SlideShare ist ein Scribd-Unternehmen logo
1 von 30
Association Rule Mining
• Given a set of transactions, find rules that will predict the occurrence
of an item based on the occurrences of other items in the transaction
Market-Basket transactions
TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke
Example of Association Rules
{Diaper}  {Beer},
{Milk, Bread}  {Eggs,Coke},
{Beer, Bread}  {Milk},
Definition: Frequent Itemset
• Itemset
– A collection of one or more items
• Example: {Milk, Bread, Diaper}
– k-itemset
• An itemset that contains k items
• Support count ()
– Frequency of occurrence of an itemset
– E.g. ({Milk, Bread,Diaper}) = 2
• Support
– Fraction of transactions that contain an itemset
– E.g. s({Milk, Bread, Diaper}) = 2/5
• Frequent Itemset
– An itemset whose support is greater than or
equal to a minsup threshold
TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke
Definition: Association Rule
Example:
Beer}Diaper,Milk{ 
4.0
5
2
|T|
)BeerDiaper,,Milk(


s
67.0
3
2
)Diaper,Milk(
)BeerDiaper,Milk,(



c
 Association Rule
– An implication expression of the form X 
Y, where X and Y are itemsets
– Example:
{Milk, Diaper}  {Beer}
 Rule Evaluation Metrics
– Support (s)
 Fraction of transactions that contain both
X and Y
– Confidence (c)
 Measures how often items in Y
appear in transactions that
contain X
TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke
Association Rule Mining Task
• Given a set of transactions T, the goal of association
rule mining is to find all rules having
– support ≥ minsup threshold
– confidence ≥ minconf threshold
• Brute-force approach:
– List all possible association rules
– Compute the support and confidence for each rule
– Prune rules that fail the minsup and minconf thresholds
 Computationally prohibitive!
Mining Association Rules
Example of Rules:
{Milk,Diaper}  {Beer} (s=0.4, c=0.67)
{Milk,Beer}  {Diaper} (s=0.4, c=1.0)
{Diaper,Beer}  {Milk} (s=0.4, c=0.67)
{Beer}  {Milk,Diaper} (s=0.4, c=0.67)
{Diaper}  {Milk,Beer} (s=0.4, c=0.5)
{Milk}  {Diaper,Beer} (s=0.4, c=0.5)
TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke
Observations:
• All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}
• Rules originating from the same itemset have identical support but
can have different confidence
• Thus, we may decouple the support and confidence requirements
Mining Association Rules
• Two-step approach:
1. Frequent Itemset Generation
– Generate all itemsets whose support  minsup
2. Rule Generation
– Generate high confidence rules from each frequent itemset,
where each rule is a binary partitioning of a frequent itemset
• Frequent itemset generation is still computationally
expensive
Frequent Itemset Generation
null
AB AC AD AE BC BD BE CD CE DE
A B C D E
ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE
ABCD ABCE ABDE ACDE BCDE
ABCDE
Given d items, there are
2d possible candidate
itemsets
Frequent Itemset Generation
• Brute-force approach:
– Each itemset in the lattice is a candidate frequent itemset
– Count the support of each candidate by scanning the database
– Match each transaction against every candidate
– Complexity ~ O(NMw) => Expensive since M = 2d !!!
TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke
N
Transactions List of
Candidates
M
w
Computational Complexity
• Given d unique items:
– Total number of itemsets = 2d
– Total number of possible association rules:
123 1
1
1 1












 












 
dd
d
k
kd
j
j
kd
k
d
R
If d=6, R = 602 rules
Frequent Itemset Generation Strategies
• Reduce the number of candidates (M)
– Complete search: M=2d
– Use pruning techniques to reduce M
• Reduce the number of transactions (N)
– Reduce size of N as the size of itemset increases
– Used by DHP and vertical-based mining algorithms
• Reduce the number of comparisons (NM)
– Use efficient data structures to store the candidates or
transactions
– No need to match every candidate against every
transaction
Monotonicity Property
• A measure s (support) is monotone (or upward closed) if
• which means that if X is a subset of Y, then s(X) must not exceed s(Y).
On the other hand, s is anti-monotone (or downward closed) if
• which means that if X is a subset of Y, then s(Y) must not exceed s(X).
• Any measure that posses an anti-monotone property can be
incorporated directly into the mining algorithm to effectively prune the
exponential search space of candidate itemsets.
11
)()()(:, YsXsYXYX 
)()()(:, YsXsYXYX 
Reducing Number of Candidates
• Apriori principle:
– If an itemset is frequent, then all of its subsets must also be
frequent
– Support of an itemset never exceeds the support of its
subsets
– This is known as the anti-monotone property of support
Illustrating Apriori Principle
13
Illustrating Apriori Principle
14
Illustrating Apriori Principle
Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1
Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3
Itemset Count
{Bread,Milk,Diaper} 3
Items (1-itemsets)
Pairs (2-itemsets)
(No need to generate
candidates involving Coke
or Eggs)
Triplets (3-itemsets)
Minimum Support = 3
If every subset is considered,
6C1 + 6C2 + 6C3 = 41
With support-based pruning,
6 + 6 + 1 = 13
Apriori Algorithm
• Method:
– Let k=1
– Generate frequent itemsets of length 1
– Repeat until no new frequent itemsets are identified
• Generate length (k+1) candidate itemsets from length k
frequent itemsets
• Prune candidate itemsets containing subsets of length k that
are infrequent
• Count the support of each candidate by scanning the DB
• Eliminate candidates that are infrequent, leaving only those
that are frequent
Apriori Algorithm – Example 2
• Consider the following transaction database:
• min_sup=2
Apriori Algorithm – Example 2 – Iteration 1
• In the first iteration of the algorithm, each item is a
member of the set of candidate 1-itemsets, C1. The
algorithm simply scans all of the transactions to count
the number of occurrences of each item.
Apriori Algorithm – Example 2 – Iteration 2
• To discover the set of frequent 2-itemsets, L2, the
algorithm uses the join L1 L1 to generate a candidate
set of 2-itemsets, C2.
• C2 consists of
|𝐿1|
2
2-itemsets.
Apriori Algorithm – Example 2 – Iteration 3
• The generation of the set of the candidate 3-itemsets,
C3.
Apriori Algorithm – Example 2 – Iteration 4
• The algorithm uses L3 L3 to generate a candidate set
of 4-itemsets, C4.
• Although the join results in {{I1, I2, I3, I5}}, itemset {I1,
I2, I3, I5} is pruned because its subset {I2, I3, I5} is not
frequent.
• Thus, C4 = φ, and the algorithm terminates, having
found all of the frequent itemsets.
Reducing Number of Comparisons
• Candidate counting:
– Scan the database of transactions to determine the support
of each candidate itemset
– To reduce the number of comparisons, store the candidates
in a hash structure
• Instead of matching each transaction against every candidate,
match it against candidates contained in the hashed buckets
TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke
N
Transactions Hash Structure
k
Buckets
Generate Hash Tree
2 3 4
5 6 7
1 4 5
1 3 6
1 2 4
4 5 7 1 2 5
4 5 8
1 5 9
3 4 5 3 5 6
3 5 7
6 8 9
3 6 7
3 6 8
1,4,7
2,5,8
3,6,9
Hash function
Suppose you have 15 candidate itemsets of length 3:
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5
7}, {6 8 9}, {3 6 7}, {3 6 8}
You need:
• Hash function
• Max leaf size: max number of itemsets stored in a leaf node (if number of candidate
itemsets exceeds max leaf size, split the node)
Association Rule Discovery: Hash tree
1 5 9
1 4 5 1 3 6
3 4 5 3 6 7
3 6 8
3 5 6
3 5 7
6 8 9
2 3 4
5 6 7
1 2 4
4 5 7
1 2 5
4 5 8
1,4,7
2,5,8
3,6,9
Hash Function Candidate Hash Tree
Hash on
1, 4 or 7
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4
{1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3
{6 8 9}, {3 6 7}, {3 6 8}
Association Rule Discovery: Hash tree
1 5 9
1 4 5 1 3 6
3 4 5 3 6 7
3 6 8
3 5 6
3 5 7
6 8 9
2 3 4
5 6 7
1 2 4
4 5 7
1 2 5
4 5 8
1,4,7
2,5,8
3,6,9
Hash Function Candidate Hash Tree
Hash on
2, 5 or 8
Association Rule Discovery: Hash tree
1 5 9
1 4 5 1 3 6
3 4 5 3 6 7
3 6 8
3 5 6
3 5 7
6 8 9
2 3 4
5 6 7
1 2 4
4 5 7
1 2 5
4 5 8
1,4,7
2,5,8
3,6,9
Hash Function Candidate Hash Tree
Hash on
3, 6 or 9
Subset Operation
1 2 3 5 6
Transaction, t
2 3 5 61 3 5 62
5 61 33 5 61 2 61 5 5 62 3 62 5
5 63
1 2 3
1 2 5
1 2 6
1 3 5
1 3 6
1 5 6
2 3 5
2 3 6
2 5 6 3 5 6
Subsets of 3 items
Level 1
Level 2
Level 3
63 5
Given a transaction t, what are
the possible subsets of size 3?
Subset Operation Using Hash Tree
1 5 9
1 4 5 1 3 6
3 4 5 3 6 7
3 6 8
3 5 6
3 5 7
6 8 9
2 3 4
5 6 7
1 2 4
4 5 7
1 2 5
4 5 8
1 2 3 5 6
1 + 2 3 5 6
3 5 62 +
5 63 +
1,4,7
2,5,8
3,6,9
Hash Functiontransaction
Subset Operation Using Hash Tree
1 5 9
1 4 5 1 3 6
3 4 5 3 6 7
3 6 8
3 5 6
3 5 7
6 8 9
2 3 4
5 6 7
1 2 4
4 5 7
1 2 5
4 5 8
1,4,7
2,5,8
3,6,9
Hash Function
1 2 3 5 6
3 5 61 2 +
5 61 3 +
61 5 +
3 5 62 +
5 63 +
1 + 2 3 5 6
transaction
Subset Operation Using Hash Tree
1 5 9
1 4 5 1 3 6
3 4 5 3 6 7
3 6 8
3 5 6
3 5 7
6 8 9
2 3 4
5 6 7
1 2 4
4 5 7
1 2 5
4 5 8
1,4,7
2,5,8
3,6,9
Hash Function
1 2 3 5 6
3 5 61 2 +
5 61 3 +
61 5 +
3 5 62 +
5 63 +
1 + 2 3 5 6
transaction
Match transaction against 11 out of 15 candidates

Weitere ähnliche Inhalte

Was ist angesagt?

What is Apriori Algorithm | Edureka
What is Apriori Algorithm | EdurekaWhat is Apriori Algorithm | Edureka
What is Apriori Algorithm | EdurekaEdureka!
 
Rules of data mining
Rules of data miningRules of data mining
Rules of data miningSulman Ahmed
 
Association rule mining.pptx
Association rule mining.pptxAssociation rule mining.pptx
Association rule mining.pptxmaha797959
 
Association in Frequent Pattern Mining
Association in Frequent Pattern MiningAssociation in Frequent Pattern Mining
Association in Frequent Pattern MiningShreeaBose
 
Apriori and Eclat algorithm in Association Rule Mining
Apriori and Eclat algorithm in Association Rule MiningApriori and Eclat algorithm in Association Rule Mining
Apriori and Eclat algorithm in Association Rule MiningWan Aezwani Wab
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsDrishti Bhalla
 
3.2 partitioning methods
3.2 partitioning methods3.2 partitioning methods
3.2 partitioning methodsKrish_ver2
 
Data mining techniques unit III
Data mining techniques unit IIIData mining techniques unit III
Data mining techniques unit IIImalathieswaran29
 
Decision Tree and Bayesian Classification
Decision Tree and Bayesian ClassificationDecision Tree and Bayesian Classification
Decision Tree and Bayesian ClassificationKomal Kotak
 
Mining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and CorrelationsMining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and CorrelationsJustin Cletus
 
Decision Tree - C4.5&CART
Decision Tree - C4.5&CARTDecision Tree - C4.5&CART
Decision Tree - C4.5&CARTXueping Peng
 

Was ist angesagt? (20)

What is Apriori Algorithm | Edureka
What is Apriori Algorithm | EdurekaWhat is Apriori Algorithm | Edureka
What is Apriori Algorithm | Edureka
 
Rules of data mining
Rules of data miningRules of data mining
Rules of data mining
 
Association rule mining.pptx
Association rule mining.pptxAssociation rule mining.pptx
Association rule mining.pptx
 
Assosiate rule mining
Assosiate rule miningAssosiate rule mining
Assosiate rule mining
 
Association in Frequent Pattern Mining
Association in Frequent Pattern MiningAssociation in Frequent Pattern Mining
Association in Frequent Pattern Mining
 
Apriori algorithm
Apriori algorithmApriori algorithm
Apriori algorithm
 
Lecture13 - Association Rules
Lecture13 - Association RulesLecture13 - Association Rules
Lecture13 - Association Rules
 
Apriori and Eclat algorithm in Association Rule Mining
Apriori and Eclat algorithm in Association Rule MiningApriori and Eclat algorithm in Association Rule Mining
Apriori and Eclat algorithm in Association Rule Mining
 
Apriori algorithm
Apriori algorithmApriori algorithm
Apriori algorithm
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of Algorithms
 
3.2 partitioning methods
3.2 partitioning methods3.2 partitioning methods
3.2 partitioning methods
 
Association rules apriori algorithm
Association rules   apriori algorithmAssociation rules   apriori algorithm
Association rules apriori algorithm
 
Apriori algorithm
Apriori algorithmApriori algorithm
Apriori algorithm
 
Data mining techniques unit III
Data mining techniques unit IIIData mining techniques unit III
Data mining techniques unit III
 
Bayesian networks
Bayesian networksBayesian networks
Bayesian networks
 
Dynamic Itemset Counting
Dynamic Itemset CountingDynamic Itemset Counting
Dynamic Itemset Counting
 
3. mining frequent patterns
3. mining frequent patterns3. mining frequent patterns
3. mining frequent patterns
 
Decision Tree and Bayesian Classification
Decision Tree and Bayesian ClassificationDecision Tree and Bayesian Classification
Decision Tree and Bayesian Classification
 
Mining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and CorrelationsMining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and Correlations
 
Decision Tree - C4.5&CART
Decision Tree - C4.5&CARTDecision Tree - C4.5&CART
Decision Tree - C4.5&CART
 

Ähnlich wie Association Rule Mining: Frequent Itemset Generation

DM -Unit 2-PPT.ppt
DM -Unit 2-PPT.pptDM -Unit 2-PPT.ppt
DM -Unit 2-PPT.pptraju980973
 
The comparative study of apriori and FP-growth algorithm
The comparative study of apriori and FP-growth algorithmThe comparative study of apriori and FP-growth algorithm
The comparative study of apriori and FP-growth algorithmdeepti92pawar
 
Mining Frequent Patterns And Association Rules
Mining Frequent Patterns And Association RulesMining Frequent Patterns And Association Rules
Mining Frequent Patterns And Association RulesRashmi Bhat
 
chap6_basic_association_analysis.ppt
chap6_basic_association_analysis.pptchap6_basic_association_analysis.ppt
chap6_basic_association_analysis.pptPinkuBorah4
 
AssociationRule.pdf
AssociationRule.pdfAssociationRule.pdf
AssociationRule.pdfWailaBaba
 
Chapter 6. Mining Frequent Patterns, Associations and Correlations Basic Conc...
Chapter 6. Mining Frequent Patterns, Associations and Correlations Basic Conc...Chapter 6. Mining Frequent Patterns, Associations and Correlations Basic Conc...
Chapter 6. Mining Frequent Patterns, Associations and Correlations Basic Conc...Subrata Kumer Paul
 
Apriori Algorithm.pptx
Apriori Algorithm.pptxApriori Algorithm.pptx
Apriori Algorithm.pptxRashi Agarwal
 
Association Rule Mining
Association Rule MiningAssociation Rule Mining
Association Rule MiningPALLAB DAS
 
Chapter 01 Introduction DM.pptx
Chapter 01 Introduction DM.pptxChapter 01 Introduction DM.pptx
Chapter 01 Introduction DM.pptxssuser957b41
 
Association Analysis in Data Mining
Association Analysis in Data MiningAssociation Analysis in Data Mining
Association Analysis in Data MiningKamal Acharya
 
Association Rule Mining in Data Mining.pptx
Association Rule Mining in Data Mining.pptxAssociation Rule Mining in Data Mining.pptx
Association Rule Mining in Data Mining.pptxlahiruherath654
 
Data Mining: Concepts and Techniques_ Chapter 6: Mining Frequent Patterns, ...
Data Mining:  Concepts and Techniques_ Chapter 6: Mining Frequent Patterns, ...Data Mining:  Concepts and Techniques_ Chapter 6: Mining Frequent Patterns, ...
Data Mining: Concepts and Techniques_ Chapter 6: Mining Frequent Patterns, ...Salah Amean
 
Association 04.03.14
Association   04.03.14Association   04.03.14
Association 04.03.14rahulmath80
 

Ähnlich wie Association Rule Mining: Frequent Itemset Generation (20)

DM -Unit 2-PPT.ppt
DM -Unit 2-PPT.pptDM -Unit 2-PPT.ppt
DM -Unit 2-PPT.ppt
 
The comparative study of apriori and FP-growth algorithm
The comparative study of apriori and FP-growth algorithmThe comparative study of apriori and FP-growth algorithm
The comparative study of apriori and FP-growth algorithm
 
Mining Frequent Patterns And Association Rules
Mining Frequent Patterns And Association RulesMining Frequent Patterns And Association Rules
Mining Frequent Patterns And Association Rules
 
chap6_basic_association_analysis.ppt
chap6_basic_association_analysis.pptchap6_basic_association_analysis.ppt
chap6_basic_association_analysis.ppt
 
AssociationRule.pdf
AssociationRule.pdfAssociationRule.pdf
AssociationRule.pdf
 
Data Mining Lecture_3.pptx
Data Mining Lecture_3.pptxData Mining Lecture_3.pptx
Data Mining Lecture_3.pptx
 
Data Mining Lecture_4.pptx
Data Mining Lecture_4.pptxData Mining Lecture_4.pptx
Data Mining Lecture_4.pptx
 
Chapter 6. Mining Frequent Patterns, Associations and Correlations Basic Conc...
Chapter 6. Mining Frequent Patterns, Associations and Correlations Basic Conc...Chapter 6. Mining Frequent Patterns, Associations and Correlations Basic Conc...
Chapter 6. Mining Frequent Patterns, Associations and Correlations Basic Conc...
 
06FPBasic.ppt
06FPBasic.ppt06FPBasic.ppt
06FPBasic.ppt
 
06FPBasic.ppt
06FPBasic.ppt06FPBasic.ppt
06FPBasic.ppt
 
Apriori Algorithm.pptx
Apriori Algorithm.pptxApriori Algorithm.pptx
Apriori Algorithm.pptx
 
06FPBasic02.pdf
06FPBasic02.pdf06FPBasic02.pdf
06FPBasic02.pdf
 
Association Rule Mining
Association Rule MiningAssociation Rule Mining
Association Rule Mining
 
06 fp basic
06 fp basic06 fp basic
06 fp basic
 
Chapter 01 Introduction DM.pptx
Chapter 01 Introduction DM.pptxChapter 01 Introduction DM.pptx
Chapter 01 Introduction DM.pptx
 
Association Analysis in Data Mining
Association Analysis in Data MiningAssociation Analysis in Data Mining
Association Analysis in Data Mining
 
Association Rule Mining in Data Mining.pptx
Association Rule Mining in Data Mining.pptxAssociation Rule Mining in Data Mining.pptx
Association Rule Mining in Data Mining.pptx
 
Data Mining: Concepts and Techniques_ Chapter 6: Mining Frequent Patterns, ...
Data Mining:  Concepts and Techniques_ Chapter 6: Mining Frequent Patterns, ...Data Mining:  Concepts and Techniques_ Chapter 6: Mining Frequent Patterns, ...
Data Mining: Concepts and Techniques_ Chapter 6: Mining Frequent Patterns, ...
 
Associative Learning
Associative LearningAssociative Learning
Associative Learning
 
Association 04.03.14
Association   04.03.14Association   04.03.14
Association 04.03.14
 

Mehr von Sulman Ahmed

Entrepreneurial Strategy Generating and Exploiting new entries
Entrepreneurial Strategy Generating and Exploiting new entriesEntrepreneurial Strategy Generating and Exploiting new entries
Entrepreneurial Strategy Generating and Exploiting new entriesSulman Ahmed
 
Entrepreneurial Intentions and corporate entrepreneurship
Entrepreneurial Intentions and corporate entrepreneurshipEntrepreneurial Intentions and corporate entrepreneurship
Entrepreneurial Intentions and corporate entrepreneurshipSulman Ahmed
 
Entrepreneurship main concepts and description
Entrepreneurship main concepts and descriptionEntrepreneurship main concepts and description
Entrepreneurship main concepts and descriptionSulman Ahmed
 
Run time Verification using formal methods
Run time Verification using formal methodsRun time Verification using formal methods
Run time Verification using formal methodsSulman Ahmed
 
Use of Formal Methods at Amazon Web Services
Use of Formal Methods at Amazon Web ServicesUse of Formal Methods at Amazon Web Services
Use of Formal Methods at Amazon Web ServicesSulman Ahmed
 
student learning App
student learning Appstudent learning App
student learning AppSulman Ahmed
 
Software Engineering Economics Life Cycle.
Software Engineering Economics  Life Cycle.Software Engineering Economics  Life Cycle.
Software Engineering Economics Life Cycle.Sulman Ahmed
 
Data mining Techniques
Data mining TechniquesData mining Techniques
Data mining TechniquesSulman Ahmed
 
Classification in data mining
Classification in data mining Classification in data mining
Classification in data mining Sulman Ahmed
 
Data mining Basics and complete description
Data mining Basics and complete description Data mining Basics and complete description
Data mining Basics and complete description Sulman Ahmed
 
Data mining Basics and complete description onword
Data mining Basics and complete description onwordData mining Basics and complete description onword
Data mining Basics and complete description onwordSulman Ahmed
 
Dwh lecture-07-denormalization
Dwh lecture-07-denormalizationDwh lecture-07-denormalization
Dwh lecture-07-denormalizationSulman Ahmed
 
Dwh lecture-06-normalization
Dwh lecture-06-normalizationDwh lecture-06-normalization
Dwh lecture-06-normalizationSulman Ahmed
 
Dwh lecture 13-process dm
Dwh  lecture 13-process dmDwh  lecture 13-process dm
Dwh lecture 13-process dmSulman Ahmed
 
Dwh lecture 11-molap
Dwh  lecture 11-molapDwh  lecture 11-molap
Dwh lecture 11-molapSulman Ahmed
 
Dwh lecture 10-olap
Dwh   lecture 10-olapDwh   lecture 10-olap
Dwh lecture 10-olapSulman Ahmed
 
Dwh lecture 08-denormalization tech
Dwh   lecture 08-denormalization techDwh   lecture 08-denormalization tech
Dwh lecture 08-denormalization techSulman Ahmed
 
Dwh lecture 07-denormalization
Dwh   lecture 07-denormalizationDwh   lecture 07-denormalization
Dwh lecture 07-denormalizationSulman Ahmed
 

Mehr von Sulman Ahmed (20)

Entrepreneurial Strategy Generating and Exploiting new entries
Entrepreneurial Strategy Generating and Exploiting new entriesEntrepreneurial Strategy Generating and Exploiting new entries
Entrepreneurial Strategy Generating and Exploiting new entries
 
Entrepreneurial Intentions and corporate entrepreneurship
Entrepreneurial Intentions and corporate entrepreneurshipEntrepreneurial Intentions and corporate entrepreneurship
Entrepreneurial Intentions and corporate entrepreneurship
 
Entrepreneurship main concepts and description
Entrepreneurship main concepts and descriptionEntrepreneurship main concepts and description
Entrepreneurship main concepts and description
 
Run time Verification using formal methods
Run time Verification using formal methodsRun time Verification using formal methods
Run time Verification using formal methods
 
Use of Formal Methods at Amazon Web Services
Use of Formal Methods at Amazon Web ServicesUse of Formal Methods at Amazon Web Services
Use of Formal Methods at Amazon Web Services
 
student learning App
student learning Appstudent learning App
student learning App
 
Software Engineering Economics Life Cycle.
Software Engineering Economics  Life Cycle.Software Engineering Economics  Life Cycle.
Software Engineering Economics Life Cycle.
 
Data mining Techniques
Data mining TechniquesData mining Techniques
Data mining Techniques
 
Classification in data mining
Classification in data mining Classification in data mining
Classification in data mining
 
Data mining Basics and complete description
Data mining Basics and complete description Data mining Basics and complete description
Data mining Basics and complete description
 
Data mining Basics and complete description onword
Data mining Basics and complete description onwordData mining Basics and complete description onword
Data mining Basics and complete description onword
 
Dwh lecture-07-denormalization
Dwh lecture-07-denormalizationDwh lecture-07-denormalization
Dwh lecture-07-denormalization
 
Dwh lecture-06-normalization
Dwh lecture-06-normalizationDwh lecture-06-normalization
Dwh lecture-06-normalization
 
Dwh lecture 12-dm
Dwh lecture 12-dmDwh lecture 12-dm
Dwh lecture 12-dm
 
Dwh lecture 13-process dm
Dwh  lecture 13-process dmDwh  lecture 13-process dm
Dwh lecture 13-process dm
 
Dwh lecture 11-molap
Dwh  lecture 11-molapDwh  lecture 11-molap
Dwh lecture 11-molap
 
Dwh lecture 10-olap
Dwh   lecture 10-olapDwh   lecture 10-olap
Dwh lecture 10-olap
 
Dwh lecture 08-denormalization tech
Dwh   lecture 08-denormalization techDwh   lecture 08-denormalization tech
Dwh lecture 08-denormalization tech
 
Dwh lecture 07-denormalization
Dwh   lecture 07-denormalizationDwh   lecture 07-denormalization
Dwh lecture 07-denormalization
 
Wbs
WbsWbs
Wbs
 

Kürzlich hochgeladen

Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Kürzlich hochgeladen (20)

Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

Association Rule Mining: Frequent Itemset Generation

  • 1. Association Rule Mining • Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction Market-Basket transactions TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke Example of Association Rules {Diaper}  {Beer}, {Milk, Bread}  {Eggs,Coke}, {Beer, Bread}  {Milk},
  • 2. Definition: Frequent Itemset • Itemset – A collection of one or more items • Example: {Milk, Bread, Diaper} – k-itemset • An itemset that contains k items • Support count () – Frequency of occurrence of an itemset – E.g. ({Milk, Bread,Diaper}) = 2 • Support – Fraction of transactions that contain an itemset – E.g. s({Milk, Bread, Diaper}) = 2/5 • Frequent Itemset – An itemset whose support is greater than or equal to a minsup threshold TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke
  • 3. Definition: Association Rule Example: Beer}Diaper,Milk{  4.0 5 2 |T| )BeerDiaper,,Milk(   s 67.0 3 2 )Diaper,Milk( )BeerDiaper,Milk,(    c  Association Rule – An implication expression of the form X  Y, where X and Y are itemsets – Example: {Milk, Diaper}  {Beer}  Rule Evaluation Metrics – Support (s)  Fraction of transactions that contain both X and Y – Confidence (c)  Measures how often items in Y appear in transactions that contain X TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke
  • 4. Association Rule Mining Task • Given a set of transactions T, the goal of association rule mining is to find all rules having – support ≥ minsup threshold – confidence ≥ minconf threshold • Brute-force approach: – List all possible association rules – Compute the support and confidence for each rule – Prune rules that fail the minsup and minconf thresholds  Computationally prohibitive!
  • 5. Mining Association Rules Example of Rules: {Milk,Diaper}  {Beer} (s=0.4, c=0.67) {Milk,Beer}  {Diaper} (s=0.4, c=1.0) {Diaper,Beer}  {Milk} (s=0.4, c=0.67) {Beer}  {Milk,Diaper} (s=0.4, c=0.67) {Diaper}  {Milk,Beer} (s=0.4, c=0.5) {Milk}  {Diaper,Beer} (s=0.4, c=0.5) TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke Observations: • All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer} • Rules originating from the same itemset have identical support but can have different confidence • Thus, we may decouple the support and confidence requirements
  • 6. Mining Association Rules • Two-step approach: 1. Frequent Itemset Generation – Generate all itemsets whose support  minsup 2. Rule Generation – Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset • Frequent itemset generation is still computationally expensive
  • 7. Frequent Itemset Generation null AB AC AD AE BC BD BE CD CE DE A B C D E ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCD ABCE ABDE ACDE BCDE ABCDE Given d items, there are 2d possible candidate itemsets
  • 8. Frequent Itemset Generation • Brute-force approach: – Each itemset in the lattice is a candidate frequent itemset – Count the support of each candidate by scanning the database – Match each transaction against every candidate – Complexity ~ O(NMw) => Expensive since M = 2d !!! TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke N Transactions List of Candidates M w
  • 9. Computational Complexity • Given d unique items: – Total number of itemsets = 2d – Total number of possible association rules: 123 1 1 1 1                             dd d k kd j j kd k d R If d=6, R = 602 rules
  • 10. Frequent Itemset Generation Strategies • Reduce the number of candidates (M) – Complete search: M=2d – Use pruning techniques to reduce M • Reduce the number of transactions (N) – Reduce size of N as the size of itemset increases – Used by DHP and vertical-based mining algorithms • Reduce the number of comparisons (NM) – Use efficient data structures to store the candidates or transactions – No need to match every candidate against every transaction
  • 11. Monotonicity Property • A measure s (support) is monotone (or upward closed) if • which means that if X is a subset of Y, then s(X) must not exceed s(Y). On the other hand, s is anti-monotone (or downward closed) if • which means that if X is a subset of Y, then s(Y) must not exceed s(X). • Any measure that posses an anti-monotone property can be incorporated directly into the mining algorithm to effectively prune the exponential search space of candidate itemsets. 11 )()()(:, YsXsYXYX  )()()(:, YsXsYXYX 
  • 12. Reducing Number of Candidates • Apriori principle: – If an itemset is frequent, then all of its subsets must also be frequent – Support of an itemset never exceeds the support of its subsets – This is known as the anti-monotone property of support
  • 15. Illustrating Apriori Principle Item Count Bread 4 Coke 2 Milk 4 Beer 3 Diaper 4 Eggs 1 Itemset Count {Bread,Milk} 3 {Bread,Beer} 2 {Bread,Diaper} 3 {Milk,Beer} 2 {Milk,Diaper} 3 {Beer,Diaper} 3 Itemset Count {Bread,Milk,Diaper} 3 Items (1-itemsets) Pairs (2-itemsets) (No need to generate candidates involving Coke or Eggs) Triplets (3-itemsets) Minimum Support = 3 If every subset is considered, 6C1 + 6C2 + 6C3 = 41 With support-based pruning, 6 + 6 + 1 = 13
  • 16. Apriori Algorithm • Method: – Let k=1 – Generate frequent itemsets of length 1 – Repeat until no new frequent itemsets are identified • Generate length (k+1) candidate itemsets from length k frequent itemsets • Prune candidate itemsets containing subsets of length k that are infrequent • Count the support of each candidate by scanning the DB • Eliminate candidates that are infrequent, leaving only those that are frequent
  • 17. Apriori Algorithm – Example 2 • Consider the following transaction database: • min_sup=2
  • 18. Apriori Algorithm – Example 2 – Iteration 1 • In the first iteration of the algorithm, each item is a member of the set of candidate 1-itemsets, C1. The algorithm simply scans all of the transactions to count the number of occurrences of each item.
  • 19. Apriori Algorithm – Example 2 – Iteration 2 • To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 L1 to generate a candidate set of 2-itemsets, C2. • C2 consists of |𝐿1| 2 2-itemsets.
  • 20. Apriori Algorithm – Example 2 – Iteration 3 • The generation of the set of the candidate 3-itemsets, C3.
  • 21. Apriori Algorithm – Example 2 – Iteration 4 • The algorithm uses L3 L3 to generate a candidate set of 4-itemsets, C4. • Although the join results in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because its subset {I2, I3, I5} is not frequent. • Thus, C4 = φ, and the algorithm terminates, having found all of the frequent itemsets.
  • 22. Reducing Number of Comparisons • Candidate counting: – Scan the database of transactions to determine the support of each candidate itemset – To reduce the number of comparisons, store the candidates in a hash structure • Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke N Transactions Hash Structure k Buckets
  • 23. Generate Hash Tree 2 3 4 5 6 7 1 4 5 1 3 6 1 2 4 4 5 7 1 2 5 4 5 8 1 5 9 3 4 5 3 5 6 3 5 7 6 8 9 3 6 7 3 6 8 1,4,7 2,5,8 3,6,9 Hash function Suppose you have 15 candidate itemsets of length 3: {1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8} You need: • Hash function • Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)
  • 24. Association Rule Discovery: Hash tree 1 5 9 1 4 5 1 3 6 3 4 5 3 6 7 3 6 8 3 5 6 3 5 7 6 8 9 2 3 4 5 6 7 1 2 4 4 5 7 1 2 5 4 5 8 1,4,7 2,5,8 3,6,9 Hash Function Candidate Hash Tree Hash on 1, 4 or 7 {1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 {6 8 9}, {3 6 7}, {3 6 8}
  • 25. Association Rule Discovery: Hash tree 1 5 9 1 4 5 1 3 6 3 4 5 3 6 7 3 6 8 3 5 6 3 5 7 6 8 9 2 3 4 5 6 7 1 2 4 4 5 7 1 2 5 4 5 8 1,4,7 2,5,8 3,6,9 Hash Function Candidate Hash Tree Hash on 2, 5 or 8
  • 26. Association Rule Discovery: Hash tree 1 5 9 1 4 5 1 3 6 3 4 5 3 6 7 3 6 8 3 5 6 3 5 7 6 8 9 2 3 4 5 6 7 1 2 4 4 5 7 1 2 5 4 5 8 1,4,7 2,5,8 3,6,9 Hash Function Candidate Hash Tree Hash on 3, 6 or 9
  • 27. Subset Operation 1 2 3 5 6 Transaction, t 2 3 5 61 3 5 62 5 61 33 5 61 2 61 5 5 62 3 62 5 5 63 1 2 3 1 2 5 1 2 6 1 3 5 1 3 6 1 5 6 2 3 5 2 3 6 2 5 6 3 5 6 Subsets of 3 items Level 1 Level 2 Level 3 63 5 Given a transaction t, what are the possible subsets of size 3?
  • 28. Subset Operation Using Hash Tree 1 5 9 1 4 5 1 3 6 3 4 5 3 6 7 3 6 8 3 5 6 3 5 7 6 8 9 2 3 4 5 6 7 1 2 4 4 5 7 1 2 5 4 5 8 1 2 3 5 6 1 + 2 3 5 6 3 5 62 + 5 63 + 1,4,7 2,5,8 3,6,9 Hash Functiontransaction
  • 29. Subset Operation Using Hash Tree 1 5 9 1 4 5 1 3 6 3 4 5 3 6 7 3 6 8 3 5 6 3 5 7 6 8 9 2 3 4 5 6 7 1 2 4 4 5 7 1 2 5 4 5 8 1,4,7 2,5,8 3,6,9 Hash Function 1 2 3 5 6 3 5 61 2 + 5 61 3 + 61 5 + 3 5 62 + 5 63 + 1 + 2 3 5 6 transaction
  • 30. Subset Operation Using Hash Tree 1 5 9 1 4 5 1 3 6 3 4 5 3 6 7 3 6 8 3 5 6 3 5 7 6 8 9 2 3 4 5 6 7 1 2 4 4 5 7 1 2 5 4 5 8 1,4,7 2,5,8 3,6,9 Hash Function 1 2 3 5 6 3 5 61 2 + 5 61 3 + 61 5 + 3 5 62 + 5 63 + 1 + 2 3 5 6 transaction Match transaction against 11 out of 15 candidates