SlideShare ist ein Scribd-Unternehmen logo
1 von 42
Periodic Trends
Elemental Properties and Patterns
The Periodic Law
• Dimitri Mendeleev was the first scientist to
publish an organized periodic table of the
known elements.
• He was perpetually in trouble with the
Russian government and the Russian
Orthodox Church, but he was brilliant
never-the-less.
The Periodic Law
• Mendeleev even went out on a limb and
predicted the properties of 2 at the time
undiscovered elements.
• He was very accurate in his predictions,
which led the world to accept his ideas
about periodicity and a logical periodic
table.
The Periodic Law
• Mendeleev understood the ‘Periodic Law’
which states:
• When arranged by increasing atomic
number, the chemical elements display a
regular and repeating pattern of chemical
and physical properties.
The Periodic Law
• Atoms with similar properties appear in
groups or families (vertical columns) on the
periodic table.
• They are similar because they all have the
same number of valence (outer shell)
electrons, which governs their chemical
behavior.
Valence Electrons
• Do you remember how to tell the number of
valence electrons for elements in the s- and
p-blocks?
• How many valence electrons will the atoms
in the d-block (transition metals) and the f-
block (inner transition metals) have?
• Most have 2 valence e-, some only have 1.
A Different Type of Grouping
• Besides the 4 blocks of the table, there is
another way of classifying element:
• Metals
• Nonmetals
• Metalloids or Semi-metals.
• The following slide shows where each
group is found.
Metals, Nonmetals, Metalloids
Metals, Nonmetals, Metalloids
• There is a zig-zag or
staircase line that
divides the table.
• Metals are on the left
of the line, in blue.
• Nonmetals are on the
right of the line, in
orange.
Metals, Nonmetals, Metalloids
• Elements that border
the stair case, shown
in purple are the
metalloids or semi-
metals.
• There is one important
exception.
• Aluminum is more
metallic than not.
Metals, Nonmetals, Metalloids
• How can you identify a metal?
• What are its properties?
• What about the less common nonmetals?
• What are their properties?
• And what the heck is a metalloid?
Metals
• Metals are lustrous
(shiny), malleable,
ductile, and are good
conductors of heat and
electricity.
• They are mostly solids
at room temp.
• What is one
exception?
Nonmetals
• Nonmetals are the
opposite.
• They are dull, brittle,
nonconductors
(insulators).
• Some are solid, but
many are gases, and
Bromine is a liquid.
Metalloids
• Metalloids, aka semi-metals
are just that.
• They have characteristics of
both metals and nonmetals.
• They are shiny but brittle.
• And they are
semiconductors.
• What is our most important
semiconductor?
Periodic Trends
• There are several important atomic
characteristics that show predictable trends
that you should know.
• The first and most important is atomic
radius.
• Radius is the distance from the center of the
nucleus to the “edge” of the electron cloud.
Atomic Radius
• Since a cloud’s edge is difficult to define,
scientists use define covalent radius, or half
the distance between the nuclei of 2 bonded
atoms.
• Atomic radii are usually measured in
picometers (pm) or angstroms (Å). An
angstrom is 1 x 10-10
m.
Covalent Radius
• Two Br atoms bonded together are 2.86
angstroms apart. So, the radius of each
atom is 1.43 Å.
2.86 Å
1.43 Å 1.43 Å
Atomic Radius
• The trend for atomic radius in a vertical
column is to go from smaller at the top to
larger at the bottom of the family.
• Why?
• With each step down the family, we add an
entirely new PEL to the electron cloud,
making the atoms larger with each step.
Atomic Radius
• The trend across a horizontal period is less
obvious.
• What happens to atomic structure as we
step from left to right?
• Each step adds a proton and an electron
(and 1 or 2 neutrons).
• Electrons are added to existing PELs or
sublevels.
Atomic Radius
• The effect is that the more positive nucleus
has a greater pull on the electron cloud.
• The nucleus is more positive and the
electron cloud is more negative.
• The increased attraction pulls the cloud
in, making atoms smaller as we move from
left to right across a period.
Effective Nuclear Charge
• What keeps electrons from simply flying off
into space?
• Effective nuclear charge is the pull that an
electron “feels” from the nucleus.
• The closer an electron is to the nucleus, the
more pull it feels.
• As effective nuclear charge increases, the
electron cloud is pulled in tighter.
Atomic Radius
• The overall trend in atomic radius looks like
this.
Atomic Radius
• Here is an animation to explain the trend.
• On your help sheet, draw arrows like this:
Shielding
• As more PELs are added to atoms, the inner
layers of electrons shield the outer electrons
from the nucleus.
• The effective nuclear charge (enc) on those
outer electrons is less, and so the outer
electrons are less tightly held.
Ionization Energy
• This is the second important periodic trend.
• If an electron is given enough energy (in the
form of a photon) to overcome the effective
nuclear charge holding the electron in the
cloud, it can leave the atom completely.
• The atom has been “ionized” or charged.
• The number of protons and electrons is no
longer equal.
Ionization Energy
• The energy required to remove an electron
from an atom is ionization energy. (measured
in kilojoules, kJ)
• The larger the atom is, the easier its electrons
are to remove.
• Ionization energy and atomic radius are
inversely proportional.
• Ionization energy is always endothermic, that
is energy is added to the atom to remove the
electron.
Ionization Energy
Ionization Energy (Potential)
• Draw arrows on your help sheet like this:
Electron Affinity
• What does the word ‘affinity’ mean?
• Electron affinity is the energy change that
occurs when an atom gains an electron
(also measured in kJ).
• Where ionization energy is always
endothermic, electron affinity is usually
exothermic, but not always.
Electron Affinity
• Electron affinity is exothermic if there is an
empty or partially empty orbital for an
electron to occupy.
• If there are no empty spaces, a new orbital
or PEL must be created, making the process
endothermic.
• This is true for the alkaline earth metals and
the noble gases.
Electron Affinity
• Your help sheet should look like this:
+
+
Metallic Character
• This is simple a relative measure of how
easily atoms lose or give up electrons.
• Your help sheet should look like this:
Electronegativity
• Electronegativity is a measure of an atom’s
attraction for another atom’s electrons.
• It is an arbitrary scale that ranges from 0 to 4.
• The units of electronegativity are Paulings.
• Generally, metals are electron givers and have
low electronegativities.
• Nonmetals are are electron takers and have
high electronegativities.
• What about the noble gases?
Electronegativity
• Your help sheet should look like this:
0
Overall Reactivity
• This ties all the previous trends together in
one package.
• However, we must treat metals and
nonmetals separately.
• The most reactive metals are the largest
since they are the best electron givers.
• The most reactive nonmetals are the
smallest ones, the best electron takers.
Overall Reactivity
• Your help sheet will look like this:
0
The Octet Rule
• The “goal” of most atoms (except H, Li and
Be) is to have an octet or group of 8
electrons in their valence energy level.
• They may accomplish this by either giving
electrons away or taking them.
• Metals generally give electrons, nonmetals
take them from other atoms.
• Atoms that have gained or lost electrons are
called ions.
Ions
• When an atom gains an electron, it becomes
negatively charged (more electrons than
protons ) and is called an anion.
• In the same way that nonmetal atoms can
gain electrons, metal atoms can lose
electrons.
• They become positively charged cations.
Ions
• Here is a simple way to remember which is
the cation and which the anion:
This is a cat-ion.This is Ann Ion.
He’s a “plussy” cat!She’s unhappy and
negative.
+ +
Ionic Radius
• Cations are always smaller than the original
atom.
• The entire outer PEL is removed during
ionization.
• Conversely, anions are always larger than
the original atom.
• Electrons are added to the outer PEL.
Cation Formation
11p+
Na atom
1 valence electron
Valence e-
lost in ion
formation
Effective nuclear
charge on remaining
electrons increases.
Remaining e- are
pulled in closer to
the nucleus. Ionic
size decreases.
Result: a smaller
sodium cation, Na+
Anion Formation
17p+
Chlorine
atom with 7
valence e-
One e- is added
to the outer
shell.
Effective nuclear charge is
reduced and the e- cloud
expands.
A chloride ion is
produced. It is
larger than the
original atom.

Weitere ähnliche Inhalte

Was ist angesagt?

What is an ion? - Chemistry presentation
What is an ion? - Chemistry presentation What is an ion? - Chemistry presentation
What is an ion? - Chemistry presentation
Afi Alifia
 
Elements, Compounds, Mixtures
Elements, Compounds, MixturesElements, Compounds, Mixtures
Elements, Compounds, Mixtures
sYhira
 
Chemistry - Chp 4 - Atomic Structure - PowerPoint
Chemistry - Chp 4 - Atomic Structure - PowerPointChemistry - Chp 4 - Atomic Structure - PowerPoint
Chemistry - Chp 4 - Atomic Structure - PowerPoint
Mel Anthony Pepito
 
Introduction to atomic theory ppt
Introduction to atomic theory pptIntroduction to atomic theory ppt
Introduction to atomic theory ppt
Mariana Serrato
 

Was ist angesagt? (20)

types of chemical bonding
types of chemical bondingtypes of chemical bonding
types of chemical bonding
 
The Periodic Table
The Periodic Table The Periodic Table
The Periodic Table
 
Electron Configuration
Electron Configuration Electron Configuration
Electron Configuration
 
Atoms, Molecules, and Ions
Atoms, Molecules, and IonsAtoms, Molecules, and Ions
Atoms, Molecules, and Ions
 
Trends in the periodic table
Trends in the periodic tableTrends in the periodic table
Trends in the periodic table
 
Atomic structure presentation
Atomic  structure presentationAtomic  structure presentation
Atomic structure presentation
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
What is an ion? - Chemistry presentation
What is an ion? - Chemistry presentation What is an ion? - Chemistry presentation
What is an ion? - Chemistry presentation
 
Lesson 1 Intro to Chemical Bonding
Lesson 1 Intro to Chemical BondingLesson 1 Intro to Chemical Bonding
Lesson 1 Intro to Chemical Bonding
 
Electron configuration.ppt
Electron configuration.pptElectron configuration.ppt
Electron configuration.ppt
 
Elements, Compounds, Mixtures
Elements, Compounds, MixturesElements, Compounds, Mixtures
Elements, Compounds, Mixtures
 
Chemistry - Chp 4 - Atomic Structure - PowerPoint
Chemistry - Chp 4 - Atomic Structure - PowerPointChemistry - Chp 4 - Atomic Structure - PowerPoint
Chemistry - Chp 4 - Atomic Structure - PowerPoint
 
Basic Chemistry
Basic ChemistryBasic Chemistry
Basic Chemistry
 
History Of The Periodic Table Of Elements
History Of The Periodic Table Of ElementsHistory Of The Periodic Table Of Elements
History Of The Periodic Table Of Elements
 
The Structure of an Atom
The Structure of an AtomThe Structure of an Atom
The Structure of an Atom
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
Lewis Structures
Lewis StructuresLewis Structures
Lewis Structures
 
Periodic Trends
Periodic TrendsPeriodic Trends
Periodic Trends
 
Introduction to atomic theory ppt
Introduction to atomic theory pptIntroduction to atomic theory ppt
Introduction to atomic theory ppt
 
Quantum numbers shells-subshells-orbitals-electrons
Quantum numbers shells-subshells-orbitals-electronsQuantum numbers shells-subshells-orbitals-electrons
Quantum numbers shells-subshells-orbitals-electrons
 

Ähnlich wie Periodic trends

Periodic Trends Complete.ppt
Periodic Trends Complete.pptPeriodic Trends Complete.ppt
Periodic Trends Complete.ppt
themmendoza
 
The periodic table & periodic law
The periodic table & periodic lawThe periodic table & periodic law
The periodic table & periodic law
eb_kspiller
 
Chem 101 week 9 ch8
Chem 101 week 9 ch8Chem 101 week 9 ch8
Chem 101 week 9 ch8
tdean1
 
8th Grade - Chapter 16 - Atomic Structure and Chemical Bonding
8th Grade - Chapter 16 - Atomic Structure and Chemical Bonding8th Grade - Chapter 16 - Atomic Structure and Chemical Bonding
8th Grade - Chapter 16 - Atomic Structure and Chemical Bonding
mrmccann
 

Ähnlich wie Periodic trends (20)

Periodic Trends
Periodic TrendsPeriodic Trends
Periodic Trends
 
Periodic Trends Complete.ppt
Periodic Trends Complete.pptPeriodic Trends Complete.ppt
Periodic Trends Complete.ppt
 
Parts of periodic table
Parts of periodic tableParts of periodic table
Parts of periodic table
 
Periodic classification
Periodic classificationPeriodic classification
Periodic classification
 
Periodic trends
Periodic trendsPeriodic trends
Periodic trends
 
CBSE Class 9 Science Chapter 4- structure of atom
CBSE Class 9 Science Chapter 4- structure of atomCBSE Class 9 Science Chapter 4- structure of atom
CBSE Class 9 Science Chapter 4- structure of atom
 
The periodic table & periodic law
The periodic table & periodic lawThe periodic table & periodic law
The periodic table & periodic law
 
Introduction to biochemistry
Introduction to biochemistryIntroduction to biochemistry
Introduction to biochemistry
 
Chem 101 week 9 ch8
Chem 101 week 9 ch8Chem 101 week 9 ch8
Chem 101 week 9 ch8
 
Medical Physics - Atom
Medical Physics - AtomMedical Physics - Atom
Medical Physics - Atom
 
Ch. 7 Chemical Periodicity
Ch. 7 Chemical PeriodicityCh. 7 Chemical Periodicity
Ch. 7 Chemical Periodicity
 
Periodic Trends
Periodic TrendsPeriodic Trends
Periodic Trends
 
8th Grade - Chapter 16 - Atomic Structure and Chemical Bonding
8th Grade - Chapter 16 - Atomic Structure and Chemical Bonding8th Grade - Chapter 16 - Atomic Structure and Chemical Bonding
8th Grade - Chapter 16 - Atomic Structure and Chemical Bonding
 
structure of atom
structure of atomstructure of atom
structure of atom
 
structure of atom
structure of atomstructure of atom
structure of atom
 
Human Physiology Chemistry
Human Physiology ChemistryHuman Physiology Chemistry
Human Physiology Chemistry
 
ATOMS.pptx
ATOMS.pptxATOMS.pptx
ATOMS.pptx
 
Lesson 1 Atoms and molecules (2).pptx biology
Lesson 1 Atoms and molecules (2).pptx biologyLesson 1 Atoms and molecules (2).pptx biology
Lesson 1 Atoms and molecules (2).pptx biology
 
Valence electrons and lewis dot
Valence electrons and lewis dotValence electrons and lewis dot
Valence electrons and lewis dot
 
Periodic Table notes.pptx for studing fast
Periodic Table notes.pptx for studing fastPeriodic Table notes.pptx for studing fast
Periodic Table notes.pptx for studing fast
 

Mehr von suresh gdvm

Mehr von suresh gdvm (20)

Thermodynamics objective
Thermodynamics objectiveThermodynamics objective
Thermodynamics objective
 
Chemical Thermodynamics
Chemical Thermodynamics Chemical Thermodynamics
Chemical Thermodynamics
 
Thermodynamics notes
Thermodynamics notesThermodynamics notes
Thermodynamics notes
 
state of matter gases and liquids
state of matter  gases and liquidsstate of matter  gases and liquids
state of matter gases and liquids
 
Gaseous state
Gaseous stateGaseous state
Gaseous state
 
gaseous state - theory
gaseous state - theorygaseous state - theory
gaseous state - theory
 
gaseous state
gaseous stategaseous state
gaseous state
 
Chemical bonding
Chemical bondingChemical bonding
Chemical bonding
 
Bonding
BondingBonding
Bonding
 
Chapter04
Chapter04Chapter04
Chapter04
 
Chembond
ChembondChembond
Chembond
 
Chap1
Chap1Chap1
Chap1
 
01 chemical bonding-theory-final-e
01 chemical bonding-theory-final-e01 chemical bonding-theory-final-e
01 chemical bonding-theory-final-e
 
01 chemical periodicity-theory-final-e
01 chemical periodicity-theory-final-e01 chemical periodicity-theory-final-e
01 chemical periodicity-theory-final-e
 
09. classification2 (1)
09. classification2 (1)09. classification2 (1)
09. classification2 (1)
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
Chapter01
Chapter01Chapter01
Chapter01
 
01 chemical arithmatic-theory
01 chemical arithmatic-theory01 chemical arithmatic-theory
01 chemical arithmatic-theory
 
Organic reaction mechanism full
Organic reaction mechanism fullOrganic reaction mechanism full
Organic reaction mechanism full
 
Nomenclature and introduction of major functional groups
Nomenclature and introduction of major functional groupsNomenclature and introduction of major functional groups
Nomenclature and introduction of major functional groups
 

Kürzlich hochgeladen

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Kürzlich hochgeladen (20)

Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 

Periodic trends

  • 2. The Periodic Law • Dimitri Mendeleev was the first scientist to publish an organized periodic table of the known elements. • He was perpetually in trouble with the Russian government and the Russian Orthodox Church, but he was brilliant never-the-less.
  • 3. The Periodic Law • Mendeleev even went out on a limb and predicted the properties of 2 at the time undiscovered elements. • He was very accurate in his predictions, which led the world to accept his ideas about periodicity and a logical periodic table.
  • 4. The Periodic Law • Mendeleev understood the ‘Periodic Law’ which states: • When arranged by increasing atomic number, the chemical elements display a regular and repeating pattern of chemical and physical properties.
  • 5. The Periodic Law • Atoms with similar properties appear in groups or families (vertical columns) on the periodic table. • They are similar because they all have the same number of valence (outer shell) electrons, which governs their chemical behavior.
  • 6. Valence Electrons • Do you remember how to tell the number of valence electrons for elements in the s- and p-blocks? • How many valence electrons will the atoms in the d-block (transition metals) and the f- block (inner transition metals) have? • Most have 2 valence e-, some only have 1.
  • 7. A Different Type of Grouping • Besides the 4 blocks of the table, there is another way of classifying element: • Metals • Nonmetals • Metalloids or Semi-metals. • The following slide shows where each group is found.
  • 9. Metals, Nonmetals, Metalloids • There is a zig-zag or staircase line that divides the table. • Metals are on the left of the line, in blue. • Nonmetals are on the right of the line, in orange.
  • 10. Metals, Nonmetals, Metalloids • Elements that border the stair case, shown in purple are the metalloids or semi- metals. • There is one important exception. • Aluminum is more metallic than not.
  • 11. Metals, Nonmetals, Metalloids • How can you identify a metal? • What are its properties? • What about the less common nonmetals? • What are their properties? • And what the heck is a metalloid?
  • 12. Metals • Metals are lustrous (shiny), malleable, ductile, and are good conductors of heat and electricity. • They are mostly solids at room temp. • What is one exception?
  • 13. Nonmetals • Nonmetals are the opposite. • They are dull, brittle, nonconductors (insulators). • Some are solid, but many are gases, and Bromine is a liquid.
  • 14. Metalloids • Metalloids, aka semi-metals are just that. • They have characteristics of both metals and nonmetals. • They are shiny but brittle. • And they are semiconductors. • What is our most important semiconductor?
  • 15. Periodic Trends • There are several important atomic characteristics that show predictable trends that you should know. • The first and most important is atomic radius. • Radius is the distance from the center of the nucleus to the “edge” of the electron cloud.
  • 16. Atomic Radius • Since a cloud’s edge is difficult to define, scientists use define covalent radius, or half the distance between the nuclei of 2 bonded atoms. • Atomic radii are usually measured in picometers (pm) or angstroms (Å). An angstrom is 1 x 10-10 m.
  • 17. Covalent Radius • Two Br atoms bonded together are 2.86 angstroms apart. So, the radius of each atom is 1.43 Å. 2.86 Å 1.43 Å 1.43 Å
  • 18. Atomic Radius • The trend for atomic radius in a vertical column is to go from smaller at the top to larger at the bottom of the family. • Why? • With each step down the family, we add an entirely new PEL to the electron cloud, making the atoms larger with each step.
  • 19. Atomic Radius • The trend across a horizontal period is less obvious. • What happens to atomic structure as we step from left to right? • Each step adds a proton and an electron (and 1 or 2 neutrons). • Electrons are added to existing PELs or sublevels.
  • 20. Atomic Radius • The effect is that the more positive nucleus has a greater pull on the electron cloud. • The nucleus is more positive and the electron cloud is more negative. • The increased attraction pulls the cloud in, making atoms smaller as we move from left to right across a period.
  • 21. Effective Nuclear Charge • What keeps electrons from simply flying off into space? • Effective nuclear charge is the pull that an electron “feels” from the nucleus. • The closer an electron is to the nucleus, the more pull it feels. • As effective nuclear charge increases, the electron cloud is pulled in tighter.
  • 22. Atomic Radius • The overall trend in atomic radius looks like this.
  • 23. Atomic Radius • Here is an animation to explain the trend. • On your help sheet, draw arrows like this:
  • 24. Shielding • As more PELs are added to atoms, the inner layers of electrons shield the outer electrons from the nucleus. • The effective nuclear charge (enc) on those outer electrons is less, and so the outer electrons are less tightly held.
  • 25. Ionization Energy • This is the second important periodic trend. • If an electron is given enough energy (in the form of a photon) to overcome the effective nuclear charge holding the electron in the cloud, it can leave the atom completely. • The atom has been “ionized” or charged. • The number of protons and electrons is no longer equal.
  • 26. Ionization Energy • The energy required to remove an electron from an atom is ionization energy. (measured in kilojoules, kJ) • The larger the atom is, the easier its electrons are to remove. • Ionization energy and atomic radius are inversely proportional. • Ionization energy is always endothermic, that is energy is added to the atom to remove the electron.
  • 28. Ionization Energy (Potential) • Draw arrows on your help sheet like this:
  • 29. Electron Affinity • What does the word ‘affinity’ mean? • Electron affinity is the energy change that occurs when an atom gains an electron (also measured in kJ). • Where ionization energy is always endothermic, electron affinity is usually exothermic, but not always.
  • 30. Electron Affinity • Electron affinity is exothermic if there is an empty or partially empty orbital for an electron to occupy. • If there are no empty spaces, a new orbital or PEL must be created, making the process endothermic. • This is true for the alkaline earth metals and the noble gases.
  • 31. Electron Affinity • Your help sheet should look like this: + +
  • 32. Metallic Character • This is simple a relative measure of how easily atoms lose or give up electrons. • Your help sheet should look like this:
  • 33. Electronegativity • Electronegativity is a measure of an atom’s attraction for another atom’s electrons. • It is an arbitrary scale that ranges from 0 to 4. • The units of electronegativity are Paulings. • Generally, metals are electron givers and have low electronegativities. • Nonmetals are are electron takers and have high electronegativities. • What about the noble gases?
  • 34. Electronegativity • Your help sheet should look like this: 0
  • 35. Overall Reactivity • This ties all the previous trends together in one package. • However, we must treat metals and nonmetals separately. • The most reactive metals are the largest since they are the best electron givers. • The most reactive nonmetals are the smallest ones, the best electron takers.
  • 36. Overall Reactivity • Your help sheet will look like this: 0
  • 37. The Octet Rule • The “goal” of most atoms (except H, Li and Be) is to have an octet or group of 8 electrons in their valence energy level. • They may accomplish this by either giving electrons away or taking them. • Metals generally give electrons, nonmetals take them from other atoms. • Atoms that have gained or lost electrons are called ions.
  • 38. Ions • When an atom gains an electron, it becomes negatively charged (more electrons than protons ) and is called an anion. • In the same way that nonmetal atoms can gain electrons, metal atoms can lose electrons. • They become positively charged cations.
  • 39. Ions • Here is a simple way to remember which is the cation and which the anion: This is a cat-ion.This is Ann Ion. He’s a “plussy” cat!She’s unhappy and negative. + +
  • 40. Ionic Radius • Cations are always smaller than the original atom. • The entire outer PEL is removed during ionization. • Conversely, anions are always larger than the original atom. • Electrons are added to the outer PEL.
  • 41. Cation Formation 11p+ Na atom 1 valence electron Valence e- lost in ion formation Effective nuclear charge on remaining electrons increases. Remaining e- are pulled in closer to the nucleus. Ionic size decreases. Result: a smaller sodium cation, Na+
  • 42. Anion Formation 17p+ Chlorine atom with 7 valence e- One e- is added to the outer shell. Effective nuclear charge is reduced and the e- cloud expands. A chloride ion is produced. It is larger than the original atom.