SlideShare ist ein Scribd-Unternehmen logo
1 von 36
Viscosity (Viskositas)→ μ
Viskositas adalah tekanan fluida terhadap geseran (gaya geser/shear force)
Lihat halaman 2-2 s/d 2-4
GAMBAR 1
…………………………………………………..
Untuk fluida yang bersentuhan dengan plate atas (yang bergerak) →mβ
kecepatan υ0
Untuk fluida yang bersentuhan dengan plate bawah (yang diam) → mβ
kecepatan=0
Dari…..yang sebangun
Dimana
(1)Dan (2)
Untuk fluida Newton:
GAMBAR 2
…………………………………………………..
Dari kurva τ Vs dv/dy :
→ Kurva C : → Hubungan antara τ dengan dv/dy linier berlaku
→ Disebut fluida Newton
Fluida Newton → All gases are Newtonian
→ All liquids for which we can write a simple
chemical formula are Newtonian (water,
benzene, alcohol, celly dll)
→ Most solutions of simple molecules are Newtonian
(aqueous solution of inorganic salts and of sugar)
→ Kurva Lainnya → Non-newtonian fluids (exp: slurries, pastes, gels, polymer
solution dll.
→ Most non-newtonian fluids are composed of molecules or
particles that are much larger than water molecules such as
the sand grain in mud or collager molecules in gelatin which
are thousand of times larger times larger than water
molecules.
GAMBAR 3
…………………………………………………..
Kurva A → Bringham Fluida (Bringham Plastics)
GAMBAR 4
…………………………………………………..
Resist a small shear stresses indifenitely but flow easly under
larger shear stresses. (Fluida jenis ini, sebelum tercapai tegangan
geser…. (τo), dan lalu mengalir secara linier pada tegangan geser
τo)
One may say:
That at low stresses, the viscosity is infinite at higher stress, the
viscosity decrease with increasing velocity gradient.
Kurva B→ Pseudoplastic fluids (ex…lateks)→Mengencer dengan laju geser (shear
–rate-thiming)
Show a viscosity that decrease with increasing velocity gradient.
(Kurva melalui pusat, tetapi cekung kebawah pada ……..yang
rendah dan menjadi linier pada shear stress yang lebih tinggi).
Kurva D → Dilatat Fluids → Mengental dengan laju geser (shear-rate-thickining)
Show viscosity that increase with increasing velocity gradient. They
are uncommon → starch (kanji)
(Kurva ini cekung keatas pada I rendah, linier pada τ fungsi)
Pengaruh waktu:
Τ Vs dv/dy Vs t. → 1. The viscosity can remain constant with time, in which
case the fluid is called time-independent. (All
Newtonian fluid are time independent, as are most non-
newtonian fluids).
2. The viscosity can decrease with time, in which case the
fluid is called thitotropic.
→ Zat cair ini ambruk di bawah tegangan geser yang
terus menerus dan pada waktu diaduk akan
memberikan tegangan geser yang lebih rendah
untuk waktu laju geser tertentu.
3. The viscosity can increase with time, in which case the
fluid is called rheopectic.
→ Tegangan gesernya pada laju geser yang constant
meningkat dengan waktu.
Pa. det P( poise)
Cp (centi
poise)
lb/ff.det
untuk fluida biasanya
dinyatakan dalam
centi.poise (cP)
1 10 1 0,672
0,1 1 100 0,0672
10-3
0,01 1 6,72 x 10-4
Data viskositas → Umumnya dalam Cp (0, 01 P), karena viskositas umumnya <
1poise
Viskositas gas dan zat cair :
Untuk fluida Newton →
Untuk gas → μ >, dengan T >
Dimana. μ = Viskositas pada T (o
K)
μo= Viskositas pada 0 o
C (273 o
K)
n = tetapan =0,65 -1
→ Viskositas gas hampir tidak bergantung pada tekanan, terutama di daerah
dimana hukumnya berlaku.
Untuk zat cair μ<<, dengan T>
Untuk air 0 o
C → μ= 1,79 cP
100 o
C → μ= 0,28 cP
P> → μ>
5. Kinematic viscosity (Viskositas kinematik ) → υ (Nu)
Rasio antara viskositas dan densitas
υ satuannya → Centistoke (cst)
Pressure (Tekanan) → P
 Compressure force per unit area
 Dalam fluida diam, P adalah sama pada semua arah
Istilah-istilah:
- Atmospheric Pressure : The pressure of the air and the atmospheric sorounding us
which change from day to day
- Barometric Pressure : The same as atmospheric pressure, called barometric
pressure because barometer is used to measure atmospheric
pressure.
- Absolute Pressure : a……..of pressure referred to a complete vacuum (zero
pressure).
- Gauge Pressure : - Pressure expressed as a quantity measured from (above)
atmospheric pressure
aR – Pressure relative to the local atmospheric pressure.
-Vacuum : - a method of expressing pressure as quantity below atmospheric
pressure.
Wheteather relative or absolute pressure is measured in a pressure measuring
device → Depend on the nature of the …………….used to make the
measurement.
GAMBAR 5
…………………………………………………..
→Untuk an open-end manometer would measured a relative pressure since the
reference for open end is the pressure of atmospheric at the open end
of manometric.
GAMBAR 6
…………………………………………………..
→Closing off the end of the manometer and creating a vacuum in the end resulting
in a measurement against a complete vacuum → “Absolute pressure”
→ The standard atmosphere is deferred as the pressure equivalent to 1 atm or 760
mmHg at o
C, whereas atmosphere pressure is a variable and must be
obtained from a barometer.
Standard atmosphere:
→ Gauge Pressure + Atmospheric Pressure = Absolute Pressure
Dimana :
P = Pressure at the bottom of the column of the fluid
= Density of fluid
Po = Pressure at the top of the column of the fluid
h = Height of the fluid column
GAMBAR 7
…………………………………………………..
GAMBAR 8
…………………………………………………..
GAMBAR 9
……………………………………………..
Titik A
PA mutlak = 3, 013 Bar Meteran menegakkan :
Jika P atm = 1,013 Bar Gauge Pressure + atm Pressure = Absolute Pressure
Jika P atm = 1 Bar
Titik B
PB mutlak = 0,513
Jika P atm = 1,013
Jika P atm =1 →
III. FLUID STATICS (STATIKA FLUIDA)
Mekanika Fluida
1. Statika Fluida
2. Dinamika Fluida
Statika Fluida : Membahas fluida dalam keadaan setimbang dimana tidak
terdapat suatu tegangan geser.
Dinamika Fluida : Membahas fluida dimana sebagian dari fluida tersebut
berada dalam keadaan gerak relatif terhadap bagian
fluida lainnya.
Persamaan Dasar Statika Fluida
GAMBAR 10
…………………………………………………..
→ Dalam keadaan setimbang (diam) tekanan ke segala arah adalah sama dan
tidak terdapat “shear stress”
→ Kata terjau suatu “break fluid” yang berada dalam keadaan diam (dalam
pengaruh medan gravitasi).
→ Gaya-gaya yang bekerja (dalam 2 arah):
- The pressure force on the top and botton
- The force of gravity
→ ∑F=0 (fluida diam): Jika gaya yang bekerja kearah atas →Positif
Maka :
Atau
Persamaan Barometer (Barometric equations)
→ The barometric equation tells the change in pressure with distance upward
(where upward is opposite to the direction of gravity).
→ If we want to know the change in pressure with distance in some other, non
vertical direction, → call at direction
Maka :
GAMBAR 11
…………………………………………………..
Dari Gambar :
→ Subtitusi persamaan (2) ke (1):
Dari :
For any such direction (any direction parallel to x-y plane)
→
- The pressure does not change with distance
→ Thus, see that for a fluid at rest any surface preperdicular to the
direction of gravity is a surface of constant pressure.
Pressure-Depth Relationship
No real substance here constant density; Density of every
substance increases as the pressure increases (P>→ >)
However, for must liquids at temperaturs for below their critical
temperature. The effect of pressure or density is very small.
Critical State : for the gas liquid transition is the set of physical
conditions at which the density and other
properties of the liquid and vapor become
identical.
Contoh: Untuk air
Persamaan (1):
Constant Density:
In all problems involving a “free surface”, we can further simplify
equations (A) (hal 3-5)…working in gauge pressure.
The gauge pressure is zero at the face surface
→Pada Z free surface kita definisikan : The depth as distance
measured downward
from the surface and
given it the symbol
“k”.
→ The density of gases changes significantly with the pressure
Pressure Measurement
Manometer → Alat yang menggunakan kolom cairan untuk menentukan
perbedaan tekanan.
1. Manometer Sederhana:
GAMBAR 12
…………………………………………………..
Cara I. (harus diambil sebagai salah satu standard cairan manometer
yang terendah)
→ (…Titik 2 dan 3)
Cara II.
GAMBAR 13
…………………………………………………..
2. Manometer Differensial (Differential manometer)
Which used to obtain larger-scale differences in height from small
pressure difference.
The principle of thus manometer
1. Referview A dan B are larger cross section compared to the
manometer ….and so change in the interface position give
negligible change in Z (Z4=Z1).
2. The denser fluid (in the tube) and the less-dease fluid (in …tube
and both reservoirs) differ in density by a small amount.
GAMBAR 14
…………………………………………………..
Titik Tekanan
1
2
3
4
5
GAMBAR 15
…………………………………………………..
Untuk lebih teliti:
Buktikan :
Titik Tekanan
1
2
3
4
5
6
Volume cairan yang dipindahkan dalam masing-
masing reservoir = Perpindahan dalam tabung. U
3. Manometer Miring (Inclined Manometer)
GAMBAR 16
…………………………………………………..
III. FLUID STATICS (STATIKA FLUIDA)
Mekanika Fluida
..Buktikan !!
1. Dinamika Fluida
2. Statika Fluida
Dinamika Fluida : Membahas fluida dimana sebagian fluida berada dalam
keadaan bergerak relative terhadap bagian fluida
lainnya.
- Aliran fluida
- Aliran di dalam media berpori
- Dll.
Statika Fluida : Membahas fluida dimana fluida tersebut dalam keadaan
diam (tidak terdapat suatu gaya geser).
Dalam aplikasinya berkaitan dengan konsep “Tekanan”.
Contoh penerapan:
- Mengukur tekanan (beda tekan)→”manometer”
- “Manometer” bagian dari alat ukur laju alir
- Bagian dari peralatan untuk memprediksi ketinggian/level
cairan
- Dst
Cara II
)
2) Jika tekanan atmosphere standard 730 mmHg tentukan udara yang relatif
dan absolut mengalir di dalam pipa.
GAMBAR 17
…………………………………………………..
3) Air mengalir di dalam A dan B, seperti pada gambar.
GAMBAR 18
…………………………………………………..
Contoh-contoh Soal
1.
GAMBAR 19
……………………………………………..
Perbedaan tekanan di titik A dan B=? (nyatakan dalam Pa, psi)
2.
GAMBAR 20
…………………………………………………..
Jika barometer menunjuk 730 mmHg. Tentukan tekanan gas yang mengalir
di dalam pipa ( a. Gauge pressure, b. absolute pressure) →psi dan Pa
3. Gambar 21…………
4. Gambar 22…………
Jika barometer =730 mmHg Tentukan tekanan di A (Gauge dan Absolut)
5. Gambar 23…………
6. Gambar 24…………
7. Gambar 25…………
Hitung Pa (gauge dan absolut)
8. Gambar 26…………
9. Gambar 27…………
Hitung PA di dalam gauge dan absolut.
Punya badrun

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gate
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
Ostwald
OstwaldOstwald
Ostwald
 
Fluid Machanics
Fluid MachanicsFluid Machanics
Fluid Machanics
 
Fm hydrostatics
Fm hydrostaticsFm hydrostatics
Fm hydrostatics
 
Fluid Mechanics Lectures.pdf
Fluid Mechanics Lectures.pdfFluid Mechanics Lectures.pdf
Fluid Mechanics Lectures.pdf
 
Flujo turbulento
Flujo turbulentoFlujo turbulento
Flujo turbulento
 
Fluid properties
Fluid propertiesFluid properties
Fluid properties
 
Fluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowFluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flow
 
KINEMATICS OF FLUIDS (Chapter 3)
KINEMATICS OF FLUIDS (Chapter 3)KINEMATICS OF FLUIDS (Chapter 3)
KINEMATICS OF FLUIDS (Chapter 3)
 
Dimensionless number in chemical engineering
Dimensionless number in chemical engineering Dimensionless number in chemical engineering
Dimensionless number in chemical engineering
 
Fluid statics
Fluid staticsFluid statics
Fluid statics
 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
 
Hydrostatics 160311202946
Hydrostatics 160311202946Hydrostatics 160311202946
Hydrostatics 160311202946
 
Hydrostatics
HydrostaticsHydrostatics
Hydrostatics
 
Compressible Fluid
Compressible FluidCompressible Fluid
Compressible Fluid
 
Fluid statics of fluid mechanic
Fluid statics of fluid mechanicFluid statics of fluid mechanic
Fluid statics of fluid mechanic
 
fluid-mechanics
fluid-mechanicsfluid-mechanics
fluid-mechanics
 
Fluids static
Fluids staticFluids static
Fluids static
 
FLUID MECHANICS AND HYDRAULIC MACHINES
FLUID MECHANICS AND HYDRAULIC MACHINES FLUID MECHANICS AND HYDRAULIC MACHINES
FLUID MECHANICS AND HYDRAULIC MACHINES
 

Andere mochten auch

1 pengaruh debit terhadap unjuk kerja alat penukar kalor dan penurunan suhu r...
1 pengaruh debit terhadap unjuk kerja alat penukar kalor dan penurunan suhu r...1 pengaruh debit terhadap unjuk kerja alat penukar kalor dan penurunan suhu r...
1 pengaruh debit terhadap unjuk kerja alat penukar kalor dan penurunan suhu r...Mirmanto
 
Kajian sstem kolektor panas mathri utk pengering (edited)
Kajian sstem kolektor panas mathri utk pengering (edited)Kajian sstem kolektor panas mathri utk pengering (edited)
Kajian sstem kolektor panas mathri utk pengering (edited)Ifan Ifan
 
134856909 plate-he
134856909 plate-he134856909 plate-he
134856909 plate-heSt Satrio
 
Perpindahan panas bu lidia
Perpindahan panas bu lidiaPerpindahan panas bu lidia
Perpindahan panas bu lidiaAlen Pepa
 
Heat exchanger [ Alat Penukar Panas]
Heat exchanger [ Alat Penukar Panas]Heat exchanger [ Alat Penukar Panas]
Heat exchanger [ Alat Penukar Panas]Intan Dian Heryani
 
Rheologi farmasi fisik
Rheologi farmasi fisikRheologi farmasi fisik
Rheologi farmasi fisikristyaji
 
Aliran fluida-pada-aluran-tertutup-pipa
Aliran fluida-pada-aluran-tertutup-pipaAliran fluida-pada-aluran-tertutup-pipa
Aliran fluida-pada-aluran-tertutup-pipacahpati138
 
Bab 1 pengertian dasar perpindahan panas
Bab 1 pengertian dasar perpindahan panasBab 1 pengertian dasar perpindahan panas
Bab 1 pengertian dasar perpindahan panasYudi Hartono
 
Modul mekanika fluida: Dasar-dasar Perhitungan Aliran Fluida
Modul mekanika fluida: Dasar-dasar Perhitungan Aliran FluidaModul mekanika fluida: Dasar-dasar Perhitungan Aliran Fluida
Modul mekanika fluida: Dasar-dasar Perhitungan Aliran FluidaAli Hasimi Pane
 

Andere mochten auch (17)

Soal soal mekflud i kelompok i
Soal soal mekflud i kelompok iSoal soal mekflud i kelompok i
Soal soal mekflud i kelompok i
 
Mekanika fluida
Mekanika fluidaMekanika fluida
Mekanika fluida
 
1 pengaruh debit terhadap unjuk kerja alat penukar kalor dan penurunan suhu r...
1 pengaruh debit terhadap unjuk kerja alat penukar kalor dan penurunan suhu r...1 pengaruh debit terhadap unjuk kerja alat penukar kalor dan penurunan suhu r...
1 pengaruh debit terhadap unjuk kerja alat penukar kalor dan penurunan suhu r...
 
Kajian sstem kolektor panas mathri utk pengering (edited)
Kajian sstem kolektor panas mathri utk pengering (edited)Kajian sstem kolektor panas mathri utk pengering (edited)
Kajian sstem kolektor panas mathri utk pengering (edited)
 
Fundamental of convection
Fundamental of convectionFundamental of convection
Fundamental of convection
 
134856909 plate-he
134856909 plate-he134856909 plate-he
134856909 plate-he
 
Perpindahan panas bu lidia
Perpindahan panas bu lidiaPerpindahan panas bu lidia
Perpindahan panas bu lidia
 
Sifat termal-bahan
Sifat termal-bahanSifat termal-bahan
Sifat termal-bahan
 
Modul1
Modul1Modul1
Modul1
 
Heat exchanger [ Alat Penukar Panas]
Heat exchanger [ Alat Penukar Panas]Heat exchanger [ Alat Penukar Panas]
Heat exchanger [ Alat Penukar Panas]
 
Rheologi farmasi fisik
Rheologi farmasi fisikRheologi farmasi fisik
Rheologi farmasi fisik
 
Bab1 perpan
Bab1 perpanBab1 perpan
Bab1 perpan
 
Aliran fluida-pada-aluran-tertutup-pipa
Aliran fluida-pada-aluran-tertutup-pipaAliran fluida-pada-aluran-tertutup-pipa
Aliran fluida-pada-aluran-tertutup-pipa
 
Bab 1 pengertian dasar perpindahan panas
Bab 1 pengertian dasar perpindahan panasBab 1 pengertian dasar perpindahan panas
Bab 1 pengertian dasar perpindahan panas
 
Termodinamika modul
Termodinamika modulTermodinamika modul
Termodinamika modul
 
Modul mekanika fluida: Dasar-dasar Perhitungan Aliran Fluida
Modul mekanika fluida: Dasar-dasar Perhitungan Aliran FluidaModul mekanika fluida: Dasar-dasar Perhitungan Aliran Fluida
Modul mekanika fluida: Dasar-dasar Perhitungan Aliran Fluida
 
Viskositas 1
Viskositas 1Viskositas 1
Viskositas 1
 

Ähnlich wie Punya badrun

nozzle_diffuser_circulation-2022 (1).pdf
nozzle_diffuser_circulation-2022 (1).pdfnozzle_diffuser_circulation-2022 (1).pdf
nozzle_diffuser_circulation-2022 (1).pdfchandanraj961610
 
Fluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid StaticsFluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid StaticsAddisu Dagne Zegeye
 
Fluid and Hydraulic machine Introduction
Fluid and Hydraulic machine IntroductionFluid and Hydraulic machine Introduction
Fluid and Hydraulic machine IntroductionSACHINNikam39
 
MECHANICAL_PROPERTIES_OF_FLUIDS.ppt
MECHANICAL_PROPERTIES_OF_FLUIDS.pptMECHANICAL_PROPERTIES_OF_FLUIDS.ppt
MECHANICAL_PROPERTIES_OF_FLUIDS.pptAryan979811
 
Fluids mechanics class 1 -Module 1
Fluids mechanics class 1 -Module 1Fluids mechanics class 1 -Module 1
Fluids mechanics class 1 -Module 1Mujeeb Muji
 
2. Chapter 2 - Pressure & Fluid Statics (FM1) (Complete).pdf
2. Chapter 2 - Pressure & Fluid Statics (FM1) (Complete).pdf2. Chapter 2 - Pressure & Fluid Statics (FM1) (Complete).pdf
2. Chapter 2 - Pressure & Fluid Statics (FM1) (Complete).pdfFaizanAhmed396943
 
FluidMechanics wren 201 Lecture 1.pptx
FluidMechanics wren 201 Lecture 1.pptxFluidMechanics wren 201 Lecture 1.pptx
FluidMechanics wren 201 Lecture 1.pptxAliyuAliyu16
 
PROPERTIES OF FLUIDS & ITS PRESSURE MEASURMENTS
PROPERTIES OF FLUIDS & ITS PRESSURE MEASURMENTSPROPERTIES OF FLUIDS & ITS PRESSURE MEASURMENTS
PROPERTIES OF FLUIDS & ITS PRESSURE MEASURMENTSvbamargol123
 
Basic fluids
Basic fluidsBasic fluids
Basic fluidseshenxian
 
Drag force lift force
Drag force lift forceDrag force lift force
Drag force lift forceNitc Uma
 
Me 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryMe 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryanish antony
 
Lecture Ch 10
Lecture Ch 10Lecture Ch 10
Lecture Ch 10rtrujill
 
Fluid mechanics-ppt
Fluid mechanics-pptFluid mechanics-ppt
Fluid mechanics-pptAnil Rout
 

Ähnlich wie Punya badrun (20)

nozzle_diffuser_circulation-2022 (1).pdf
nozzle_diffuser_circulation-2022 (1).pdfnozzle_diffuser_circulation-2022 (1).pdf
nozzle_diffuser_circulation-2022 (1).pdf
 
fmm notes.pdf
fmm notes.pdffmm notes.pdf
fmm notes.pdf
 
Fluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid StaticsFluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid Statics
 
Fluid and Hydraulic machine Introduction
Fluid and Hydraulic machine IntroductionFluid and Hydraulic machine Introduction
Fluid and Hydraulic machine Introduction
 
MECHANICAL_PROPERTIES_OF_FLUIDS.ppt
MECHANICAL_PROPERTIES_OF_FLUIDS.pptMECHANICAL_PROPERTIES_OF_FLUIDS.ppt
MECHANICAL_PROPERTIES_OF_FLUIDS.ppt
 
Fm 2
Fm 2Fm 2
Fm 2
 
Fluids mechanics class 1 -Module 1
Fluids mechanics class 1 -Module 1Fluids mechanics class 1 -Module 1
Fluids mechanics class 1 -Module 1
 
2. Chapter 2 - Pressure & Fluid Statics (FM1) (Complete).pdf
2. Chapter 2 - Pressure & Fluid Statics (FM1) (Complete).pdf2. Chapter 2 - Pressure & Fluid Statics (FM1) (Complete).pdf
2. Chapter 2 - Pressure & Fluid Statics (FM1) (Complete).pdf
 
FluidMechanics wren 201 Lecture 1.pptx
FluidMechanics wren 201 Lecture 1.pptxFluidMechanics wren 201 Lecture 1.pptx
FluidMechanics wren 201 Lecture 1.pptx
 
Fm 3
Fm 3Fm 3
Fm 3
 
Static Fluids
Static FluidsStatic Fluids
Static Fluids
 
PROPERTIES OF FLUIDS & ITS PRESSURE MEASURMENTS
PROPERTIES OF FLUIDS & ITS PRESSURE MEASURMENTSPROPERTIES OF FLUIDS & ITS PRESSURE MEASURMENTS
PROPERTIES OF FLUIDS & ITS PRESSURE MEASURMENTS
 
Fm final ppt
Fm final pptFm final ppt
Fm final ppt
 
Drag force & Lift
Drag force & LiftDrag force & Lift
Drag force & Lift
 
fluid statics
fluid staticsfluid statics
fluid statics
 
Basic fluids
Basic fluidsBasic fluids
Basic fluids
 
Drag force lift force
Drag force lift forceDrag force lift force
Drag force lift force
 
Me 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryMe 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machinery
 
Lecture Ch 10
Lecture Ch 10Lecture Ch 10
Lecture Ch 10
 
Fluid mechanics-ppt
Fluid mechanics-pptFluid mechanics-ppt
Fluid mechanics-ppt
 

Punya badrun

  • 1. Viscosity (Viskositas)→ μ Viskositas adalah tekanan fluida terhadap geseran (gaya geser/shear force) Lihat halaman 2-2 s/d 2-4 GAMBAR 1 ………………………………………………….. Untuk fluida yang bersentuhan dengan plate atas (yang bergerak) →mβ kecepatan υ0 Untuk fluida yang bersentuhan dengan plate bawah (yang diam) → mβ kecepatan=0 Dari…..yang sebangun Dimana (1)Dan (2)
  • 3. GAMBAR 2 ………………………………………………….. Dari kurva τ Vs dv/dy : → Kurva C : → Hubungan antara τ dengan dv/dy linier berlaku → Disebut fluida Newton Fluida Newton → All gases are Newtonian → All liquids for which we can write a simple chemical formula are Newtonian (water, benzene, alcohol, celly dll) → Most solutions of simple molecules are Newtonian (aqueous solution of inorganic salts and of sugar)
  • 4. → Kurva Lainnya → Non-newtonian fluids (exp: slurries, pastes, gels, polymer solution dll. → Most non-newtonian fluids are composed of molecules or particles that are much larger than water molecules such as the sand grain in mud or collager molecules in gelatin which are thousand of times larger times larger than water molecules. GAMBAR 3 ………………………………………………….. Kurva A → Bringham Fluida (Bringham Plastics) GAMBAR 4 ………………………………………………….. Resist a small shear stresses indifenitely but flow easly under larger shear stresses. (Fluida jenis ini, sebelum tercapai tegangan geser…. (τo), dan lalu mengalir secara linier pada tegangan geser τo) One may say: That at low stresses, the viscosity is infinite at higher stress, the viscosity decrease with increasing velocity gradient.
  • 5. Kurva B→ Pseudoplastic fluids (ex…lateks)→Mengencer dengan laju geser (shear –rate-thiming) Show a viscosity that decrease with increasing velocity gradient. (Kurva melalui pusat, tetapi cekung kebawah pada ……..yang rendah dan menjadi linier pada shear stress yang lebih tinggi). Kurva D → Dilatat Fluids → Mengental dengan laju geser (shear-rate-thickining) Show viscosity that increase with increasing velocity gradient. They are uncommon → starch (kanji) (Kurva ini cekung keatas pada I rendah, linier pada τ fungsi) Pengaruh waktu: Τ Vs dv/dy Vs t. → 1. The viscosity can remain constant with time, in which case the fluid is called time-independent. (All Newtonian fluid are time independent, as are most non- newtonian fluids). 2. The viscosity can decrease with time, in which case the fluid is called thitotropic. → Zat cair ini ambruk di bawah tegangan geser yang terus menerus dan pada waktu diaduk akan memberikan tegangan geser yang lebih rendah untuk waktu laju geser tertentu. 3. The viscosity can increase with time, in which case the fluid is called rheopectic.
  • 6. → Tegangan gesernya pada laju geser yang constant meningkat dengan waktu. Pa. det P( poise) Cp (centi poise) lb/ff.det untuk fluida biasanya dinyatakan dalam centi.poise (cP) 1 10 1 0,672 0,1 1 100 0,0672 10-3 0,01 1 6,72 x 10-4 Data viskositas → Umumnya dalam Cp (0, 01 P), karena viskositas umumnya < 1poise Viskositas gas dan zat cair : Untuk fluida Newton → Untuk gas → μ >, dengan T > Dimana. μ = Viskositas pada T (o K) μo= Viskositas pada 0 o C (273 o K) n = tetapan =0,65 -1 → Viskositas gas hampir tidak bergantung pada tekanan, terutama di daerah dimana hukumnya berlaku.
  • 7. Untuk zat cair μ<<, dengan T> Untuk air 0 o C → μ= 1,79 cP 100 o C → μ= 0,28 cP P> → μ> 5. Kinematic viscosity (Viskositas kinematik ) → υ (Nu) Rasio antara viskositas dan densitas υ satuannya → Centistoke (cst) Pressure (Tekanan) → P  Compressure force per unit area  Dalam fluida diam, P adalah sama pada semua arah
  • 8. Istilah-istilah: - Atmospheric Pressure : The pressure of the air and the atmospheric sorounding us which change from day to day - Barometric Pressure : The same as atmospheric pressure, called barometric pressure because barometer is used to measure atmospheric pressure. - Absolute Pressure : a……..of pressure referred to a complete vacuum (zero pressure). - Gauge Pressure : - Pressure expressed as a quantity measured from (above) atmospheric pressure aR – Pressure relative to the local atmospheric pressure. -Vacuum : - a method of expressing pressure as quantity below atmospheric pressure. Wheteather relative or absolute pressure is measured in a pressure measuring device → Depend on the nature of the …………….used to make the measurement. GAMBAR 5 …………………………………………………..
  • 9. →Untuk an open-end manometer would measured a relative pressure since the reference for open end is the pressure of atmospheric at the open end of manometric. GAMBAR 6 ………………………………………………….. →Closing off the end of the manometer and creating a vacuum in the end resulting in a measurement against a complete vacuum → “Absolute pressure” → The standard atmosphere is deferred as the pressure equivalent to 1 atm or 760 mmHg at o C, whereas atmosphere pressure is a variable and must be obtained from a barometer. Standard atmosphere: → Gauge Pressure + Atmospheric Pressure = Absolute Pressure
  • 10. Dimana : P = Pressure at the bottom of the column of the fluid = Density of fluid Po = Pressure at the top of the column of the fluid h = Height of the fluid column GAMBAR 7 …………………………………………………..
  • 11. GAMBAR 8 ………………………………………………….. GAMBAR 9 …………………………………………….. Titik A PA mutlak = 3, 013 Bar Meteran menegakkan : Jika P atm = 1,013 Bar Gauge Pressure + atm Pressure = Absolute Pressure Jika P atm = 1 Bar Titik B PB mutlak = 0,513 Jika P atm = 1,013 Jika P atm =1 →
  • 12. III. FLUID STATICS (STATIKA FLUIDA) Mekanika Fluida 1. Statika Fluida 2. Dinamika Fluida Statika Fluida : Membahas fluida dalam keadaan setimbang dimana tidak terdapat suatu tegangan geser. Dinamika Fluida : Membahas fluida dimana sebagian dari fluida tersebut berada dalam keadaan gerak relatif terhadap bagian fluida lainnya. Persamaan Dasar Statika Fluida GAMBAR 10 ………………………………………………….. → Dalam keadaan setimbang (diam) tekanan ke segala arah adalah sama dan tidak terdapat “shear stress” → Kata terjau suatu “break fluid” yang berada dalam keadaan diam (dalam pengaruh medan gravitasi).
  • 13. → Gaya-gaya yang bekerja (dalam 2 arah): - The pressure force on the top and botton - The force of gravity → ∑F=0 (fluida diam): Jika gaya yang bekerja kearah atas →Positif Maka : Atau
  • 14. Persamaan Barometer (Barometric equations) → The barometric equation tells the change in pressure with distance upward (where upward is opposite to the direction of gravity). → If we want to know the change in pressure with distance in some other, non vertical direction, → call at direction Maka : GAMBAR 11 ………………………………………………….. Dari Gambar : → Subtitusi persamaan (2) ke (1):
  • 15. Dari : For any such direction (any direction parallel to x-y plane) → - The pressure does not change with distance → Thus, see that for a fluid at rest any surface preperdicular to the direction of gravity is a surface of constant pressure. Pressure-Depth Relationship
  • 16. No real substance here constant density; Density of every substance increases as the pressure increases (P>→ >) However, for must liquids at temperaturs for below their critical temperature. The effect of pressure or density is very small. Critical State : for the gas liquid transition is the set of physical conditions at which the density and other properties of the liquid and vapor become identical. Contoh: Untuk air Persamaan (1): Constant Density: In all problems involving a “free surface”, we can further simplify equations (A) (hal 3-5)…working in gauge pressure. The gauge pressure is zero at the face surface
  • 17. →Pada Z free surface kita definisikan : The depth as distance measured downward from the surface and given it the symbol “k”. → The density of gases changes significantly with the pressure
  • 18. Pressure Measurement Manometer → Alat yang menggunakan kolom cairan untuk menentukan perbedaan tekanan.
  • 19. 1. Manometer Sederhana: GAMBAR 12 ………………………………………………….. Cara I. (harus diambil sebagai salah satu standard cairan manometer yang terendah) → (…Titik 2 dan 3) Cara II.
  • 21. 2. Manometer Differensial (Differential manometer) Which used to obtain larger-scale differences in height from small pressure difference. The principle of thus manometer 1. Referview A dan B are larger cross section compared to the manometer ….and so change in the interface position give negligible change in Z (Z4=Z1). 2. The denser fluid (in the tube) and the less-dease fluid (in …tube and both reservoirs) differ in density by a small amount. GAMBAR 14 ………………………………………………….. Titik Tekanan 1 2 3 4 5
  • 22. GAMBAR 15 ………………………………………………….. Untuk lebih teliti: Buktikan : Titik Tekanan 1 2 3 4 5 6 Volume cairan yang dipindahkan dalam masing- masing reservoir = Perpindahan dalam tabung. U
  • 23. 3. Manometer Miring (Inclined Manometer) GAMBAR 16 ………………………………………………….. III. FLUID STATICS (STATIKA FLUIDA) Mekanika Fluida ..Buktikan !!
  • 24. 1. Dinamika Fluida 2. Statika Fluida Dinamika Fluida : Membahas fluida dimana sebagian fluida berada dalam keadaan bergerak relative terhadap bagian fluida lainnya. - Aliran fluida - Aliran di dalam media berpori - Dll. Statika Fluida : Membahas fluida dimana fluida tersebut dalam keadaan diam (tidak terdapat suatu gaya geser). Dalam aplikasinya berkaitan dengan konsep “Tekanan”. Contoh penerapan: - Mengukur tekanan (beda tekan)→”manometer” - “Manometer” bagian dari alat ukur laju alir - Bagian dari peralatan untuk memprediksi ketinggian/level cairan - Dst Cara II
  • 25. ) 2) Jika tekanan atmosphere standard 730 mmHg tentukan udara yang relatif dan absolut mengalir di dalam pipa. GAMBAR 17 …………………………………………………..
  • 26. 3) Air mengalir di dalam A dan B, seperti pada gambar.
  • 27.
  • 30. 2. GAMBAR 20 ………………………………………………….. Jika barometer menunjuk 730 mmHg. Tentukan tekanan gas yang mengalir di dalam pipa ( a. Gauge pressure, b. absolute pressure) →psi dan Pa
  • 32. 4. Gambar 22………… Jika barometer =730 mmHg Tentukan tekanan di A (Gauge dan Absolut)
  • 33. 5. Gambar 23………… 6. Gambar 24…………
  • 34. 7. Gambar 25………… Hitung Pa (gauge dan absolut)
  • 35. 8. Gambar 26………… 9. Gambar 27………… Hitung PA di dalam gauge dan absolut.