SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Downloaden Sie, um offline zu lesen
Fourier’s Law
and the
Heat Equation
Chapter Two
Recap Chapter 1:
• Conduction heat transfer is governed by Fourier’s law.
• Determination of heat flux depends variation of temperature within the medium.
• One-dimensional, steady state conduction in a plane wall.
Chapter 2:
Objectives
• Application of Fourier’s law in different geometrical objects.
• Develop heat equation that gives temperature distribution.
Fourier’s Law
• A rate equation that allows determination of the conduction heat flux
from knowledge of the temperature distribution in a medium
Fourier’s Law
• Its most general (vector) form for multidimensional conduction is:
q k T

   
Implications:
– Heat transfer is in the direction of decreasing temperature
(basis for minus sign).
– Direction of heat transfer is perpendicular to lines of constant
temperature (isotherms).
– Heat flux vector may be resolved into orthogonal components.
– Fourier’s Law serves to define the thermal conductivity of the
medium /k q T
 
   
 
4
GENERAL HEAT CONDUCTION
EQUATION
Some comments and points to remember:
• Temperature is a scalar, it only has magnitude
• Heat transfer is a vector quantity, is has magnitude and
direction
• Generally accepted that heat transfer is positive in the
positive direction of the coordinate system used.
• ΔT is the driving force for heat transfer
• In some problems, it is the determination of this ΔT that is
required. This ΔT may vary with spatial location
• Need to first specify which coordinate system is to be used
to specify a location in space or in a medium.
Can use:
Rectangular / Cartesian (x, y, z)
Cylindrical (r,φ,z)
Spherical (r,φ,θ) (φ - azimuthal; θ – zenith)
5
x= r cos φ, y= r sin φ,
z = z
x= r cosφ sinθ ; y = r sinφ sinθ;
z = r cos θ
x, y, z
Rectangular coordinates
(box, room)
Cylindrical coordinates
(pipe)
Spherical coordinates
(container, tank)
Heat Equation
The Heat Equation
• A differential equation whose solution provides the temperature distribution in a
stationary medium.
• Based on applying conservation of energy to a differential control volume
through which energy transfer is exclusively by conduction.
• Cartesian Coordinates:
Net transfer of thermal energy into the
control volume (inflow-outflow)
p
T T T T
k k k q c
x x y y z z t

          
                 
(2.19)
Thermal energy
generation
Change in thermal
energy storage
7
qy
qx
qy+dy
qz
qx+dx
qz+dz
x
y
z
 
t
T
dxdydzc
q
q
q
dxdydzq
q
q
q
dzz
dyy
dxx
z
y
x











































)(0

heat in int generation heat out accumulation
8
 
t
T
dxdydzc
q
q
q
dxdydzq
q
q
q
dzz
dyy
dxx
z
y
x











































)(0

 
x
T
dydzkqx


 dx
x
q
qq x
xdxx



 
y
T
dxdzkqy


 dy
y
q
qq
y
ydyy



 
z
T
dxdykqz


 dz
z
q
qq z
zdzz



heat in int generation accumulation
The terms are defined as follows
heat out
9
t
T
cq
z
T
k
zy
T
k
yx
T
k
x 































0

t
T
k
q
z
T
y
T
x
T












10
2
2
2
2
2
2

t
T
k
q
T




102 
2
2
2
2
2
2
2
zyx 








c
k

 
Upon substitution
General heat conduction equation
The Fourier-Biot equation (THE EQUATION
GENERALLY USED)
is the Laplacian operator; is the thermal diffusivity
For isotropic materials (k is constant in all directions)
or
10
Special Cases of the Fourier-Biot equation
00
2
2
2
2
2
2









k
q
z
T
y
T
x
T 
02
2
2
2
2
2









z
T
y
T
x
T
t
T
z
T
y
T
x
T












1
2
2
2
2
2
2
(1) Steady state (Poisson Equation)
Steady Heat Conduction in Plane Walls
There is no heat transfer where there is no change in temperature.
Energy Balance for the Plane Wall
(2) Steady state and no heat generation or sink (Laplace Equation)
(3) Transient (time varying) with no heat generation or sink (Diffusion Equation)
• In the above k is assumed to be constant.
• If k varies with temperature, then k cannot be moved in the equations.
11
Conditions for special cases:
0


t
T
0





zy
00 q
0



0


z
0






a) steady state
b) one- dimensional heat flow
c) no internal generation
d) axi-symmetric problems
e) long cylinder
f) radial heat transfer (spherical)
Heat Equation (Radial Systems)
2
1 1
p
T T T T
kr k k q c
r r r z z tr

 
          
                 
(2.26)
• Spherical Coordinates:
• Cylindrical Coordinates:
2
2 2 2 2
1 1 1
sin
sin sin
p
T T T T
kr k k q c
r r tr r r
 
    
          
                 
(2.29)
Heat Equation (Special Case)
• One-Dimensional Conduction in a Planar Medium with Constant Properties
and No Generation
2
2
1T T
tx 
 


2
thermal diffusivit of the medium m /sy
p
k
c


  
 
p
T T
k c
x x t

   
 
   
becomes
Boundary Conditions
Boundary and Initial Conditions
• For transient conduction, heat equation is first order in time, requiring
specification of an initial temperature distribution:    0
0t=
T x,t =T x,
• Since heat equation is second order in space, two boundary conditions
must be specified. Some common cases:
Constant Surface Temperature:
 0 sT ,t =T
Constant Heat Flux:
0x= s
T
-k | = q
x



Applied Flux Insulated Surface
0 0x=
T
| =
x


Convection:
 0 0x=
T
-k | = h T -T ,t
x


  
Example 2.1
Example 2.2
Example 2.3
Example 2.4
Example 2.5
Example 2.6

Weitere ähnliche Inhalte

Was ist angesagt?

Steady flow energy eq....by Bilal Ashraf
Steady flow energy eq....by Bilal AshrafSteady flow energy eq....by Bilal Ashraf
Steady flow energy eq....by Bilal Ashraf
Bilal Ashraf
 

Was ist angesagt? (20)

FORCED CIRCULATION EVAPORATOR.pptx
FORCED CIRCULATION EVAPORATOR.pptxFORCED CIRCULATION EVAPORATOR.pptx
FORCED CIRCULATION EVAPORATOR.pptx
 
Fluid flow by ankita yagnik
Fluid flow by ankita yagnikFluid flow by ankita yagnik
Fluid flow by ankita yagnik
 
Pharmaceutical engineering: Heat transfer
Pharmaceutical engineering: Heat transferPharmaceutical engineering: Heat transfer
Pharmaceutical engineering: Heat transfer
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Transport phenomena
Transport phenomenaTransport phenomena
Transport phenomena
 
Heat exchanger
Heat exchanger Heat exchanger
Heat exchanger
 
The phase rule
The phase ruleThe phase rule
The phase rule
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Overal Heat Transfer Coefficient
Overal Heat Transfer CoefficientOveral Heat Transfer Coefficient
Overal Heat Transfer Coefficient
 
Simple and fractional distillation
Simple and fractional distillationSimple and fractional distillation
Simple and fractional distillation
 
Heat transfer chapter one and two
Heat transfer chapter one and twoHeat transfer chapter one and two
Heat transfer chapter one and two
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Heat transfer by convection
Heat transfer by convectionHeat transfer by convection
Heat transfer by convection
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Evaporators
EvaporatorsEvaporators
Evaporators
 
simple and differential manometers
simple and differential manometerssimple and differential manometers
simple and differential manometers
 
Pharmaceutical engineering: Distillation
Pharmaceutical engineering: DistillationPharmaceutical engineering: Distillation
Pharmaceutical engineering: Distillation
 
size reduction,laws involved in size reduction ,application & mills
 size reduction,laws involved in size reduction ,application & mills size reduction,laws involved in size reduction ,application & mills
size reduction,laws involved in size reduction ,application & mills
 
Steady flow energy eq....by Bilal Ashraf
Steady flow energy eq....by Bilal AshrafSteady flow energy eq....by Bilal Ashraf
Steady flow energy eq....by Bilal Ashraf
 
Heat Exchangers
Heat ExchangersHeat Exchangers
Heat Exchangers
 

Ähnlich wie L2 fourier's law and the heat equation

Latif M. Jiji (auth.) - Solutions Manual for Heat Conduction (Chap1-2-3) (200...
Latif M. Jiji (auth.) - Solutions Manual for Heat Conduction (Chap1-2-3) (200...Latif M. Jiji (auth.) - Solutions Manual for Heat Conduction (Chap1-2-3) (200...
Latif M. Jiji (auth.) - Solutions Manual for Heat Conduction (Chap1-2-3) (200...
ezedin4
 
Conduction equation cartesian, Cylindrical, spherical (7).pptx
Conduction equation  cartesian, Cylindrical, spherical (7).pptxConduction equation  cartesian, Cylindrical, spherical (7).pptx
Conduction equation cartesian, Cylindrical, spherical (7).pptx
YaredAssefa10
 

Ähnlich wie L2 fourier's law and the heat equation (20)

2. Conduction Equations
2. Conduction Equations2. Conduction Equations
2. Conduction Equations
 
heat conduction equations
heat conduction equationsheat conduction equations
heat conduction equations
 
Lecture Week # 2.pdf
Lecture Week # 2.pdfLecture Week # 2.pdf
Lecture Week # 2.pdf
 
heat.ppt
heat.pptheat.ppt
heat.ppt
 
Heat analysis finite element method two Dimensional
Heat analysis finite element method two DimensionalHeat analysis finite element method two Dimensional
Heat analysis finite element method two Dimensional
 
HT3_Unsteady State Heat Transfer_f.pptx
HT3_Unsteady State Heat Transfer_f.pptxHT3_Unsteady State Heat Transfer_f.pptx
HT3_Unsteady State Heat Transfer_f.pptx
 
convection-1.ppt
convection-1.pptconvection-1.ppt
convection-1.ppt
 
Latif M. Jiji (auth.) - Solutions Manual for Heat Conduction (Chap1-2-3) (200...
Latif M. Jiji (auth.) - Solutions Manual for Heat Conduction (Chap1-2-3) (200...Latif M. Jiji (auth.) - Solutions Manual for Heat Conduction (Chap1-2-3) (200...
Latif M. Jiji (auth.) - Solutions Manual for Heat Conduction (Chap1-2-3) (200...
 
Tutorial#2.pptx
Tutorial#2.pptxTutorial#2.pptx
Tutorial#2.pptx
 
mel242-8.ppt
mel242-8.pptmel242-8.ppt
mel242-8.ppt
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Tutorial.pptx
Tutorial.pptxTutorial.pptx
Tutorial.pptx
 
Heat Conduction with thermal heat generation.pptx
Heat Conduction with thermal heat generation.pptxHeat Conduction with thermal heat generation.pptx
Heat Conduction with thermal heat generation.pptx
 
Conduction equation cartesian, Cylindrical, spherical (7).pptx
Conduction equation  cartesian, Cylindrical, spherical (7).pptxConduction equation  cartesian, Cylindrical, spherical (7).pptx
Conduction equation cartesian, Cylindrical, spherical (7).pptx
 
Chapter 2 HEAT CONDUCTION EQUATION
Chapter 2HEAT CONDUCTION EQUATIONChapter 2HEAT CONDUCTION EQUATION
Chapter 2 HEAT CONDUCTION EQUATION
 
Aaallleeetttaas
AaallleeetttaasAaallleeetttaas
Aaallleeetttaas
 
Thermodynamic, part 1
Thermodynamic, part 1Thermodynamic, part 1
Thermodynamic, part 1
 
Mel242 6
Mel242 6Mel242 6
Mel242 6
 
bahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .pptbahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .ppt
 
Ch 2 - Steady state 1-D, Heat conduction.pdf
Ch 2 - Steady state 1-D, Heat conduction.pdfCh 2 - Steady state 1-D, Heat conduction.pdf
Ch 2 - Steady state 1-D, Heat conduction.pdf
 

Kürzlich hochgeladen

Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 

Kürzlich hochgeladen (20)

A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 

L2 fourier's law and the heat equation

  • 1. Fourier’s Law and the Heat Equation Chapter Two
  • 2. Recap Chapter 1: • Conduction heat transfer is governed by Fourier’s law. • Determination of heat flux depends variation of temperature within the medium. • One-dimensional, steady state conduction in a plane wall. Chapter 2: Objectives • Application of Fourier’s law in different geometrical objects. • Develop heat equation that gives temperature distribution.
  • 3. Fourier’s Law • A rate equation that allows determination of the conduction heat flux from knowledge of the temperature distribution in a medium Fourier’s Law • Its most general (vector) form for multidimensional conduction is: q k T      Implications: – Heat transfer is in the direction of decreasing temperature (basis for minus sign). – Direction of heat transfer is perpendicular to lines of constant temperature (isotherms). – Heat flux vector may be resolved into orthogonal components. – Fourier’s Law serves to define the thermal conductivity of the medium /k q T        
  • 4. 4 GENERAL HEAT CONDUCTION EQUATION Some comments and points to remember: • Temperature is a scalar, it only has magnitude • Heat transfer is a vector quantity, is has magnitude and direction • Generally accepted that heat transfer is positive in the positive direction of the coordinate system used. • ΔT is the driving force for heat transfer • In some problems, it is the determination of this ΔT that is required. This ΔT may vary with spatial location • Need to first specify which coordinate system is to be used to specify a location in space or in a medium. Can use: Rectangular / Cartesian (x, y, z) Cylindrical (r,φ,z) Spherical (r,φ,θ) (φ - azimuthal; θ – zenith)
  • 5. 5 x= r cos φ, y= r sin φ, z = z x= r cosφ sinθ ; y = r sinφ sinθ; z = r cos θ x, y, z Rectangular coordinates (box, room) Cylindrical coordinates (pipe) Spherical coordinates (container, tank)
  • 6. Heat Equation The Heat Equation • A differential equation whose solution provides the temperature distribution in a stationary medium. • Based on applying conservation of energy to a differential control volume through which energy transfer is exclusively by conduction. • Cartesian Coordinates: Net transfer of thermal energy into the control volume (inflow-outflow) p T T T T k k k q c x x y y z z t                               (2.19) Thermal energy generation Change in thermal energy storage
  • 8. 8   t T dxdydzc q q q dxdydzq q q q dzz dyy dxx z y x                                            )(0    x T dydzkqx    dx x q qq x xdxx      y T dxdzkqy    dy y q qq y ydyy      z T dxdykqz    dz z q qq z zdzz    heat in int generation accumulation The terms are defined as follows heat out
  • 9. 9 t T cq z T k zy T k yx T k x                                 0  t T k q z T y T x T             10 2 2 2 2 2 2  t T k q T     102  2 2 2 2 2 2 2 zyx          c k    Upon substitution General heat conduction equation The Fourier-Biot equation (THE EQUATION GENERALLY USED) is the Laplacian operator; is the thermal diffusivity For isotropic materials (k is constant in all directions) or
  • 10. 10 Special Cases of the Fourier-Biot equation 00 2 2 2 2 2 2          k q z T y T x T  02 2 2 2 2 2          z T y T x T t T z T y T x T             1 2 2 2 2 2 2 (1) Steady state (Poisson Equation) Steady Heat Conduction in Plane Walls There is no heat transfer where there is no change in temperature. Energy Balance for the Plane Wall (2) Steady state and no heat generation or sink (Laplace Equation) (3) Transient (time varying) with no heat generation or sink (Diffusion Equation) • In the above k is assumed to be constant. • If k varies with temperature, then k cannot be moved in the equations.
  • 11. 11 Conditions for special cases: 0   t T 0      zy 00 q 0    0   z 0       a) steady state b) one- dimensional heat flow c) no internal generation d) axi-symmetric problems e) long cylinder f) radial heat transfer (spherical)
  • 12. Heat Equation (Radial Systems) 2 1 1 p T T T T kr k k q c r r r z z tr                                 (2.26) • Spherical Coordinates: • Cylindrical Coordinates: 2 2 2 2 2 1 1 1 sin sin sin p T T T T kr k k q c r r tr r r                                     (2.29)
  • 13. Heat Equation (Special Case) • One-Dimensional Conduction in a Planar Medium with Constant Properties and No Generation 2 2 1T T tx      2 thermal diffusivit of the medium m /sy p k c        p T T k c x x t            becomes
  • 14. Boundary Conditions Boundary and Initial Conditions • For transient conduction, heat equation is first order in time, requiring specification of an initial temperature distribution:    0 0t= T x,t =T x, • Since heat equation is second order in space, two boundary conditions must be specified. Some common cases: Constant Surface Temperature:  0 sT ,t =T Constant Heat Flux: 0x= s T -k | = q x    Applied Flux Insulated Surface 0 0x= T | = x   Convection:  0 0x= T -k | = h T -T ,t x     
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.