SlideShare ist ein Scribd-Unternehmen logo
1 von 11
Downloaden Sie, um offline zu lesen
Name: Shaide Robert S. Primavera Subject: COMP131 Block: SB
#1 Structured Cabling
The cable infrastructure in your office or building is a critical component of your entire network. Proper
planning, design, installation, and maintenance of this infrastructure can have a positive impact on your
company’s day-to-day operations and can contribute to its success.
Source: http://www.blackbox.com/solutions/infrastructure/structured-cabling.aspx

A structured cabling system is a complete system of cabling and associated hardware, which provides a
comprehensive telecommunications infrastructure. This infrastructure serves a wide range of uses, such
as to provide telephone service or transmit data through a computer network. It should not be device
dependent.
We further define a structured cabling system in terms of ownership. The structured cabling system
begins at the point where the service provider (SP) terminates. This point is the point of demarcation
(demarc) or Network Interface Device (NID).
For example, in a telephone system installation, the SP furnishes one or more service lines (per
customer requirements). The SP connects the service lines at the point of demarcation.
Every structured cabling system is unique. This is due to variations in:
The architectural structure of the building, which houses the cabling installation;
The cable and connection products;
The function of the cabling installation;
The types of equipment the cabling installation will support -- present and future;
The configuration of an already installed system (upgrades and retrofits);
Customer requirements; and
Manufacturer warranties.

E-mail: sync_shaide@yahoo.com.ph

Professor: Mr. Jonathan Sadueste-Ng
The methods we use to complete and maintain cabling installations are relatively standard. The
standardization of these installations is necessary because of the need to ensure acceptable system
performance from increasingly complex arrangements.
The U.S. cabling industry accepts the American National Standards Institute (ANSI), in conjunction with
TIA/EIA, as the responsible organization for providing and maintaining standards and practices within
the profession. It has published a series of standards to design, install, and maintain cabling installations.
These help to ensure a proper cabling installation.
The benefits of these standards include:
Consistency of design and installation;
Conformance to physical and transmission line requirements;
A basis for examining a proposed system expansion and other changes; and
Uniform documentation.
The industry standard term for a network installation that serves a relatively small area (such as a
structured cabling installation serving a building) is a local area network (LAN). There are also
metropolitan area networks (MANs) and wide area networks (WANs).
Structured cabling installations typically include: entrance facilities; vertical and horizontal backbone
pathways; vertical and horizontal backbone cables; horizontal pathways; horizontal cables; work area
outlets; equipment rooms; telecommunications closets; cross-connect facilities; multi-user
telecommunications outlet assemblies (MUTOA); transition points; and consolidation points.
The entrance facility includes the cabling components needed to provide a means to connect the
outside service facilities to the premises cabling. This can include service entrance pathways, cables,
connecting hardware, circuit protection devices, and transition hardware.
An entrance facility houses the transition outside plant cabling to cabling approved for intrabuilding
construction. This usually involves transition to fire-rated cable. The entrance facility is also the network
demarc between the SP and customer premises cabling (if required). National and regional electrical
codes govern placement of electrical protection devices at this point.
The location of the entrance facility depends on the type of facility, route of the outside plant cabling
(e.g. buried or aerial), building architecture, and aesthetic considerations. The four principal types of
entrance facilities include underground, tunnel, buried, and aerial. (We will cover only aerial entrances
in this article.)
In an aerial entrance, the SP cables provide service to a building via an overhead route. Aerial entrances
usually provide the lowest installation cost, and they're readily accessible for maintenance. However,
they're subject to traffic and pedestrian clearances, can damage a building's exterior, are susceptible to
environmental conditions (such wind and ice), and are usually joint-use installations with the power
company, CATV company, and telephone or data service providers.
Backbone cabling. From the entrance facility, the structured cabling network branches out to other
buildings, as well as from floor to floor within a building on the backbone cabling system. We use the
term backbone to describe the cables handling the major network traffic.
The ANSI/TIA/EIA-568-A standard defines backbone cabling as follows: "The function of the backbone
cabling is to provide interconnections between telecommunications closets, equipment rooms, and
entrance facilities in the telecommunications cabling system structure. Backbone cabling consists of the
backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or
jumpers used for backbone-to-backbone cross-connection. Backbone cabling also includes cabling
between buildings."
Interbuilding and intrabuilding are two types of backbone cables. Interbuilding backbone cable handles
traffic between buildings. Intrabuilding backbone cable handles traffic between closets in a single
building.
This standard identifies two levels of backbone cabling. First-level backbone is a cable between a main
cross-connect (MC) and intermediate cross-connect (IC) or horizontal cross-connect (HC). Second-level
backbone exists between an IC and HC.
The main components of backbone cabling are:
Cable pathways: shafts, conduits, raceways, and floor penetrations (such as sleeves or slots) that
provide routing space for the cables.
The actual cables: optical fiber, twisted-pair copper, coaxial copper, or some combination of these.
(Note: You should avoid areas where potential sources of EMI or electromagnetic interference may exist
when planning the routing and support structure for copper cabling.)
Connecting hardware: connecting blocks, patch panels, interconnections, cross-connections, or some
combination of these components, and
Miscellaneous support facilities: cable support hardware, firestopping and grounding hardware. Note:
The terms horizontal and backbone (previously called riser) evolved from the orientations typical for
functional cables of these types. However, the physical orientation of the cabling has no bearing on
classifying the cable as horizontal or backbone.
The useful life of a backbone cabling system consists of several planned growth periods (typically three
to 10 years). This is shorter than the life expectancy of the premises cabling system.
Cabling connectors. A connector is a mechanical device you use to interface a cable to a piece of
equipment or one cable to another. The role of the connector is to provide a coupling mechanism that
keeps loss to a minimum.
In the case of fiber, it allows light impulses to transfer from one connector to another. For copper, it
allows electrical signals to transfer from one connector to another.
A good connection requires aligning the connectors, preventing the connectors from unintentional
separation, and efficient transferring of light or electricity from one connector to the other.
A connector demonstrates durability by withstanding hundreds of insertion and withdrawal cycles
without failing. We calculate this as mean time between failures (MTBF).
Connectors are as essential to the integrity of the entire telecommunications network as is the cable
itself. Connectors align, attach, and decouple the media to a transmitter, receiver, another media of
same or similar type, an active telecommunications device, or a specified passive telecommunications
device.
Source: http://ecmweb.com/basics/basics-structured-cabling
#2 Network Planning – is an iterative process, encompassing topological design, network-synthesis,
and network-realization, and is aimed at ensuring that a new telecommunications network or service meets
the needs of the subscriber and operator. The process can be tailored according to each new network or

service.
Source: http://www.tandemlogistics.com/resources/glossary-of-terms.php
#3 Structured cabling plan
Is the plan of building or campus telecommunications cabling infrastructure that consists of a number of
standardized smaller elements (hence structured) called subsystems.

#4 Difference of structured cabling plan and a network plan
Structured cabling plan is the The cable infrastructure in your office or building is a critical component of
your entire network while network plan is the process can be tailored according to each new network or
service.
#5 What is RJ45, RJ11, CAT5E, CAT5, CAT6, CAT6A?
RJ45 - is a standard type of connector for network cables. RJ45 connectors are most commonly seen
with Ethernet cables and networks.
Source: http://compnetworking.about.com/od/networkcables/g/bldef_rj45.htm
RJ11 - More commonly known as a phone connector, phone jack or phone line, the RJ-11 is short
for Registered Jack-11 and is a four or six wire connection primarily used for telephones and computer
modem connectors in the United States. In the picture to the right, is an example image of what the RJ11 phone connection looks like.
Although this cable can be used to connect your modem to the Internet it should not be confused with
the RJ-45 connector, which is used with your network card.
Source: http://www.computerhope.com/jargon/r/rj11.htm

CAT5E - Short for Category 5 Enhanced, Cat-5e network cabling is used as a cabling infrastructure for
10BASE-T (Ethernet), full duplex 100BASE-TX (Fast Ethernet) and 1000BASE-T (Gigabit Ethernet, or GbE)
networks. The Cat 5e standard provides performance of up to 100 MHz and can be used up to a
maximum length of 100 meters.
As with Category 5 (Cat-5) cables, Cat 5e cables typically consist of fourunshielded twisted pairs (UTP) of
copper wire terminated by RJ45connectors. Cat 5e is distinguished from the original Cat 5 standard
primarily in its performance requirements. Cat 5e has stricter specifications in a number of areas,
including Near-End Crosstalk (NEXT), Power Sum Equal-Level Far-End Crosstalk (PS-ELFEXT), attenuation
and return loss.
The Cat 5e standard was first released in 1999 as part of the Telecommunications Industry Association’s
TIA/EIA-568-5-A document specification. The Cat 5e cable standard is backward compatible with the Cat
3 and Cat 5 cable standards.
Source: http://www.webopedia.com/TERM/C/Cat_5e.html

CAT5 - Short for Category 5, network cabling that consists of four twisted pairs of copper wire
terminated by RJ45 connectors. Cat-5 cabling supports frequencies up to 100 MHz and speeds up to
1000 Mbps. It can be used forATM, token ring, 1000Base-T, 100Base-T, and 10Base-T networking.
Computers hooked up to LAN s are connected using Cat-5 cables, so if you're on a LAN, most likely the
cable running out of the back of your PC is Category 5.
Cat-5 is based on the EIA/TIA 568 Commercial Building Telecommunications Wiring Standard developed
by the Electronics Industries Association as requested by the Computer Communications Industry
Association in 1985.
Source: http://www.webopedia.com/TERM/C/Cat_5.html

CAT6 - is an Ethernet cable standard defined by the Electronic Industries Association and
Telecommunications Industry Association (commonly known as EIA/TIA). CAT6 is the sixth generation
of twisted pair Ethernet cabling.
CAT6 cable contains four pairs of copper wire like the previous generation CAT5. Unlike CAT5, however,
CAT6 fully utilizes all four pairs. CAT6 supports Gigabit Ethernet speeds up to 1 gigabit per second (Gbps)
and supports communications at more than twice the speed ofCAT5e, the other popular standard for
Gigabit Ethernet cabling. An enhanced version of CAT6 called CAT6a supports up to 10 Gbps speeds.
As with all other types of twisted pair EIA/TIA cabling, individual CAT6 cable runs are limited to a
maximum recommended length of 100m (328 feet). Printing along the length of the cable sheath
identifies it as CAT6.
Source: http://compnetworking.about.com/od/ethernet/g/cat6-cables.htm
CAT6A - The latest standard from the TIA for enhanced performance standards for twisted pair cable
systems was defined in February 2008 in ANSI/TIA/EIA-568-B.2-10. Category 6a (or Augmented Category
6) is defined at frequencies up to 500 MHz—twice that of Cat. 6.
Category 6a performs at improved specifications, in particular in the area of alien crosstalk as compared
to Cat 6 UTP (unshielded twisted pair), which exhibited high alien noise in high frequencies.
The global cabling standard ISO/IEC 11801 has been extended by the addition of amendment 2. This
amendment defines new specifications for Cat. 6A components and Class EA permanent links. These
new global Cat. 6A/Class EA specifications require a new generation of connecting hardware offering far
superior performance compared to the existing products that are based on the American TIA standard.
The most important point is a performance difference between ISO/IEC and EIA/TIA component
specifications for the NEXT transmission parameter. At a frequency of 500 MHz, an ISO/IEC Cat. 6A
connector performs 3 dB better than a Cat. 6A connector that conforms with the EIA/TIA specification.
3 dB equals 50% reduction of near-end crosstalk noise signal power; see 3dB-point.
Confusion therefore arises because of the different naming conventions and performance benchmarks
laid down by the International ISO/IEC and American TIA/EIA standards, which in turn are different from
the regional European standard, EN 50173-1. In broad terms, the ISO standard for Cat6A is the highest,
followed by the European standard and then the American (1 on 1 matching capability).
Source: http://en.wikipedia.org/wiki/CAT6
#6 What is Ethernet?
Ethernet is a physical and data link layer technology forlocal area networks (LANs). Ethernet was
invented by engineer Robert Metcalfe.
When first widely deployed in the 1980s, Ethernet supported a maximum theoretical data rate of
10 megabits per second (Mbps). Later, so-called "Fast Ethernet" standards increased this maximum data
rate to 100 Mbps. Today, Gigabit Ethernet technology further extends peak performance up to 1000
Mbps.
Higher level network protocols like Internet Protocol (IP) use Ethernet as their transmission medium.
Data travels over Ethernet inside protocol units called frames.
The run length of individual Ethernet cables is limited to roughly 100 meters, but Ethernet networks can
be easily extended to link entire schools or office buildings using network bridge devices.
Source: http://compnetworking.about.com/cs/ethernet1/g/bldef_ethernet.htm
#7 What is Giga Ethernet?
Gigabit Ethernet is part of the family of Ethernet computer networking and communication standards.
The Gigabit Ethernet standard supports a theoretical maximum data rate of 1 gigabit per second
(Gbps) (1000 Mbps).
When first developed, some thought achieving gigabit speeds with Ethernet would require using fiber
optic or other special cables. However, today's Gigabit Ethernet works using twisted pair copper cable
(specifically, the CAT5e and CAT6 cabling standards) similar to older 100 Mbps Fast Ethernet (that works
over CAT5 cables).
Newer home broadband routers now support Gigabit Ethernet along with other mainstream computer
network equipment. Gigabit Ethernet also provides backward compatibility to older 100 Mbps and 10
Mbps legacy Ethernet devices: Connections to these devices function normally but perform at the lower
speed.
Also Known As: 1000 Mbps Ethernet
Source: http://compnetworking.about.com/cs/gigabitethernet/g/bldef_gigaenet.htm
#8 What is the difference between a Ethernet and giga Ethernet?
Gigabit is 1000mbps (megabits per second) Ethernet, which is 10x faster than 100mbps Ethernet, which
is 10x faster than 10mbps Ethernet. By: eibgrad
Source: http://www.tomshardware.com/forum/29154-42-ethernet-gigabit-ethernet#.
#9 What is hub, switch, router, switch hub?
Hub – An Ethernet hub, active hub, network hub, repeater hub, multiport repeater or hub is a device for
connecting multiple Ethernet devices together and making them act as a single network segment. It has
multiple input/output(I/O) ports, in which a signal introduced at the input of any port appears at the
output of every port except the original incoming. A hub works at the physical layer (layer 1) of the OSI
model.[1] The device is a form of multiport repeater. Repeater hubs also participate in collision
detection, forwarding a jam signal to all ports if it detects a collision.
Some hubs may also come with a BNC and/or Attachment Unit Interface (AUI) connector to allow
connection to legacy 10BASE2 or 10BASE5 network segments. The availability of low-priced network
switches has largely rendered hubs obsolete but they are still seen in 20th century installations and
more specialized applications.
Source: http://en.wikipedia.org/wiki/Ethernet_hub

Switch – A switch is a network hardware device that allows communication between devices within a
network, like your local home network.
Most home and small business routers contain built-in switches.
The Switch is Also Known As:
A switch is more correctly called a network switch though you'll rarely see one referred to as such. A
switch is also uncommonly called a switching hub.
Important Switch Facts:
Switches are found in both unmanaged and managed forms.
Unmanaged switches have no options and simply work out of box.
Managed switches have advanced options that can be configured. Managed switches also contain
software called firmware that should be updated as released by the switch manufacturer.
Switches connect to other network devices via network cables only and thus do not require driversto
operate in Windows or other operating systems.
Source: http://pcsupport.about.com/od/componentprofiles/p/switch.htm
Router – Routers are small physical devices that join multiple networks together. Technically, a router is
a Layer 3 gateway device, meaning that it connects two or more networks and that the router operates
at the network layer of the OSI model.
Home networks typically use a wireless or wired Internet Protocol (IP) router, IP being the most
common OSI network layer protocol. An IP router such as a DSL or cable modembroadband router joins
the home's local area network (LAN) to the wide-area network (WAN)of the Internet.
Source: http://compnetworking.about.com/cs/routers/g/bldef_router.htm

Switch hub – Short for port-switching hub, a special type of hub that forwards packets to the
appropriate port based on the packet's address. Conventional hubs simply rebroadcast every packet to
every port. Since switching hubs forward each packet only to the required port, they provide much
better performance. Most switching hubs also support load balancing, so that ports are dynamically
reassigned to different LAN segments based on traffic patterns.
Some newer switching hubs support both traditional Ethernet (10 Mbps) andFast Ethernet (100 Mbps)
ports. This enables the administrator to establish a dedicated, Fast Ethernet channel for high-traffic
devices such as servers.
Source: http://www.webopedia.com/TERM/S/switching_hub.html
#10 What is the difference between switch and hub?
A network router is a more sophisticated network device compared to either a network switchor
a network hub. Like hubs and switches, routers are typically small, box-like pieces of equipment that
multiple computers can connect to. Each features a number of ports on the front or back of the unit that
provide the connection points for these computers, a connection for electric power, and a number of
LED lights to display device status. While routers, hubs and switches all share similar physical
appearance, routers differ substantially in their inner workings.
Traditional routers are designed to join together multiple local area networks (LANs) with a wide area
network (WAN). Routers serve as intermediate destinations for network traffic. They receive
incoming network packets, look inside each packet to identify the source and target network addresses,
then forward these packets where needed to ensure the data reaches its final destination.
Routers for home networks (often called broadband routers) are designed specifically to join the home
(LAN) to the Internet (WAN) for the purpose of Internet connection sharing. In contrast, switches (and
hubs) are not capable of joining multiple networks or sharing an Internet connection. A network with
only switches (hubs) must instead designate one computer as the gateway to the Internet, and that
device must possess two network adapters for sharing, one for the home LAN and one for the Internet
WAN. With a router, all home computers connect to the router as peers, and the router performs all
gateway functions.
Additionally, broadband routers contain several features beyond those of traditional routers such as
integrated DHCP server and network firewall support. Most notably, though, broadband routers
typically incorporate a built-in Ethernet switch. This allows several switches (hubs) to be connected to
them, as a means to expand the local network to accommodate more Ethernet devices.
Wi-Fi wireless networks also utilize routers but technically do not have the concept of a wireless switch
or hub, although a wireless access point can be roughly compared to a wired switch.
Source: http://compnetworking.about.com/od/homenetworkhardware/f/routervsswitch.htm

Weitere ähnliche Inhalte

Was ist angesagt?

Basics Of Electrical Wires & Cables - Residential & Commercial Projects
Basics Of  Electrical  Wires & Cables  - Residential & Commercial Projects Basics Of  Electrical  Wires & Cables  - Residential & Commercial Projects
Basics Of Electrical Wires & Cables - Residential & Commercial Projects SSudhaVelan
 
A brief about building management system
A brief about building management systemA brief about building management system
A brief about building management systemEndeavour Africa
 
4 Structure Cabling System Design
4 Structure Cabling System Design4 Structure Cabling System Design
4 Structure Cabling System DesignMrirfan
 
#Building wiring system#presentation#Wire is a single electrical conductor, w...
#Building wiring system#presentation#Wire is a single electrical conductor, w...#Building wiring system#presentation#Wire is a single electrical conductor, w...
#Building wiring system#presentation#Wire is a single electrical conductor, w...Bint Shameem
 
Network cable
Network cableNetwork cable
Network cableFrya Lora
 
Electrical wiring
Electrical wiringElectrical wiring
Electrical wiringPatel Mit
 
Types of wires and cables ic
Types of wires and cables icTypes of wires and cables ic
Types of wires and cables icVishal Patel
 
Telecommunication system
Telecommunication systemTelecommunication system
Telecommunication systemJamilah Abbas
 
Electrical Installation in Buildings
Electrical Installation in BuildingsElectrical Installation in Buildings
Electrical Installation in Buildingsramnathpanwar
 
Earthing Concepts
Earthing ConceptsEarthing Concepts
Earthing Conceptsmvrkprasad
 
Networking Chapter 6
Networking Chapter 6Networking Chapter 6
Networking Chapter 6mlrbrown
 
EPABX SYSTEM
EPABX SYSTEMEPABX SYSTEM
EPABX SYSTEMPavan Sai
 

Was ist angesagt? (20)

Fiber optic network design
Fiber optic network designFiber optic network design
Fiber optic network design
 
Cable and laying
Cable and layingCable and laying
Cable and laying
 
Basics Of Electrical Wires & Cables - Residential & Commercial Projects
Basics Of  Electrical  Wires & Cables  - Residential & Commercial Projects Basics Of  Electrical  Wires & Cables  - Residential & Commercial Projects
Basics Of Electrical Wires & Cables - Residential & Commercial Projects
 
A brief about building management system
A brief about building management systemA brief about building management system
A brief about building management system
 
Electrical safety.pptx
Electrical safety.pptxElectrical safety.pptx
Electrical safety.pptx
 
Underground cable
Underground cableUnderground cable
Underground cable
 
4 Structure Cabling System Design
4 Structure Cabling System Design4 Structure Cabling System Design
4 Structure Cabling System Design
 
#Building wiring system#presentation#Wire is a single electrical conductor, w...
#Building wiring system#presentation#Wire is a single electrical conductor, w...#Building wiring system#presentation#Wire is a single electrical conductor, w...
#Building wiring system#presentation#Wire is a single electrical conductor, w...
 
Network cable
Network cableNetwork cable
Network cable
 
Electrical wiring
Electrical wiringElectrical wiring
Electrical wiring
 
Underground cables
Underground cablesUnderground cables
Underground cables
 
EPABX new
EPABX newEPABX new
EPABX new
 
Types of wires and cables ic
Types of wires and cables icTypes of wires and cables ic
Types of wires and cables ic
 
Telecommunication system
Telecommunication systemTelecommunication system
Telecommunication system
 
Electrical Installation in Buildings
Electrical Installation in BuildingsElectrical Installation in Buildings
Electrical Installation in Buildings
 
Wires & cables
Wires & cablesWires & cables
Wires & cables
 
Earthing Concepts
Earthing ConceptsEarthing Concepts
Earthing Concepts
 
Networking Chapter 6
Networking Chapter 6Networking Chapter 6
Networking Chapter 6
 
MEP- Building services
MEP- Building servicesMEP- Building services
MEP- Building services
 
EPABX SYSTEM
EPABX SYSTEMEPABX SYSTEM
EPABX SYSTEM
 

Ähnlich wie structured cabling.pdf

The Essential Components of Structured Cabling
The Essential Components of Structured CablingThe Essential Components of Structured Cabling
The Essential Components of Structured Cablinglibertyuae uae
 
Structured Cabling Solution - White Paper
Structured Cabling Solution - White PaperStructured Cabling Solution - White Paper
Structured Cabling Solution - White PaperSyed Firas
 
wp_demystifying_the_network_cloud_782
wp_demystifying_the_network_cloud_782wp_demystifying_the_network_cloud_782
wp_demystifying_the_network_cloud_782Bob Fischer
 
Network Cabling Systems: An Ultimate Guide.pdf
Network Cabling Systems: An Ultimate Guide.pdfNetwork Cabling Systems: An Ultimate Guide.pdf
Network Cabling Systems: An Ultimate Guide.pdfDINTEK Electronic Limited
 
What are the Components of Structure Cabling Dubai for Organisations
What are the Components of Structure Cabling Dubai for OrganisationsWhat are the Components of Structure Cabling Dubai for Organisations
What are the Components of Structure Cabling Dubai for OrganisationsStructure Cabling
 
BSNL training report
BSNL training reportBSNL training report
BSNL training reportShubham Singh
 
Bsnl training report
Bsnl training reportBsnl training report
Bsnl training reportShubham Singh
 
LAN Architecture Over Fiber Optics.pdf
LAN Architecture Over Fiber Optics.pdfLAN Architecture Over Fiber Optics.pdf
LAN Architecture Over Fiber Optics.pdfVERSITRONINC
 
Wireless deployment strategies in WNS-is
Wireless deployment strategies in WNS-isWireless deployment strategies in WNS-is
Wireless deployment strategies in WNS-isssuser5b84591
 
basic networking
basic networkingbasic networking
basic networkingAnmol Bagga
 
Data communication Networking- Study Networking Equipment
Data communication Networking- Study Networking EquipmentData communication Networking- Study Networking Equipment
Data communication Networking- Study Networking EquipmentShivam Prakash Chaurasia
 
Chapter 4 Data Communications and Networking 1 of 40 .docx
Chapter 4  Data Communications and Networking  1 of 40 .docxChapter 4  Data Communications and Networking  1 of 40 .docx
Chapter 4 Data Communications and Networking 1 of 40 .docxwalterl4
 
What Makes Structured Cabling the Trend in the Industry
What Makes Structured Cabling the Trend in the IndustryWhat Makes Structured Cabling the Trend in the Industry
What Makes Structured Cabling the Trend in the IndustryStructure Cabling
 
Nokia_Mission-critical_Utilities_Network_Teleprotection_Application_Note_EN
Nokia_Mission-critical_Utilities_Network_Teleprotection_Application_Note_ENNokia_Mission-critical_Utilities_Network_Teleprotection_Application_Note_EN
Nokia_Mission-critical_Utilities_Network_Teleprotection_Application_Note_ENJuan Boggiano
 
Practical communications considerations for protection engineers
Practical communications considerations for protection engineersPractical communications considerations for protection engineers
Practical communications considerations for protection engineersJose J. Rodriguez Alvarez, MEM
 
TopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdf
TopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdfTopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdf
TopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdfBrianJanAdela3
 

Ähnlich wie structured cabling.pdf (20)

The Essential Components of Structured Cabling
The Essential Components of Structured CablingThe Essential Components of Structured Cabling
The Essential Components of Structured Cabling
 
Structured Cabling Solution - White Paper
Structured Cabling Solution - White PaperStructured Cabling Solution - White Paper
Structured Cabling Solution - White Paper
 
wp_demystifying_the_network_cloud_782
wp_demystifying_the_network_cloud_782wp_demystifying_the_network_cloud_782
wp_demystifying_the_network_cloud_782
 
Network Cabling Systems: An Ultimate Guide.pdf
Network Cabling Systems: An Ultimate Guide.pdfNetwork Cabling Systems: An Ultimate Guide.pdf
Network Cabling Systems: An Ultimate Guide.pdf
 
compo 131_banalnal
compo 131_banalnalcompo 131_banalnal
compo 131_banalnal
 
What are the Components of Structure Cabling Dubai for Organisations
What are the Components of Structure Cabling Dubai for OrganisationsWhat are the Components of Structure Cabling Dubai for Organisations
What are the Components of Structure Cabling Dubai for Organisations
 
BSNL training report
BSNL training reportBSNL training report
BSNL training report
 
Bsnl training report
Bsnl training reportBsnl training report
Bsnl training report
 
LAN Architecture Over Fiber Optics.pdf
LAN Architecture Over Fiber Optics.pdfLAN Architecture Over Fiber Optics.pdf
LAN Architecture Over Fiber Optics.pdf
 
Wireless deployment strategies in WNS-is
Wireless deployment strategies in WNS-isWireless deployment strategies in WNS-is
Wireless deployment strategies in WNS-is
 
basic networking
basic networkingbasic networking
basic networking
 
Arvind Singh
Arvind SinghArvind Singh
Arvind Singh
 
Data communication Networking- Study Networking Equipment
Data communication Networking- Study Networking EquipmentData communication Networking- Study Networking Equipment
Data communication Networking- Study Networking Equipment
 
Computer Networks
Computer NetworksComputer Networks
Computer Networks
 
Chapter 4 Data Communications and Networking 1 of 40 .docx
Chapter 4  Data Communications and Networking  1 of 40 .docxChapter 4  Data Communications and Networking  1 of 40 .docx
Chapter 4 Data Communications and Networking 1 of 40 .docx
 
What Makes Structured Cabling the Trend in the Industry
What Makes Structured Cabling the Trend in the IndustryWhat Makes Structured Cabling the Trend in the Industry
What Makes Structured Cabling the Trend in the Industry
 
Nokia_Mission-critical_Utilities_Network_Teleprotection_Application_Note_EN
Nokia_Mission-critical_Utilities_Network_Teleprotection_Application_Note_ENNokia_Mission-critical_Utilities_Network_Teleprotection_Application_Note_EN
Nokia_Mission-critical_Utilities_Network_Teleprotection_Application_Note_EN
 
Practical communications considerations for protection engineers
Practical communications considerations for protection engineersPractical communications considerations for protection engineers
Practical communications considerations for protection engineers
 
Acr5 dcb
Acr5 dcbAcr5 dcb
Acr5 dcb
 
TopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdf
TopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdfTopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdf
TopologicalPlanningandDesignofHeterogeneousMobileNetworksinDenseAreas.pdf
 

Kürzlich hochgeladen

ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 

Kürzlich hochgeladen (20)

ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 

structured cabling.pdf

  • 1. Name: Shaide Robert S. Primavera Subject: COMP131 Block: SB #1 Structured Cabling The cable infrastructure in your office or building is a critical component of your entire network. Proper planning, design, installation, and maintenance of this infrastructure can have a positive impact on your company’s day-to-day operations and can contribute to its success. Source: http://www.blackbox.com/solutions/infrastructure/structured-cabling.aspx A structured cabling system is a complete system of cabling and associated hardware, which provides a comprehensive telecommunications infrastructure. This infrastructure serves a wide range of uses, such as to provide telephone service or transmit data through a computer network. It should not be device dependent. We further define a structured cabling system in terms of ownership. The structured cabling system begins at the point where the service provider (SP) terminates. This point is the point of demarcation (demarc) or Network Interface Device (NID). For example, in a telephone system installation, the SP furnishes one or more service lines (per customer requirements). The SP connects the service lines at the point of demarcation. Every structured cabling system is unique. This is due to variations in: The architectural structure of the building, which houses the cabling installation; The cable and connection products; The function of the cabling installation; The types of equipment the cabling installation will support -- present and future; The configuration of an already installed system (upgrades and retrofits); Customer requirements; and Manufacturer warranties. E-mail: sync_shaide@yahoo.com.ph Professor: Mr. Jonathan Sadueste-Ng
  • 2. The methods we use to complete and maintain cabling installations are relatively standard. The standardization of these installations is necessary because of the need to ensure acceptable system performance from increasingly complex arrangements. The U.S. cabling industry accepts the American National Standards Institute (ANSI), in conjunction with TIA/EIA, as the responsible organization for providing and maintaining standards and practices within the profession. It has published a series of standards to design, install, and maintain cabling installations. These help to ensure a proper cabling installation. The benefits of these standards include: Consistency of design and installation; Conformance to physical and transmission line requirements; A basis for examining a proposed system expansion and other changes; and Uniform documentation. The industry standard term for a network installation that serves a relatively small area (such as a structured cabling installation serving a building) is a local area network (LAN). There are also metropolitan area networks (MANs) and wide area networks (WANs). Structured cabling installations typically include: entrance facilities; vertical and horizontal backbone pathways; vertical and horizontal backbone cables; horizontal pathways; horizontal cables; work area outlets; equipment rooms; telecommunications closets; cross-connect facilities; multi-user telecommunications outlet assemblies (MUTOA); transition points; and consolidation points. The entrance facility includes the cabling components needed to provide a means to connect the outside service facilities to the premises cabling. This can include service entrance pathways, cables, connecting hardware, circuit protection devices, and transition hardware. An entrance facility houses the transition outside plant cabling to cabling approved for intrabuilding construction. This usually involves transition to fire-rated cable. The entrance facility is also the network demarc between the SP and customer premises cabling (if required). National and regional electrical codes govern placement of electrical protection devices at this point. The location of the entrance facility depends on the type of facility, route of the outside plant cabling (e.g. buried or aerial), building architecture, and aesthetic considerations. The four principal types of entrance facilities include underground, tunnel, buried, and aerial. (We will cover only aerial entrances in this article.) In an aerial entrance, the SP cables provide service to a building via an overhead route. Aerial entrances usually provide the lowest installation cost, and they're readily accessible for maintenance. However, they're subject to traffic and pedestrian clearances, can damage a building's exterior, are susceptible to environmental conditions (such wind and ice), and are usually joint-use installations with the power company, CATV company, and telephone or data service providers. Backbone cabling. From the entrance facility, the structured cabling network branches out to other buildings, as well as from floor to floor within a building on the backbone cabling system. We use the term backbone to describe the cables handling the major network traffic. The ANSI/TIA/EIA-568-A standard defines backbone cabling as follows: "The function of the backbone cabling is to provide interconnections between telecommunications closets, equipment rooms, and entrance facilities in the telecommunications cabling system structure. Backbone cabling consists of the backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection. Backbone cabling also includes cabling between buildings." Interbuilding and intrabuilding are two types of backbone cables. Interbuilding backbone cable handles traffic between buildings. Intrabuilding backbone cable handles traffic between closets in a single building.
  • 3. This standard identifies two levels of backbone cabling. First-level backbone is a cable between a main cross-connect (MC) and intermediate cross-connect (IC) or horizontal cross-connect (HC). Second-level backbone exists between an IC and HC. The main components of backbone cabling are: Cable pathways: shafts, conduits, raceways, and floor penetrations (such as sleeves or slots) that provide routing space for the cables. The actual cables: optical fiber, twisted-pair copper, coaxial copper, or some combination of these. (Note: You should avoid areas where potential sources of EMI or electromagnetic interference may exist when planning the routing and support structure for copper cabling.) Connecting hardware: connecting blocks, patch panels, interconnections, cross-connections, or some combination of these components, and Miscellaneous support facilities: cable support hardware, firestopping and grounding hardware. Note: The terms horizontal and backbone (previously called riser) evolved from the orientations typical for functional cables of these types. However, the physical orientation of the cabling has no bearing on classifying the cable as horizontal or backbone. The useful life of a backbone cabling system consists of several planned growth periods (typically three to 10 years). This is shorter than the life expectancy of the premises cabling system. Cabling connectors. A connector is a mechanical device you use to interface a cable to a piece of equipment or one cable to another. The role of the connector is to provide a coupling mechanism that keeps loss to a minimum. In the case of fiber, it allows light impulses to transfer from one connector to another. For copper, it allows electrical signals to transfer from one connector to another. A good connection requires aligning the connectors, preventing the connectors from unintentional separation, and efficient transferring of light or electricity from one connector to the other. A connector demonstrates durability by withstanding hundreds of insertion and withdrawal cycles without failing. We calculate this as mean time between failures (MTBF). Connectors are as essential to the integrity of the entire telecommunications network as is the cable itself. Connectors align, attach, and decouple the media to a transmitter, receiver, another media of same or similar type, an active telecommunications device, or a specified passive telecommunications device. Source: http://ecmweb.com/basics/basics-structured-cabling #2 Network Planning – is an iterative process, encompassing topological design, network-synthesis, and network-realization, and is aimed at ensuring that a new telecommunications network or service meets the needs of the subscriber and operator. The process can be tailored according to each new network or service. Source: http://www.tandemlogistics.com/resources/glossary-of-terms.php
  • 4. #3 Structured cabling plan Is the plan of building or campus telecommunications cabling infrastructure that consists of a number of standardized smaller elements (hence structured) called subsystems. #4 Difference of structured cabling plan and a network plan Structured cabling plan is the The cable infrastructure in your office or building is a critical component of your entire network while network plan is the process can be tailored according to each new network or service. #5 What is RJ45, RJ11, CAT5E, CAT5, CAT6, CAT6A? RJ45 - is a standard type of connector for network cables. RJ45 connectors are most commonly seen with Ethernet cables and networks. Source: http://compnetworking.about.com/od/networkcables/g/bldef_rj45.htm RJ11 - More commonly known as a phone connector, phone jack or phone line, the RJ-11 is short for Registered Jack-11 and is a four or six wire connection primarily used for telephones and computer
  • 5. modem connectors in the United States. In the picture to the right, is an example image of what the RJ11 phone connection looks like. Although this cable can be used to connect your modem to the Internet it should not be confused with the RJ-45 connector, which is used with your network card. Source: http://www.computerhope.com/jargon/r/rj11.htm CAT5E - Short for Category 5 Enhanced, Cat-5e network cabling is used as a cabling infrastructure for 10BASE-T (Ethernet), full duplex 100BASE-TX (Fast Ethernet) and 1000BASE-T (Gigabit Ethernet, or GbE) networks. The Cat 5e standard provides performance of up to 100 MHz and can be used up to a maximum length of 100 meters. As with Category 5 (Cat-5) cables, Cat 5e cables typically consist of fourunshielded twisted pairs (UTP) of copper wire terminated by RJ45connectors. Cat 5e is distinguished from the original Cat 5 standard primarily in its performance requirements. Cat 5e has stricter specifications in a number of areas, including Near-End Crosstalk (NEXT), Power Sum Equal-Level Far-End Crosstalk (PS-ELFEXT), attenuation and return loss. The Cat 5e standard was first released in 1999 as part of the Telecommunications Industry Association’s TIA/EIA-568-5-A document specification. The Cat 5e cable standard is backward compatible with the Cat 3 and Cat 5 cable standards. Source: http://www.webopedia.com/TERM/C/Cat_5e.html CAT5 - Short for Category 5, network cabling that consists of four twisted pairs of copper wire terminated by RJ45 connectors. Cat-5 cabling supports frequencies up to 100 MHz and speeds up to 1000 Mbps. It can be used forATM, token ring, 1000Base-T, 100Base-T, and 10Base-T networking.
  • 6. Computers hooked up to LAN s are connected using Cat-5 cables, so if you're on a LAN, most likely the cable running out of the back of your PC is Category 5. Cat-5 is based on the EIA/TIA 568 Commercial Building Telecommunications Wiring Standard developed by the Electronics Industries Association as requested by the Computer Communications Industry Association in 1985. Source: http://www.webopedia.com/TERM/C/Cat_5.html CAT6 - is an Ethernet cable standard defined by the Electronic Industries Association and Telecommunications Industry Association (commonly known as EIA/TIA). CAT6 is the sixth generation of twisted pair Ethernet cabling. CAT6 cable contains four pairs of copper wire like the previous generation CAT5. Unlike CAT5, however, CAT6 fully utilizes all four pairs. CAT6 supports Gigabit Ethernet speeds up to 1 gigabit per second (Gbps) and supports communications at more than twice the speed ofCAT5e, the other popular standard for Gigabit Ethernet cabling. An enhanced version of CAT6 called CAT6a supports up to 10 Gbps speeds. As with all other types of twisted pair EIA/TIA cabling, individual CAT6 cable runs are limited to a maximum recommended length of 100m (328 feet). Printing along the length of the cable sheath identifies it as CAT6. Source: http://compnetworking.about.com/od/ethernet/g/cat6-cables.htm
  • 7. CAT6A - The latest standard from the TIA for enhanced performance standards for twisted pair cable systems was defined in February 2008 in ANSI/TIA/EIA-568-B.2-10. Category 6a (or Augmented Category 6) is defined at frequencies up to 500 MHz—twice that of Cat. 6. Category 6a performs at improved specifications, in particular in the area of alien crosstalk as compared to Cat 6 UTP (unshielded twisted pair), which exhibited high alien noise in high frequencies. The global cabling standard ISO/IEC 11801 has been extended by the addition of amendment 2. This amendment defines new specifications for Cat. 6A components and Class EA permanent links. These new global Cat. 6A/Class EA specifications require a new generation of connecting hardware offering far superior performance compared to the existing products that are based on the American TIA standard. The most important point is a performance difference between ISO/IEC and EIA/TIA component specifications for the NEXT transmission parameter. At a frequency of 500 MHz, an ISO/IEC Cat. 6A connector performs 3 dB better than a Cat. 6A connector that conforms with the EIA/TIA specification. 3 dB equals 50% reduction of near-end crosstalk noise signal power; see 3dB-point. Confusion therefore arises because of the different naming conventions and performance benchmarks laid down by the International ISO/IEC and American TIA/EIA standards, which in turn are different from the regional European standard, EN 50173-1. In broad terms, the ISO standard for Cat6A is the highest, followed by the European standard and then the American (1 on 1 matching capability). Source: http://en.wikipedia.org/wiki/CAT6
  • 8. #6 What is Ethernet? Ethernet is a physical and data link layer technology forlocal area networks (LANs). Ethernet was invented by engineer Robert Metcalfe. When first widely deployed in the 1980s, Ethernet supported a maximum theoretical data rate of 10 megabits per second (Mbps). Later, so-called "Fast Ethernet" standards increased this maximum data rate to 100 Mbps. Today, Gigabit Ethernet technology further extends peak performance up to 1000 Mbps. Higher level network protocols like Internet Protocol (IP) use Ethernet as their transmission medium. Data travels over Ethernet inside protocol units called frames. The run length of individual Ethernet cables is limited to roughly 100 meters, but Ethernet networks can be easily extended to link entire schools or office buildings using network bridge devices. Source: http://compnetworking.about.com/cs/ethernet1/g/bldef_ethernet.htm #7 What is Giga Ethernet? Gigabit Ethernet is part of the family of Ethernet computer networking and communication standards. The Gigabit Ethernet standard supports a theoretical maximum data rate of 1 gigabit per second (Gbps) (1000 Mbps). When first developed, some thought achieving gigabit speeds with Ethernet would require using fiber optic or other special cables. However, today's Gigabit Ethernet works using twisted pair copper cable (specifically, the CAT5e and CAT6 cabling standards) similar to older 100 Mbps Fast Ethernet (that works over CAT5 cables). Newer home broadband routers now support Gigabit Ethernet along with other mainstream computer network equipment. Gigabit Ethernet also provides backward compatibility to older 100 Mbps and 10 Mbps legacy Ethernet devices: Connections to these devices function normally but perform at the lower speed. Also Known As: 1000 Mbps Ethernet Source: http://compnetworking.about.com/cs/gigabitethernet/g/bldef_gigaenet.htm #8 What is the difference between a Ethernet and giga Ethernet?
  • 9. Gigabit is 1000mbps (megabits per second) Ethernet, which is 10x faster than 100mbps Ethernet, which is 10x faster than 10mbps Ethernet. By: eibgrad Source: http://www.tomshardware.com/forum/29154-42-ethernet-gigabit-ethernet#. #9 What is hub, switch, router, switch hub? Hub – An Ethernet hub, active hub, network hub, repeater hub, multiport repeater or hub is a device for connecting multiple Ethernet devices together and making them act as a single network segment. It has multiple input/output(I/O) ports, in which a signal introduced at the input of any port appears at the output of every port except the original incoming. A hub works at the physical layer (layer 1) of the OSI model.[1] The device is a form of multiport repeater. Repeater hubs also participate in collision detection, forwarding a jam signal to all ports if it detects a collision. Some hubs may also come with a BNC and/or Attachment Unit Interface (AUI) connector to allow connection to legacy 10BASE2 or 10BASE5 network segments. The availability of low-priced network switches has largely rendered hubs obsolete but they are still seen in 20th century installations and more specialized applications. Source: http://en.wikipedia.org/wiki/Ethernet_hub Switch – A switch is a network hardware device that allows communication between devices within a network, like your local home network. Most home and small business routers contain built-in switches. The Switch is Also Known As: A switch is more correctly called a network switch though you'll rarely see one referred to as such. A switch is also uncommonly called a switching hub. Important Switch Facts: Switches are found in both unmanaged and managed forms. Unmanaged switches have no options and simply work out of box. Managed switches have advanced options that can be configured. Managed switches also contain software called firmware that should be updated as released by the switch manufacturer. Switches connect to other network devices via network cables only and thus do not require driversto operate in Windows or other operating systems. Source: http://pcsupport.about.com/od/componentprofiles/p/switch.htm
  • 10. Router – Routers are small physical devices that join multiple networks together. Technically, a router is a Layer 3 gateway device, meaning that it connects two or more networks and that the router operates at the network layer of the OSI model. Home networks typically use a wireless or wired Internet Protocol (IP) router, IP being the most common OSI network layer protocol. An IP router such as a DSL or cable modembroadband router joins the home's local area network (LAN) to the wide-area network (WAN)of the Internet. Source: http://compnetworking.about.com/cs/routers/g/bldef_router.htm Switch hub – Short for port-switching hub, a special type of hub that forwards packets to the appropriate port based on the packet's address. Conventional hubs simply rebroadcast every packet to every port. Since switching hubs forward each packet only to the required port, they provide much better performance. Most switching hubs also support load balancing, so that ports are dynamically reassigned to different LAN segments based on traffic patterns.
  • 11. Some newer switching hubs support both traditional Ethernet (10 Mbps) andFast Ethernet (100 Mbps) ports. This enables the administrator to establish a dedicated, Fast Ethernet channel for high-traffic devices such as servers. Source: http://www.webopedia.com/TERM/S/switching_hub.html #10 What is the difference between switch and hub? A network router is a more sophisticated network device compared to either a network switchor a network hub. Like hubs and switches, routers are typically small, box-like pieces of equipment that multiple computers can connect to. Each features a number of ports on the front or back of the unit that provide the connection points for these computers, a connection for electric power, and a number of LED lights to display device status. While routers, hubs and switches all share similar physical appearance, routers differ substantially in their inner workings. Traditional routers are designed to join together multiple local area networks (LANs) with a wide area network (WAN). Routers serve as intermediate destinations for network traffic. They receive incoming network packets, look inside each packet to identify the source and target network addresses, then forward these packets where needed to ensure the data reaches its final destination. Routers for home networks (often called broadband routers) are designed specifically to join the home (LAN) to the Internet (WAN) for the purpose of Internet connection sharing. In contrast, switches (and hubs) are not capable of joining multiple networks or sharing an Internet connection. A network with only switches (hubs) must instead designate one computer as the gateway to the Internet, and that device must possess two network adapters for sharing, one for the home LAN and one for the Internet WAN. With a router, all home computers connect to the router as peers, and the router performs all gateway functions. Additionally, broadband routers contain several features beyond those of traditional routers such as integrated DHCP server and network firewall support. Most notably, though, broadband routers typically incorporate a built-in Ethernet switch. This allows several switches (hubs) to be connected to them, as a means to expand the local network to accommodate more Ethernet devices. Wi-Fi wireless networks also utilize routers but technically do not have the concept of a wireless switch or hub, although a wireless access point can be roughly compared to a wired switch. Source: http://compnetworking.about.com/od/homenetworkhardware/f/routervsswitch.htm