Shear force and bending moment diagram for simply supported beam _1P

sushma chinta
sushma chintaasst.prof at chaitanya bharathi institute of technology um chaitanya bharathi institute of technology
โ€ขโ€ข
Shear force and bending moment diagram for simply supported beam _1P
Shear force and Bending moment diagram
When designing a beam, we usually need to know how the shear forces and
bending moments vary throughout the length of the beam. Of special importance
are the maximum and minimum values of these quantities. Information of this kind
is usually provided by graphs in which the shear force and bending moment are
plotted as ordinates and the distance x along the axis of the beam is plotted as the
abscissa. Such graphs are called shear-force and bending-moment diagrams.
Q1.Draw the shear force and bending moment diagram for a simple beam AB supporting a
concentrated load P. The load P acts at distance โ€˜aโ€™ from the left-hand support and distance
โ€˜bโ€™ from the right-hand support.
Free body diagram of given simple beam: C
Free body diagram of section1:
Free body diagram of section1:
when x=0 section coincides with A, when x=a section coincides with C
0< ๐‘ฅ<a
Section1-1
Shear force
V=
P๐‘
๐ฟ
Bending Moment
M=
P๐‘
๐ฟ
. ๐‘ฅ
๐‘ฅ=0 (at A) VA=
P๐‘
๐ฟ
MA=
P๐‘
๐ฟ
. 0= 0
๐‘ฅ= a (at C) VC=
P๐‘
๐ฟ
MC=
P๐‘
๐ฟ
. a =
Pa๐‘
๐ฟ
๐šบ๐…๐ฒ = ๐ŸŽ
RA-V =0
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
- RA . ๐‘ฅ + M =0
M= RA . ๐‘ฅ =
P๐‘
๐ฟ
. ๐‘ฅ
Free body diagram of section2:
when x=a section coincides with C, when x=L section coincides with B
๐šบ๐…๐ฒ = ๐ŸŽ
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
Free body diagram of section2:
when x=a section coincides with C, when x=L section coincides with B
a< ๐‘ฅ<L
Section2-2
Shear force
V= -
Pa
๐ฟ
Bending Moment
M=
Pa
๐ฟ
(๐ฟ โˆ’ ๐‘ฅ)
๐‘ฅ=a (at C) VC= -
๐‘ƒ๐‘Ž
๐ฟ
MC=
Pa
๐ฟ
(๐ฟ โˆ’ a) =
๐‘a๐‘
๐ฟ
๐‘ฅ= L (at B) VB= -
๐‘๐‘Ž
๐ฟ
MB=
Pa
๐ฟ
(๐ฟ โˆ’ L) = 0
๐šบ๐…๐ฒ = ๐ŸŽ RA- P-V =0
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
-RA . ๐‘ฅ +P (๐‘ฅ -a) + M =0
M= RA . ๐‘ฅ - P (๐‘ฅ -a)
M=
Pa
๐ฟ
. ๐‘ฅ - P (๐‘ฅ -a)
M=
Pa
๐ฟ
(๐ฟ โˆ’ ๐‘ฅ)
0< ๐‘ฅ<a
Section1-1
Shear
force
Bending
Moment
๐‘ฅ=0 (at A) VA=
P๐‘
๐ฟ
MA= 0
๐‘ฅ= a (at C) VC=
P๐‘
๐ฟ
MC=
Pa๐‘
๐ฟ
a< ๐‘ฅ<L
Section2-2
Shear
force
Bending
Moment
๐‘ฅ=a (at C) VC= -
๐‘ƒ๐‘Ž
๐ฟ
MC =
๐‘a๐‘
๐ฟ
๐‘ฅ= L (at B) VB= -
๐‘๐‘Ž
๐ฟ
MB= 0
0< ๐‘ฅ<a
Section1-1
Shear
force
Bending
Moment
๐‘ฅ=0 (at A) VA=
P๐‘
๐ฟ
MA= 0
๐‘ฅ= a (at C) VC=
P๐‘
๐ฟ
MC=
Pa๐‘
๐ฟ
a< ๐‘ฅ<L
Section2-2
Shear
force
Bending
Moment
๐‘ฅ=a (at C) VC= -
๐‘ƒ๐‘Ž
๐ฟ
MC =
๐‘a๐‘
๐ฟ
๐‘ฅ= L (at B) VB= -
๐‘๐‘Ž
๐ฟ
MB= 0
Shear-force and bending moment diagrams for a simple beam
with a concentrated load
Q2. Draw the shear force and bending moment diagram for a simple beam AB
supporting a uniformly distributed load of intensity โ€˜qโ€™ through out the length of the
beam.
Free body diagram of given simple beam:
Because the beam and its loading are
symmetric, we see immediately that each of
the reactions (RA and RB) is equal to qL/2.
Free body diagram of given simple beam:
Free body diagram of section1: 0< ๐‘ฅ < L
when x=0 section coincides with A, when x=L section coincides with B
0< ๐‘ฅ< L
Section1-
1
Shear force
V =
๐’’.๐‘ณ
๐Ÿ
- q. ๐’™
Bending Moment
M=
๐’’.๐‘ณ.๐‘ฅ
๐Ÿ
-
๐‘ž.๐‘ฅ2
2
๐‘ฅ=0
(at A)
VA=
๐’’.๐‘ณ
๐Ÿ
MA=
๐’’.๐‘ณ.0
๐Ÿ
-
๐‘ž.02
2
= 0
๐‘ฅ= L
(at B)
VB=
๐’’.๐‘ณ
๐Ÿ
โˆ’ q๐ฟ =
โˆ’
๐’’.๐‘ณ
๐Ÿ
MB=
๐’’.๐‘ณ.๐ฟ
๐Ÿ
-
๐‘ž.๐ฟ2
2
= 0
๐‘ฅ= L/2
(at C)
VC=
๐’’.๐‘ณ
๐Ÿ
โˆ’
๐’’.๐‘ณ
๐Ÿ
=0 MC=
๐’’.๐‘ณ.
๐ฟ
2
๐Ÿ
-
๐’’.(
๐‘ณ
๐Ÿ
) ๐Ÿ
๐Ÿ
=
๐‘ž๐ฟ2
8
๐šบ๐…๐ฒ = ๐ŸŽ
RA-q . ๐‘ฅ - V =0
V = RA- q . ๐‘ฅ
V =
๐’’.๐‘ณ
๐Ÿ
- q. ๐’™
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
- RA . ๐‘ฅ + q . ๐‘ฅ.
๐‘ฅ
2
+ M =0
M= RA . ๐‘ฅ - q . ๐‘ฅ.
๐‘ฅ
2
=
๐’’.๐‘ณ
๐Ÿ
. ๐‘ฅ - q . ๐‘ฅ.
๐‘ฅ
2
=
๐’’.๐‘ณ.๐‘ฅ
๐Ÿ
-
๐‘ž.๐‘ฅ2
2
0< ๐‘ฅ< L
Section1-
1
Shear force
V =
๐’’.๐‘ณ
๐Ÿ
- q. ๐’™
Bending Moment
M=
๐’’.๐‘ณ.๐‘ฅ
๐Ÿ
-
๐’’.๐’™ ๐Ÿ
๐Ÿ
๐‘ฅ=0
(at A)
VA=
๐’’.๐‘ณ
๐Ÿ
MA= 0
๐‘ฅ= L
(at B)
VB=โˆ’
๐’’.๐‘ณ
๐Ÿ
MB= 0
๐‘ฅ= L/2
(at C)
VC=0 MC=
๐‘ž๐ฟ2
8
Q3.A simply supported beam of length 6 m, carries point load of 3 kN and 6 kN at distances of
2 m and 4 m from the left end. Draw the shear force and bending moment diagrams for the
beam.
Estimate the reactions at supports:
๐›ด๐‘ญ๐’š = 0
๏ƒžRA -3 - 6 + RB =0
๏ƒžRA + RB = 9 โ†’ (1)
๐›ด๐‘ด๐‘จ = 0
๏ƒž-3 * 2 โ€“ 6 * 4 + RB * 6 =0
๏ƒž RB * 6 = 3 * 2 + 6 * 4
๏ƒžRB = 5 kN โ†’ (2 )
Substitute 2 in (1)
๏ƒžRA = 9 - RB
๏ƒžRA = 9 โ€“ 5
๏ƒžRA = 4 kN
Shear force and bending moment diagram for simply supported beam _1P
4 kN
Free body diagram of section1: 0< ๐‘ฅ< 2 m
when x=0 section coincides with A, when x=a section coincides with C
0< ๐‘ฅ<2
Section1-1
Shear force
(๐‘˜๐‘)
V= 4
Bending
Moment (kN-m)
M= 4 * ๐‘ฅ
๐‘ฅ=0 (at A) VA= 4 MA= 4 โˆ— 0= 0
๐‘ฅ= 2 m (at C) VC=4 MC=4 * 2= 8
๐šบ๐…๐ฒ = ๐ŸŽ
RA-V =0
V =RA = 4 kN
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
- RA * ๐‘ฅ + M =0
M= RA * ๐‘ฅ = 4. ๐‘ฅ
4 kN
Free body diagram of section2:
when x=2 m section coincides with C, when x=4 m section coincides with D
2< ๐‘ฅ< 4
Section2-2
Shear force
V= 1 kN
Bending Moment(kN-m)
M= ๐‘ฅ + 6
๐‘ฅ=2 (at C) VC= 1 MC= 2+ 6= 8
๐‘ฅ= 4 (at D) VD= 1 MD=4 + 6 = 10
๐šบ๐…๐ฒ = ๐ŸŽ RA- 3 -V =0
๏ƒžV = RA- 3
๏ƒžV = 4- 3 = 1kN
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
-RA . ๐‘ฅ +3 * (๐‘ฅ -2) + M =0
M= 4 . ๐‘ฅ โ€“ 3 * (๐‘ฅ -2)
M= 4 . ๐‘ฅ โ€“ 3 * ๐‘ฅ + 6
M= ๐‘ฅ + 6
2 m < ๐‘ฅ< 4 m
Shear force and bending moment diagram for simply supported beam _1P
๐šบ๐…๐ฒ = ๐ŸŽ
Free body diagram of section 3: 4 m < ๐‘ฅ< 6 m
when x=4 m section coincides with D, when
x=6 m section coincides with B
RA โ€“ 3 โ€“ 6 โ€“ V =0
๏ƒžV = RA- 9
๏ƒžV = 4- 9 = - 5 kN
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ -RA . ๐‘ฅ +3 * (๐‘ฅ -2) + 6 * (๐‘ฅ -4) + M =0
M= 4 . ๐‘ฅ โ€“ 3 * (๐‘ฅ -2) โ€“ 6 * (๐‘ฅ -4)
M= - 5 * ๐‘ฅ + 30
4 < ๐‘ฅ< 6
Section 3-3
Shear force
V= -5 kN
Bending Moment(kN-m)
M= - 5 * ๐‘ฅ + 30
๐‘ฅ=4 (at D) VD= -5 MD= - 5 * 4 + 30= 10
๐‘ฅ=6 (at B) VB= -5 MB=- 5 * 6 + 30 = 0
0< ๐‘ฅ<2
Section1-1
Shear
force (๐‘˜๐‘)
V= 4
Bending
Moment
M= 4 * ๐‘ฅ
๐‘ฅ=0 (at A) VA= 4 MA= 0
๐‘ฅ= 2 m (at C) VC=4 MC= 8
2< ๐‘ฅ< 4
Section2-2
Shear
force
V= 1 kN
Bending
Moment
M= ๐‘ฅ + 6
๐‘ฅ=2 (at C) VC= 1 MC= 8
๐‘ฅ= 4 (at D) VD= 1 MD= 10
4 < ๐‘ฅ< 6
Section 3-3
Shear force
V= -5 kN
Bending Moment
M= - 5 * ๐‘ฅ + 30
๐‘ฅ=4 (at D) VD= -5 MD=10
๐‘ฅ=6 (at B) VB= -5 MB= 0
4 kN 5 kN
Q5. Draw the shear force and bending moment diagram for a simply
supported beam of length 9 m and carrying a uniformly distributed load of 10
kN/m for a distance of 6 m from the left end. Also calculate the maximum B.M.
on the section.
Shear force and bending moment diagram for simply supported beam _1P
Estimate the reactions at supports:
๐›ด๐‘ญ๐’š = 0
๏ƒžRA - 10 * 6 + RB =0
๏ƒžRA + RB = 60 โ†’ (1)
๐›ด๐‘ด๐‘จ = 0
๏ƒž- 10 *6 * 3 + RB * 9 =0
๏ƒž RB * 9 = 180
๏ƒžRB = 20 kN โ†’ (2 )
Substitute 2 in (1)
๏ƒžRA = 60 - RB
๏ƒžRA = 60 โ€“ 20
๏ƒžRA = 40 kN
Shear force and bending moment diagram for simply supported beam _1P
Free body diagram of section1: 0< ๐‘ฅ< 6 m
when x=0 section coincides with A, when x=6 section coincides with C
0< ๐‘ฅ<2
Section1-1
Shear force (๐‘˜๐‘)
V=40 -10 *๐‘ฅ
Bending Moment (kN-m)
M= 40*๐‘ฅ - 10 *
๐‘ฅ2
2
๐‘ฅ=0 (at A) VA=40 -10 *0 = 40 MA= 40*0 - 10 *
02
2
= 0
๐‘ฅ= 6 m (at C) VC=40 โˆ’10 โˆ—6 = โˆ’20 MC=40*6 - 10 *
62
2
= 60
๐‘ฅ= 4 m (at D) V=0 B.M is maximum
MD=40*4 - 10 *
42
2
= 80
๐šบ๐…๐ฒ = ๐ŸŽ
RA-10 *๐‘ฅ - V =0
V = RA-10 *๐‘ฅ
V = 40 -10 *๐‘ฅ
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
- RA * ๐‘ฅ + 10. * ๐‘ฅ.
๐‘ฅ
2
+ M =0
M= 40 * ๐‘ฅ - 10* ๐‘ฅ โˆ—
๐‘ฅ
2
= 40*๐‘ฅ - 10 *
๐‘ฅ2
2
40 kN
V = 0
40 -10 *๐‘ฅ = 0
10 *๐‘ฅ = 40
๐‘ฅ = 4 m
20 kN
Free body diagram of section2: 0< ๐‘ฅ< 3 m
when x=0 section coincides with B, when x=3 section coincides with C
0< ๐‘ฅ< 3
Section2-2
Shear force (๐‘˜๐‘)
V=-20
Bending
Moment (kN-m)
M= 20 * ๐‘ฅ
๐‘ฅ=0 (at B) VB=-20 MB= 20*0 = 0
๐‘ฅ= 3 m (at C) VC=โˆ’20 MC=20*3 = 60
๐šบ๐…๐ฒ = ๐ŸŽ
RB + V =0
V = - RB
V = -20 kN
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
โˆ’ M + RB * ๐‘ฅ =0
M= 20 * ๐‘ฅ
0< ๐‘ฅ<2
Section1-1
Shear force
(๐‘˜๐‘)
V=40 -10 *๐‘ฅ
Bending
Moment (kN-m)
M= 40*๐‘ฅ - 10 *
๐‘ฅ2
2
๐‘ฅ=0 (at A) VA=40 MA= 0
๐‘ฅ= 6 m (at C) VC=โˆ’20 MC= 60
๐‘ฅ= 4 m (at D) V=0 B.M is maximum
MD= 80
0< ๐‘ฅ< 3
Section2-2
Shear force
(๐‘˜๐‘)
V=-20
Bending
Moment (kN-m)
M= 20 * ๐‘ฅ
๐‘ฅ=0 (at B) VB= -20 MB= 0
๐‘ฅ= 3 m (at
C)
VC=โˆ’20 MC= 60
Q6. Draw the shear force and B.M. diagrams for a simply supported beam of length
8 m and carrying a uniformly distributed load of10 kN/m for a distance of 4 m as
shown in Fig.
Q7. A beam AB of length L simply supported at the ends A and B and carrying a uniformly
varying load from zero at end A to โ€˜qโ€™ per unit length at B. Draw shear force and bending
moment diagram.
Estimate the reactions at supports:
๐›ด๐‘ญ๐’š = 0
๏ƒžRA -
๐Ÿ
๐Ÿ
๐’’๐‘ณ+ RB =0
๏ƒžRA + RB =
๐ช๐‘ณ
๐Ÿ
โ†’ (1)
๐›ด๐‘ด๐‘จ = 0
๏ƒž-
1
2
๐‘ž๐ฟ (
2๐ฟ
3
) + RB * L =0
๏ƒž RB * L = (
๐ช๐‘ณ ๐Ÿ
๐Ÿ‘
)
๏ƒžRB =
๐ช๐‘ณ
๐Ÿ‘ โ†’ (2 )
Substitute 2 in (1)
๏ƒžRA =
๐ช๐‘ณ
๐Ÿ
- RB
๏ƒžRA =
๐ช๐‘ณ
๐Ÿ
-
๐ช๐‘ณ
๐Ÿ‘
๏ƒžRA =
๐ช๐‘ณ
๐Ÿ”
๐’’
๐‘ณ
=
๐’’ ๐’™
๐’™
=> ๐’’ ๐’™=
๐’’.๐’™
๐‘ณ
Shear force and bending moment diagram for simply supported beam _1P
Free body diagram of section1: 0< ๐‘ฅ < L
when x=0 section coincides with A, when x=a section coincides with C
0< ๐‘ฅ< L
Section1-1
Shear force
V=
๐ช๐‘ณ
๐Ÿ”
โˆ’
๐’’.๐’™ ๐Ÿ
๐Ÿ๐‘ณ
Bending Moment
๐‘ด =
๐ช๐‘ณ
๐Ÿ”
. ๐‘ฅ -
๐’’.๐’™ ๐Ÿ‘
๐Ÿ”๐‘ณ
๐‘ฅ=0
(at A)
VA=
๐ช๐‘ณ
๐Ÿ”
MA=
๐ช๐‘ณ
๐Ÿ”
. 0 -
๐’’.๐ŸŽ ๐Ÿ‘
๐Ÿ”๐‘ณ
= 0
๐‘ฅ= L
(at B)
VB=
๐ช๐‘ณ
๐Ÿ”
โˆ’
๐’’.๐‘ณ ๐Ÿ
๐Ÿ๐‘ณ
=
โˆ’
๐’’.๐‘ณ
๐Ÿ‘
MB=
๐ช๐‘ณ
๐Ÿ”
. ๐ฟ -
๐’’.๐‘ณ ๐Ÿ‘
๐Ÿ”๐‘ณ
= 0
๐šบ๐…๐ฒ = ๐ŸŽ
RA-
1
2
.
๐’’.๐’™
๐‘ณ
๐‘ฅ - V =0
V = RA-
1
2
.
๐’’.๐’™
๐‘ณ
๐‘ฅ
V =
๐ช๐‘ณ
๐Ÿ”
โˆ’
๐’’.๐’™ ๐Ÿ
๐Ÿ๐‘ณ
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
-
๐ช๐‘ณ
๐Ÿ”
. ๐‘ฅ +
1
2
.
๐’’.๐’™
๐‘ณ
๐‘ฅ.
๐‘ฅ
3
+ M =0
M=
๐ช๐‘ณ
๐Ÿ”
. ๐‘ฅ -
๐’’.๐’™ ๐Ÿ‘
๐Ÿ”๐‘ณ
Free body diagram of section1: 0< ๐‘ฅ < L
when x=0 section coincides with A, when x=a section coincides with C
0< ๐‘ฅ< L
Section1-1
Shear force
V=
๐ช๐‘ณ
๐Ÿ”
โˆ’
๐’’.๐’™ ๐Ÿ
๐Ÿ๐‘ณ
Bending Moment
๐‘ด =
๐ช๐‘ณ
๐Ÿ”
. ๐‘ฅ -
๐’’.๐’™ ๐Ÿ‘
๐Ÿ”๐‘ณ
๐‘ฅ=0
(at A)
VA=
๐ช๐‘ณ
๐Ÿ”
MA=
๐ช๐‘ณ
๐Ÿ”
. 0 -
๐’’.๐ŸŽ ๐Ÿ‘
๐Ÿ”๐‘ณ
= 0
๐‘ฅ= L
(at B)
VB=
๐ช๐‘ณ
๐Ÿ”
โˆ’
๐’’.๐‘ณ ๐Ÿ
๐Ÿ๐‘ณ
=
โˆ’
๐’’.๐‘ณ
๐Ÿ‘
MB=
๐ช๐‘ณ
๐Ÿ”
. ๐ฟ -
๐’’.๐‘ณ ๐Ÿ‘
๐Ÿ”๐‘ณ
= 0
๐‘ฅ= L/ 3
(at C)
VC=0
MC=
๐ช๐‘ณ
๐Ÿ”
.
๐‘ณ
๐Ÿ‘
-
๐’’.(
๐‘ณ
๐Ÿ‘
) ๐Ÿ‘
๐Ÿ”๐‘ณ
=
๐’’๐‘ณ ๐Ÿ
๐Ÿ— ๐Ÿ‘
๐šบ๐…๐ฒ = ๐ŸŽ
RA-
1
2
.
๐’’.๐’™
๐‘ณ
๐‘ฅ - V =0
V = RA-
1
2
.
๐’’.๐’™
๐‘ณ
๐‘ฅ
V =
๐ช๐‘ณ
๐Ÿ”
โˆ’
๐’’.๐’™ ๐Ÿ
๐Ÿ๐‘ณ
๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
-
๐ช๐‘ณ
๐Ÿ”
. ๐‘ฅ +
1
2
.
๐’’.๐’™
๐‘ณ
๐‘ฅ.
๐‘ฅ
3
+ M =0
M=
๐ช๐‘ณ
๐Ÿ”
. ๐‘ฅ -
๐’’.๐’™ ๐Ÿ‘
๐Ÿ”๐‘ณ
Shear force and bending moment diagram for simply supported beam _1P
1 von 41

Mรกs contenido relacionado

Was ist angesagt?(20)

9 beam deflection9 beam deflection
9 beam deflection
Mohamed Yaserโ€ข44.4K views
Plane Stress Transformation.pptxPlane Stress Transformation.pptx
Plane Stress Transformation.pptx
Dharmsinh Desai of Universityโ€ข97 views
Complex stressesComplex stresses
Complex stresses
Shivendra Nandanโ€ข5.6K views
Shear Force and Bending moment DiagramShear Force and Bending moment Diagram
Shear Force and Bending moment Diagram
Ashish Mishraโ€ข556 views
Unsymmetrical bending.pptUnsymmetrical bending.ppt
Unsymmetrical bending.ppt
Venkatesh Caโ€ข65.7K views
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment Diagram
Amos Davidโ€ข1.4K views
centroid & moment of inertiacentroid & moment of inertia
centroid & moment of inertia
sachin chaurasiaโ€ข13.4K views
centroidcentroid
centroid
Prof. S.Rajendiranโ€ข8.7K views
Types of beamTypes of beam
Types of beam
Yourskill Tricksโ€ข19.4K views
STRENGTH OF MATERIALS for  beginnersSTRENGTH OF MATERIALS for  beginners
STRENGTH OF MATERIALS for beginners
musadotoโ€ข16K views
FLEXURAL STRESSES AND SHEAR STRESSESFLEXURAL STRESSES AND SHEAR STRESSES
FLEXURAL STRESSES AND SHEAR STRESSES
vempatishivaโ€ข2.8K views
TorsionTorsion
Torsion
Shivendra Nandanโ€ข23.3K views
DeflectionDeflection
Deflection
Shivendra Nandanโ€ข16K views
deflection of beamdeflection of beam
deflection of beam
Karan Patelโ€ข5.5K views
Lesson 05,bending and shearing stressesLesson 05,bending and shearing stresses
Lesson 05,bending and shearing stresses
Msheer Bargarayโ€ข4.2K views
Shear force and bending moment Solved NumericalShear force and bending moment Solved Numerical
Shear force and bending moment Solved Numerical
Royal University of Bhutanโ€ข15.8K views
Normal stress and strainNormal stress and strain
Normal stress and strain
Shivendra Nandanโ€ข13K views
SFD & BMD Shear Force & Bending Moment DiagramSFD & BMD Shear Force & Bending Moment Diagram
SFD & BMD Shear Force & Bending Moment Diagram
Sanjay Kumawatโ€ข22.3K views
 Normal stress & Shear Stress Normal stress & Shear Stress
Normal stress & Shear Stress
MESHAL ALMUTAIRIโ€ข24.4K views

Similar a Shear force and bending moment diagram for simply supported beam _1P

Mechanics. Mechanics.
Mechanics. NJutt
16 viewsโ€ข27 Folien
Mechanics.pptMechanics.ppt
Mechanics.pptHammadGujjar9
15 viewsโ€ข27 Folien
Bending stressBending stress
Bending stressTaral Soliya
4.7K viewsโ€ข48 Folien

Similar a Shear force and bending moment diagram for simply supported beam _1P(20)

Mechanics. Mechanics.
Mechanics.
NJuttโ€ข16 views
Mechanics.pptMechanics.ppt
Mechanics.ppt
HammadGujjar9โ€ข15 views
Bending stressBending stress
Bending stress
Taral Soliyaโ€ข4.7K views
Shear  force & bending moment.pptShear  force & bending moment.ppt
Shear force & bending moment.ppt
SignUpAccount2โ€ข23 views
ejercicio viga con dos rรณtulasejercicio viga con dos rรณtulas
ejercicio viga con dos rรณtulas
Mario Garcรญaโ€ข349 views
AFD SFD BMD.pptAFD SFD BMD.ppt
AFD SFD BMD.ppt
VaibhavParate9โ€ข88 views
Sfd  bmdSfd  bmd
Sfd bmd
Shivendra Nandanโ€ข7.8K views
Presentaciรณn de matemPresentaciรณn de matem
Presentaciรณn de matem
ENRIQUEARROYOARROYO1โ€ข118 views
267579.ppt267579.ppt
267579.ppt
HusnyAlmubarak1โ€ข24 views
26-Sajid-Ahmed.pptx26-Sajid-Ahmed.pptx
26-Sajid-Ahmed.pptx
AbhishekMishra546720โ€ข64 views
SFD BMD.pptSFD BMD.ppt
SFD BMD.ppt
BeckhamChaile1โ€ข36 views
str.%20analysis.pptxstr.%20analysis.pptx
str.%20analysis.pptx
HiteshParmar311308โ€ข8 views
4 portal-dan-pelengkung-tiga-sendi4 portal-dan-pelengkung-tiga-sendi
4 portal-dan-pelengkung-tiga-sendi
IgorTherikโ€ข796 views
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
Paralafakyou Mensโ€ข589 views
4 24 2
4 2
ELIMENGโ€ข452 views
4 2(1)4 2(1)
4 2(1)
ELIMENGโ€ข429 views
structure analysiicsstructure analysiics
structure analysiics
akshay gargโ€ข646 views

Mรกs de sushma chinta

Programming languages Programming languages
Programming languages sushma chinta
75 viewsโ€ข26 Folien
Thick cylinders Thick cylinders
Thick cylinders sushma chinta
269 viewsโ€ข16 Folien
Shear stresses in beams pShear stresses in beams p
Shear stresses in beams psushma chinta
239 viewsโ€ข32 Folien
Problems on TorsionProblems on Torsion
Problems on Torsionsushma chinta
1.7K viewsโ€ข24 Folien

Mรกs de sushma chinta(20)

Programming languages Programming languages
Programming languages
sushma chintaโ€ข75 views
Thick cylinders Thick cylinders
Thick cylinders
sushma chintaโ€ข269 views
Shear stresses in beams pShear stresses in beams p
Shear stresses in beams p
sushma chintaโ€ข239 views
Problems on TorsionProblems on Torsion
Problems on Torsion
sushma chintaโ€ข1.7K views
Beams IntroductionBeams Introduction
Beams Introduction
sushma chintaโ€ข281 views
Simple torsion equationSimple torsion equation
Simple torsion equation
sushma chintaโ€ข293 views
Bars subjected to multiple loadsBars subjected to multiple loads
Bars subjected to multiple loads
sushma chintaโ€ข229 views
20 08 2020stress_straincurve_p20 08 2020stress_straincurve_p
20 08 2020stress_straincurve_p
sushma chintaโ€ข96 views
Stresses and strains pStresses and strains p
Stresses and strains p
sushma chintaโ€ข88 views
Mom introduction pMom introduction p
Mom introduction p
sushma chintaโ€ข87 views
Mechanical MembersMechanical Members
Mechanical Members
sushma chintaโ€ข41 views
Development of surfacesDevelopment of surfaces
Development of surfaces
sushma chintaโ€ข696 views
Isometric projectionsIsometric projections
Isometric projections
sushma chintaโ€ข349 views
Cone cylinder section_pCone cylinder section_p
Cone cylinder section_p
sushma chintaโ€ข70 views
Sections_of_solids_ pSections_of_solids_ p
Sections_of_solids_ p
sushma chintaโ€ข226 views

รšltimo(20)

SEMI CONDUCTORSSEMI CONDUCTORS
SEMI CONDUCTORS
pavaniaalla2005โ€ข13 views
PlumbingPlumbing
Plumbing
Iwiss Tools Co.,Ltdโ€ข8 views
Data Communication and Computer NetworksData Communication and Computer Networks
Data Communication and Computer Networks
Sreedhar Chowdamโ€ข362 views
String.pptxString.pptx
String.pptx
Ananthi Palanisamyโ€ข45 views
SWM L1-L14_drhasan (Part 1).pdfSWM L1-L14_drhasan (Part 1).pdf
SWM L1-L14_drhasan (Part 1).pdf
MahmudHasan747870โ€ข35 views
Dynamics of Hard-Magnetic Soft MaterialsDynamics of Hard-Magnetic Soft Materials
Dynamics of Hard-Magnetic Soft Materials
Shivendra Nandanโ€ข10 views
performance uploading.pptxperformance uploading.pptx
performance uploading.pptx
SanthiS10โ€ข7 views
Stone Masonry and Brick Masonry.pdfStone Masonry and Brick Masonry.pdf
Stone Masonry and Brick Masonry.pdf
Mohammed Abdullah Laskarโ€ข15 views
wp-UNIT_III.pptxwp-UNIT_III.pptx
wp-UNIT_III.pptx
GANDHAMKUMAR2โ€ข9 views
Object Oriented Programming with JAVAObject Oriented Programming with JAVA
Object Oriented Programming with JAVA
Demian Antony D'Melloโ€ข38 views
SNMPxSNMPx
SNMPx
Amatullahbuttโ€ข10 views
Saikat Chakraborty Java Oracle Certificate.pdfSaikat Chakraborty Java Oracle Certificate.pdf
Saikat Chakraborty Java Oracle Certificate.pdf
SaikatChakraborty787148โ€ข8 views
EV in Bangladesh.pptxEV in Bangladesh.pptx
EV in Bangladesh.pptx
Sohel Mahboobโ€ข23 views

Shear force and bending moment diagram for simply supported beam _1P

  • 2. Shear force and Bending moment diagram When designing a beam, we usually need to know how the shear forces and bending moments vary throughout the length of the beam. Of special importance are the maximum and minimum values of these quantities. Information of this kind is usually provided by graphs in which the shear force and bending moment are plotted as ordinates and the distance x along the axis of the beam is plotted as the abscissa. Such graphs are called shear-force and bending-moment diagrams.
  • 3. Q1.Draw the shear force and bending moment diagram for a simple beam AB supporting a concentrated load P. The load P acts at distance โ€˜aโ€™ from the left-hand support and distance โ€˜bโ€™ from the right-hand support.
  • 4. Free body diagram of given simple beam: C
  • 5. Free body diagram of section1:
  • 6. Free body diagram of section1: when x=0 section coincides with A, when x=a section coincides with C 0< ๐‘ฅ<a Section1-1 Shear force V= P๐‘ ๐ฟ Bending Moment M= P๐‘ ๐ฟ . ๐‘ฅ ๐‘ฅ=0 (at A) VA= P๐‘ ๐ฟ MA= P๐‘ ๐ฟ . 0= 0 ๐‘ฅ= a (at C) VC= P๐‘ ๐ฟ MC= P๐‘ ๐ฟ . a = Pa๐‘ ๐ฟ ๐šบ๐…๐ฒ = ๐ŸŽ RA-V =0 ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ - RA . ๐‘ฅ + M =0 M= RA . ๐‘ฅ = P๐‘ ๐ฟ . ๐‘ฅ
  • 7. Free body diagram of section2: when x=a section coincides with C, when x=L section coincides with B ๐šบ๐…๐ฒ = ๐ŸŽ ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ
  • 8. Free body diagram of section2: when x=a section coincides with C, when x=L section coincides with B a< ๐‘ฅ<L Section2-2 Shear force V= - Pa ๐ฟ Bending Moment M= Pa ๐ฟ (๐ฟ โˆ’ ๐‘ฅ) ๐‘ฅ=a (at C) VC= - ๐‘ƒ๐‘Ž ๐ฟ MC= Pa ๐ฟ (๐ฟ โˆ’ a) = ๐‘a๐‘ ๐ฟ ๐‘ฅ= L (at B) VB= - ๐‘๐‘Ž ๐ฟ MB= Pa ๐ฟ (๐ฟ โˆ’ L) = 0 ๐šบ๐…๐ฒ = ๐ŸŽ RA- P-V =0 ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ -RA . ๐‘ฅ +P (๐‘ฅ -a) + M =0 M= RA . ๐‘ฅ - P (๐‘ฅ -a) M= Pa ๐ฟ . ๐‘ฅ - P (๐‘ฅ -a) M= Pa ๐ฟ (๐ฟ โˆ’ ๐‘ฅ)
  • 9. 0< ๐‘ฅ<a Section1-1 Shear force Bending Moment ๐‘ฅ=0 (at A) VA= P๐‘ ๐ฟ MA= 0 ๐‘ฅ= a (at C) VC= P๐‘ ๐ฟ MC= Pa๐‘ ๐ฟ a< ๐‘ฅ<L Section2-2 Shear force Bending Moment ๐‘ฅ=a (at C) VC= - ๐‘ƒ๐‘Ž ๐ฟ MC = ๐‘a๐‘ ๐ฟ ๐‘ฅ= L (at B) VB= - ๐‘๐‘Ž ๐ฟ MB= 0
  • 10. 0< ๐‘ฅ<a Section1-1 Shear force Bending Moment ๐‘ฅ=0 (at A) VA= P๐‘ ๐ฟ MA= 0 ๐‘ฅ= a (at C) VC= P๐‘ ๐ฟ MC= Pa๐‘ ๐ฟ a< ๐‘ฅ<L Section2-2 Shear force Bending Moment ๐‘ฅ=a (at C) VC= - ๐‘ƒ๐‘Ž ๐ฟ MC = ๐‘a๐‘ ๐ฟ ๐‘ฅ= L (at B) VB= - ๐‘๐‘Ž ๐ฟ MB= 0 Shear-force and bending moment diagrams for a simple beam with a concentrated load
  • 11. Q2. Draw the shear force and bending moment diagram for a simple beam AB supporting a uniformly distributed load of intensity โ€˜qโ€™ through out the length of the beam.
  • 12. Free body diagram of given simple beam: Because the beam and its loading are symmetric, we see immediately that each of the reactions (RA and RB) is equal to qL/2.
  • 13. Free body diagram of given simple beam:
  • 14. Free body diagram of section1: 0< ๐‘ฅ < L when x=0 section coincides with A, when x=L section coincides with B 0< ๐‘ฅ< L Section1- 1 Shear force V = ๐’’.๐‘ณ ๐Ÿ - q. ๐’™ Bending Moment M= ๐’’.๐‘ณ.๐‘ฅ ๐Ÿ - ๐‘ž.๐‘ฅ2 2 ๐‘ฅ=0 (at A) VA= ๐’’.๐‘ณ ๐Ÿ MA= ๐’’.๐‘ณ.0 ๐Ÿ - ๐‘ž.02 2 = 0 ๐‘ฅ= L (at B) VB= ๐’’.๐‘ณ ๐Ÿ โˆ’ q๐ฟ = โˆ’ ๐’’.๐‘ณ ๐Ÿ MB= ๐’’.๐‘ณ.๐ฟ ๐Ÿ - ๐‘ž.๐ฟ2 2 = 0 ๐‘ฅ= L/2 (at C) VC= ๐’’.๐‘ณ ๐Ÿ โˆ’ ๐’’.๐‘ณ ๐Ÿ =0 MC= ๐’’.๐‘ณ. ๐ฟ 2 ๐Ÿ - ๐’’.( ๐‘ณ ๐Ÿ ) ๐Ÿ ๐Ÿ = ๐‘ž๐ฟ2 8 ๐šบ๐…๐ฒ = ๐ŸŽ RA-q . ๐‘ฅ - V =0 V = RA- q . ๐‘ฅ V = ๐’’.๐‘ณ ๐Ÿ - q. ๐’™ ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ - RA . ๐‘ฅ + q . ๐‘ฅ. ๐‘ฅ 2 + M =0 M= RA . ๐‘ฅ - q . ๐‘ฅ. ๐‘ฅ 2 = ๐’’.๐‘ณ ๐Ÿ . ๐‘ฅ - q . ๐‘ฅ. ๐‘ฅ 2 = ๐’’.๐‘ณ.๐‘ฅ ๐Ÿ - ๐‘ž.๐‘ฅ2 2
  • 15. 0< ๐‘ฅ< L Section1- 1 Shear force V = ๐’’.๐‘ณ ๐Ÿ - q. ๐’™ Bending Moment M= ๐’’.๐‘ณ.๐‘ฅ ๐Ÿ - ๐’’.๐’™ ๐Ÿ ๐Ÿ ๐‘ฅ=0 (at A) VA= ๐’’.๐‘ณ ๐Ÿ MA= 0 ๐‘ฅ= L (at B) VB=โˆ’ ๐’’.๐‘ณ ๐Ÿ MB= 0 ๐‘ฅ= L/2 (at C) VC=0 MC= ๐‘ž๐ฟ2 8
  • 16. Q3.A simply supported beam of length 6 m, carries point load of 3 kN and 6 kN at distances of 2 m and 4 m from the left end. Draw the shear force and bending moment diagrams for the beam.
  • 17. Estimate the reactions at supports: ๐›ด๐‘ญ๐’š = 0 ๏ƒžRA -3 - 6 + RB =0 ๏ƒžRA + RB = 9 โ†’ (1) ๐›ด๐‘ด๐‘จ = 0 ๏ƒž-3 * 2 โ€“ 6 * 4 + RB * 6 =0 ๏ƒž RB * 6 = 3 * 2 + 6 * 4 ๏ƒžRB = 5 kN โ†’ (2 ) Substitute 2 in (1) ๏ƒžRA = 9 - RB ๏ƒžRA = 9 โ€“ 5 ๏ƒžRA = 4 kN
  • 19. 4 kN
  • 20. Free body diagram of section1: 0< ๐‘ฅ< 2 m when x=0 section coincides with A, when x=a section coincides with C 0< ๐‘ฅ<2 Section1-1 Shear force (๐‘˜๐‘) V= 4 Bending Moment (kN-m) M= 4 * ๐‘ฅ ๐‘ฅ=0 (at A) VA= 4 MA= 4 โˆ— 0= 0 ๐‘ฅ= 2 m (at C) VC=4 MC=4 * 2= 8 ๐šบ๐…๐ฒ = ๐ŸŽ RA-V =0 V =RA = 4 kN ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ - RA * ๐‘ฅ + M =0 M= RA * ๐‘ฅ = 4. ๐‘ฅ
  • 21. 4 kN
  • 22. Free body diagram of section2: when x=2 m section coincides with C, when x=4 m section coincides with D 2< ๐‘ฅ< 4 Section2-2 Shear force V= 1 kN Bending Moment(kN-m) M= ๐‘ฅ + 6 ๐‘ฅ=2 (at C) VC= 1 MC= 2+ 6= 8 ๐‘ฅ= 4 (at D) VD= 1 MD=4 + 6 = 10 ๐šบ๐…๐ฒ = ๐ŸŽ RA- 3 -V =0 ๏ƒžV = RA- 3 ๏ƒžV = 4- 3 = 1kN ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ -RA . ๐‘ฅ +3 * (๐‘ฅ -2) + M =0 M= 4 . ๐‘ฅ โ€“ 3 * (๐‘ฅ -2) M= 4 . ๐‘ฅ โ€“ 3 * ๐‘ฅ + 6 M= ๐‘ฅ + 6 2 m < ๐‘ฅ< 4 m
  • 24. ๐šบ๐…๐ฒ = ๐ŸŽ Free body diagram of section 3: 4 m < ๐‘ฅ< 6 m when x=4 m section coincides with D, when x=6 m section coincides with B RA โ€“ 3 โ€“ 6 โ€“ V =0 ๏ƒžV = RA- 9 ๏ƒžV = 4- 9 = - 5 kN ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ -RA . ๐‘ฅ +3 * (๐‘ฅ -2) + 6 * (๐‘ฅ -4) + M =0 M= 4 . ๐‘ฅ โ€“ 3 * (๐‘ฅ -2) โ€“ 6 * (๐‘ฅ -4) M= - 5 * ๐‘ฅ + 30 4 < ๐‘ฅ< 6 Section 3-3 Shear force V= -5 kN Bending Moment(kN-m) M= - 5 * ๐‘ฅ + 30 ๐‘ฅ=4 (at D) VD= -5 MD= - 5 * 4 + 30= 10 ๐‘ฅ=6 (at B) VB= -5 MB=- 5 * 6 + 30 = 0
  • 25. 0< ๐‘ฅ<2 Section1-1 Shear force (๐‘˜๐‘) V= 4 Bending Moment M= 4 * ๐‘ฅ ๐‘ฅ=0 (at A) VA= 4 MA= 0 ๐‘ฅ= 2 m (at C) VC=4 MC= 8 2< ๐‘ฅ< 4 Section2-2 Shear force V= 1 kN Bending Moment M= ๐‘ฅ + 6 ๐‘ฅ=2 (at C) VC= 1 MC= 8 ๐‘ฅ= 4 (at D) VD= 1 MD= 10 4 < ๐‘ฅ< 6 Section 3-3 Shear force V= -5 kN Bending Moment M= - 5 * ๐‘ฅ + 30 ๐‘ฅ=4 (at D) VD= -5 MD=10 ๐‘ฅ=6 (at B) VB= -5 MB= 0 4 kN 5 kN
  • 26. Q5. Draw the shear force and bending moment diagram for a simply supported beam of length 9 m and carrying a uniformly distributed load of 10 kN/m for a distance of 6 m from the left end. Also calculate the maximum B.M. on the section.
  • 28. Estimate the reactions at supports: ๐›ด๐‘ญ๐’š = 0 ๏ƒžRA - 10 * 6 + RB =0 ๏ƒžRA + RB = 60 โ†’ (1) ๐›ด๐‘ด๐‘จ = 0 ๏ƒž- 10 *6 * 3 + RB * 9 =0 ๏ƒž RB * 9 = 180 ๏ƒžRB = 20 kN โ†’ (2 ) Substitute 2 in (1) ๏ƒžRA = 60 - RB ๏ƒžRA = 60 โ€“ 20 ๏ƒžRA = 40 kN
  • 30. Free body diagram of section1: 0< ๐‘ฅ< 6 m when x=0 section coincides with A, when x=6 section coincides with C 0< ๐‘ฅ<2 Section1-1 Shear force (๐‘˜๐‘) V=40 -10 *๐‘ฅ Bending Moment (kN-m) M= 40*๐‘ฅ - 10 * ๐‘ฅ2 2 ๐‘ฅ=0 (at A) VA=40 -10 *0 = 40 MA= 40*0 - 10 * 02 2 = 0 ๐‘ฅ= 6 m (at C) VC=40 โˆ’10 โˆ—6 = โˆ’20 MC=40*6 - 10 * 62 2 = 60 ๐‘ฅ= 4 m (at D) V=0 B.M is maximum MD=40*4 - 10 * 42 2 = 80 ๐šบ๐…๐ฒ = ๐ŸŽ RA-10 *๐‘ฅ - V =0 V = RA-10 *๐‘ฅ V = 40 -10 *๐‘ฅ ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ - RA * ๐‘ฅ + 10. * ๐‘ฅ. ๐‘ฅ 2 + M =0 M= 40 * ๐‘ฅ - 10* ๐‘ฅ โˆ— ๐‘ฅ 2 = 40*๐‘ฅ - 10 * ๐‘ฅ2 2 40 kN V = 0 40 -10 *๐‘ฅ = 0 10 *๐‘ฅ = 40 ๐‘ฅ = 4 m
  • 31. 20 kN
  • 32. Free body diagram of section2: 0< ๐‘ฅ< 3 m when x=0 section coincides with B, when x=3 section coincides with C 0< ๐‘ฅ< 3 Section2-2 Shear force (๐‘˜๐‘) V=-20 Bending Moment (kN-m) M= 20 * ๐‘ฅ ๐‘ฅ=0 (at B) VB=-20 MB= 20*0 = 0 ๐‘ฅ= 3 m (at C) VC=โˆ’20 MC=20*3 = 60 ๐šบ๐…๐ฒ = ๐ŸŽ RB + V =0 V = - RB V = -20 kN ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ โˆ’ M + RB * ๐‘ฅ =0 M= 20 * ๐‘ฅ
  • 33. 0< ๐‘ฅ<2 Section1-1 Shear force (๐‘˜๐‘) V=40 -10 *๐‘ฅ Bending Moment (kN-m) M= 40*๐‘ฅ - 10 * ๐‘ฅ2 2 ๐‘ฅ=0 (at A) VA=40 MA= 0 ๐‘ฅ= 6 m (at C) VC=โˆ’20 MC= 60 ๐‘ฅ= 4 m (at D) V=0 B.M is maximum MD= 80 0< ๐‘ฅ< 3 Section2-2 Shear force (๐‘˜๐‘) V=-20 Bending Moment (kN-m) M= 20 * ๐‘ฅ ๐‘ฅ=0 (at B) VB= -20 MB= 0 ๐‘ฅ= 3 m (at C) VC=โˆ’20 MC= 60
  • 34. Q6. Draw the shear force and B.M. diagrams for a simply supported beam of length 8 m and carrying a uniformly distributed load of10 kN/m for a distance of 4 m as shown in Fig.
  • 35. Q7. A beam AB of length L simply supported at the ends A and B and carrying a uniformly varying load from zero at end A to โ€˜qโ€™ per unit length at B. Draw shear force and bending moment diagram.
  • 36. Estimate the reactions at supports: ๐›ด๐‘ญ๐’š = 0 ๏ƒžRA - ๐Ÿ ๐Ÿ ๐’’๐‘ณ+ RB =0 ๏ƒžRA + RB = ๐ช๐‘ณ ๐Ÿ โ†’ (1) ๐›ด๐‘ด๐‘จ = 0 ๏ƒž- 1 2 ๐‘ž๐ฟ ( 2๐ฟ 3 ) + RB * L =0 ๏ƒž RB * L = ( ๐ช๐‘ณ ๐Ÿ ๐Ÿ‘ ) ๏ƒžRB = ๐ช๐‘ณ ๐Ÿ‘ โ†’ (2 ) Substitute 2 in (1) ๏ƒžRA = ๐ช๐‘ณ ๐Ÿ - RB ๏ƒžRA = ๐ช๐‘ณ ๐Ÿ - ๐ช๐‘ณ ๐Ÿ‘ ๏ƒžRA = ๐ช๐‘ณ ๐Ÿ”
  • 37. ๐’’ ๐‘ณ = ๐’’ ๐’™ ๐’™ => ๐’’ ๐’™= ๐’’.๐’™ ๐‘ณ
  • 39. Free body diagram of section1: 0< ๐‘ฅ < L when x=0 section coincides with A, when x=a section coincides with C 0< ๐‘ฅ< L Section1-1 Shear force V= ๐ช๐‘ณ ๐Ÿ” โˆ’ ๐’’.๐’™ ๐Ÿ ๐Ÿ๐‘ณ Bending Moment ๐‘ด = ๐ช๐‘ณ ๐Ÿ” . ๐‘ฅ - ๐’’.๐’™ ๐Ÿ‘ ๐Ÿ”๐‘ณ ๐‘ฅ=0 (at A) VA= ๐ช๐‘ณ ๐Ÿ” MA= ๐ช๐‘ณ ๐Ÿ” . 0 - ๐’’.๐ŸŽ ๐Ÿ‘ ๐Ÿ”๐‘ณ = 0 ๐‘ฅ= L (at B) VB= ๐ช๐‘ณ ๐Ÿ” โˆ’ ๐’’.๐‘ณ ๐Ÿ ๐Ÿ๐‘ณ = โˆ’ ๐’’.๐‘ณ ๐Ÿ‘ MB= ๐ช๐‘ณ ๐Ÿ” . ๐ฟ - ๐’’.๐‘ณ ๐Ÿ‘ ๐Ÿ”๐‘ณ = 0 ๐šบ๐…๐ฒ = ๐ŸŽ RA- 1 2 . ๐’’.๐’™ ๐‘ณ ๐‘ฅ - V =0 V = RA- 1 2 . ๐’’.๐’™ ๐‘ณ ๐‘ฅ V = ๐ช๐‘ณ ๐Ÿ” โˆ’ ๐’’.๐’™ ๐Ÿ ๐Ÿ๐‘ณ ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ - ๐ช๐‘ณ ๐Ÿ” . ๐‘ฅ + 1 2 . ๐’’.๐’™ ๐‘ณ ๐‘ฅ. ๐‘ฅ 3 + M =0 M= ๐ช๐‘ณ ๐Ÿ” . ๐‘ฅ - ๐’’.๐’™ ๐Ÿ‘ ๐Ÿ”๐‘ณ
  • 40. Free body diagram of section1: 0< ๐‘ฅ < L when x=0 section coincides with A, when x=a section coincides with C 0< ๐‘ฅ< L Section1-1 Shear force V= ๐ช๐‘ณ ๐Ÿ” โˆ’ ๐’’.๐’™ ๐Ÿ ๐Ÿ๐‘ณ Bending Moment ๐‘ด = ๐ช๐‘ณ ๐Ÿ” . ๐‘ฅ - ๐’’.๐’™ ๐Ÿ‘ ๐Ÿ”๐‘ณ ๐‘ฅ=0 (at A) VA= ๐ช๐‘ณ ๐Ÿ” MA= ๐ช๐‘ณ ๐Ÿ” . 0 - ๐’’.๐ŸŽ ๐Ÿ‘ ๐Ÿ”๐‘ณ = 0 ๐‘ฅ= L (at B) VB= ๐ช๐‘ณ ๐Ÿ” โˆ’ ๐’’.๐‘ณ ๐Ÿ ๐Ÿ๐‘ณ = โˆ’ ๐’’.๐‘ณ ๐Ÿ‘ MB= ๐ช๐‘ณ ๐Ÿ” . ๐ฟ - ๐’’.๐‘ณ ๐Ÿ‘ ๐Ÿ”๐‘ณ = 0 ๐‘ฅ= L/ 3 (at C) VC=0 MC= ๐ช๐‘ณ ๐Ÿ” . ๐‘ณ ๐Ÿ‘ - ๐’’.( ๐‘ณ ๐Ÿ‘ ) ๐Ÿ‘ ๐Ÿ”๐‘ณ = ๐’’๐‘ณ ๐Ÿ ๐Ÿ— ๐Ÿ‘ ๐šบ๐…๐ฒ = ๐ŸŽ RA- 1 2 . ๐’’.๐’™ ๐‘ณ ๐‘ฅ - V =0 V = RA- 1 2 . ๐’’.๐’™ ๐‘ณ ๐‘ฅ V = ๐ช๐‘ณ ๐Ÿ” โˆ’ ๐’’.๐’™ ๐Ÿ ๐Ÿ๐‘ณ ๐šบ๐Œ ๐Ÿโˆ’๐Ÿ = ๐ŸŽ - ๐ช๐‘ณ ๐Ÿ” . ๐‘ฅ + 1 2 . ๐’’.๐’™ ๐‘ณ ๐‘ฅ. ๐‘ฅ 3 + M =0 M= ๐ช๐‘ณ ๐Ÿ” . ๐‘ฅ - ๐’’.๐’™ ๐Ÿ‘ ๐Ÿ”๐‘ณ