SlideShare ist ein Scribd-Unternehmen logo
1 von 107
1
General Comparison between
AISC LRFD and ASD
Hamid Zand
GT STRUDL Users Group
Las Vegas, Nevada
June 22-25, 2005
2
AISC ASD and LRFD
• AISC = American Institute of Steel
Construction
• ASD = Allowable Stress Design
AISC Ninth Edition
• LRFD = Load and Resistance Factor Design
AISC Third Edition
3
AISC Steel Design Manuals
• 1963 AISC ASD 6th Edition
• 1969 AISC ASD 7th Edition
• 1978 AISC ASD 8th Edition
• 1989 AISC ASD 9th Edition
• 1986 AISC LRFD 1st Edition
• 1993 AISC LRFD 2nd Edition
• 1999 AISC LRFD 3rd Edition
4
ASD and LRFD
Major Differences
• Load Combinations and load factors
• ASD results are based on the stresses and
LRFD results are based on the forces and
moments capacity
• Static analysis is acceptable for ASD but
nonlinear geometric analysis is required for
LRFD
• Beams and flexural members
• Cb computation
5
ASD Load Combinations
• 1.0D + 1.0L
• 0.75D + 0.75L + 0.75W
• 0.75D + 0.75L + 0.75E
D = dead load
L = live load
W = wind load
E = earthquake load
6
ASD Load Combinations
Or you can use following load combinations with the
parameter ALSTRINC to account for the 1/3 allowable
increase for the wind and seismic load
1. 1.0D + 1.0L
2. 1.0D + 1.0L + 1.0W
3. 1.0D + 1.0L + 1.0E
• PARAMETER$ ALSTRINC based on the % increase
• ALSTRINC 33.333 LOADINGS 2 3
7
LRFD Load Combinations
• 1.4D
• 1.2D + 1.6L
• 1.2D + 1.6W + 0.5L
• 1.2D ± 1.0E + 0.5L
• 0.9D ± (1.6W or 1.0E)
D = dead load
L = live load
W = wind load
E = earthquake load
8
Deflection Load Combinations
for ASD and LRFD
• 1.0D + 1.0L
• 1.0D + 1.0L + 1.0W
• 1.0D + 1.0L + 1.0E
D = dead load
L = live load
W = wind load
E = earthquake load
9
Forces and Stresses
• ASD = actual stress values are
compared to the AISC
allowable stress values
• LRFD = actual forces and moments
are compared to the AISC
limiting forces and moments
capacity
10
ASTM Steel Grade
• Comparison is between Table 1 of the AISC ASD 9th Edition
on Page 1-7 versus Table 2-1 of the AISC LRFD 3rd Edition on
Page 2-24
• A529 Gr. 42 of ASD, not available in LRFD
• A529 Gr. 50 and 55 are new in LRFD
• A441 not available in LRFD
• A572 Gr. 55 is new in LRFD
• A618 Gr. I, II, & III are new in LRFD
• A913 Gr. 50, 60, 65, & 70 are new in LRFD
• A992 (Fy = 50, Fu = 65) is new in LRFD (new standard)
• A847 is new in LRFD
11
Slenderness Ratio
• Compression
KL/r ≤ 200
• Tension
L/r ≤ 300
12
Tension Members
• Check L/r ratio
• Check Tensile Strength based on the cross-
section’s Gross Area
• Check Tensile Strength based on the cross-
section’s Net Area
13
Tension Members
ASD
ft = FX/Ag ≤ Ft Gross Area
ft = FX/Ae ≤ Ft Net Area
LRFD
Pu = FX ≤ ϕt Pn = ϕt Ag Fy ϕt = 0.9 for Gross Area
Pu = FX ≤ ϕt Pn = ϕt Ae Fu ϕt = 0.75 for Net Area
14
Tension Members
ASD (ASD Section D1)
Gross Area Ft = 0.6Fy
Net Area Ft = 0.5Fu
LRFD (LRFD Section D1)
Gross Area ϕt Pn = ϕt Fy Ag ϕt = 0.9
Net Area ϕt Pn = ϕt Fu Ae ϕt = 0.75
15
Compare ASD to LRFD
ASD 1.0D + 1.0L
LRFD 1.2D + 1.6L
0.6Fy (ASD) × (1.5) = 0.9Fy (LRFD)
0.5Fu (ASD) × (1.5) = 0.75Fu (LRFD)
ASD × (1.5) = LRFD
16
Tension Members
X
Y
Z
FIXED JOINT
-400.
o
17
Tension Members
• Member is 15 feet long
• Fixed at the top of the member and free at the bottom
• Loadings are:
• Self weight
• 400 kips tension force at the free end
• Load combinations based on the ASD and
LRFD codes
• Steel grade is A992
• Design based on the ASD and LRFD codes
18
Tension Members
ASD
W18x46 Actual/Allowable Ratio = 0.989
LRFD
W10x49 Actual/Limiting Ratio = 0.989
19
Tension Members
ASD
W18x46 Area = 13.5 in.2
FX = 400.688 kips Ratio = 0.989
LRFD
W10x49 Area = 14.4 in.2
FX = 640.881 kips Ratio = 0.989
20
Tension Members
Load Factor difference between LRFD and ASD
640.881 / 400.688 = 1.599
Equation Factor difference between LRFD and ASD
LRFD = (1.5) × ASD
Estimate required cross-sectional area for LRFD
LRFD W10x49 Area = 14.4 in.2
Area for LRFD     
135
640881
400688
10
15
0989
0989
14 395
.
.
.
.
.
.
.
.
21
Tension Members
Code Check based on the ASD9 and using W10x49
FX = 400.734 kips Ratio = 0.928
Load Factor difference between LRFD and ASD
640.881 / 400.734 = 1.599
LRFD W10x49 Ratio = 0.989
LRFD Ratio computed fromASD    
0928
640881
400734
10
15
0989
.
.
.
.
.
.
22
Tension Members
ASD
Example # 1
Live Load = 400 kips
W18x46 Actual/Allowable Ratio = 0.989
LRFD
Example # 1
Live Load = 400 kips
W10x49 Actual/Limiting Ratio = 0.989
Example # 2
Dead Load = 200 kips
Live Load = 200 kips
W14x43 Actual/Limiting Ratio = 0.989
Code check W14x43 based on the ASD9
W14x43 Actual/Allowable Ratio = 1.06
23
Compression Members
• Check KL/r ratio
• Compute Flexural-Torsional Buckling and
Equivalent (KL/r)e
• Find Maximum of KL/r and (KL/r)e
• Compute Qs and Qa based on the b/t and h/tw
ratios
• Based on the KL/r ratio, compute allowable
stress in ASD or limiting force in LRFD
24
Compression Members
ASD
fa = FX/Ag ≤ Fa
LRFD
Pu = FX ≤ ϕc Pn = ϕc Ag Fcr
Where ϕc = 0.85
25
Limiting Width-Thickness Ratios
for Compression Elements
ASD
b/t = h/tw =
LRFD
b/t = h/tw =
95 / Fy
056
. /
E Fy
253 / Fy
149
. /
E Fy
26
Limiting Width-Thickness Ratios
for Compression Elements
Assume E = 29000 ksi
ASD
b/t = h/tw =
LRFD
b/t = h/tw =
95 / Fy
9536
. / Fy
253 / Fy
25374
. / Fy
27
Compression Members
ASD KL/r ≤ C′c (ASD E2-1 or A-B5-11)
LRFD (LRFD A-E3-2)
 
   
F
Q
KL r
C
F
KL r
C
KL r
C
a
c
y
c c















1
2
5
3
3
8 8
2
2
3
3
/
/ /
 
F Q F
cr
Q
y
c
 0658
2
. 
Where  
C
E
QF
c
y
2 2

Where 

c
y
KL
r
F
E

c Q  15
.
28
Compression Members
ASD KL/r > C′c (ASD E2-2)
LRFD (LRFD A-E3-3)
 
F
E
KL r
a 
12
23
2
2

/
Where  
C
E
QF
c
y
2 2

c Q  15
.
F F
cr
c
y







0877
2
.

Where 

c
y
KL
r
F
E

29
Compression Members
LRFD
F F
cr
c
y







0877
2
.

Where 

c
y
KL
r
F
E

F
KL
r
F
E
F
cr
y
y

























0877
2
.

 
F
E
KL r
cr 
0877 2
2
.
/

 
F
E
KL r
cr 
20171
23
2
2
.
/

30
Compression Members
ASD LRFD
Fcr / Fa = 1.681
LRFD Fcr = ASD Fa × 1.681
 
F
E
KL r
a 
12
23
2
2

/  
F
E
KL r
cr 
20171
23
2
2
.
/

31
Compression Members
ASD
(ASD C-E2-2)
LRFD
λc = Maximum of ( λcy , λcz , λe )
KL r
K L
r
K L
r
KL
r
y Y
y
z z
z e
/ , ,















Where
KL
r
E
F
e e





  
32
Compression Members
LRFD
Where:


cy
y y
y
y
K L
r
F
E



cz
z z
z
y
K L
r
F
E

e
y
e
F
F

33
Compression Members
Flexural-Torsional Buckling
 
F
EC
K L
GJ
I I
e
w
x x y z
 







 
 2
2
10
.
34
Qs Computation
ASD
LRFD
When 95 195
/ / / / /
F k b t F k
y c y c
 
Q b t F k
s y c
 
1293 000309
. . ( / ) /
When 056 103
. / / . /
E F b t E F
y y
 
Q b t F E
s y
 
1415 074
. . ( / ) /
 
k
h t
h t k
c c
  
4 05
70 10
0.46
.
/
/ , .
if otherwise
35
Qs Computation
Assume E = 29000 ksi
ASD
LRFD
When 95 195
/ / / / /
F k b t F k
y c y c
 
Q b t F k
s y c
 
1293 000309
. . ( / ) /
When 9536 1754
. / / . /
F b t F
y y
 
Q b t F
s y
 
1415 0004345
. . ( / )
36
Qs Computation
ASD
LRFD
When b t F k
y c
/ / /
 195
 
 
Q k F b t
s c y
 26200
2
/ /
When b t E Fy
/ . /
 103
 
 
Q E F b t
s y
 069
2
. / /
37
Qs Computation
Assume E = 29000 ksi
ASD
LRFD
When b t F k
y c
/ / /
 195
 
 
Q k F b t
s c y
 26200
2
/ /
When b t Fy
/ . /
 1754
 
 
Q F b t
s y
 20010
2
/ /
38
Qa Computation
ASD
LRFD
b
t
f b t f
b
e  









253
1
44 3
.
( / )
b t
E
f b t
E
f
b
e  





 
191 1
0 34
.
.
( / )
Assume ksi
E b
t
f b t f
e
  








29000
32526
1
57 9
,
. .
( / )
39
Compression Members
X
Y
Z FIXED JOINT
-100.
o
40
Compression Members
• Member is 15 feet long
• Fixed at the bottom of the column and free at the top
• Loadings are:
• Self weight
• 100 kips compression force at the free end
• Load combinations based on the ASD and
LRFD codes
• Steel grade is A992
• Design based on the ASD and LRFD codes
41
Compression Members
ASD
W10x49 Actual/Allowable Ratio = 0.941
LRFD
W10x54 Actual/Limiting Ratio = 0.944
42
Compression Members
ASD
W10x49 Area = 14.4 in.2
FX = 100.734 kips Ratio = 0.941
LRFD
W10x54 Area = 15.8 in.2
FX = 160.967 kips Ratio = 0.944
43
Compression Members
Load Factor difference between LRFD and ASD
160.967 / 100.734 = 1.598
Equation Factor difference between LRFD and ASD
LRFD Fcr = (1.681) × ASD Fa
Estimate required cross-sectional area for LRFD
LRFD W10x54 Area = 15.8 inch
Area for LRFD      
14 4
160967
100734
10
1681
10
085
0941
0944
1605
.
.
.
.
.
.
.
.
.
.
44
Compression Members
Code Check based on the ASD9 and use W10x54
FX = 100.806 kips Ratio = 0.845
Load Factor difference between LRFD and ASD
160.967 / 100.806 = 1.597
LRFD W10x54 Ratio = 0.944
LRFD Ratio computed fromASD     
0845
160967
100806
10
1681
10
085
0944
.
.
.
.
.
.
.
.
45
Compression Members
ASD
Example # 1
Live Load = 100 kips
W10x49 Actual/Allowable Ratio = 0.941
LRFD
Example # 1
Live Load = 100 kips
W10x54 Actual/Limiting Ratio = 0.944
Example # 2
Dead Load = 50 kips
Live Load = 50 kips
W10x49 Actual/Limiting Ratio = 0.921
Code check W10x49 based on the ASD9
W10x49 Actual/Allowable Ratio = 0.941
46
Flexural Members
• Based on the b/t and h/tw ratios determine the compactness of
the cross-section
• Classify flexural members as Compact, Noncompact, or
Slender
• When noncompact section in ASD, allowable stress Fb is
computed based on the l/rt ratio. l is the laterally unbraced
length of the compression flange. Also, Cb has to be computed
• When noncompact or slender section in LRFD, LTB, FLB, and
WLB are checked
• LTB for noncompact or slender sections is computed using Lb
and Cb. Lb is the laterally unbraced length of the compression
flange
47
Flexural Members
ASD
fb = MZ/SZ ≤ Fb
LRFD
Mu = MZ ≤ ϕb Mn
Where ϕb = 0.9
48
Limiting Width-Thickness Ratios
for Compression Elements
ASD
LRFD
Assume E = 29000 ksi
d t F
w y
/ /
 640
b t E Fy
/ . /
 038 h t E F
w y
/ . /
 376
b t Fy
/ /
 65
b t Fy
/ . /
 64 7 h t F
w y
/ . /
 640 3
49
Flexural Members
Compact Section
ASD (ASD F1-1)
Fb = 0.66Fy
LRFD (LRFD A-F1-1)
ϕb Mn = ϕb Mp = ϕb Fy ZZ ≤ 1.5Fy SZ
Where ϕb = 0.9
50
Flexural Members
Compact Section
X
Y
Z
FIXED JOINT
-15.00
-15.00
o
o
FIXED JOINT
Braced at 1/3 Points
51
Flexural Members
Compact Section
• Member is 12 feet long
• Fixed at both ends of the member
• Loadings are:
• Self weight
• 15 kips/ft uniform load
• Load combinations based on the ASD and
LRFD codes
• Steel grade is A992
• Braced at the 1/3 Points
• Design based on the ASD and LRFD codes
52
Flexural Members
Compact Section
ASD
W18x40 Actual/Allowable Ratio = 0.959
LRFD
W18x40 Actual/Limiting Ratio = 0.982
53
Flexural Members
Compact Section
ASD
W18x40 Sz = 68.4 in.3
MZ = 2165.777 inch-kips Ratio = 0.959
LRFD
W18x40 Zz = 78.4 in.3
MZ = 3462.933 inch-kips Ratio = 0.982
54
Flexural Members
Compact Section
Load Factor difference between LRFD and ASD
3462.933 / 2165.777 = 1.5989
Equation Factor difference between LRFD and ASD
LRFD = (0.66Sz)(1.5989) / (0.9Zz) × ASD
Zz
LRFD W18x40 Zz = 78.4 in.3
for LRFD     
684
3462 933
2165777
066
09
0959
0982
783
.
.
.
.
.
.
.
.
55
Flexural Members
Compact Section
Code Check based on the ASD9, Profile W18x40
MZ = 2165.777 inch-kips Ratio = 0.959
Load Factor difference between LRFD and ASD
3462.933 / 2165.777 = 1.5989
LRFD W18x40 Ratio = 0.982
LRFD Ratio computed fromASD     
0959
3462 933
2165777
066
09
684
784
0981
.
.
.
.
.
.
.
.
56
Flexural Members
Compact Section
ASD
Example # 1
Live Load = 15 kips/ft
W18x40 Actual/Allowable Ratio = 0.959
LRFD
Example # 1
Live Load = 15 kips/ft
W18x40 Actual/Limiting Ratio = 0.982
Example # 2
Dead Load = 7.5 kips/ft
Live Load = 7.5 kips/ft
W18x40 Actual/Limiting Ratio = 0.859
Code check W18x40 based on the ASD9
W18x40 Actual/Allowable Ratio = 0.959
57
Flexural Members
Noncompact Section
ASD
• Based on b/t, d/tw and h/tw determine if the section is
noncompact
• Compute Cb
• Compute Qs
• Based on the l/rt ratio, compute allowable stress Fb
• Laterally unbraced length of the compression flange (l)
has a direct effect on the equations of the noncompact
section
58
Flexural Members
Noncompact Section
ASD
fb = MZ/SZ ≤ Fb
LRFD
Mu = MZ ≤ ϕb Mn
Where ϕb = 0.9
59
Limiting Width-Thickness Ratios
for Compression Elements
ASD
LRFD
65 95
F b t F
y y
 
d t F
w y
 640
038 083
. / .
E F b t E F
y L
 
376 57
. .
E F h t E F
y w y
 
h t F
w b
 760
60
Limiting Width-Thickness Ratios
for Compression Elements
Assume E = 29000 ksi
ASD
LRFD
65 95
F b t F
y y
 
d t F
w y
 640
64 7 1413
. / / . /
F b t F
y L
 
6403 970 7
. / . /
F h t F
y w y
 
h t F
w b
 760
61
Flexural Members
Noncompact Section
ASD
(ASD F1-3)
(ASD F1-2)
ASD Equations F1-6, F1-7, and F1-8 must to be checked.
F F
b
t
F
b y
f
f
y
 








079 0002
2
. .
 
If minimum or
L L
b
F d A F
b c
f
y f y
 








76 20000
62
Flexural Members
Noncompact Section
ASD
When
(ASD F1-6)
102 10 510 10
3 3

 

C
F
l
r
C
F
b
y T
b
y
 
F
F l r
C
F F Q
b
y T
b
y y s
 










2
3 1530 10
0 6
2
3
/
.
63
Flexural Members
Noncompact Section
ASD
When
(ASD F1-7)
l
r
C
F
T
b
y


510 103
 
F
C
l r
F Q
b
b
T
y s



170 10
0 6
3
2
/
.
64
Flexural Members
Noncompact Section
ASD
For any value of l/rT
(ASD F1-8)
F
C
ld A
F Q
b
b
f
y s



12 10
06
3
/
.
65
Flexural Members
Noncompact Section
LRFD
1. LTB, Lateral-Torsional Buckling
2. FLB, Flange Local Buckling
3. WLB, Web Local Buckling
66
Flexural Members
Noncompact Section
LRFD
– LTB
• Compute Cb
• Based on the Lb, compute limiting moment capacity. Lb is
the lateral unbraced length of the compression flange,
λ = Lb/ry
• Lb has a direct effect on the LTB equations for noncompact
and slender sections
– FLB
• Compute limiting moment capacity based on the b/t ratio of
the flange, λ = b/t
– WLB
• Compute limiting moment capacity based on the h/tw ratio
of the web, λ = h/tw
67
Flexural Members
Noncompact Section
LRFD LTB (Table A-F1.1)
For λp < λ ≤ λr
(LRFD A-F1-2)
Where:
Mp = Fy Zz ≤ 1.5Fy Sz
Mr = FLSz FL = Smaller of (Fyf − Fr) or Fyw
λ = Lb/ry
λp =
 
M C M M M M
n b p p r
p
r p
p
  



















 
 
176
. E Fyf
68
Flexural Members
Noncompact Section
LRFD LTB (Table A-F1.1)
Where:
λr =
X1 =
X2 =
X
F
X F
L
L
1
2
2
1 1
 

S
EGJA
z 2
4
2
C
I
S
GJ
w
y
z






69
Flexural Members
Noncompact Section
LRFD FLB (Table A-F1.1)
For λp < λ ≤ λr
(LRFD A-F1-3)
Where:
Mp = Fy Zz ≤ 1.5Fy Sz
Mr = FLSz FL = Smaller of (Fyf − Fr) or Fyw
λ = b/t
λp =
λr =
 
M M M M
n p p r
p
r p
  


















 
 
038
. E Fy
083
. E FL
70
Flexural Members
Noncompact Section
LRFD WLB (Table A-F1.1)
For λp < λ ≤ λr
(LRFD A-F1-3)
Where:
Mp = Fy Zz ≤ 1.5Fy Sz
Mr = Re Fy Sz
Re = 1.0 for non-hybrid girder
 
M M M M
n p p r
p
r p
  


















 
 
71
Flexural Members
Noncompact Section
LRFD WLB (Table A-F1.1)
λ = h/tw
λp =
λr =
376
. E Fy
57
. E Fy
72
Flexural Members
Noncompact Section
ASD
LRFD
   
C M M M M
M M
M M M C
b
b
   


175 105 03 2 3
10
1 2 1 2
2
1 2
1 2
. . . .
, .
max
If between and
C
M
M M M M
M
M
M
b
A B C
A
B
C

  


 
125
25 3 4 3
.
.
max
max
absolute value of moment at quarter point
absolute value of moment at centerline
absolute value of moment at three quarter point
73
Flexural Members
Noncompact Section
X
Y
Z
Roller
-12.00
-12.00
o
o
Pin
74
Flexural Members
Noncompact Section
• Member is 12 feet long
• Pin at the start of the member
• Roller at the end of the member
• Cross-section is W12x65
• Loadings are:
• Self weight
• 12 kips/ft uniform load
• Load combinations based on the ASD and LRFD codes
• Steel grade is A992
• Check code based on the ASD and LRFD codes
75
Flexural Members
Noncompact Section
ASD
W12x65 Cb = 1.0
Actual/Allowable Ratio = 0.988
LRFD
W12x65 Cb = 1.136
Actual/Limiting Ratio = 0.971
Code check is controlled by FLB.
Cb = 1.0 Actual/Limiting Ratio = 0.973
76
Flexural Members
Noncompact Section
ASD
Example # 1
Live Load = 12 kips/ft
W12x65 Actual/Allowable Ratio = 0.988
LRFD
Example # 1
Live Load = 12 kips/ft
W12x65 Actual/Limiting Ratio = 0.971
Example # 2
Dead Load = 6 kips/ft
Live Load = 6 kips/ft
W12x65 Actual/Limiting Ratio = 0.85
Code check W12x65 based on the ASD9
W12x65 Actual/Allowable Ratio = 0.988
77
Design for Shear
ASD
fv = FY/Aw ≤ Fv = 0.4Fy (ASD F4-1)
LRFD
Vu = FY ≤ ϕvVn = ϕv0.6Fyw Aw (LRFD F2-1)
Where ϕv = 0.9
h t F
w y
/  380
h t E F
w yw
/ . /
 2 45
78
Design for Shear
Assume E = 29000 ksi
ASD
fv = FY/Aw ≤ Fv = 0.4Fy (ASD F4-1)
LRFD
Vu = FY ≤ ϕvVn = ϕv0.6Fyw Aw (LRFD F2-1)
Where ϕv = 0.9
h t F
w y
/  380
h t F
w yw
/ . /
 417 2
79
Design for Shear
ASD
fv = FY/Ay ≤ (ASD F4-2)
LRFD
Vu = FY ≤ ϕvVn = ϕv (LRFD F2-2)
Where ϕv = 0.9
h t F
w y
/  380
2 45 307
. / / . /
E F h t E F
yw w yw
 
 
F
F
C F
v
y
v y
 
2 89
0 4
.
.
0 6
2 45
.
. /
/
F A
E F
h t
yw w
yw
w








80
Design for Shear
LRFD
Vu = FY ≤ ϕvVn = ϕv (LRFD F2-3)
Where ϕv = 0.9
307 260
. / /
E F h t
yw w
 
 
A
E
h t
w
w
452
2
.
/








81
Design for Shear
X
Y
Z
FIXED JOINT
-15.00
-15.00
o
o
FIXED JOINT
Braced at 1/3 Points
82
Design for Shear
• Same as example # 3 which is used for design of flexural
member with compact section
• Member is 12 feet long
• Fixed at both ends of the member
• Loadings are:
• Self weight
• 15 kips/ft uniform load
• Load combinations based on the ASD and LRFD codes
• Steel grade is A992
• Braced at the 1/3 Points
• Design based on the ASD and LRFD codes
83
Design for Shear
ASD (Check shear at the end of the member, equation “F4-1 Y”)
W18x40 Actual/Allowable Ratio = 0.8
LRFD (Check shear at the end of the member, equation “A-F2-1 Y”)
W18x40 Actual/Limiting Ratio = 0.948
84
Design for Shear
ASD
W18x40 Ay = 5.638 in.2
FY = 90.241 kips Ratio = 0.8
LRFD
W18x40 Ay = 5.638 in.2
FY = 144.289 kips Ratio = 0.948
85
Design for Shear
Code Check based on the ASD9, Profile W18x40
FY = 90.241 kips Ratio = 0.8
Load Factor difference between LRFD and ASD
144.289 / 90.241 = 1.5989
Equation Factor difference between LRFD and ASD
LRFD = (0.4)(1.5989) /(0.6)(0.9) × ASD
LRFD W18x40 Ratio = 0.948
LRFD Ratio computed fromASD     
08
144 289
90241
04
06
10
09
0948
.
.
.
.
.
.
.
.
86
Design for Shear
ASD
Example # 1
Live Load = 15 kips/ft
W18x40 Actual/Allowable Ratio = 0.8
LRFD
Example # 1
Live Load = 15 kips/ft
W18x40 Actual/Limiting Ratio = 0.948
Example # 2
Dead Load = 7.5 kips/ft
Live Load = 7.5 kips/ft
W18x40 Actual/Limiting Ratio = 0.83
Code check W18x40 based on the ASD9
W18x40 Actual/Allowable Ratio = 0.8
87
Combined Forces
ASD fa /Fa > 0.15
(ASD H1-1)
(ASD H1-2)
LRFD Pu /ϕPn ≥ 0.2
(LRFD H1-1a)
f
F
C f
f
F
F
C f
f
F
a
a
my by
a
ey
by
mz bz
a
ez



















1 1
10
.
f
F
f
F
f
F
a
y
by
by
bz
bz
06
10
.
.
  
P
P
M
M
M
M
u
n
uy
b ny
uz
b nz
  
 







 
8
9
10
.
88
Combined Forces
ASD fa /Fa ≤ 0.15
(ASD H1-1)
LRFD Pu /ϕPn < 0.2
(LRFD H1-1a)
f
F
f
F
f
F
a
a
by
by
bz
bz
   10
.
P
P
M
M
M
M
u
n
uy
b ny
uz
b nz
2
10
  
 







  .
89
Combined Forces
X
Y
Z
90
Combined Forces
• 3D Simple Frame
• 3 Bays in X direction 3 @ 15 ft
• 2 Bays in Z direction 2 @ 30 ft
• 2 Floors in Y direction 2 @ 15 ft
• Loadings
• Self weight of the Steel
• Self weight of the Slab 62.5 psf
• Other dead loads 15.0 psf
• Live load on second floor 50.0 psf
• Live load on roof 20.0 psf
• Wind load in the X direction 20.0 psf
• Wind load in the Z direction 20.0 psf
91
Combined Forces
ASD
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< Active Units Weight Unit = KIP Length Unit = INCH >
< >
< Steel Take Off Itemize Based on the PROFILE >
< Total Length, Volume, Weight, and Number of Members >
< >
< Profile Names Total Length Total Volume Total Weight # of Members >
< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >
< W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 >
< W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 >
< W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 >
< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >
< W8x40 1.4400E+03 1.6848E+04 4.7730E+00 4 >
< W8x48 1.4400E+03 2.0304E+04 5.7521E+00 4 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< ACTIVE UNITS WEIGHT KIP LENGTH INCH >
< >
< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >
< >
< LENGTH = 1.3320E+04 WEIGHT = 4.6566E+01 VOLUME = 1.6437E+05 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
92
Combined Forces
LRFD
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< Active Units Weight Unit = KIP Length Unit = INCH >
< >
< Steel Take Off Itemize Based on the PROFILE >
< Total Length, Volume, Weight, and Number of Members >
< >
< Profile Names Total Length Total Volume Total Weight # of Members >
< W10x33 3.6000E+03 3.4956E+04 9.9030E+00 16 >
< W10x39 1.4400E+03 1.6560E+04 4.6914E+00 4 >
< W10x49 7.2000E+02 1.0368E+04 2.9373E+00 4 >
< W12x45 1.4400E+03 1.9008E+04 5.3850E+00 4 >
< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >
< W8x31 1.4400E+03 1.3147E+04 3.7246E+00 4 >
< W8x40 1.4400E+03 1.6848E+04 4.7730E+00 8 >
< >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< ACTIVE UNITS WEIGHT KIP LENGTH INCH >
< >
< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >
< >
< LENGTH = 1.3320E+04 WEIGHT = 3.3874E+01 VOLUME = 1.1957E+05 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
93
Combined Forces
ASD
WEIGHT = 46.566 kips
LRFD
WEIGHT = 33.874 kips
94
Deflection Design
ASD
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< Active Units Weight Unit = KIP Length Unit = INCH >
< >
< Steel Take Off Itemize Based on the PROFILE >
< Total Length, Volume, Weight, and Number of Members >
< >
< Profile Names Total Length Total Volume Total Weight # of Members >
< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >
< W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 >
< W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 >
< W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 >
< W14x43 1.4400E+03 1.8144E+04 5.1402E+00 4 >
< W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 >
< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< ACTIVE UNITS WEIGHT KIP LENGTH INCH >
< >
< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >
< >
< LENGTH = 1.3320E+04 WEIGHT = 4.6933E+01 VOLUME = 1.6566E+05 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
95
Deflection Design
LRFD
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< Active Units Weight Unit = KIP Length Unit = INCH >
< >
< Steel Take Off Itemize Based on the PROFILE >
< Total Length, Volume, Weight, and Number of Members >
< >
< Profile Names Total Length Total Volume Total Weight # of Members >
< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >
< W10x49 1.4400E+03 2.0736E+04 5.8745E+00 8 >
< W10x54 7.2000E+02 1.1376E+04 3.2228E+00 4 >
< W12x40 1.4400E+03 1.6992E+04 4.8138E+00 4 >
< W14x43 2.8800E+03 3.6288E+04 1.0280E+01 8 >
< W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 >
< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
< ACTIVE UNITS WEIGHT KIP LENGTH INCH >
< >
< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >
< >
< LENGTH = 1.3320E+04 WEIGHT = 3.8345E+01 VOLUME = 1.3535E+05 >
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
96
Deflection Design
ASD
WEIGHT = 46.933 kips
LRFD
WEIGHT = 38.345 kips
97
Compare Design without and with
Deflection Design
ASD
Without Deflection Design WEIGHT = 46.566 kips
With Deflection Design WEIGHT = 46.933 kips
LRFD
Without Deflection Design WEIGHT = 33.874 kips
With Deflection Design WEIGHT = 38.345 kips
98
Design same example based on
Cb = 1.0
Code and deflection design with Cb = 1.0
ASD
Compute Cb WEIGHT = 46.933 kips
Specify Cb = 1.0 WEIGHT = 51.752 kips
LRFD
Compute Cb WEIGHT = 38.345 kips
Specify Cb = 1.0 WEIGHT = 48.421 kips
99
Design Similar example based on
Cb = 1.0 and LL×5
• Code and deflection design with Cb = 1.0 and increase the live
load by a factor of 5.
• Area loads are distributed using two way option instead of one
way
• Also change the 2 bays in the Z direction from 30 ft to 15 ft.
ASD WEIGHT = 25.677 kips
LRFD WEIGHT = 22.636 kips
Difference = 3.041 kips
100
Design Similar example based on
Cb = 1.0 and LL×10
• Code and deflection design with Cb = 1.0 and increase the live
load by a factor of 10.
• Area loads are distributed using two way option instead of one
way
• Also change the 2 bays in the Z direction from 30 ft to 15 ft.
ASD WEIGHT = 31.022 kips
LRFD WEIGHT = 29.051 kips
Difference = 1.971 kips
101
Stiffness Analysis
versus
Nonlinear Analysis
• Stiffness Analysis – Load Combinations or Form
Loads can be used.
• Nonlinear Analysis – Form Loads must be used.
Load Combinations are not valid.
• Nonlinear Analysis – Specify type of Nonlinearity.
• Nonlinear Analysis – Specify Maximum Number of
Cycles.
• Nonlinear Analysis – Specify Convergence Tolerance.
102
Nonlinear Analysis
Commands
• NONLINEAR EFFECT
• TENSION ONLY
• COMPRESSION ONLY
• GEOMETRY AXIAL
• MAXIMUM NUMBER OF CYCLES
• CONVERGENCE TOLERANCE
• NONLINEAR ANALYSIS
103
Design using Nonlinear Analysis
Input File # 1
1. Geometry, Material Type, Properties,
2. Loading ‘SW’, ‘LL’, and ‘WL’
3. FORM LOAD ‘A’ FROM ‘SW’ 1.4
4. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6
5. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5
6. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6
7. DEFINE PHYSICAL MEMBERS
8. PARAMETERS
9. MEMBER CONSTRAINTS
10. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ $ Activate only the FORM loads
11. STIFFNESS ANALYSIS
12. SAVE
104
Design using Nonlinear Analysis
Input File # 2
1. RESTORE
2. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’
3. SELECT MEMBERS
4. SMOOTH PHYSICAL MEMBERS
5. DELETE LOADINGS ‘A’ ‘B’ ‘C’ ‘D’
6. SELF WEIGHT LOADING RECOMPUTE
7. FORM LOAD ‘A’ FROM ‘SW’ 1.4
8. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6
9. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5
10. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6
11. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’
12. STIFFNESS ANALYSIS
13. CHECK MEMBERS
14. STEEL TAKE OFF
15. SAVE
105
Design using Nonlinear Analysis
Input File # 3
1. RESTORE
2. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’
3. SELECT MEMBERS
4. SMOOTH PHYSICAL MEMBERS
5. DELETE LOADINGS ‘A’ ‘B’ ‘C’ ‘D’
6. SELF WEIGHT LOADING RECOMPUTE
7. FORM LOAD ‘A’ FROM ‘SW’ 1.4
8. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6
9. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5
10. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6
106
Design using Nonlinear Analysis
Input File # 3 (continue)
1. NONLINEAR EFFECT
2. GEOMETRY ALL MEMBERS
3. MAXIMUM NUMBER OF CYCLES
4. CONVERGENCE TOLERANCE DISPLACEMENT
5. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’
6. NONLINEAR ANALYSIS
7. CHECK MEMBERS
8. STEEL TAKE OFF
9. SAVE
107
General Comparison between AISC
LRFD and ASD
Questions

Weitere ähnliche Inhalte

Was ist angesagt?

Tutorial Staad-Pro
Tutorial Staad-ProTutorial Staad-Pro
Tutorial Staad-Pro
Nabeh Wildan
 
52436966 lecture-13-plate-girders
52436966 lecture-13-plate-girders52436966 lecture-13-plate-girders
52436966 lecture-13-plate-girders
Saleem Malik
 

Was ist angesagt? (20)

Compression member
Compression memberCompression member
Compression member
 
Methods of rcc design
Methods of rcc designMethods of rcc design
Methods of rcc design
 
Eccentric connections in steel structure
Eccentric connections in steel structureEccentric connections in steel structure
Eccentric connections in steel structure
 
Structural analysis and design of multi storey ppt
Structural analysis and design of multi storey pptStructural analysis and design of multi storey ppt
Structural analysis and design of multi storey ppt
 
Prestressed composite beams
Prestressed composite beamsPrestressed composite beams
Prestressed composite beams
 
Isolated footing design
Isolated footing designIsolated footing design
Isolated footing design
 
Tutorial Staad-Pro
Tutorial Staad-ProTutorial Staad-Pro
Tutorial Staad-Pro
 
Plastic analysis
Plastic analysisPlastic analysis
Plastic analysis
 
Design of Reinforced Concrete Structure (IS 456:2000)
Design of Reinforced Concrete Structure (IS 456:2000)Design of Reinforced Concrete Structure (IS 456:2000)
Design of Reinforced Concrete Structure (IS 456:2000)
 
staad pro
staad prostaad pro
staad pro
 
Eccentric connections 1
Eccentric connections 1Eccentric connections 1
Eccentric connections 1
 
Design of beam
Design of beamDesign of beam
Design of beam
 
Staad pro
Staad proStaad pro
Staad pro
 
Design of steel structural elements
Design of steel structural elementsDesign of steel structural elements
Design of steel structural elements
 
Design of combined footing ppt
Design of combined footing pptDesign of combined footing ppt
Design of combined footing ppt
 
STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)
STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)
STRUCTURAL CALCULATION - CURTAIN WALL (SAMPLE DESIGN)
 
Design & Analysis of G+2 Residential Building Using STAAD Pro
Design & Analysis of G+2 Residential Building Using STAAD ProDesign & Analysis of G+2 Residential Building Using STAAD Pro
Design & Analysis of G+2 Residential Building Using STAAD Pro
 
Rcc design by working stress method
Rcc design by working stress methodRcc design by working stress method
Rcc design by working stress method
 
52436966 lecture-13-plate-girders
52436966 lecture-13-plate-girders52436966 lecture-13-plate-girders
52436966 lecture-13-plate-girders
 
Unit vi-Plastic Analysis of beam Static & Kinematic methods
Unit vi-Plastic Analysis of beam Static & Kinematic methodsUnit vi-Plastic Analysis of beam Static & Kinematic methods
Unit vi-Plastic Analysis of beam Static & Kinematic methods
 

Ähnlich wie ASD vs LRFD_ForWebSite.ppt

The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
Alan Elbanhawy
 
RC Plane and Aerofoil Design bst - CACULATIONS 2-1-1 (1).pdf
RC Plane and Aerofoil Design bst - CACULATIONS 2-1-1 (1).pdfRC Plane and Aerofoil Design bst - CACULATIONS 2-1-1 (1).pdf
RC Plane and Aerofoil Design bst - CACULATIONS 2-1-1 (1).pdf
PriyanshuYadav501002
 
90981041 control-system-lab-manual
90981041 control-system-lab-manual90981041 control-system-lab-manual
90981041 control-system-lab-manual
Gopinath.B.L Naidu
 

Ähnlich wie ASD vs LRFD_ForWebSite.ppt (20)

[123doc] - tai-lieu-general-comparison-between-aisc-lrfd-and-asd-doc.pdf
[123doc] - tai-lieu-general-comparison-between-aisc-lrfd-and-asd-doc.pdf[123doc] - tai-lieu-general-comparison-between-aisc-lrfd-and-asd-doc.pdf
[123doc] - tai-lieu-general-comparison-between-aisc-lrfd-and-asd-doc.pdf
 
Steel strucure lec # (7)
Steel strucure lec #  (7)Steel strucure lec #  (7)
Steel strucure lec # (7)
 
Unit II Design of Electrical Machines
Unit II Design of Electrical MachinesUnit II Design of Electrical Machines
Unit II Design of Electrical Machines
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
 
Comparison of Various Pressure Vessel Codes
Comparison of Various Pressure Vessel CodesComparison of Various Pressure Vessel Codes
Comparison of Various Pressure Vessel Codes
 
pv_elite_webinar_ppt.pdf
pv_elite_webinar_ppt.pdfpv_elite_webinar_ppt.pdf
pv_elite_webinar_ppt.pdf
 
Lecture 5 Well Tubulars Casing String 2015.ppt
Lecture 5 Well Tubulars Casing String 2015.pptLecture 5 Well Tubulars Casing String 2015.ppt
Lecture 5 Well Tubulars Casing String 2015.ppt
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
 
Catalog hitachi hitachi switch&amp;breaders ctlg eng-dienhathe.org
Catalog hitachi hitachi switch&amp;breaders ctlg eng-dienhathe.orgCatalog hitachi hitachi switch&amp;breaders ctlg eng-dienhathe.org
Catalog hitachi hitachi switch&amp;breaders ctlg eng-dienhathe.org
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office and
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office and
 
RC Plane and Aerofoil Design bst - CACULATIONS 2-1-1 (1).pdf
RC Plane and Aerofoil Design bst - CACULATIONS 2-1-1 (1).pdfRC Plane and Aerofoil Design bst - CACULATIONS 2-1-1 (1).pdf
RC Plane and Aerofoil Design bst - CACULATIONS 2-1-1 (1).pdf
 
Original MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V New
Original MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V NewOriginal MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V New
Original MOSFET N-CHANNEL STF5NK52ZD 5NK52ZD 5NK52 5A 520V New
 
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IROriginal P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
Original P-Channel Mosfet IRFR5305TRPBF FR5305 5305 FR530S 55V 31A TO-252 New IR
 
90981041 control-system-lab-manual
90981041 control-system-lab-manual90981041 control-system-lab-manual
90981041 control-system-lab-manual
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
 
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New FairchildOriginal N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
 
Example D.1 W-shape tension member
Example D.1 W-shape tension memberExample D.1 W-shape tension member
Example D.1 W-shape tension member
 
Steel strucure lec # (13)
Steel strucure lec #  (13)Steel strucure lec #  (13)
Steel strucure lec # (13)
 

Kürzlich hochgeladen

Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 

Kürzlich hochgeladen (20)

Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Air Compressor reciprocating single stage
Air Compressor reciprocating single stageAir Compressor reciprocating single stage
Air Compressor reciprocating single stage
 
Bridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptxBridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptx
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 

ASD vs LRFD_ForWebSite.ppt

  • 1. 1 General Comparison between AISC LRFD and ASD Hamid Zand GT STRUDL Users Group Las Vegas, Nevada June 22-25, 2005
  • 2. 2 AISC ASD and LRFD • AISC = American Institute of Steel Construction • ASD = Allowable Stress Design AISC Ninth Edition • LRFD = Load and Resistance Factor Design AISC Third Edition
  • 3. 3 AISC Steel Design Manuals • 1963 AISC ASD 6th Edition • 1969 AISC ASD 7th Edition • 1978 AISC ASD 8th Edition • 1989 AISC ASD 9th Edition • 1986 AISC LRFD 1st Edition • 1993 AISC LRFD 2nd Edition • 1999 AISC LRFD 3rd Edition
  • 4. 4 ASD and LRFD Major Differences • Load Combinations and load factors • ASD results are based on the stresses and LRFD results are based on the forces and moments capacity • Static analysis is acceptable for ASD but nonlinear geometric analysis is required for LRFD • Beams and flexural members • Cb computation
  • 5. 5 ASD Load Combinations • 1.0D + 1.0L • 0.75D + 0.75L + 0.75W • 0.75D + 0.75L + 0.75E D = dead load L = live load W = wind load E = earthquake load
  • 6. 6 ASD Load Combinations Or you can use following load combinations with the parameter ALSTRINC to account for the 1/3 allowable increase for the wind and seismic load 1. 1.0D + 1.0L 2. 1.0D + 1.0L + 1.0W 3. 1.0D + 1.0L + 1.0E • PARAMETER$ ALSTRINC based on the % increase • ALSTRINC 33.333 LOADINGS 2 3
  • 7. 7 LRFD Load Combinations • 1.4D • 1.2D + 1.6L • 1.2D + 1.6W + 0.5L • 1.2D ± 1.0E + 0.5L • 0.9D ± (1.6W or 1.0E) D = dead load L = live load W = wind load E = earthquake load
  • 8. 8 Deflection Load Combinations for ASD and LRFD • 1.0D + 1.0L • 1.0D + 1.0L + 1.0W • 1.0D + 1.0L + 1.0E D = dead load L = live load W = wind load E = earthquake load
  • 9. 9 Forces and Stresses • ASD = actual stress values are compared to the AISC allowable stress values • LRFD = actual forces and moments are compared to the AISC limiting forces and moments capacity
  • 10. 10 ASTM Steel Grade • Comparison is between Table 1 of the AISC ASD 9th Edition on Page 1-7 versus Table 2-1 of the AISC LRFD 3rd Edition on Page 2-24 • A529 Gr. 42 of ASD, not available in LRFD • A529 Gr. 50 and 55 are new in LRFD • A441 not available in LRFD • A572 Gr. 55 is new in LRFD • A618 Gr. I, II, & III are new in LRFD • A913 Gr. 50, 60, 65, & 70 are new in LRFD • A992 (Fy = 50, Fu = 65) is new in LRFD (new standard) • A847 is new in LRFD
  • 11. 11 Slenderness Ratio • Compression KL/r ≤ 200 • Tension L/r ≤ 300
  • 12. 12 Tension Members • Check L/r ratio • Check Tensile Strength based on the cross- section’s Gross Area • Check Tensile Strength based on the cross- section’s Net Area
  • 13. 13 Tension Members ASD ft = FX/Ag ≤ Ft Gross Area ft = FX/Ae ≤ Ft Net Area LRFD Pu = FX ≤ ϕt Pn = ϕt Ag Fy ϕt = 0.9 for Gross Area Pu = FX ≤ ϕt Pn = ϕt Ae Fu ϕt = 0.75 for Net Area
  • 14. 14 Tension Members ASD (ASD Section D1) Gross Area Ft = 0.6Fy Net Area Ft = 0.5Fu LRFD (LRFD Section D1) Gross Area ϕt Pn = ϕt Fy Ag ϕt = 0.9 Net Area ϕt Pn = ϕt Fu Ae ϕt = 0.75
  • 15. 15 Compare ASD to LRFD ASD 1.0D + 1.0L LRFD 1.2D + 1.6L 0.6Fy (ASD) × (1.5) = 0.9Fy (LRFD) 0.5Fu (ASD) × (1.5) = 0.75Fu (LRFD) ASD × (1.5) = LRFD
  • 17. 17 Tension Members • Member is 15 feet long • Fixed at the top of the member and free at the bottom • Loadings are: • Self weight • 400 kips tension force at the free end • Load combinations based on the ASD and LRFD codes • Steel grade is A992 • Design based on the ASD and LRFD codes
  • 18. 18 Tension Members ASD W18x46 Actual/Allowable Ratio = 0.989 LRFD W10x49 Actual/Limiting Ratio = 0.989
  • 19. 19 Tension Members ASD W18x46 Area = 13.5 in.2 FX = 400.688 kips Ratio = 0.989 LRFD W10x49 Area = 14.4 in.2 FX = 640.881 kips Ratio = 0.989
  • 20. 20 Tension Members Load Factor difference between LRFD and ASD 640.881 / 400.688 = 1.599 Equation Factor difference between LRFD and ASD LRFD = (1.5) × ASD Estimate required cross-sectional area for LRFD LRFD W10x49 Area = 14.4 in.2 Area for LRFD      135 640881 400688 10 15 0989 0989 14 395 . . . . . . . .
  • 21. 21 Tension Members Code Check based on the ASD9 and using W10x49 FX = 400.734 kips Ratio = 0.928 Load Factor difference between LRFD and ASD 640.881 / 400.734 = 1.599 LRFD W10x49 Ratio = 0.989 LRFD Ratio computed fromASD     0928 640881 400734 10 15 0989 . . . . . .
  • 22. 22 Tension Members ASD Example # 1 Live Load = 400 kips W18x46 Actual/Allowable Ratio = 0.989 LRFD Example # 1 Live Load = 400 kips W10x49 Actual/Limiting Ratio = 0.989 Example # 2 Dead Load = 200 kips Live Load = 200 kips W14x43 Actual/Limiting Ratio = 0.989 Code check W14x43 based on the ASD9 W14x43 Actual/Allowable Ratio = 1.06
  • 23. 23 Compression Members • Check KL/r ratio • Compute Flexural-Torsional Buckling and Equivalent (KL/r)e • Find Maximum of KL/r and (KL/r)e • Compute Qs and Qa based on the b/t and h/tw ratios • Based on the KL/r ratio, compute allowable stress in ASD or limiting force in LRFD
  • 24. 24 Compression Members ASD fa = FX/Ag ≤ Fa LRFD Pu = FX ≤ ϕc Pn = ϕc Ag Fcr Where ϕc = 0.85
  • 25. 25 Limiting Width-Thickness Ratios for Compression Elements ASD b/t = h/tw = LRFD b/t = h/tw = 95 / Fy 056 . / E Fy 253 / Fy 149 . / E Fy
  • 26. 26 Limiting Width-Thickness Ratios for Compression Elements Assume E = 29000 ksi ASD b/t = h/tw = LRFD b/t = h/tw = 95 / Fy 9536 . / Fy 253 / Fy 25374 . / Fy
  • 27. 27 Compression Members ASD KL/r ≤ C′c (ASD E2-1 or A-B5-11) LRFD (LRFD A-E3-2)       F Q KL r C F KL r C KL r C a c y c c                1 2 5 3 3 8 8 2 2 3 3 / / /   F Q F cr Q y c  0658 2 .  Where   C E QF c y 2 2  Where   c y KL r F E  c Q  15 .
  • 28. 28 Compression Members ASD KL/r > C′c (ASD E2-2) LRFD (LRFD A-E3-3)   F E KL r a  12 23 2 2  / Where   C E QF c y 2 2  c Q  15 . F F cr c y        0877 2 .  Where   c y KL r F E 
  • 29. 29 Compression Members LRFD F F cr c y        0877 2 .  Where   c y KL r F E  F KL r F E F cr y y                          0877 2 .    F E KL r cr  0877 2 2 . /    F E KL r cr  20171 23 2 2 . / 
  • 30. 30 Compression Members ASD LRFD Fcr / Fa = 1.681 LRFD Fcr = ASD Fa × 1.681   F E KL r a  12 23 2 2  /   F E KL r cr  20171 23 2 2 . / 
  • 31. 31 Compression Members ASD (ASD C-E2-2) LRFD λc = Maximum of ( λcy , λcz , λe ) KL r K L r K L r KL r y Y y z z z e / , ,                Where KL r E F e e        
  • 32. 32 Compression Members LRFD Where:   cy y y y y K L r F E    cz z z z y K L r F E  e y e F F 
  • 33. 33 Compression Members Flexural-Torsional Buckling   F EC K L GJ I I e w x x y z             2 2 10 .
  • 34. 34 Qs Computation ASD LRFD When 95 195 / / / / / F k b t F k y c y c   Q b t F k s y c   1293 000309 . . ( / ) / When 056 103 . / / . / E F b t E F y y   Q b t F E s y   1415 074 . . ( / ) /   k h t h t k c c    4 05 70 10 0.46 . / / , . if otherwise
  • 35. 35 Qs Computation Assume E = 29000 ksi ASD LRFD When 95 195 / / / / / F k b t F k y c y c   Q b t F k s y c   1293 000309 . . ( / ) / When 9536 1754 . / / . / F b t F y y   Q b t F s y   1415 0004345 . . ( / )
  • 36. 36 Qs Computation ASD LRFD When b t F k y c / / /  195     Q k F b t s c y  26200 2 / / When b t E Fy / . /  103     Q E F b t s y  069 2 . / /
  • 37. 37 Qs Computation Assume E = 29000 ksi ASD LRFD When b t F k y c / / /  195     Q k F b t s c y  26200 2 / / When b t Fy / . /  1754     Q F b t s y  20010 2 / /
  • 38. 38 Qa Computation ASD LRFD b t f b t f b e            253 1 44 3 . ( / ) b t E f b t E f b e          191 1 0 34 . . ( / ) Assume ksi E b t f b t f e            29000 32526 1 57 9 , . . ( / )
  • 40. 40 Compression Members • Member is 15 feet long • Fixed at the bottom of the column and free at the top • Loadings are: • Self weight • 100 kips compression force at the free end • Load combinations based on the ASD and LRFD codes • Steel grade is A992 • Design based on the ASD and LRFD codes
  • 41. 41 Compression Members ASD W10x49 Actual/Allowable Ratio = 0.941 LRFD W10x54 Actual/Limiting Ratio = 0.944
  • 42. 42 Compression Members ASD W10x49 Area = 14.4 in.2 FX = 100.734 kips Ratio = 0.941 LRFD W10x54 Area = 15.8 in.2 FX = 160.967 kips Ratio = 0.944
  • 43. 43 Compression Members Load Factor difference between LRFD and ASD 160.967 / 100.734 = 1.598 Equation Factor difference between LRFD and ASD LRFD Fcr = (1.681) × ASD Fa Estimate required cross-sectional area for LRFD LRFD W10x54 Area = 15.8 inch Area for LRFD       14 4 160967 100734 10 1681 10 085 0941 0944 1605 . . . . . . . . . .
  • 44. 44 Compression Members Code Check based on the ASD9 and use W10x54 FX = 100.806 kips Ratio = 0.845 Load Factor difference between LRFD and ASD 160.967 / 100.806 = 1.597 LRFD W10x54 Ratio = 0.944 LRFD Ratio computed fromASD      0845 160967 100806 10 1681 10 085 0944 . . . . . . . .
  • 45. 45 Compression Members ASD Example # 1 Live Load = 100 kips W10x49 Actual/Allowable Ratio = 0.941 LRFD Example # 1 Live Load = 100 kips W10x54 Actual/Limiting Ratio = 0.944 Example # 2 Dead Load = 50 kips Live Load = 50 kips W10x49 Actual/Limiting Ratio = 0.921 Code check W10x49 based on the ASD9 W10x49 Actual/Allowable Ratio = 0.941
  • 46. 46 Flexural Members • Based on the b/t and h/tw ratios determine the compactness of the cross-section • Classify flexural members as Compact, Noncompact, or Slender • When noncompact section in ASD, allowable stress Fb is computed based on the l/rt ratio. l is the laterally unbraced length of the compression flange. Also, Cb has to be computed • When noncompact or slender section in LRFD, LTB, FLB, and WLB are checked • LTB for noncompact or slender sections is computed using Lb and Cb. Lb is the laterally unbraced length of the compression flange
  • 47. 47 Flexural Members ASD fb = MZ/SZ ≤ Fb LRFD Mu = MZ ≤ ϕb Mn Where ϕb = 0.9
  • 48. 48 Limiting Width-Thickness Ratios for Compression Elements ASD LRFD Assume E = 29000 ksi d t F w y / /  640 b t E Fy / . /  038 h t E F w y / . /  376 b t Fy / /  65 b t Fy / . /  64 7 h t F w y / . /  640 3
  • 49. 49 Flexural Members Compact Section ASD (ASD F1-1) Fb = 0.66Fy LRFD (LRFD A-F1-1) ϕb Mn = ϕb Mp = ϕb Fy ZZ ≤ 1.5Fy SZ Where ϕb = 0.9
  • 50. 50 Flexural Members Compact Section X Y Z FIXED JOINT -15.00 -15.00 o o FIXED JOINT Braced at 1/3 Points
  • 51. 51 Flexural Members Compact Section • Member is 12 feet long • Fixed at both ends of the member • Loadings are: • Self weight • 15 kips/ft uniform load • Load combinations based on the ASD and LRFD codes • Steel grade is A992 • Braced at the 1/3 Points • Design based on the ASD and LRFD codes
  • 52. 52 Flexural Members Compact Section ASD W18x40 Actual/Allowable Ratio = 0.959 LRFD W18x40 Actual/Limiting Ratio = 0.982
  • 53. 53 Flexural Members Compact Section ASD W18x40 Sz = 68.4 in.3 MZ = 2165.777 inch-kips Ratio = 0.959 LRFD W18x40 Zz = 78.4 in.3 MZ = 3462.933 inch-kips Ratio = 0.982
  • 54. 54 Flexural Members Compact Section Load Factor difference between LRFD and ASD 3462.933 / 2165.777 = 1.5989 Equation Factor difference between LRFD and ASD LRFD = (0.66Sz)(1.5989) / (0.9Zz) × ASD Zz LRFD W18x40 Zz = 78.4 in.3 for LRFD      684 3462 933 2165777 066 09 0959 0982 783 . . . . . . . .
  • 55. 55 Flexural Members Compact Section Code Check based on the ASD9, Profile W18x40 MZ = 2165.777 inch-kips Ratio = 0.959 Load Factor difference between LRFD and ASD 3462.933 / 2165.777 = 1.5989 LRFD W18x40 Ratio = 0.982 LRFD Ratio computed fromASD      0959 3462 933 2165777 066 09 684 784 0981 . . . . . . . .
  • 56. 56 Flexural Members Compact Section ASD Example # 1 Live Load = 15 kips/ft W18x40 Actual/Allowable Ratio = 0.959 LRFD Example # 1 Live Load = 15 kips/ft W18x40 Actual/Limiting Ratio = 0.982 Example # 2 Dead Load = 7.5 kips/ft Live Load = 7.5 kips/ft W18x40 Actual/Limiting Ratio = 0.859 Code check W18x40 based on the ASD9 W18x40 Actual/Allowable Ratio = 0.959
  • 57. 57 Flexural Members Noncompact Section ASD • Based on b/t, d/tw and h/tw determine if the section is noncompact • Compute Cb • Compute Qs • Based on the l/rt ratio, compute allowable stress Fb • Laterally unbraced length of the compression flange (l) has a direct effect on the equations of the noncompact section
  • 58. 58 Flexural Members Noncompact Section ASD fb = MZ/SZ ≤ Fb LRFD Mu = MZ ≤ ϕb Mn Where ϕb = 0.9
  • 59. 59 Limiting Width-Thickness Ratios for Compression Elements ASD LRFD 65 95 F b t F y y   d t F w y  640 038 083 . / . E F b t E F y L   376 57 . . E F h t E F y w y   h t F w b  760
  • 60. 60 Limiting Width-Thickness Ratios for Compression Elements Assume E = 29000 ksi ASD LRFD 65 95 F b t F y y   d t F w y  640 64 7 1413 . / / . / F b t F y L   6403 970 7 . / . / F h t F y w y   h t F w b  760
  • 61. 61 Flexural Members Noncompact Section ASD (ASD F1-3) (ASD F1-2) ASD Equations F1-6, F1-7, and F1-8 must to be checked. F F b t F b y f f y           079 0002 2 . .   If minimum or L L b F d A F b c f y f y           76 20000
  • 62. 62 Flexural Members Noncompact Section ASD When (ASD F1-6) 102 10 510 10 3 3     C F l r C F b y T b y   F F l r C F F Q b y T b y y s             2 3 1530 10 0 6 2 3 / .
  • 63. 63 Flexural Members Noncompact Section ASD When (ASD F1-7) l r C F T b y   510 103   F C l r F Q b b T y s    170 10 0 6 3 2 / .
  • 64. 64 Flexural Members Noncompact Section ASD For any value of l/rT (ASD F1-8) F C ld A F Q b b f y s    12 10 06 3 / .
  • 65. 65 Flexural Members Noncompact Section LRFD 1. LTB, Lateral-Torsional Buckling 2. FLB, Flange Local Buckling 3. WLB, Web Local Buckling
  • 66. 66 Flexural Members Noncompact Section LRFD – LTB • Compute Cb • Based on the Lb, compute limiting moment capacity. Lb is the lateral unbraced length of the compression flange, λ = Lb/ry • Lb has a direct effect on the LTB equations for noncompact and slender sections – FLB • Compute limiting moment capacity based on the b/t ratio of the flange, λ = b/t – WLB • Compute limiting moment capacity based on the h/tw ratio of the web, λ = h/tw
  • 67. 67 Flexural Members Noncompact Section LRFD LTB (Table A-F1.1) For λp < λ ≤ λr (LRFD A-F1-2) Where: Mp = Fy Zz ≤ 1.5Fy Sz Mr = FLSz FL = Smaller of (Fyf − Fr) or Fyw λ = Lb/ry λp =   M C M M M M n b p p r p r p p                           176 . E Fyf
  • 68. 68 Flexural Members Noncompact Section LRFD LTB (Table A-F1.1) Where: λr = X1 = X2 = X F X F L L 1 2 2 1 1    S EGJA z 2 4 2 C I S GJ w y z      
  • 69. 69 Flexural Members Noncompact Section LRFD FLB (Table A-F1.1) For λp < λ ≤ λr (LRFD A-F1-3) Where: Mp = Fy Zz ≤ 1.5Fy Sz Mr = FLSz FL = Smaller of (Fyf − Fr) or Fyw λ = b/t λp = λr =   M M M M n p p r p r p                          038 . E Fy 083 . E FL
  • 70. 70 Flexural Members Noncompact Section LRFD WLB (Table A-F1.1) For λp < λ ≤ λr (LRFD A-F1-3) Where: Mp = Fy Zz ≤ 1.5Fy Sz Mr = Re Fy Sz Re = 1.0 for non-hybrid girder   M M M M n p p r p r p                         
  • 71. 71 Flexural Members Noncompact Section LRFD WLB (Table A-F1.1) λ = h/tw λp = λr = 376 . E Fy 57 . E Fy
  • 72. 72 Flexural Members Noncompact Section ASD LRFD     C M M M M M M M M M C b b       175 105 03 2 3 10 1 2 1 2 2 1 2 1 2 . . . . , . max If between and C M M M M M M M M b A B C A B C         125 25 3 4 3 . . max max absolute value of moment at quarter point absolute value of moment at centerline absolute value of moment at three quarter point
  • 74. 74 Flexural Members Noncompact Section • Member is 12 feet long • Pin at the start of the member • Roller at the end of the member • Cross-section is W12x65 • Loadings are: • Self weight • 12 kips/ft uniform load • Load combinations based on the ASD and LRFD codes • Steel grade is A992 • Check code based on the ASD and LRFD codes
  • 75. 75 Flexural Members Noncompact Section ASD W12x65 Cb = 1.0 Actual/Allowable Ratio = 0.988 LRFD W12x65 Cb = 1.136 Actual/Limiting Ratio = 0.971 Code check is controlled by FLB. Cb = 1.0 Actual/Limiting Ratio = 0.973
  • 76. 76 Flexural Members Noncompact Section ASD Example # 1 Live Load = 12 kips/ft W12x65 Actual/Allowable Ratio = 0.988 LRFD Example # 1 Live Load = 12 kips/ft W12x65 Actual/Limiting Ratio = 0.971 Example # 2 Dead Load = 6 kips/ft Live Load = 6 kips/ft W12x65 Actual/Limiting Ratio = 0.85 Code check W12x65 based on the ASD9 W12x65 Actual/Allowable Ratio = 0.988
  • 77. 77 Design for Shear ASD fv = FY/Aw ≤ Fv = 0.4Fy (ASD F4-1) LRFD Vu = FY ≤ ϕvVn = ϕv0.6Fyw Aw (LRFD F2-1) Where ϕv = 0.9 h t F w y /  380 h t E F w yw / . /  2 45
  • 78. 78 Design for Shear Assume E = 29000 ksi ASD fv = FY/Aw ≤ Fv = 0.4Fy (ASD F4-1) LRFD Vu = FY ≤ ϕvVn = ϕv0.6Fyw Aw (LRFD F2-1) Where ϕv = 0.9 h t F w y /  380 h t F w yw / . /  417 2
  • 79. 79 Design for Shear ASD fv = FY/Ay ≤ (ASD F4-2) LRFD Vu = FY ≤ ϕvVn = ϕv (LRFD F2-2) Where ϕv = 0.9 h t F w y /  380 2 45 307 . / / . / E F h t E F yw w yw     F F C F v y v y   2 89 0 4 . . 0 6 2 45 . . / / F A E F h t yw w yw w        
  • 80. 80 Design for Shear LRFD Vu = FY ≤ ϕvVn = ϕv (LRFD F2-3) Where ϕv = 0.9 307 260 . / / E F h t yw w     A E h t w w 452 2 . /        
  • 81. 81 Design for Shear X Y Z FIXED JOINT -15.00 -15.00 o o FIXED JOINT Braced at 1/3 Points
  • 82. 82 Design for Shear • Same as example # 3 which is used for design of flexural member with compact section • Member is 12 feet long • Fixed at both ends of the member • Loadings are: • Self weight • 15 kips/ft uniform load • Load combinations based on the ASD and LRFD codes • Steel grade is A992 • Braced at the 1/3 Points • Design based on the ASD and LRFD codes
  • 83. 83 Design for Shear ASD (Check shear at the end of the member, equation “F4-1 Y”) W18x40 Actual/Allowable Ratio = 0.8 LRFD (Check shear at the end of the member, equation “A-F2-1 Y”) W18x40 Actual/Limiting Ratio = 0.948
  • 84. 84 Design for Shear ASD W18x40 Ay = 5.638 in.2 FY = 90.241 kips Ratio = 0.8 LRFD W18x40 Ay = 5.638 in.2 FY = 144.289 kips Ratio = 0.948
  • 85. 85 Design for Shear Code Check based on the ASD9, Profile W18x40 FY = 90.241 kips Ratio = 0.8 Load Factor difference between LRFD and ASD 144.289 / 90.241 = 1.5989 Equation Factor difference between LRFD and ASD LRFD = (0.4)(1.5989) /(0.6)(0.9) × ASD LRFD W18x40 Ratio = 0.948 LRFD Ratio computed fromASD      08 144 289 90241 04 06 10 09 0948 . . . . . . . .
  • 86. 86 Design for Shear ASD Example # 1 Live Load = 15 kips/ft W18x40 Actual/Allowable Ratio = 0.8 LRFD Example # 1 Live Load = 15 kips/ft W18x40 Actual/Limiting Ratio = 0.948 Example # 2 Dead Load = 7.5 kips/ft Live Load = 7.5 kips/ft W18x40 Actual/Limiting Ratio = 0.83 Code check W18x40 based on the ASD9 W18x40 Actual/Allowable Ratio = 0.8
  • 87. 87 Combined Forces ASD fa /Fa > 0.15 (ASD H1-1) (ASD H1-2) LRFD Pu /ϕPn ≥ 0.2 (LRFD H1-1a) f F C f f F F C f f F a a my by a ey by mz bz a ez                    1 1 10 . f F f F f F a y by by bz bz 06 10 . .    P P M M M M u n uy b ny uz b nz               8 9 10 .
  • 88. 88 Combined Forces ASD fa /Fa ≤ 0.15 (ASD H1-1) LRFD Pu /ϕPn < 0.2 (LRFD H1-1a) f F f F f F a a by by bz bz    10 . P P M M M M u n uy b ny uz b nz 2 10               .
  • 90. 90 Combined Forces • 3D Simple Frame • 3 Bays in X direction 3 @ 15 ft • 2 Bays in Z direction 2 @ 30 ft • 2 Floors in Y direction 2 @ 15 ft • Loadings • Self weight of the Steel • Self weight of the Slab 62.5 psf • Other dead loads 15.0 psf • Live load on second floor 50.0 psf • Live load on roof 20.0 psf • Wind load in the X direction 20.0 psf • Wind load in the Z direction 20.0 psf
  • 91. 91 Combined Forces ASD <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < Active Units Weight Unit = KIP Length Unit = INCH > < > < Steel Take Off Itemize Based on the PROFILE > < Total Length, Volume, Weight, and Number of Members > < > < Profile Names Total Length Total Volume Total Weight # of Members > < W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 > < W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 > < W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 > < W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 > < W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 > < W8x40 1.4400E+03 1.6848E+04 4.7730E+00 4 > < W8x48 1.4400E+03 2.0304E+04 5.7521E+00 4 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < ACTIVE UNITS WEIGHT KIP LENGTH INCH > < > < TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS > < > < LENGTH = 1.3320E+04 WEIGHT = 4.6566E+01 VOLUME = 1.6437E+05 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  • 92. 92 Combined Forces LRFD <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < Active Units Weight Unit = KIP Length Unit = INCH > < > < Steel Take Off Itemize Based on the PROFILE > < Total Length, Volume, Weight, and Number of Members > < > < Profile Names Total Length Total Volume Total Weight # of Members > < W10x33 3.6000E+03 3.4956E+04 9.9030E+00 16 > < W10x39 1.4400E+03 1.6560E+04 4.6914E+00 4 > < W10x49 7.2000E+02 1.0368E+04 2.9373E+00 4 > < W12x45 1.4400E+03 1.9008E+04 5.3850E+00 4 > < W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 > < W8x31 1.4400E+03 1.3147E+04 3.7246E+00 4 > < W8x40 1.4400E+03 1.6848E+04 4.7730E+00 8 > < > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < ACTIVE UNITS WEIGHT KIP LENGTH INCH > < > < TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS > < > < LENGTH = 1.3320E+04 WEIGHT = 3.3874E+01 VOLUME = 1.1957E+05 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  • 93. 93 Combined Forces ASD WEIGHT = 46.566 kips LRFD WEIGHT = 33.874 kips
  • 94. 94 Deflection Design ASD <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < Active Units Weight Unit = KIP Length Unit = INCH > < > < Steel Take Off Itemize Based on the PROFILE > < Total Length, Volume, Weight, and Number of Members > < > < Profile Names Total Length Total Volume Total Weight # of Members > < W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 > < W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 > < W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 > < W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 > < W14x43 1.4400E+03 1.8144E+04 5.1402E+00 4 > < W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 > < W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < ACTIVE UNITS WEIGHT KIP LENGTH INCH > < > < TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS > < > < LENGTH = 1.3320E+04 WEIGHT = 4.6933E+01 VOLUME = 1.6566E+05 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  • 95. 95 Deflection Design LRFD <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < Active Units Weight Unit = KIP Length Unit = INCH > < > < Steel Take Off Itemize Based on the PROFILE > < Total Length, Volume, Weight, and Number of Members > < > < Profile Names Total Length Total Volume Total Weight # of Members > < W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 > < W10x49 1.4400E+03 2.0736E+04 5.8745E+00 8 > < W10x54 7.2000E+02 1.1376E+04 3.2228E+00 4 > < W12x40 1.4400E+03 1.6992E+04 4.8138E+00 4 > < W14x43 2.8800E+03 3.6288E+04 1.0280E+01 8 > < W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 > < W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> < ACTIVE UNITS WEIGHT KIP LENGTH INCH > < > < TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS > < > < LENGTH = 1.3320E+04 WEIGHT = 3.8345E+01 VOLUME = 1.3535E+05 > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  • 96. 96 Deflection Design ASD WEIGHT = 46.933 kips LRFD WEIGHT = 38.345 kips
  • 97. 97 Compare Design without and with Deflection Design ASD Without Deflection Design WEIGHT = 46.566 kips With Deflection Design WEIGHT = 46.933 kips LRFD Without Deflection Design WEIGHT = 33.874 kips With Deflection Design WEIGHT = 38.345 kips
  • 98. 98 Design same example based on Cb = 1.0 Code and deflection design with Cb = 1.0 ASD Compute Cb WEIGHT = 46.933 kips Specify Cb = 1.0 WEIGHT = 51.752 kips LRFD Compute Cb WEIGHT = 38.345 kips Specify Cb = 1.0 WEIGHT = 48.421 kips
  • 99. 99 Design Similar example based on Cb = 1.0 and LL×5 • Code and deflection design with Cb = 1.0 and increase the live load by a factor of 5. • Area loads are distributed using two way option instead of one way • Also change the 2 bays in the Z direction from 30 ft to 15 ft. ASD WEIGHT = 25.677 kips LRFD WEIGHT = 22.636 kips Difference = 3.041 kips
  • 100. 100 Design Similar example based on Cb = 1.0 and LL×10 • Code and deflection design with Cb = 1.0 and increase the live load by a factor of 10. • Area loads are distributed using two way option instead of one way • Also change the 2 bays in the Z direction from 30 ft to 15 ft. ASD WEIGHT = 31.022 kips LRFD WEIGHT = 29.051 kips Difference = 1.971 kips
  • 101. 101 Stiffness Analysis versus Nonlinear Analysis • Stiffness Analysis – Load Combinations or Form Loads can be used. • Nonlinear Analysis – Form Loads must be used. Load Combinations are not valid. • Nonlinear Analysis – Specify type of Nonlinearity. • Nonlinear Analysis – Specify Maximum Number of Cycles. • Nonlinear Analysis – Specify Convergence Tolerance.
  • 102. 102 Nonlinear Analysis Commands • NONLINEAR EFFECT • TENSION ONLY • COMPRESSION ONLY • GEOMETRY AXIAL • MAXIMUM NUMBER OF CYCLES • CONVERGENCE TOLERANCE • NONLINEAR ANALYSIS
  • 103. 103 Design using Nonlinear Analysis Input File # 1 1. Geometry, Material Type, Properties, 2. Loading ‘SW’, ‘LL’, and ‘WL’ 3. FORM LOAD ‘A’ FROM ‘SW’ 1.4 4. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6 5. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5 6. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6 7. DEFINE PHYSICAL MEMBERS 8. PARAMETERS 9. MEMBER CONSTRAINTS 10. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ $ Activate only the FORM loads 11. STIFFNESS ANALYSIS 12. SAVE
  • 104. 104 Design using Nonlinear Analysis Input File # 2 1. RESTORE 2. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ 3. SELECT MEMBERS 4. SMOOTH PHYSICAL MEMBERS 5. DELETE LOADINGS ‘A’ ‘B’ ‘C’ ‘D’ 6. SELF WEIGHT LOADING RECOMPUTE 7. FORM LOAD ‘A’ FROM ‘SW’ 1.4 8. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6 9. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5 10. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6 11. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ 12. STIFFNESS ANALYSIS 13. CHECK MEMBERS 14. STEEL TAKE OFF 15. SAVE
  • 105. 105 Design using Nonlinear Analysis Input File # 3 1. RESTORE 2. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ 3. SELECT MEMBERS 4. SMOOTH PHYSICAL MEMBERS 5. DELETE LOADINGS ‘A’ ‘B’ ‘C’ ‘D’ 6. SELF WEIGHT LOADING RECOMPUTE 7. FORM LOAD ‘A’ FROM ‘SW’ 1.4 8. FORM LOAD ‘B’ FROM ‘SW’ 1.2 ‘LL’ 1.6 9. FORM LOAD ‘C’ FROM ‘SW’ 1.2 ‘WL’ 1.6 ‘LL’ 0.5 10. FORM LOAD ‘D’ FROM ‘SW’ 0.9 ‘WL’ 1.6
  • 106. 106 Design using Nonlinear Analysis Input File # 3 (continue) 1. NONLINEAR EFFECT 2. GEOMETRY ALL MEMBERS 3. MAXIMUM NUMBER OF CYCLES 4. CONVERGENCE TOLERANCE DISPLACEMENT 5. LOAD LIST ‘A’ ‘B’ ‘C’ ‘D’ 6. NONLINEAR ANALYSIS 7. CHECK MEMBERS 8. STEEL TAKE OFF 9. SAVE
  • 107. 107 General Comparison between AISC LRFD and ASD Questions

Hinweis der Redaktion

  1. 5/25/2005
  2. 5/25/2005
  3. 5/25/2005
  4. 5/25/2005