2000; promoter. This study raises an important funda- Galili et al., 2001; Karchi et al., 1995; Karchi et mental issue. If amino acid biosynthesis in mono- al., 1994). In subsequent studies, bacterial DHPSs cot seeds occurs mostly in the developing em- have been expressed in a seed-specific manner in bryo, a mechanism should exist for rapid delivery a number of transgenic crop plants, including of the amino acids into the endosperm to support soybean, rapeseed, maize, and narbon beans (Falco the massive process of storage protein synthesis. et al., 1995; Mazur et al., 1999; M. Meixner, If amino acids are synthesized in the endosperm S. Gillandt, K. Waigand, G. Galili, and T. Pickardt, tissues, then lysine level may be regulated by unpublished). In contrast to tobacco, all of these additional factors, such as lysine catabolism. The transgenic crops showed significant elevation of significance of lysine catabolism in dicot and free lysine levels, and nearly doubled total seed monocot seeds was discovered as a consequence lysine in soybean and rapeseed. Lysine overpro- of this transgenic approach (see previous para- duction in these plants was also associated with graph). However, this still does not provide a full increased levels of various catabolic products, explanation for the results of Falco and associates showing that most if not all seeds possess an (Mazur et al., 1999), because embryo-specific, active process of lysine catabolism. The negative but not endosperm-specific, expression of the bac- effects of lysine catabolism are twofold: first it terial DHPS was accompanied by increased lev- reduces the extent of free lysine accumulation; els of lysine catabolic products. 171
  • 6. Another strategy for the production of high- tion of relatively minor increases in methionine lysine plants is to introduce genes encoding lysine- levels over that in nontransgenic plants (Galili, rich proteins. These proteins will serve as a lysine 1995; Karchi et al., 1993), suggesting that other sink and may reduce the problem of lysine ca- regulatory factors exist. Methionine synthesis was tabolism. In maize, a variety of genes for natural, thought to be regulated by competition between modified, and synthetic proteins were tested, and cystathionine γ-synthase and threonine synthase the most successful encoded hordothionine (HT12) for their common substrate phosphohomoserine and barley high lysine protein 8 (BHL8), contain- (Figure 1) (Ravanel et al., 1998). Threonine syn- ing 28 and 24% lysine, respectively. These pro- thase activity is also negatively regulated by teins accumulated to between 3 to 6% of total S-adenosyl methionine (SAM), a direct product grain proteins, and when introduced together with of methionine (Figure 1), further implicating au- a bacterial DHPS resulted in a marked elevation toregulation of methionine synthesis by modulat- of total lysine to over 0.7% of seed dry weight ing metabolite flux via the threonine synthase/ (Jung and Falco, 2000), compared with around cystathionine γ-synthase branch point (Ravanel et 0.2% in wild-type maize. If this dramatic eleva- al., 1998). Yet, despite extensive studies, the regu- tion of lysine levels does not interfere with yield lation of metabolite flux via this branch point is and other grain quality factors, then the commer- still unclear. Constitutive overexpression of cys- cial application of transgenic maize expressing tathionine γ-synthase in transgenic Arabidopsis these high-lysine proteins (either alone or together caused a severalfold increase in free methionine with a bacterial feedback-insensitive DHPS) for in rosette leaves (Gakiere et al., 2000; Tarczynski feeding human and nonruminant livestock looks et al., 2001). A more dramatic ~40-fold elevation very promising. The suitability of such transgenic in free methionine was reported in rosette leaves plants for ruminant feeding depends on whether of the Arabidopsis mto1 mutant, which possesses the high-lysine proteins are stable inside the ru- a point mutation in the coding region of the cys- men. tathionine γ-synthase gene (Chiba et al., 1999; Inba et al., 1994). Yet, in both the transgenic and mutant Arabidopsis plants, no overproduction of 3. Improving Methionine Levels in Grain methionine was observed in mature plants Crops (Chiba et al., 1999; Gakiere et al., 2000; Inba et al., 1994). This suggests that methionine Methionine synthesis is far more complicated synthesis is differentially regulated during than that of lysine. Methionine receives its carbon plant development. Inhibition of threonine skeleton from the aspartate family pathway, while synthase activity by an antisense approach its sulfur moiety is derived from cysteine, whose resulted in a huge overaccumulation of free synthesis is also subject to a complex regulation. methionine both in Arabidopsis and potato The regulation of sulfate uptake and incorpora- (Batlem et al., 2000; Zeh et al., 2001). More- tion into cysteine and other sulfur compounds has over, the increase in methionine was much been reviewed recently (Bick and Leustek, 1998; higher than the decrease in threonine, suggest- Saito, 2000) and is not discussed here. Rather, we ing that the reduction in threonine synthase focus on efforts to manipulate the carbon flux into activity somehow triggers the channeling of methionine, as well as on attempts to express more aspartate into methionine, despite the methionine-rich proteins in transgenic plants. feedback sensitivity of AK. Although the com- Because methionine synthesis diverges from the plexity of methionine synthesis is not under- threonine branch of the aspartate-family pathway stood, these results are promising from a nu- (Figure 1), it is expected that plants possessing a tritional point of view, suggesting that it is feedback-insensitive aspartate kinase will also possible to manipulate methionine levels in overproduce methionine because they possess plants. increased flux toward threonine (Galili, 1995). Attempts to increase methionine levels in Yet, such an approach has resulted in the produc- transgenic plants by expressing genes encod- 172
  • 7. ing methionine-rich proteins were performed 4. Improving Lysine and Methionine in a number of plant species, using a variety of Levels in Forage Crops genes. These attempts have been discussed in detail in several reviews (see, for example, In forage crops the main consumed part is the Muntz et al., 1998; Tabe and Higgins, 1998). vegetative tissue, and therefore efforts to increase In most cases, genes for methionine-rich 2S the essential amino acid content in vegetative storage proteins were used. In soybean, whose tissues were mainly conducted by constitutive grain methionine level amounts more than half expression of recombinant constructs expressing of the FAO standard for nutritionally balanced seed vacuolar storage proteins, fused to the 35S food protein, expression of the gene for Brazil promoter. These storage proteins which stably nut 2S albumin raised seed methionine con- accumulate in seeds vacuoles, failed to accumu- tent to 100% of the FAO standard. Expression late in the protease-rich vegetative vacuoles, due of the same gene in transgenic narbon beans, to their efficient degradation (Saalbach et al., whose seed methionine level is only 40% of 1994). Preventing the trafficking of the seed stor- the FAO standard, doubled seed methionine age proteins from the endoplasmic reticulum (ER) content (Saalbach et al., 1995a; Saalbach et to the vegetative vacuole by engineering of an ER al., 1995b). Unfortunately, this Brazil nut pro- retention signal (KDEL) into the C-terminus of tein was subsequently found to be allergenic these proteins only partially solved their stability in some people, reducing the usefulness of problems (Khan et al., 1996; Tabe et al., 1995; this protein as a target for increasing plant Wandelt et al., 1992). More successful results nutritional quality. In another study, a differ- were obtained by using two methionine-rich seed ent 2S albumin, derived from sunflower, was storage proteins of maize, namely, the 15-kDa used to significantly increase seed methionine β-zein and the 10-kDa δ-zein, which naturally content in transgenic lupin, an important grain accumulate in ER-derived protein bodies (Shotwell crop for animal feeding in Australia that con- and Larkins, 1989), Maize β-zein and δ-zein genes, tains less than half of the methionine recom- constitutively expressed alone in transgenic to- mended by FAO. Expression of the sunflower bacco plants, accumulated in novel ER-derived albumin doubled seed methionine content protein bodies and were moderately stable (Bagga reaching 80% of the FAO standard (Molvig et et al., 1995). Co-expression of the two proteins al., 1997). Notably, rat feeding experiments together significantly increased their stability with these transgenic lupin grains showed not (Bagga et al., 1997). Stability problems associ- only an increased of methionine availability, ated with the expression of seed storage proteins but also an increased in their general dietary in vegetative tissues suggest that expression of value (Molvig et al., 1997). genes for other types of nutritionally balanced Although expression of genes for methion- proteins should also be tried. Inasmuch as a num- ine-rich proteins seems to be a promising ap- ber of plants also naturally accumulate vegetative proach to increasing overall methionine avail- storage proteins (VSPs) to high levels inside veg- ability in foods and feeds, it is still not enough to etative vacuoles (Staswick, 1994), such proteins increase methionine content to 100% of the FAO may be better targets for nutritional improvement recommendation. Müntz and associates of forage crops than seed storage proteins. VSPs (D. Demidov, C. Horstmann, M. Meixner, may also have additional beneficial effects, such T. Pickardt, I. Saalbach, G. Galili, and K. Müntz, as enhancement of shoot regrowth after cutting of unpublished) have therefore combined the ex- forage crops (Avice et al., 1997; Corbel et al., pression of a Brazil nut protein together with a 1999). Galili and associates (Guenoune et al., bacterial feedback-insensitive aspartate kinase 1999) overexpressed the soybean VSPα gene, in narbon bean seeds, which controls the carbon fused to the Cauliflower mosaic virus (CaMV) flux for free methionine synthesis (Galili, 1995). 35S promoter, in transgenic tobacco plants. This This combined approach raised methionine con- protein was highly stable in vacuoles of both tent in the seeds to 100% of the FAO standard. vegetative and seed tissues. The level of the soy- 173
  • 8. bean VSPα ranged between 2 and 6% of the specific proteins. Barry and associates (McNabb soluble proteins in leaves of the transgenic plants, et al., 1994) found that the degradation of vicilin causing a significant increase of total soluble lysine and Rubisco small subunit occurred in single by about 15%. This suggests that VSPs can serve phase, whereas the degradation of the Rubisco as excellent protein sources for improving the large subunit, ovalbumin and sunflower albumin nutritional quality of forage crops. 8 was biphasic. The half-life inside the rumen fluid varied between 10 min for vicilin to 69.3 h for the second component of the sunflower albu- 5. Improving Protein Quality for min 8. Comparing the in situ degradation rates of Ruminants Feeding several proteins having different proportions of sulfur-containing amino acids, White and associ- Specific approaches to increase the content of ates (Hancock et al., 1994) concluded that the essential amino acids in transgenic plants should stability of a protein to rumen degradation posi- take into consideration the target uses of these tively correlates with the degree of cross-linking plants. Nonruminant animals depend absolutely by disulfide bonds. on the dietary essential amino acids, but can effi- Searches for stable proteins as targets for ciently absorb both free and protein-bound amino expression in transgenic plants for ruminant feed- acids. The situation with ruminant animals is more ing assume that the stability of a given protein complex due to the special microbial flora in their will be similar when produced in different plant rumen. Although the rumen micro-flora can pro- species. This may, however, not be always the duce essential amino acids, it can also degrade case. Galili and Guenoune (Guenoune et al., 2002) intake proteins and convert their amino acids into studied the rumen stability of either VSPs from other nitrogenous compounds. Thus, when feed- soybean or recombinant genes for soybean VSPs, ing ruminants with dietary proteins either bal- expressed in transgenic tobacco plants. The soy- anced or enriched for essential amino acids, it is bean-derived proteins were much more stable to important to minimize their degradation by the rumen proteolysis than those produced in the rumen micro-flora. As much as 40% of the di- transgenic tobacco. etary protein may be lost from the rumen of ani- In the rumen, protein stability can be increased mals grazing on temperate legumes due to micro- by moderate amounts of condensed tannins (CT), bial degradation (Ulyatt et al., 1988). This which are produced by some forage crops. CT phenomenon can also limit the availability of form reversible associations with proteins; the lysine and methionine for young ruminants formation of these protein-tannin complexes mak- (Merchen and Trigemeyer, 1992) and for lactat- ing protein unavailable for ruminal microbial ing dairy cows (Rulquin and Verite, 1993). Thus, deamination (for review see Aerts et al., 1999). proteins with optimal lysine and methionine con- However, excess CT, as it occurs in several tem- tent for ruminant nutrition should be highly resis- perate and tropical forages, can be detrimental to tant to degradation in the rumen. the overall nutritive value of the crop because it Analyzing various proteins by SDS PAGE prevents forage intake and digestion by the ani- after in vitro or in situ rumen digestions, Spencer mal. The amount of CT necessary to prevent pro- et al. (Spencer et al., 1988) showed that some tein degradation, but not to reduce intake, must be plant and animal proteins, such as bovine serum established for each forage crop species, and spe- albumin (BSA) and pea albumins, are highly stable cies containing optimal CT levels may be excel- to rumen proteolysis. In contrast, other proteins lent targets for transformation with genes encod- such as casein and vicilin were rapidly degraded ing proteins rich in essential amino acids. (McNabb et al., 1994; Spencer et al., 1988; Tabe Alternatively, it may be possible to modify CT et al., 1993). Recent studies (Hancock et al., 1994; structure and concentration in forage crops by McNabb et al., 1994; Tabe et al., 1993) used molecular approaches. This research is underway Western blot analysis to follow more accurately but is still at a very early stage (Robbins et al., the in vitro and in situ rumen degradation rates of 1998). 174
  • 9. Because animal feeds undergo different types γ-linolenic acid (abundant in Evening Primrose, of processing, stability of the transgenic proteins Oenothera biennis), as well as the omega-3 under these conditions should also be considered. α-linolenic acid, largely present in linseed, Linum Galili and associates (Galili et al., 1999) showed usitatissimum (Table 1). EFAs function mainly as that both leaf and seed storage proteins of wheat components of cellular membranes, and as pre- were completely degraded during ensiling. Com- cursors to eicosanoids, including prostaglandins plete degradation was also shown for a Bacillus and leukotrienes (Newton, 1998). thuringiensis toxin in transgenic corn plants (Fear- The incidences of chronic degenerative dis- ing et al., 1997). Degradation of the transgenic eases such as coronary diseases and cancer have proteins may be less problematic when the feeds been increasing in developed countries. These are supplied as hay (Khoudi et al., 1999). diseases were very rare in developing countries and unknown among traditional Eskimos. The rate of increase of these diseases in the latter two III. IMPROVING LIPIDS AND FATTY ACID societies is associated with adaptation to a mod- COMPOSITION AND CONTENT ern diet. Deficiency and unbalanced EFAs in the body cause many of the diseases. Thus, searching Lipids are an important class of natural prod- for ways to increase the content of specific EFAs ucts, which includes fat-soluble steroids, prostag- in human diets is of high nutritional priority. landins, triglycerides, waxes, and long-chain fatty acids. Many of these compounds are essential to the human diet (e.g., essential fatty acids, fat- A. Synthesis of Lipids soluble vitamins) and therefore are of great inter- est to the food industry. Fatty acids are an impor- Significant progress has been made in the last tant component of lipids in plants, animals, and 3 decades on the genetics and physiology of lipids microorganisms. They are composed of long, even- metabolism. These have been reviewed in detail numbered carbon chains with a carboxylic group by several authors (Harwood, 1996; Harwood, at one end of the chain and a methyl group at the 1997; Ohlrogge and Browse, 1995; Ohlrogge and other. Saturated fatty acids with 16 (palmitic acid) Jaworski, 1997; Weselake and Taylor, 1999). and 18 (stearic acid) carbon atoms are the most Genes encoding key enzymes of fatty acid and common in nature. lipid biosynthesis have been cloned and charac- Higher plants produce more than 200 differ- terized from a number of plants (Murphy, 1999; ent fatty acids. There are many questions about Napier et al., 1999), where lipid synthesis is ini- the nature of the enzymes involved in their syn- tiated in the plastids. The first step is the carboxy- thesis (Somerville et al., 2000). The synthesis of lation of acetyl-CoA to malonyl-CoA (Figure 2, fatty acids in plants takes place in various or- reaction 1), catalyzed by the enzyme, acetyl-CoA ganelles and in some cases involves the move- carboxylase (ACCase). Next, an elongation cycle, ment of lipids from one cellular compartment to catalyzed by several enzymes, attaches a series of another (Ohlrogge and Browse, 1995; Ohlrogge two carbon additions to the growing chain (Fig- and Jaworski, 1997; Padley et al., 1994). Although ure 2, reaction 2). Typically, the elongation ends fatty acid metabolism in plants has many features by production of saturated fatty acids of 16 or 18 in common with other organisms, the plant path- carbons. Among the most common terminating ways are complex and not well understood. reactions are hydrolysis of the acyl moiety from Fats are broadly divided into saturated and acyl carrier protein by a thioesterase (Figure 2, polyunsaturated classes. Within the polyunsatu- reaction 3), transfer of the acyl moiety from acyl rated fatty acids are two families of essential fatty carrier protein directly onto a glycerolipid by an acids (EFAs). They are termed essential because acyl-transferase (Figure 2, reaction 4), or double our bodies need them but cannot manufacture bond formation on the acyl moiety by an acyl- them (Simopolus, 1999). Major EFAs are the ACP desaturase (Figure 2, reaction 5) (Somerville omega-6 linoleic acid, its omega-6 derivative et al., 2000). 175
  • 10. TABLE 1. Selected Fatty Acids 1 (n-3) and (n-6) indicate omega-3 and omega-6 EFAs, respectively. In (n-3) EFAs the double bond occurs at the third carbon from the methyl end of the fatty acid, while in (n-6) EFAs the double bond occurs at the sixth carbon from the methyl end. 2 The first number indicates the number of carbons of the fatty acids. The second number indicates the total number of double bonds. The numbers after theDsign indicate the position of the double bond from the COOH terminus. B. Modification of Seed Oil Content and with a modified seed composition to be approved Composition for nonrestrictive commercial cultivation in the USA was a rapeseed (Brassica napus) cultivar Increased oil content is a frequently requested enriched in lauric acid. It was first grown com- added value trait in feed grain and seeds mercially in 1995 (Voelker et al., 1996). Lauric (Goss and Kerr, 1992; Mazur et al., 1999). acid is a 12-carbon saturated fatty acid that is a Lipids are substantially more reduced organic very important raw material in the confectionery molecules than carbohydrates, thus their oxida- industry. Lauric acid is normally obtained from tion has a higher potential for producing energy. coconut or palm oil. Although both plants yield Indeed, lipids contribute twice as many calories relatively high levels of lauric acid, they are lim- as carbohydrates on a weight basis. Increasing of ited in their agricultural utility. Davies and asso- oil content was achieved mainly by combining ciates (Voelker et al., 1996) have demonstrated several “oil-increasing” alleles in one genetic the feasibility of engineering rapeseed to produce background via classic and advanced breeding lauric acid by introducing the gene encoding an methods. However, the involvement of around 30 acyl-ACP thioesterase (Figure 2, reaction 3) from reactions and a large number of enzymes (and California bay (Umbellularia california). This genes) in converting acetyl-CoA to triacylglycerol enzyme prevents the production of long-chain render the classic genetic approaches quite diffi- fatty acids by cleaving the fatty acids from the cult. enzyme complex after it reaches 12 carbons in length, resulting in the accumulation of lauric acid, naturally absent in rapeseed. The expression 1. High Lauric Acid Oil of this acyl-ACP thioesterase gene in transgenic rapeseed resulted in a high level of lauric acid in Lipid composition in plants has also been the seeds, reaching 40% of total oil fatty acids manipulated by genetic engineering tools (Mazur (Murphy, 1996; Voelker et al., 1996). This novel et al., 1999; Miflin et al., 1999; Murphy, 1996; compound in rapeseed is incorporated to the Murphy, 1999). In fact, the first transgenic crop triacylglycerols and can be recovered by standard 176
  • 11. FIGURE 2. Schematic overview of fatty acids and lipids biosynthesis. The first step is the formation of malonyl-CoA from acetyl-CoA (1). Next, fatty acids elongate by an elongation cycle in which two carbons are added from malonyl CoA at each cycle (2). The elongated acyl-acyl carier protein (acyl-ACP) then follows three major termination steps. Realease of the fatty acid and ACP from acyl-ACP by thioesterase terminates the fatty acid elongation process (3). Transfer of the fatty acid from acyl-ACP to a glycerol molecule by acyltransferase yields saturated lipids (4). Termination of the elongation reaction can also occur by desaturation before or after acetyltransferase action, yielding unsaturated lipids (5). 177
  • 12. processing methods. Transgenic rapeseed lauric The plastidic form that is heteromeric, and the oil is now marketed for use in confectionery in cytosolic form that is homomeric (HO). The ex- North America under the ‘Laurical’ trademark. pression of the plastidic ACCase is strongly nega- This work demonstrates the feasibility of produc- tively auto-regulated (Somerville et al., 2000). ing large amounts of transgene-modified plant Thus, Roesler et al. (Roesler et al., 1997) ex- oils to supplement or replace existing sources. pressed an Arabidopsis thaliana gene encoding Lipids are usually stored as triacylglycerols, the HO cytosolic ACCase in seeds of transgenic three fatty acids esterified to glycerol (Padley et rapeseed, and targeted the enzyme to the plastids, al., 1994). Seed oils predominantly contain C18 using a transit peptide from the small subunit of unsaturated fatty acids (Hilditch and Williams, Rubisco. The plastid-localized HO-ACCase was 1964). Saturated fatty acids are normally found biotinylated at a level comparable to cytosolic only in the sn-1 and sn-3 positions (sn-1 = R1, sn-3 HO-ACCase and its activity in mature seeds was = R3; figure 2) of the triacylglycerol (Frentzen, 10- to 20-fold higher than the endogenous ACCase 1998; Padley et al., 1994). Even in oilseed species activity. ACCase overexpression altered rapeseed that produce triacylglycerol with elevated levels fatty acid composition, mostly increasing oleic of saturated fatty acids, the saturated fatty acids acid. However, total seed oil content was increased are mainly located in position sn-1 and sn-3. by only about 5% above to the control plants. Analysis of the ‘high-laurate’ rapeseed oil showed This study indicates that ACCase by itself is not that lauric acid was found almost exclusively at the rate-limiting factor in oil accumulation. The the sn-1 and sn-3 positions (Voelker et al., 1996). reason for the increase in oleic acid in these Coconut (Cocos nucifera) oil, for example, con- transgenic plants is unclear, highlighting the com- tains mostly tri-saturated lipids (Padley et al., plexity of lipid synthesis and the intricate regula- 1994). Knutzon et al. (Knutzon et al., 1995) iso- tion of this process in plants. In order to increase lated the saturated fatty acid acyltransferase gene oil content utilizing genetic engineering tools we from coconut. Co-expression of the genes of the need to learn more about the rate limiting factors coconut acyltransferase and California bay acyl- that dictate its accumulation (see below). ACP thioesterase in rapeseed facilitated efficient lauric acid deposition at the sn-2 position, result- ing in the accumulation of tri-laurin, and further 3. Expression of sn-2 Acyl-Transferase increased total lauric acid levels above 50% (Knutzon et al., 1999). This demonstrates that Zou et al. (Zou et al., 1997) attempted to once a limiting factor in metabolism is known and increase oil content in transgenic plants by ma- understood it can be overcome by a rational ex- nipulating the level of sn-2 acyl-transferase (Fig- perimental design. The content of lauric acid in ure 2, reaction 4), an advanced step in the laurate rapeseed could not be increased be- triacylglycerol biosynthesis. Constitutive ex- cause the lauric acid was positioned exclusively pression of a yeast sn-2 acyl-transferase in in sn-1 and sn-3 and not in sn-2. Introducing the transgenic Arabidopsis and rapeseed resulted gene for the coconut enzyme into the high-laurate in a substantial increase (8 to 48%) in total seed rapeseed enabled the incorporation of more laurate oil content (Zou et al., 1997) as well as in- into the triacylglycerol fraction leading to higher creases in both proportions and amounts of very increase in lauric acid. long-chain fatty acids in seed triacylglycerols. Furthermore, the transgenic plants exhibited elevated activities of lysophosphatidic acid 2. Overexpression of ACCase acyltransferase in developing seeds and in- creased proportions of very long-chain fatty Another attempt to alter plant oil content and acids in the sn-2 position of triacylglycerols. composition was by increasing the activity of These results illustrate the potential of genetic ACCase (Figure 2, reaction 1) (Roesler et al., engineering to increase oil content and compo- 1997). ACCase appears in two forms in the cell. sition in plants. 178
  • 13. C. Essential Fatty Acids region of microsomal desaturases (Michaelson et al., 1998a), and from Caenorhabditis elegans uti- Unsaturated fatty acids, especially the EFAs, lizing a similar procedure (Michaelson et al., are widely marketed as health food supplements. 1998b). The functionality of the cloned genes had EFAs accumulate in a limited number of plants, been confirmed by the ability of their products to including seeds of borage (starflower; Borago desaturate dihomo-GLA to AA in yeast. In a more officinalis L.) and evening primrose. Borage seeds recent study (Parker-Barnes et al., 2000), a cDNA contain 20 to 25% γ-linolenic acid (GLA; Table library, made from the fungus M. alpina, was 1), a very uncommon n-6 fatty acid (Gibson et al., expressed in yeast and screened for the ability to 1992), but borage produces low oil yields (about elongate n-6 and n-3 polyunsaturated fatty acids. one-tenth of the yield of rapeseed). GLA is not The protein product of one clone could convert produced by the major oil seed crops; however, GLA (n-6) to dihomo-GLA (C20:3 n-6), and many of these crop plants produce significant stearidonic acid (C18:4 n-3) to eicosatetraeonic amounts of the related fatty acid, linoleic acid acid (C20:4 n-3). Yeast cells, co-transformed with (Table 1). Desaturation of linoleic acid to GLA is the elongase and the ∆5 desaturase from M. alpina catalyzed by ∆6 desaturase, which is not present (Michaelson et al., 1998a), produced the expected in major oil crops. The first attempt to increase AA (C20:4 n-6) and the C20:5 n-3 EPA (Parker- GLA involved the constitutive expression of Barnes et al., 2000). The availability of a recom- cyanobacterial ∆ 6 fatty acid desaturase in binant polyunsaturated fatty acid specific elonga- transgenic tobacco as a model system (Reddy and tion enzyme, as well as desaturases, offers exciting Thomas, 1996). This study demonstrated the fea- possibilities for producing a wide range of EFA in sibility of engineering the production of ‘novel’ oil seed crops. Such transgenic crops should help polyunsaturated fatty acids in transgenic plants, satisfy the demands of the nutraceutical and phar- although the GLA yield was poor. A more suc- maceutical industries in the near future. To achieve cessful attempt followed the cloning of the gene the efficient production of novel EFA by transgenic encoding ∆6 fatty acid desaturase from borage, plants, we need more efforts on the identification and its constitutive expression in transgenic to- and characterization of key genes involved in the bacco (Sayanova et al., 1997). This resulted in the biosynthesis of EFA, and the targeting of the accumulation of GLA up to 13% of total leaf transgene products into the storage oil fraction lipids. Seed-specific expression of ∆6 fatty acid and not to the membrane fraction, where they desaturase could cause an increase in GLA pro- might affect membrane properties or signaling duction in oil seed crops, and sunflower, which functions. contains 50 to 70% linoleic acid, is a suitable candidate. Very long-chain unsaturated EFAs, such as D. Increasing the Cooking and Frying arachidonic acid (AA C20:4 n-6), eicosapentenoic Quality of Oil acid (EPA C20:5 n-3), and docosahexenoic acid (DHA C22:5 n-3), are also considered to be nutri- Plant oils are not only important as direct tionally beneficial because of their function as food components. The quality of oil for cooking cholesterol-lowering agents (Newton, 1998). EPA and frying is also dependent on the characteristics is naturally present in fish oils and other marine of the oils used. Oleic acid (Table 1) is more organisms (Padley et al., 1994). AA is found in stable for frying and cooking than are the poly- significant amounts in animal liver and adrenal unsaturated forms, linoleic and linolenic acids glands and is also produced by the filamentous (Table 1) (Kinney, 1996; Mazur et al., 1999). fungus Mortierelaa alpina (Padley et al., 1994). Chemical hydrogenation is widely used in the The gene responsible for the ∆5 desaturation of food industry to raise the oleic acid concentra- dihomo-GLA (Table 1) to AA (Table 1) was iso- tion; however, the chemical hydrogenation also lated from a M. alpina cDNA library, using PCR increases the levels of undesired trans-fatty acids. with primers from the conserved histidine box To enhance the production of oleic acid in soy- 179
  • 14. bean seeds, the soybean FAD2 gene, encoding a lated in cereals and legumes (Ertl et al., 1998; specific enzyme that inserts a second double bond Larson et al., 2000; Larson et al., 1998; Raboy, at ∆12 into oleic acid (18:1 ∆9), has been silenced 1998; Raboy et al., 2000; Raboy et al., 1998; (Mazur et al., 1999). This increased oleic acid Wilcox et al., 2000). Seeds produced by “low from 25% of total seed oil in the wild type to 85% phytic acid” crops have total phosphorous levels in the transgenic plants. The transgenic lines similar to standard crops, but greatly reduced lev- showed unchanged agronomic properties and are els of phytic acid phosphorous (Raboy, 1997; an example of the power of genetic engineering to Raboy, 1998). When monogastric animals con- alter seed oil content and composition without sume “low phytic acid” grain, they absorb a much altering plant performance in the field. larger fraction of grain phosphorous than when they consume standard grain, and excrete propor- tionally less phosphorous (Ertl et al., 1998; Huff IV. IMPROVING THE CONTENT AND et al., 1998; Sugiura et al., 1999). AVAILABILITY OF ESSENTIAL Utilizing paper electrophoresis and colorimet- MINERALS ric screening methods, chemical mutagenesis of a maize synthetic Flint/Dent population, referred to A. Phosphorous and Complexed Metals as “Early ACR”, gave rise to two phenotypic classes of mutants (Raboy, 1997; Raboy and A large proportion of the nutritionally impor- Gerbasi, 1996; Raboy et al., 2000). In low phytic tant minerals in seeds are associated with the acid 1 (lpa-1) mutants, the decrease in phytic acid chelating agent phytic acid, which renders them phosphorous is matched by an increase in inor- unavailable to humans and livestock due to the ganic P, the sum of which remains constant. No low solubility of the complexes. The minerals are other large or obvious change in seed phospho- zinc, iron, magnesium, and possibly calcium, as rous chemistry is observed. In low phytic acid 2 well as the phosphorous, which is an integral part (lpa-2) mutants, however, only ~75% of the re- of the phytic acid molecule. The most critical duction in phytic acid phosphorous is matched by antinutritional effect of phytic acid is related to an increase in inorganic P. The remainder of the phosphorous availability. As much as 50 to 80% P is present in intermediate inositol phosphates. of the total seed phosphorous is not utilized and The molecular nature of the lpa-1 and lpa-2 mu- excreted in the manure (Reddy et al., 1989). Fur- tants in maize is still unknown. However, it is thermore, it has been shown that phytic acid may tempting to hypothesize that lpa-1 mutants are also interfere with zinc absorption in humans, perturbed in myo-inositol metabolism (an early weanling swine and rats (Couzy et al., 1993; Lei step in the pathway to phytic acid), while the lpa- et al., 1993; Zhou et al., 1992), as well as iron and 2 mutants are perturbed in myo-inositol phos- magnesium absorption in humans (Brink and phate metabolism (later steps in the pathway). Beynen, 1992; Hurrell et al., 1992). The possible The lpa-1 mutant has now been crossed to a chelating effect of phytic acid on the mineral large number of standard inbred lines and an cation, calcium, is less conclusive (Mitchell and increasing numbers of hybrids have been synthe- Edwards, 1996), although at least one study sized. To date, lpa-1’s effect on seed phospho- (Jongbloed and Kemme, 1994) suggests phytic rous fractions appears stable across genetic back- acid may increase retention of dietary calcium in grounds. In field trials of the first 14 near-isogenic swine. hybrid pairs, each pair consisting of homozygous wild-type and homozygous lpa-1 iso-hybrids, an effect on yield similar in extent was observed for 1. Low Phytic Acid Plant Mutants seed dry weight as mentioned above (Ertl et al., 1998). A significant component of the yield loss An alternative approach to improve phospho- appears to be an effect of homozygosity for lpa- rous availability is by classic genetic means. Sev- 1 on seed dry weight. The immediate issue with eral low phytic acid (lpa) mutants have been iso- “low phytic acid/high available P” maize is lower 180
  • 15. yield, but stress response, disease susceptibility, lished results). These preliminary results indicate and storage problems still need to be addressed. that lpa grains may benefit ruminant animals too. Mutants of both the lpa-1 and lpa-2 pheno- Mineral (iron, zinc, and calcium) absorption typic classes have also been isolated and mapped also increased when animals were fed with lpa in barley (Larson et al., 1998), an lpa-1-like mu- grains (Li et al., 2000; Sugiura et al., 1999). Brown tant has been isolated and mapped in rice (Larson and associates (Mendoza et al., 1998) measured et al., 2000), and an lpa mutant was identified iron absorption from tortillas prepared with lpa recently in soybean (Wilcox et al., 2000). The corn vs. wild-type corn. They concluded that the genes encoding the enzyme D -myo-inositol consumption of lpa strains of maize might im- 3-monophosphate synthase (MIPS) in maize, bar- prove iron absorption in human populations that ley, and rice have been cloned (Larson and Raboy, consume maize-based diets. In a recent pilot study 1999; Larson et al., 2000). The isolation of simi- that analyzed the effect of lpa-1 corn on zinc lar mutants in these three cereals, and the isola- absorption, a comparison of the fractional absorp- tion of MIPS genes, represent the first phase in a tion of Zn (FAZ) between individuals consuming comparative genomics approach. MIPS catalyzes normal and lpa-1 corn was conducted the conversion of glucose 6-P to L-myo-inositol (M. Hambridge, unpublished results). FAZ was 1-P, is the only known source of the inositol ring consistently and significantly greater on the lpa (Loewus, 1990), and is a critical step in pathways corn diet. An average FAZ from polenta prepared beginning with inositol. In maize there are mul- from lpa-1 corn was 78% greater than polenta tiple MIPS sequences and one maps to the same from normal corn. This increase in FAZ is of site on chromosome 1S as lpa-1. It is assumed sufficient magnitude to suggest that substitution that in maize, lpa-1 is a MIPS mutant. MIPS is a of lpa-1 in diets in which corn is a major staple single-copy gene in barley and rice and maps to will have a beneficial impact on Zn bioavailability. sites not linked to barley and rice lpa-1 loci (Larson The next generation of lpa types will have a et al., 2000; Larson et al., 1998), so the nature of further reduction in phytic acid and a yield similar this mutation in these crops is still unclear. to that of the normal varieties. This will be The lpa mutations in a number of crops are achieved by selecting for better mutants or by being tested in animal feeding trials. These trials genetic engineering of the seed phytic acid me- will evaluate whether the lpa types will save phos- tabolism. phorous supplements, reduce manure phospho- rous contamination, and increase mineral absorp- tion, especially in human societies where maize 2. Utilization of Phytase to Breakdown serves as the staple food. Organoleptic analysis of Phytic Acid lpa-1 sweet corn had shown no significant effect of lpa-1 on flavor (Tadmor et al., 2001). Feed In contrast to the situation in vertebrate mono- trials had been conducted with poultry (Douglas gastric metabolism, phytic acid complexes can be et al., 2000; Ertl et al., 1998; Li et al., 2000; biodegraded by a number of bacteria and fungi. This Waldroup et al., 2000; Yan et al., 2000), swine degradation is catalyzed by an enzyme termed (Spencer et al., 2000), and rainbow trout (Sugiura phytase. Indeed, the utilization of natural or recom- et al., 1999). These studies demonstrated that the binant phytases has provided an important solution apparent availability of phosphorous in lpa grains to the antinutritional characteristics of phytic acid. was higher than that in ordinary grains and that Supplementation of animal diets with industrially the fecal phosphorous content was significantly produced phytase, extracted mainly from fungi decreased. In a study conducted at the Montana (Shmeleva et al., 2000), or recombinant phytases State University, heifers were fed with hay pre- produced in bacteria (Sunitha et al., 2000; Yo et al., pared from normal and three lpa barley varieties. 1999), was shown to increase animals phosphorous The average daily gain of the heifers fed with the uptake by up to 42% (Lei and Stahl, 2000) (http:// lpa barley was 20% higher (p<0.001) than that of www.dfrc.ars.usda.gov/Research_Summaries/ those fed with normal barley (V. Raboy, unpub- RS98_pdfs/wwwpp19-20.pdf). 181
  • 16. An additional way to increase phosphorous cessed at high temperatures, the stability of the availability is by overexpressing phytase genes in recombinant phytase to such processing tempera- transgenic plants. Pen and associates (Pen et al., tures is extremely important. Indeed, the recom- 1993) overexpressed the Aspergillus niger phytase binant A. niger phytase appears not to be stable genes, fused to a signal peptide of tobacco PR-S enough to withstand the elevated temperatures protein (in order to direct it to the apoplasm for involved in soybean processing. This might be increased protein stability) under the control of solved either by using a yeast phytase gene that is CaMV 35S promoter, in transgenic tobacco. The stable at 80oC (Nakamura et al., 2000) or by A. niger phytase was stable and accumulated up transforming the A. niger phytase gene into low to 1% of the total soluble protein in seeds. Phytase trypsin inhibitor lines that can be used without activity in the transgenic plants was found to be heat processing (Clarke and Wiseman, 2000). stable for up to 1 year of storage. In vitro experi- Expression of phytase genes has not been ments, which simulate the digestive tract of poul- restricted to dicot plants. Two A. niger phytase try, showed that the addition of milled transgenic gene constructs were introduced into transgenic phytase seeds resulted in release of inorganic wheat under the control of the constitutive phosphate. Furthermore, the feeding of young ubiquitin-1 promoter (Brinch-Pedersen et al., chickens showed that addition of either milled 2000). To ensure protein stability, the phytase transgenic seeds, or industrially produced A. niger gene, in one construct, was fused to an α-amy- phytase, or inorganic phosphate had a compa- lase signal peptide. The second construct was rable effects on growth rate of the animals (Pen et similar to that of first, but lacked the signal al., 1993). The transgenic phytase was extremely peptide. An immunoreacting polypeptide of the stable in the transgenic tobacco leaves and accu- size expected for the A. niger phytase was de- mulated, in the extracellular fluid, at up to 14.4% tected in both seed and leaf tissues, but not in of total soluble proteins in mature leaves those of the embryo. The heterologous phytase (Verwoerd et al., 1995). The gene for A. niger was exclusively present in the pericarp-seed coat- phytase was also introduced into transgenic al- aleurone fraction up to 25 days after pollination, falfa plants (http://www.dfrc.ars.usda.gov/ and thereafter it accumulated in the endosperm. Research_Summaries/RS97_pdfs/FH3.pdf). The secreted and nonsecreted phytases provided Phytase concentration in the best performing around 4-fold and 1.6-fold increase phytase ac- transgenic lines ranged from 0.85 to 1.8% of total tivity, compared with control nontransformed soluble protein. The transgenic alfalfa plants were plants. The authors concluded that a functional vegetatively propagated to produce about 7500 A. niger phytase can be produced in significant plants for a field test (http://www.dfrc.ars.usda.gov/ amounts in wheat grains that could be used to Research_Summaries/RS98_pdfs/wwwpp19- improve the nutritional quality of monogastric 20.pdf). The results indicated that economically animal diets. significant bioavailable phosphorous was present Animal feeding trials were conducted to in the transgenic alfalfa in its second year in field compare the efficacy of genetically engineered plots. Feeding trials with chickens and swine in- microbial and plant phytases for enhancing the dicates that phytase-overexpressing transgenic utilization of phytic acid-bound phosphorous in alfalfa does not require inorganic phosphorous supple- corn-soybean meal-based diets fed to young mentation in the feeds (http://www.dfrc.ars.usda.gov/ broilers (Zhang et al., 2000). The addition of Research_Summaries/RS98_pdfs/wwwpp21-22.pdf). both sources of phytase resulted in similar in- Similar results in improving phosphorous utiliza- creases (P < 0.05) of body weight gain; feed tion were also reported in feeding experiments intake; gain:feed; apparent retention of dry utilizing soybean seeds transformed with the matter, phosphorous, and calcium; and toe ash A. niger gene (Denbow et al., 1998). In addition, measurements. Phosphorous excretion de- A. niger phytase was found to be stable in soy- creased as phytase addition increased. No sig- bean cell-suspension culture (Li et al., 1997). nificant abnormalities were seen in any of the Because some plant feeds for livestock are pro- 40 broilers necropsies. 182
  • 17. B. Iron ered. Iron availability depends not only on its stor- age, but also on its absorption from the soil and Nearly 30% of the world population suffers transport within the plant (Grusak and DellaPenna, from iron deficiency (WHO, 1992) and it is more 1999). Moreover, iron uptake in many plants occurs prevalent in developing countries where plant- via transporters that may not be entirely iron-spe- based diets are common (Craig, 1994). Iron con- cific. Briat and associates (Van Wuytswinkel et al., tent is limited in most major crops. Moreover, 1999) constitutively overexpressed a soybean fer- even in crops that are rich in iron, such as spinach ritin gene in transgenic tobacco plants using the and legumes, iron is complexed with phytic and CaMV 35S promoter. The expression of the ferritin oxalic acids and therefore is inefficiently absorbed gene not only increased leaf iron content, but also by humans. However, phytic and oxalic acids are activated iron transport systems as indicated by an not the only storage forms of iron. In animals, increase in root ferric reductase activity. The expres- plants, and bacteria, iron is also stored in ferritins, sion of ferritin genes could result in accumulation of a family of iron storage proteins (Theil, 1987). toxic metals in plants (Briat, 1999). Thus, the min- The bioavailability of iron to mammals appears to eral content of transgenic plants, expressing a re- be efficient when it is provided as an iron-ferritin combinant ferritin gene, should be thoroughly ex- complex (Beard et al., 1996; Theil et al., 1997). amined for mineral toxicity before they are released. In attempts to increase iron availability in The expression of the transgenic ferritin gene spe- plant-based diets, Goto and associates (Goto et cifically in the seed, as was reported by Gotto et al. al., 1999) transformed rice with a soybean ferritin (1999), may overcome problems of excess accumu- gene, under the control of an endosperm-specific lation of toxic metals. gebe promoter. This resulted in the stable accu- mulation of the soybean ferritin in seeds of the transgenic rice and up to a threefold increase in V. PLANT PRODUCTS WITH IMPROVED seed iron content. A meal-size portion of such a QUALITY OBTAINED BY REDIRECTING ferritin-fortified rice is predicted to provide 30 to SECONDARY METABOLISM 50% of the daily adult iron requirement (Goto et al., 1999). Expression of a recombinant ferritin A. Vitamins and Neutraceuticals gene may be only a partial solution for iron for- tification of plant foods because other factors, 1. The Terpenoid Pathway, Carotenoids, such as iron transport efficiency to plant seeds Vitamins A and E and its association with phytic acid complexes may limit level and availability. Indeed, Potrykus Many important metabolites are synthesized in and associates have transformed rice with three plants at least partially via the terpenoid pathway. genes encoding a French bean ferritin, a fungal They include the phytol chain found in chlorophyll, heat-stable phytase and a rice metallothionin-like as well as plant growth regulators such as gibberel- protein (a protein that helps iron absorption in the lins, abscisic acid, and cytokinins; accessory photo- human digestive tract) (Gura, 1999). Such synthetic pigments, chromophores, and vitamins such transgenic plants could help solve iron deficiency as carotenoids, and tocopherols (Figure 3) (Croteau in humans. Unfortunately, because commercially et al., 2000). Using metabolic engineering, the caro- grown indica rice strains are very difficult to tenoid pathway has been modified not only to pro- transform, most of the studies on rice used the duce valuable compounds and pigments (Hirschberg, japonica strains. Thus, these genes will have to be 1999; Mann et al., 2000), but also to enhance the transferred from the “japonica” into the “indica” nutritional value and quality of foods. Using gene strains, which can be performed by classic breed- shuffling and recombinant genes, novel carotenoids ing. have been produced in bacteria, illustrating the po- Although the utilization of ferritin to produce tential of engineering the terpenoid pathway to pro- iron-fortified plant foods looks promising, there are duce unique carotenoids (Albrecht et al., 2000; several physiological and safety issues to be consid- Schmidt-Dannert et al., 2000). Nonetheless, direct 183
  • 18. FIGURE 3. Schematic diagram of the terpenoid pathway in plants. Bolded arrows indicate successful engineering of key enzymatic steps in the pathway as indicated in the text. Monoterpenes (such as S-linalool; reaction # 3), diterpenes (such as gibberelin and tocopherols; reactions # 5 and # 6) and tetraterpenes (such as carotenoids; reactions # 7) are generally synthesized in plastids from glyceraldehyde-3-phosphate/deoxyxylulose phosphate (DOXP) via isopentenyl diphosphate (IPP) (reaction # 1). Sesquiterpenes (such as artemisinin; reactions # 4) are synthesized in the plant cytosol from the mevalonic acid (MVA) pathway via IPP (reaction # 2). Abbreviations of enzymes: (LIS) S-Linalool synthase; (FPP synthase) farnesyl diphosphate synthase; (CMT) γ-tocopherol C-methyltransferase; (PS) phytoene synthase; (PD) phytoene desaturase; (BC) β-carotene cyclase. 184
  • 19. commercial application of these results is not trivial. 2000). Conversely, the inhibition of the phytoene Constitutive manipulation of the terpenoid pathway synthase gene in tomato has resulted in decreased in plants might have undesired results. Attempts to carotene and xanthophyll levels (Fraser et al., increase carotenoid levels by overexpressing 1995). phytoene-synthase in tomato plants, utilizing the The manipulation of the carotenoid pathway CaMV 35S promoter, resulted in dwarf phenotypes has also been accomplished in rice, a major world due to a reduction of key diterpene derivatives such food source. Rice contains poor levels of β-caro- as gibberellic acid, and an accompanied reduction of tene in the endosperm, which is the major tissue chlorophyll levels, presumably due to lack of phytol consumed as food after mechanical processing of (Figure 3, reaction # 5) (Fray, 1995). The careful the grain. Immature rice endosperm is able to selection of terpenoid pathway genes and specific synthesize the carotenoid precursor geranylgeranyl promoters were more successful (see below), show- diphosphate (Figure 3), but normally lacks caro- ing that it should be possible to manipulate terpe- tenoids. The accumulation of the noncolored caro- noids to improve the nutritional quality of foods. tenoid precursor phytoene (Figure 3) occurs in transgenic rice plants expressing a daffodil (Nar- cissus pseudonarcissus) phytoene synthase gene a. Carotenoids and Vitamin A under the control of an endosperm-specific pro- moter (Burkhardt et al., 1997). By combining this Carotenoids are tetraterpene pigments, essen- gene with genes encoding a bacterial phytoene tial in photosynthesis, but often accumulating in desaturase and daffodil lycopene β-cyclase, nonphotosynthetic tissues at high levels, impart- β-carotene was produced in the endosperm, yield- ing color and antioxidant properties to fruits. Pro- ing the so-called “Golden Rice” (Figure 3, reac- vitamin A (β-carotene and other cyclic caro- tions #7) (Ye, 2000). Some transgenic rice geno- tenoids) is converted into retinol (vitamin A) in types also accumulated substantial levels of humans. Vitamin A deficiency is one of the lead- xanthophylls, such as lutein and zeaxanthin, prob- ing causes of night blindness in humans and has ably due to endogenous activities of cyclases and also been correlated with increased occurrence of hydroxylases in the endosperm tissue (Ye, 2000). several diseases such as diarrhea, respiratory ail- As for ferritin (see Section V.B), the rice species ments, tuberculosis, malaria, and ear infections. japonica was used for this proof of concept ex- According to the World Health Organization periment. The next step will be to transfer these (WHO), around 2.8 million children under 5 years genes into the indica rice varieties, the species of age currently exhibit a severe clinical manifes- grown in Asia. tation of vitamin A deficiency known as xe- Because the precursor of carotenoids, rophthalmia (Humphrey et al., 1992). geranylgeranyl diphosphate, is ubiquitous and Our knowledge in the biosynthesis of terpe- often abundant in many plant tissues, this gene noids has been applied to the production of plant technology is promising for carotenoid-rich plant foods rich in lycopene and provitamin A. Lyco- products with enhanced or modified color and pene is a noncyclic tetraterpene, and normally a nutritional value. For example, transgenic rape- precursor of other carotenoids such as the carotenes seed producing high α- and β-carotene levels have and xanthophylls (Figure 3), but often accumulat- been produced using a bacterial phytoene syn- ing in fruits such as tomatoes, papayas, and wa- thase gene fused to a seed-specific promoter termelons (Van den Berg et al., 2000). Besides (Shewmaker et al., 1999). the utilization of genes introgressed from a wild relative, marker-assisted breeding has been used to obtain high-lycopene tomatoes (Chen et al., b. Vitamin E 1999). Additionally, using genetic engineering, the manipulation of the carotenoid pathway has Vitamin E was discovered 75 years ago as a resulted in plant products enriched in provitamin fat-soluble dietary factor effective in preventing A at the expense of the pigment lycopene (Romer, fetal death (Combs, 1992). Although vitamin E is 185
  • 20. the generic descriptor for all tocopherols that quali- B. Phenolic Compounds, Stilbenes and tatively exhibit the biological activity of α-toco- Phytoestrogens pherol, other tocopherols also have vitamin E activity. Still, the most active tocopherol is 1. Resveratrol α-tocopherol (Combs, 1992; Lambert, 1994; Traber and Sies, 1996), produced only by plants Several plants, including grapevine, pine, and and is most concentrated in plant oils, especially peanuts, produce the stilbene-type phytoalexin wheat germ oil (Combs, 1992). Vitamin E defi- resveratrol when attacked by pathogens. This ciency not only causes fetal death, but also sev- compound appears to be one of the health-pro- eral other disorders, such as mammalian infertil- moting factors of grapevine that are associated ity, kidney and liver damage, cardiovascular with reduced risk of heart diseases (popularly diseases, and cancer (Combs, 1992; Dowd and known as “The French Paradox”) and long rec- Zheng, 1995; Sies and Stahl, 1995; Stampfer et ognized by folklore medicine. Clinical studies al., 1993). Tocopherols are antioxidants that pre- have demonstrated the beneficial effect of vent the autooxidation of highly unsaturated fatty resveratrol, isolated from red wine, on cardio- acids mediated by molecular oxygen. Thus, one vascular disease and confirmed the involvement of the roles of vitamin E in humans may be the of resveratrol in fighting arteriosclerosis and preservation of membranes from oxidative dam- vascular tissue diseases (Das et al., 1999; age (Burton and Ignold, 1981; Combs, 1992; Erin Pendurthi et al., 1999; Zou et al., 1999). et al., 1985). Resveratrol has also been shown to inhibit cellu- Seeds normally contain γ-tocopherol, but not lar processes associated with tumor initiation, α-tocopherol. The gene encoding the γ-toco- promotion, and progression (Mgbonyebi et al., pherol specific C-methyltransferase, an enzyme 1998; Park et al., 2001). that converts γ-tocopherol to α-tocopherol by a Resveratrol is synthesized from the ubiqui- single methylation, is not highly expressed in tous precursors malonyl CoA and coumaryl CoA seeds. High α-tocopherol crop plants have been by stilbene synthase. The gene encoding this produced by classic breeding programs (Galliher enzyme was cloned from grapevine and intro- et al., 1985; Hallauer and Miranda, 1988). Im- duced into tobacco (Hain et al., 1993). Due to proving α-tocopherol production in seeds by the availability of malonyl CoA and coumaryl- genetic engineering was achieved when the CoA, resveratrol was readily accumulated after Arabidopsis gene encoding γ-tocopherol specific induction of the transgenic tissues, rendering the C-methyltransferase was cloned in an elegant transgenic plants more resistant to fungal attack series of experiments (Shintani and DellaPenna, than the nontransgenic controls (Hain et al., 1998). This genomics-based approach is de- 1993). Thus, the overexpression of only one gene scribed in detail later (see Section VII.B). led to the diversion of the existing metabolic Constitutive overexpression of the γ-tocopherol flow to the production of a novel metabolite C-methyltransferase gene in transgenic (Gustine, 1995; Hain et al., 1993). Using this Arabidopsis caused a significant conversion of approach, the stilbene synthase gene therefore γ-tocopherol to α-tocopherol in the seeds (Fig- could be used to produce resveratrol in foods ure 3, reactions # 6) (Shintani and DellaPenna, already associated with anticancer properties, or 1998). It is highly likely that this transgenic to create “functional foods” with health benefits. approach will be applicable to many other seeds. The metabolic engineering for the production of This approach, however, does not cause an in- a phytoalexin, originally intended to introduce crease in the levels of total tocopherols, but only fungal resistance into plants, could lead to the converts most of the γ-tocopherol already present production of functional foods. Moreover, be- into α-tocopherol. Nevertheless, with the advent cause resveratrol can be generated in grape cell of genes that control total tocopherol content, it suspension cultures, it may also be possible to may be possible to obtain food products with produce resveratrol to be marketed as a food increased total tocopherol levels. supplement. 186
  • 21. 2. Flavonoids lites. The different proportions of the volatile com- ponents, their thresholds for perception by human’s Many members of the Fabaceae accumulate a nose, and the presence or absence of trace compo- number isoflavonoid compounds, such as the nents often determine aroma properties (Thomson, isoflavones genistein and daidzein, as well as their 1987). Breeding programs of fruits and vegetables glycosides that exist in soybeans (Jung et al., 2000). have been focused traditionally on desirable Several health benefits have been assigned to these agronomical characteristics, such as yield and compounds, at times referred to as phytoestrogens. resistance to environmental stresses, pests, and Phytoestrogens are associated with relief of meno- pathogens (Stevens and Rick, 1986). Breeding for pausal symptoms, reduction of osteoporosis, im- improved fruit flavor was mainly directed toward provement of blood cholesterol levels, and lower- controlling sugar/acid ratios and improving tex- ing the risk of certain hormone-related cancers, ture and storage characteristics (Jones and Scott, and coronary heart disease (see Dixon and Steele, 1983; Stevens and Rick, 1986). Conventional 1999). The biochemical basis of these effects has breeding to improve the aromas of agricultural not been fully established, but the weak estrogenic products is often impeded by the large number of activity of isoflavones may be a factor conferring genes involved, the significant environmental and these properties. The potential for metabolic engi- developmental effects, and the lack of simple and neering of the isoflavonoid pathway has been rec- cheap methodologies to probe both aroma prefer- ognized (Dixon and Steele, 1999). ences of the public and the complex chemistry. Isoflavones are synthesized by a branch of the phenylpropanoid pathway and normally play a role in plant defense against fungal attacks (Dixon and 1. Modification of the Early Steps of the Paiva, 1995). They also help to establish a symbiotic Terpenoid Pathway association between legumes and nitrogen fixing rhizobial bacteria (Dixon and Paiva, 1995). The Monoterpenes are key determinants of the branching of the flavonoid metabolic pathway to aromas of many aromatic plants, vegetables, and isoflavones occurs by the action of the enzyme fruits. Therefore, the potential of genetic engi- isoflavone synthase. Isoflavone synthase, a member neering to modify the early steps of the terpe- of the cytochrome P450 family, oxidizes the fla- noid pathway in order to modify aroma has been vanone intermediates naringenin and liquiritigenin noted (Haudenschild and Croteau, 1998; into genistein and daidzein, respectively (Jung et al., Lewinsohn, 1996). Linalool is an acyclic monot- 2000). Naringenin is synthesized by most plants as erpene alcohol that imparts an aroma with a an intermediate to other flavonoids, such as the sweet floral alcoholic note. Linalool is a major common anthocyanin pigments (Croteau et al., 2000). component of the scent of many flowers (Dob- Overexpression of the soybean isoflavone synthase son, 1993; Knudsen et al., 1993) and is also gene in transgenic Arabidopsis, tobacco, and maize present in many edible fruits, such as guava, plants, which naturally do not produce isoflavones, peach, plum, pineapple, and passionfruit resulted in the production of genistein and its deriva- (Bernreuther and Schreier, 1991). Linalool is a tives, possibly through the conversion of endogenous chiral compound, naturally appearing in two naringenin (Yu et al., 2000). These results prove that forms (S- and R-linalool) that differ in their by metabolic engineering, it is possible to produce aroma. The enzyme that catalyzes the formation health-associated isoflavones in nonlegume plants. of S-linalool from the ubiquitous precursor geranyl diphosphate (Figure 3, reaction # 3) has been purified (Pichersky et al., 1995), and its C. Improving the Flavor and Aroma of gene (LIS) cloned from the flowers of a small Plant Foods Californian annual plant Clarkia breweri (Dudareva et al., 1996). This gene is a promising The aromas of fruits, vegetables, and other candidate for future attempts to manipulate foods are due to the mixtures of volatile metabo- monoterpene metabolism in transgenic plants. 187
  • 22. Many modern tomato varieties have impaired the increased production of flavor compounds aromas, as they lack many of the common derived from the degradation of fatty acids, such volatiles, such as linalool, present in the older as cis-3-hexenol, 1-hexanol, hexanal, and cis-3- tomato varieties. Metabolic engineering to modify hexenal. These compounds impart a fresh aroma the aroma of tomato fruits has been described sensation (Wang et al., 1996). In another study, recently (Lewinsohn et al., 2001). The Clarkia the levels and ratios of short-chain aldehydes and LIS gene under the control of the late-ripening alcohols were modified by the respective repres- specific promoter E8 has been transformed into sion and overexpression of a tomato alcohol de- tomatoes and this has resulted in fruits that pro- hydrogenase gene in transgenic tomato fruits duce S-linalool (Figure 3, reaction #3). Unexpect- (Prestage et al., 1999; Speirs, 1998). As a result, edly, the expression of LIS also caused the accu- minute changes in aroma were detected by taste mulation of 8-hydroxylinalool, a linalool panelists. derivative possibly produced by allylic hydroxy- lation of the linalool via an unknown endogenous enzyme. D. Antinutritional Compounds Notably, although only a small fraction of the metabolic flow through the terpenoid pathway Many natural products are induced in plants as was diverted into linalool in these transgenic a result of fungal attacks and are often considered plants, this was sufficient to change the aroma, important in plant protection. Some of these de- because the threshold levels for the perception of fense metabolites have beneficial human health linalool are very low (6 ppb) (Buttery et al., 1971). properties (see Section VI.B.1), while others have In fact, many other volatiles also have very low toxic effects. It is usually recommended that in- thresholds of detection (Buttery et al., 1971), and fected plant products not be consumed. This is not therefore aroma enhancement may be relatively only due to the presence of mycotoxins produced easily achieved by diverting only a small fraction by pathogens, but also to the possible presence of of the metabolic flow to their production, with plant-derived compounds that are toxic to humans negligible perturbation of the general metabolism (Kuc, 1995). Plants bred for pest resistance, by of the plant. The potential of genetic engineering incorporating genes from wild relatives, must be for the improvement of aroma and taste proper- tested carefully to avoid the inclusion of toxic traits ties of agricultural products is just beginning to be (Kuc, 1995). Another important antinutritional agent investigated. With the discovery of other genes is lignin, which is not discussed in the present encoding key enzymes involved in the production review because it has been discussed in a number of volatile aroma chemicals, the potential to uti- of recent reviews (Baucher et al., 1998; Grima- lize genetic engineering for the manipulation of Pettenati and Goffner, 1999). crops is very promising. 1. Furanocoumarins 2. Modification of Lipid-Derived Volatiles The furanocoumarins psoralen, bergapten, and Many of the volatiles that affect the aroma of xanthotoxin are found in many food crops of the fresh produce are formed by degradation of lipids Apiaceae, Rutaceae, and Moraceae, including cel- (Croteau and Karp, 1991). Therefore, another ery, parsnip, parsley, citrus, and figs (Beier and approach to improve tomato fruit aroma was to Nigg, 1992). These metabolites have antimicrobial modify the oxidation pattern of the lipids that are and insecticidal properties but are also potent pho- naturally degraded into aroma compounds. tosensitizing toxins for humans. They cause severe Overexpressing a yeast gene encoding ∆ 9 dermatitis, blistering, and other serious damage to desaturase in transgenic tomato plants elevated the skin in the presence of UV light or solar radia- the levels of saturated and unsaturated fatty acids tion (Beier and Nigg, 1992). At low doses, in the fruits. These changes were associated with furanocoumarins can have therapeutical and cos- 188
  • 23. metic value, and they are sometimes added to sun verts xanthosine to form 7-methyl xanthosine. lotions as photosensitizers. Furanocoumarins are After hydrolysis of the ribose moiety, 7- also used to treat psoriasis, vitiligo, and other skin methylxanthine is formed, which after two se- disorders. quential N-methylations give rise to theobromine Fungal infections and other stress conditions (the major alkaloid of cacao beans), and caffeine during the growing season can markedly increase (Waldhauser et al., 1997). The gene for xanthosine- plant furanocoumarin levels. Because of their N7-methyltransferase, the first enzyme in this path- antimicrobial and insecticidal activities, plant way, was silenced by antisense, resulting in virtu- breeders developed lines of celery with high ally caffeine-free transgenic coffee plants (http:// psoralen levels (Kuc, 1995). These lines had to be www.nbiap.vt.edu/biomon/datacat.htm). These removed from the market when toxicological data “naturally” caffeine-free products do not require concerning psoralens became widely available and decaffeination. Field experiments designed to test accepted. Well-intentioned efforts to protect plants the performance of these plants are currently un- by increasing their natural defense compounds der way. One could envision similar experiments had serious health repercussions. to lower caffeine content in other plants. 2. Nitrogen Compounds: Alkaloids and b. Glucosinolates Glucosinolates Glucosinolates, also called mustard oil glyco- a. Caffeine sides, are anionic thioglucosides normally associ- ated with plant defense due to their insecticidal and Caffeine (trimethylxanthine) is an odorless, antibacterial properties. They occur in many plant bitter purine alkaloid. The most common caffeine families, but they are particularly common in the containing plants are tea (Thea sinensis Brassicaceae. Plants that contain glucosinolates also fam. Theaceae) and coffee (Coffea spp. Fam. contain thioglucosidase (myrosinase) enzymes that Rubiaceae), but it also occurs in other unrelated cleave the sugar moiety and release the free agly- families (Samuelsson, 1992). The average cup of cones. The free aglycones are nonstable and de- coffee contains about 100 mg of caffeine. Caf- compose into sulfur-containing volatiles that im- feine has a stimulating effect on the central ner- part a typical pungent odor and biting taste. The hot vous system, heart, blood vessels, and kidneys. flavor of mustard seed and horseradish, as well as Its potent stimulatory action makes it a valuable the more subtle flavors of rutabaga and cauliflower, antidote to respiratory depression induced by drug are consequences of the presence of such com- overdose (e.g., from morphine or barbiturates). pounds. People who use caffeine can show improved motor By the 1960s, rapeseed varieties were bred to performance, decreased fatigue, enhanced sen- contain oil low in erucic acid, which is associated sory activity, and increased alertness. This may with myocardial toxicity. Rapeseed meal protein partly explain the compulsion of many adults to has a favorable balance of amino acids, but its use consume coffee or other caffeine-containing bev- in rations was limited by its glucosinolate con- erages as part of their “morning ritual”. Caffeine tent. Canadian breeders developed “double low” intake can also cause irritability, nervousness or rapeseed: (low erucic acid, low glucosinolate con- anxiety, jitteriness, headaches, and insomnia. By tent), which has become a major oil crop. the mid-1980s decaffeinated coffee and soft drinks Glucosinolates are derived from amino acids had become widely available, giving consumers via aldoxime and thiohydroximic acid intermediates the choice of regulating their caffeine intake. (Figure 4) (Luckner, 1990). Indole glucosinolates Caffeine is removed from the coffee beans. Caf- still present in rapeseed are derived from tryptophan. feine is synthesized from the pool of free purines They adversely affect the quality of rapeseed oil and available for nucleic acid biosynthesis through meal. The pathway from tryptophan to glucosinolates the action of a 7-N-methyltransferase that con- has been diverted in transgenic rapeseed by 189