SlideShare ist ein Scribd-Unternehmen logo
1 von 67
Downloaden Sie, um offline zu lesen
Short introduction into
Analytical Chemistry
by Prof. Dr. Manfred Sietz
and Dr. Andreas Sonnenberg
(PowerPoint slides)
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
What is Analytical Chemistry?
• study of methods for determining the
composition of substances
– qualitative („what?“)
– quantitative („how much?“)
• see also:
http://en.wikipedia.org/wiki/Analytical_ch
emistry, the free encyclopedia
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Analytical Chemistry
Quality control
e.g. analysis of vitamin
content in food samples
Forensic analytical chemistry
e.g. comparison of DNA codes
or trace analysis of clothings
(„guilty or not?“)
Environmental analytical
chemistry e.g. heavy metals
in soil or water
Clinical analytical chemistry
e.g. analysis of blood or urine
Overview
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
10 steps of chemical analysis
1. Sampling (sampling errors!)
2. Sample naming
3. Sample preparation
4. Analysis
5. Signal recording
6. Signal processing
7. Evaluation of analysis results (correctness,
exactness, reproducibility)
8. Plausibility check
9. Certification
10. Filing
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Instruments for Analysis
Components of a typical instrument
Signal
generator
Input
transducer
or
detector
Analytical
signal
Signal
processor
Electrical
or
mechanical
input
signal
12.301
Output
signal
Meter
or
Scale
Recorder
Digital
unit
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Evaluation of analysis results
The average value x of all single results in a series of
measurements is to be calculated by following formula:
∑
=
+
+
+
+
=
n
x
n
x
x
x
x
x i
n
...
3
2
1
and ∑
=
n
i 1
; n = number of single results.
The precision P of an analysis is determined
by the range of standard deviation S
2
/
1
2
)
(
1
1
⎥
⎦
⎤
⎢
⎣
⎡
−
⋅
−
= ∑ x
x
n
S i und
x
S
P =
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Types of errors
type of
error
coincidental
error
biased error gross
error
X
X
X X
X X
X X
X
X
X
X
X
X
X
X
X
X
X
X
X
miss
precision optimal bad good -
correctness optimal good bad -
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Extend of correctness and precision
0
20
40
60
80
100
120
6,5 6,6 6,7 6,8 6,9 7,0 7,1 7,2 7,3
number
of
measurements
average value true value
extend of precision
extend of correctness
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Concentration units
• A one molecular solution contains 1 mole of a
material solved in one liter of solvent (e.g. water). The
unit is mole per liter.
• Example: A one molecular saline solution contains
58,44 g common salt NaCl solved in one liter water.
1 g NaCl solved in 1 liter water would correspond to
1000 ppm; 1 mg NaCl solved in 1 L would correspond
to 1 ppm.
• One liter water with 25 degree Celsius weighs 1000 g
or 1.000.000 mg; 1 mg NaCl in 1.000.000 mg water
means, that the water contains 1 ppm NaCl; 1ppm =
1 mg per litre
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Detection limit
Minimum concentration or weight of analyte
that can be detected at a known
confidence level
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Applicable Concentration Range
Fig. 1-7 pg. 14
Useful range
LOQ
LOL
Instrument
response
Concentration
LOQ => limit of quantitative
measurement
LOL => limit of linear
response
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Limit of determination,
detection limit and blank value
S = standard deviation, b = blank value
0
1
2
3
4
5
6
7
8
9
0 1 2 3 4 5 6 7
amount in µg
Absorption
Sb
Ab
Ab + 3 Sb
Ab + 6 Sb
detection limit
limit of
determination
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Typical methods for
quantitative analysis
• of heavy metals in soil, water or waste
water is ATOMIC SPECTROSCOPY
• of solvents in soil, air, water or waste
water is GAS CHROMATOGRAPHY
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
We start with
CHROMATOGRAPHY
THIN LAYER
CHROMATOGRAPHY,
A SEPARATION METHOD
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Example: Qualitative analysis of green grass
We take some green grass, add a little amount
of a solvent and press and stir the mixture until
it gets a dark green color. We take a small
portion of that green liquid by a capillary glass
and put a liquid spot on a thin layer of white
(Si-O-)3Si-OH („stationary phase“). We let the
solvent dry.
Then we put the plate into some different
solvent („mobile phase“) and let the solvent
ascend.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Mechanisms I
The component stays mainly
at the surface of the stationary
phase (adsorption) resp. in the
stationary liquid phase
(distribution), while the
component o stays mainly in
the mobile phase.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Mechanisms II
As soon as new mobile phase flows, the
components staying in the mobile phase
are being transported. They get in
contact with unallocated solid or liquid
stationary phase. The stationary phase
mainly adsorbes or disssolves the
component .
Adsorbed resp. in liquid stationary
phase dissolved molecules o trespass in
the mobile phase and are being
transported further more.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Mechanisms III
After multiple repitition of the above
mentioned processes, the two
components are being seperated.
The moleculs o mainly stay in the
mobile phase and obviously move
faster than the moleculs .
In other words: the Rf-value of ist
smaller than the value of o.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
The Retentionfactor Rf
Definition: Rf = Distance start-substance / Distance start-mobile phase
mobile phase
substance
start start
substance
standard
A: the Rf-value B: the Rst-value
Rf = b/a = dist. substance/dist. mob. phase Rst = b/a = dist. substance/dist. standard
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Thin layer chromatography is a qualitative
separation technique.
The substances are separated by their solubility
in the mobile phase and their affinity towards
the stationary phase.
The balanced distribution of a substance is
described by:
cstationary phase / cmobile phase = KT
c = concentration of a substance
K = constant (depending on temperature)
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Separation of chlorophyll
mobile phase
start, ca. 1 cm high
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Molecular structure of chlorophyll a and b
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Molecular structures of ß-Carotine and Lutein
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Absorption spectra of chlorophyll a and b
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Effective spectrum of photosynthesis
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Different chemical substances have
different chemical properties (polarity,
solubility etc.)
They are separable by different Rf-values
in a thin layer chromatogram („TLC“).
The TLC-method shows in a simple, quick
and cheap way, how to analyse the
composition of a natural substance like
green grass.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Now we change the thin layer by a metal
column, filled with Si(OH)n and we change the
mobile phase from a solvent into a gas:
GAS CHROMATOGRAPHY
see also:
http://www.gaschromatography.com/basic.asp
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Gas Chromatography
• separation by partition between gaseous
mobile phase and liquid stationary phase
supported by inert packing
• developed in 1941 by Martin and Synge
• applications did not come till 1950s
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Principles of gas
chromatographic separation
mixture of 3 components actual signal
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Assembly of a Gas Chromatograph
1 H2
2 synthetic air
(1 and 2 burning gases for FID)
3 He (mobile phase)
4 N2 (cheap possibility to dilute
the mobile phase)
5 Cleaning column for N2
6 Injector
7,8 capillary separation columns
9,10 detectors
11 workstation (signal recording)
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Fig. 27-3, pg. 704
“Cross-sectional view
of a microflash
vaporizer direct
injector.”
Vaporization
chamber
Syringe
needle
Carrier
gas
Septum
Syringe
Septum
purge
Column
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Apparatus
Column Thermostating
temperature:
– slightly below or equal to av. b.p. of
components
– allows for tR between 2 and 30 min
– programmable
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Fig. 27-5, pg. 706
“Effect of temperature
on gas chromatograms:
(a.) isothermal at 45oC;
(b.) isothermal at 145oC;
(c.) programmed at
30oC to 180oC.”
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Apparatus
Detectors
• Flame Ionization Detector (FID)
– sample burned in H2/air flame
– sample must be combustible
– must use electrometer
– flame resistance 1012Ω
– ppm sensitivity
– destructive
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Fig. 27-6, pg. 707
“A typical flame
ionization detector”
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
One typical application for gas chromatography
is the pesticide analysis of fruits and drinking
water.
Each pesticide correspond with an electric
signal („peak“), whereas the retention time
since injection of the sample is equivalent to a
single type of pesticide.
The peak area shows the amount of pesticide
in the sample.
But how to be sure?
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Because of the rapid development of computers
connected to analytical systems, a few
problems arise. Nowadays, measurement
results are automatically transferred to analysis
reports. The reports are signed by the
laboratory head and are sent to the customer.
So there is not always enough critical review
concerning the plausibility of analysis results.
Still, the laboratory is responsible for the results
and has to assume liability.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Atomic Spectroscopy
see also:
http://shsu.edu/~chemistry/primers/AAS.html
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Atomic Spectroscopy
These methods deal with the absorption and
emission of radiation by atoms.
The methods deal with free atoms.
Line spectra are observed
Specific spectral lines can be used for
elemental analysis - both qualitative and
quantitative.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
AAS: The temperature of a Bunsen burner
flame is high enough to excite e.g. sodium
atoms from common salt to „shine“.
The excitation in the third step is connected with different electron
„jumps“, which take place all at the same time.
Therefore the emission of light in step four is connected not only with
the emission of one spectral line, but with an emission of a complete
line spectrum.
1. (NaCl)solid
evaporation energy
⎯⎯⎯⎯⎯⎯⎯⎯→ (NaCl)gas
2. (NaCl)gas
energy for atomization
⎯⎯⎯⎯⎯⎯⎯⎯⎯→ Na + Cl
3. Na
excitation energy
⎯⎯⎯⎯⎯⎯⎯→ Na*
4. Na*
emission of light
⎯⎯⎯⎯⎯⎯⎯→ Na
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Flame Atomizers
Fig. 10-15, pg. 209
"A laminar flow burner."
sample
fuel
nebulizer
to waste
nebulizer
chamber
pressure
burner head
flow
spoiler
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Excitation sources
The method of flame excitation is of relative low
temperature.
Air/H2 2100 °C
O2/H2 2700 °C
N2O/C2H2 3050 °C
This results in only a very small percentage of
atoms being ionized (< 1%). One option to go to
higher temperature is the Plasma emission.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Emission and Absorption
Emission:
Energy, Δ E
e.g. heat
atom in
ground state
atom in
excited state
atom in
ground state
radiation
energy Δ E
Absorption:
Energy of
light
(photons)
atom in
ground state
atom in
excited state
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Term diagram of sodium
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Band spectrum
Thermal or electrical energy
Energy-level
diagram for a
sodium atom
showing the
source of a line
spectrum
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Atomic emission
Methods rely on the presence of specific emission lines
Element Major emission line, nm
Ag 328.1
Cu 324,8
Hg 253,7
K 344,7
Zn 334,5
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Components of
Optical Instruments
Flame Atomic Absorption Spectrometer
Source Wavelength Selector
Sample
Detector
Signal Processor
Readout
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Measurement principle I
A line emitter, e.g. a hollow
cathode lamp sends out the
emission spectrum of one
chemical element. In the
flame, the concentration of this
atomized element is equal to
the proportion of absorbed
radiation on the resonance
line. In the monochromator,
the resonance line is selected
and all other lines are faded
out. Therefore the detector
only sees the resonance line,
whose attenuation is finally
registered.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Measurement principle II
Light attenuation is
proportional to
amount of metal
atoms in the flame:
I/I0 ~ c
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
Hollow Cathode Lamps (HCL)
Fig. 9-11, pg. 215 "Schematic cross
section of a hollow cathode lamp."
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Dr. S. M. Condren
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Analysis of total chromium
and hexavalent chromium
(Cr(VI)) in leather
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Leather goods are considered to be pure natural
products. Keeping in mind that during treatment of
animal skins about 250 different chemicals (e.g.
aldehydes, phenols, pesticides, acids, caustic solutions,
heavy metals, solvents, softeners, coloring agents
plastics, oils and fats) are used, it appears not correct to
title leather as „natural products“.
These chemical treated leather products can set
different chemicals free, as soon as they get in contact
with the human skin. These chemicals may display a
dangerous potential for the consumers health.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Therefore migration experiments were accomplished,
which simulated the release of chromium and
carcinogenic Cr(VI) from leather by the application of
artificial sweat solutions.
The results of the coincidentally selected 29 leather
samples were frightening:
It was shown under the chosen conditions, that aprrox.
1/2 of the samples released hexavalent, carcinogenic
chromium in the simulated sweat.
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Total chromium of 29 leather
samples of 5 different categories
0
20
40
60
80
100
120
140
160
180
Total chromium in (mg/kg)
Artificial sweat at pH 5,5
Categorie
2 3 4 5
1
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Concentration of Cr(VI) in 29 leather
samples of 5 different categories
0
2
4
6
8
10
12
14
16
Concentration of Cr(VI) (mg/kg)
Artificial sweat at pH 5,5
Categorie
2 3 4 5
1
FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
Thank you for your attention

Weitere ähnliche Inhalte

Ähnlich wie Analytical_Chemistry.pdf

SpectrometryandProteomicsAgenda
SpectrometryandProteomicsAgendaSpectrometryandProteomicsAgenda
SpectrometryandProteomicsAgenda
Nikola Nastić
 
Hu Posterboard Presentation 081011
Hu Posterboard Presentation 081011Hu Posterboard Presentation 081011
Hu Posterboard Presentation 081011
Davis Hu
 
Application of uv visible spectroscopy in microbiology
Application of uv visible spectroscopy in microbiologyApplication of uv visible spectroscopy in microbiology
Application of uv visible spectroscopy in microbiology
Farhad Ashraf
 

Ähnlich wie Analytical_Chemistry.pdf (20)

Introduction to analytical chemistry
Introduction to analytical chemistryIntroduction to analytical chemistry
Introduction to analytical chemistry
 
SURE poster
SURE posterSURE poster
SURE poster
 
Anh văn chuyên ngành hóa 3
Anh văn chuyên ngành hóa 3Anh văn chuyên ngành hóa 3
Anh văn chuyên ngành hóa 3
 
High Performance Liquid Chromatography (HPLC)
High Performance Liquid Chromatography (HPLC)High Performance Liquid Chromatography (HPLC)
High Performance Liquid Chromatography (HPLC)
 
Chromatography techniques seminar.pptx
Chromatography techniques seminar.pptxChromatography techniques seminar.pptx
Chromatography techniques seminar.pptx
 
Spectroflurometer
SpectroflurometerSpectroflurometer
Spectroflurometer
 
Convergence of Occupational and Environmental Exposure Science: the Whole Pic...
Convergence of Occupational and Environmental Exposure Science: the Whole Pic...Convergence of Occupational and Environmental Exposure Science: the Whole Pic...
Convergence of Occupational and Environmental Exposure Science: the Whole Pic...
 
SpectrometryandProteomicsAgenda
SpectrometryandProteomicsAgendaSpectrometryandProteomicsAgenda
SpectrometryandProteomicsAgenda
 
B sc biotech i bpi unit 3 p h meter and colorimeter
B sc biotech i bpi unit 3 p h meter and colorimeterB sc biotech i bpi unit 3 p h meter and colorimeter
B sc biotech i bpi unit 3 p h meter and colorimeter
 
Isotope ratio mass spectrometry minireview
Isotope ratio mass spectrometry   minireviewIsotope ratio mass spectrometry   minireview
Isotope ratio mass spectrometry minireview
 
Hu Posterboard Presentation 081011
Hu Posterboard Presentation 081011Hu Posterboard Presentation 081011
Hu Posterboard Presentation 081011
 
ENPO5562
ENPO5562ENPO5562
ENPO5562
 
LC MS
LC MS LC MS
LC MS
 
Recent diagnostic aids in endodontics
Recent diagnostic aids in endodonticsRecent diagnostic aids in endodontics
Recent diagnostic aids in endodontics
 
Application of uv visible spectroscopy in microbiology
Application of uv visible spectroscopy in microbiologyApplication of uv visible spectroscopy in microbiology
Application of uv visible spectroscopy in microbiology
 
PH meter report
PH meter reportPH meter report
PH meter report
 
Limit value for urinary 1-hydroxypyrene as marker of occupational exposure to...
Limit value for urinary 1-hydroxypyrene as marker of occupational exposure to...Limit value for urinary 1-hydroxypyrene as marker of occupational exposure to...
Limit value for urinary 1-hydroxypyrene as marker of occupational exposure to...
 
Fluorescent probes
Fluorescent probesFluorescent probes
Fluorescent probes
 
Notes for The principle and performance of liquid chromatography–mass spectro...
Notes for The principle and performance of liquid chromatography–mass spectro...Notes for The principle and performance of liquid chromatography–mass spectro...
Notes for The principle and performance of liquid chromatography–mass spectro...
 
Liquid Chromatography-Mass Spectrometry (LC-MS).pptx
Liquid Chromatography-Mass Spectrometry (LC-MS).pptxLiquid Chromatography-Mass Spectrometry (LC-MS).pptx
Liquid Chromatography-Mass Spectrometry (LC-MS).pptx
 

Mehr von ssuser497f37

introduction_to_principles_of_pharmacology.ppt
introduction_to_principles_of_pharmacology.pptintroduction_to_principles_of_pharmacology.ppt
introduction_to_principles_of_pharmacology.ppt
ssuser497f37
 

Mehr von ssuser497f37 (20)

Therapeutic drug monitoring PHARMACY sAA.ppt
Therapeutic drug monitoring PHARMACY sAA.pptTherapeutic drug monitoring PHARMACY sAA.ppt
Therapeutic drug monitoring PHARMACY sAA.ppt
 
3.pptx
3.pptx3.pptx
3.pptx
 
99994138.ppt
99994138.ppt99994138.ppt
99994138.ppt
 
Medical Terminology 1.ppt
Medical Terminology 1.pptMedical Terminology 1.ppt
Medical Terminology 1.ppt
 
مخطط.pdf
مخطط.pdfمخطط.pdf
مخطط.pdf
 
parmacok15.ppt
parmacok15.pptparmacok15.ppt
parmacok15.ppt
 
IDSA641.PPT
IDSA641.PPTIDSA641.PPT
IDSA641.PPT
 
introduction_to_principles_of_pharmacology.ppt
introduction_to_principles_of_pharmacology.pptintroduction_to_principles_of_pharmacology.ppt
introduction_to_principles_of_pharmacology.ppt
 
4_2017_10_19!10_00_11_AM.pptx
4_2017_10_19!10_00_11_AM.pptx4_2017_10_19!10_00_11_AM.pptx
4_2017_10_19!10_00_11_AM.pptx
 
iminjectables_rhonda.ppt
iminjectables_rhonda.pptiminjectables_rhonda.ppt
iminjectables_rhonda.ppt
 
Pharmacokinetics (1).ppt
Pharmacokinetics (1).pptPharmacokinetics (1).ppt
Pharmacokinetics (1).ppt
 
6254187.ppt
6254187.ppt6254187.ppt
6254187.ppt
 
3391549.ppt
3391549.ppt3391549.ppt
3391549.ppt
 
3391549.ppt
3391549.ppt3391549.ppt
3391549.ppt
 
roleofhospitalpharmacistsintransitionsofcare-130301172100-phpapp01 (1).pdf
roleofhospitalpharmacistsintransitionsofcare-130301172100-phpapp01 (1).pdfroleofhospitalpharmacistsintransitionsofcare-130301172100-phpapp01 (1).pdf
roleofhospitalpharmacistsintransitionsofcare-130301172100-phpapp01 (1).pdf
 
11472874.ppt
11472874.ppt11472874.ppt
11472874.ppt
 
5666367.ppt
5666367.ppt5666367.ppt
5666367.ppt
 
11241869.ppt
11241869.ppt11241869.ppt
11241869.ppt
 
4494047.ppt
4494047.ppt4494047.ppt
4494047.ppt
 
04-lookalikeandsoundalikemedications-170808084616 (2).pdf
04-lookalikeandsoundalikemedications-170808084616 (2).pdf04-lookalikeandsoundalikemedications-170808084616 (2).pdf
04-lookalikeandsoundalikemedications-170808084616 (2).pdf
 

Kürzlich hochgeladen

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Kürzlich hochgeladen (20)

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 

Analytical_Chemistry.pdf

  • 1. Short introduction into Analytical Chemistry by Prof. Dr. Manfred Sietz and Dr. Andreas Sonnenberg (PowerPoint slides)
  • 2. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg What is Analytical Chemistry? • study of methods for determining the composition of substances – qualitative („what?“) – quantitative („how much?“) • see also: http://en.wikipedia.org/wiki/Analytical_ch emistry, the free encyclopedia
  • 3. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Analytical Chemistry Quality control e.g. analysis of vitamin content in food samples Forensic analytical chemistry e.g. comparison of DNA codes or trace analysis of clothings („guilty or not?“) Environmental analytical chemistry e.g. heavy metals in soil or water Clinical analytical chemistry e.g. analysis of blood or urine Overview
  • 4. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg 10 steps of chemical analysis 1. Sampling (sampling errors!) 2. Sample naming 3. Sample preparation 4. Analysis 5. Signal recording 6. Signal processing 7. Evaluation of analysis results (correctness, exactness, reproducibility) 8. Plausibility check 9. Certification 10. Filing
  • 5. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Instruments for Analysis Components of a typical instrument Signal generator Input transducer or detector Analytical signal Signal processor Electrical or mechanical input signal 12.301 Output signal Meter or Scale Recorder Digital unit
  • 6. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Evaluation of analysis results The average value x of all single results in a series of measurements is to be calculated by following formula: ∑ = + + + + = n x n x x x x x i n ... 3 2 1 and ∑ = n i 1 ; n = number of single results. The precision P of an analysis is determined by the range of standard deviation S 2 / 1 2 ) ( 1 1 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − ⋅ − = ∑ x x n S i und x S P =
  • 7. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Types of errors type of error coincidental error biased error gross error X X X X X X X X X X X X X X X X X X X X X miss precision optimal bad good - correctness optimal good bad -
  • 8. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Extend of correctness and precision 0 20 40 60 80 100 120 6,5 6,6 6,7 6,8 6,9 7,0 7,1 7,2 7,3 number of measurements average value true value extend of precision extend of correctness
  • 9. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Concentration units • A one molecular solution contains 1 mole of a material solved in one liter of solvent (e.g. water). The unit is mole per liter. • Example: A one molecular saline solution contains 58,44 g common salt NaCl solved in one liter water. 1 g NaCl solved in 1 liter water would correspond to 1000 ppm; 1 mg NaCl solved in 1 L would correspond to 1 ppm. • One liter water with 25 degree Celsius weighs 1000 g or 1.000.000 mg; 1 mg NaCl in 1.000.000 mg water means, that the water contains 1 ppm NaCl; 1ppm = 1 mg per litre
  • 10. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Detection limit Minimum concentration or weight of analyte that can be detected at a known confidence level
  • 11. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Applicable Concentration Range Fig. 1-7 pg. 14 Useful range LOQ LOL Instrument response Concentration LOQ => limit of quantitative measurement LOL => limit of linear response
  • 12. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Limit of determination, detection limit and blank value S = standard deviation, b = blank value 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 amount in µg Absorption Sb Ab Ab + 3 Sb Ab + 6 Sb detection limit limit of determination
  • 13. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Typical methods for quantitative analysis • of heavy metals in soil, water or waste water is ATOMIC SPECTROSCOPY • of solvents in soil, air, water or waste water is GAS CHROMATOGRAPHY
  • 14. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg We start with CHROMATOGRAPHY THIN LAYER CHROMATOGRAPHY, A SEPARATION METHOD
  • 15. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Example: Qualitative analysis of green grass We take some green grass, add a little amount of a solvent and press and stir the mixture until it gets a dark green color. We take a small portion of that green liquid by a capillary glass and put a liquid spot on a thin layer of white (Si-O-)3Si-OH („stationary phase“). We let the solvent dry. Then we put the plate into some different solvent („mobile phase“) and let the solvent ascend.
  • 16. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Mechanisms I The component stays mainly at the surface of the stationary phase (adsorption) resp. in the stationary liquid phase (distribution), while the component o stays mainly in the mobile phase.
  • 17. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Mechanisms II As soon as new mobile phase flows, the components staying in the mobile phase are being transported. They get in contact with unallocated solid or liquid stationary phase. The stationary phase mainly adsorbes or disssolves the component . Adsorbed resp. in liquid stationary phase dissolved molecules o trespass in the mobile phase and are being transported further more.
  • 18. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Mechanisms III After multiple repitition of the above mentioned processes, the two components are being seperated. The moleculs o mainly stay in the mobile phase and obviously move faster than the moleculs . In other words: the Rf-value of ist smaller than the value of o.
  • 19. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg The Retentionfactor Rf Definition: Rf = Distance start-substance / Distance start-mobile phase mobile phase substance start start substance standard A: the Rf-value B: the Rst-value Rf = b/a = dist. substance/dist. mob. phase Rst = b/a = dist. substance/dist. standard
  • 20. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Thin layer chromatography is a qualitative separation technique. The substances are separated by their solubility in the mobile phase and their affinity towards the stationary phase. The balanced distribution of a substance is described by: cstationary phase / cmobile phase = KT c = concentration of a substance K = constant (depending on temperature)
  • 21. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Separation of chlorophyll mobile phase start, ca. 1 cm high
  • 22. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Molecular structure of chlorophyll a and b
  • 23. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Molecular structures of ß-Carotine and Lutein
  • 24. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Absorption spectra of chlorophyll a and b
  • 25. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Effective spectrum of photosynthesis
  • 26. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Different chemical substances have different chemical properties (polarity, solubility etc.) They are separable by different Rf-values in a thin layer chromatogram („TLC“). The TLC-method shows in a simple, quick and cheap way, how to analyse the composition of a natural substance like green grass.
  • 27. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Now we change the thin layer by a metal column, filled with Si(OH)n and we change the mobile phase from a solvent into a gas: GAS CHROMATOGRAPHY see also: http://www.gaschromatography.com/basic.asp
  • 28. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Gas Chromatography • separation by partition between gaseous mobile phase and liquid stationary phase supported by inert packing • developed in 1941 by Martin and Synge • applications did not come till 1950s
  • 29. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Principles of gas chromatographic separation mixture of 3 components actual signal
  • 30. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Assembly of a Gas Chromatograph 1 H2 2 synthetic air (1 and 2 burning gases for FID) 3 He (mobile phase) 4 N2 (cheap possibility to dilute the mobile phase) 5 Cleaning column for N2 6 Injector 7,8 capillary separation columns 9,10 detectors 11 workstation (signal recording)
  • 31. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Fig. 27-3, pg. 704 “Cross-sectional view of a microflash vaporizer direct injector.” Vaporization chamber Syringe needle Carrier gas Septum Syringe Septum purge Column
  • 32. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Apparatus Column Thermostating temperature: – slightly below or equal to av. b.p. of components – allows for tR between 2 and 30 min – programmable
  • 33. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Fig. 27-5, pg. 706 “Effect of temperature on gas chromatograms: (a.) isothermal at 45oC; (b.) isothermal at 145oC; (c.) programmed at 30oC to 180oC.”
  • 34. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Apparatus Detectors • Flame Ionization Detector (FID) – sample burned in H2/air flame – sample must be combustible – must use electrometer – flame resistance 1012Ω – ppm sensitivity – destructive
  • 35. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Fig. 27-6, pg. 707 “A typical flame ionization detector”
  • 36. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg One typical application for gas chromatography is the pesticide analysis of fruits and drinking water. Each pesticide correspond with an electric signal („peak“), whereas the retention time since injection of the sample is equivalent to a single type of pesticide. The peak area shows the amount of pesticide in the sample. But how to be sure?
  • 37. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
  • 38. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
  • 39. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
  • 40. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
  • 41. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
  • 42. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
  • 43. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Because of the rapid development of computers connected to analytical systems, a few problems arise. Nowadays, measurement results are automatically transferred to analysis reports. The reports are signed by the laboratory head and are sent to the customer. So there is not always enough critical review concerning the plausibility of analysis results. Still, the laboratory is responsible for the results and has to assume liability.
  • 44. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Atomic Spectroscopy see also: http://shsu.edu/~chemistry/primers/AAS.html
  • 45. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Atomic Spectroscopy These methods deal with the absorption and emission of radiation by atoms. The methods deal with free atoms. Line spectra are observed Specific spectral lines can be used for elemental analysis - both qualitative and quantitative.
  • 46. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg AAS: The temperature of a Bunsen burner flame is high enough to excite e.g. sodium atoms from common salt to „shine“. The excitation in the third step is connected with different electron „jumps“, which take place all at the same time. Therefore the emission of light in step four is connected not only with the emission of one spectral line, but with an emission of a complete line spectrum. 1. (NaCl)solid evaporation energy ⎯⎯⎯⎯⎯⎯⎯⎯→ (NaCl)gas 2. (NaCl)gas energy for atomization ⎯⎯⎯⎯⎯⎯⎯⎯⎯→ Na + Cl 3. Na excitation energy ⎯⎯⎯⎯⎯⎯⎯→ Na* 4. Na* emission of light ⎯⎯⎯⎯⎯⎯⎯→ Na
  • 47. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg
  • 48. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Flame Atomizers Fig. 10-15, pg. 209 "A laminar flow burner." sample fuel nebulizer to waste nebulizer chamber pressure burner head flow spoiler
  • 49. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Excitation sources The method of flame excitation is of relative low temperature. Air/H2 2100 °C O2/H2 2700 °C N2O/C2H2 3050 °C This results in only a very small percentage of atoms being ionized (< 1%). One option to go to higher temperature is the Plasma emission.
  • 50. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Emission and Absorption Emission: Energy, Δ E e.g. heat atom in ground state atom in excited state atom in ground state radiation energy Δ E Absorption: Energy of light (photons) atom in ground state atom in excited state
  • 51. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Term diagram of sodium
  • 52. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Band spectrum Thermal or electrical energy Energy-level diagram for a sodium atom showing the source of a line spectrum
  • 53. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Atomic emission Methods rely on the presence of specific emission lines Element Major emission line, nm Ag 328.1 Cu 324,8 Hg 253,7 K 344,7 Zn 334,5
  • 54. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Components of Optical Instruments Flame Atomic Absorption Spectrometer Source Wavelength Selector Sample Detector Signal Processor Readout
  • 55. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Measurement principle I A line emitter, e.g. a hollow cathode lamp sends out the emission spectrum of one chemical element. In the flame, the concentration of this atomized element is equal to the proportion of absorbed radiation on the resonance line. In the monochromator, the resonance line is selected and all other lines are faded out. Therefore the detector only sees the resonance line, whose attenuation is finally registered.
  • 56. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Measurement principle II Light attenuation is proportional to amount of metal atoms in the flame: I/I0 ~ c
  • 57. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren Hollow Cathode Lamps (HCL) Fig. 9-11, pg. 215 "Schematic cross section of a hollow cathode lamp."
  • 58. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren
  • 59. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren
  • 60. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren
  • 61. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Dr. S. M. Condren
  • 62. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Analysis of total chromium and hexavalent chromium (Cr(VI)) in leather
  • 63. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Leather goods are considered to be pure natural products. Keeping in mind that during treatment of animal skins about 250 different chemicals (e.g. aldehydes, phenols, pesticides, acids, caustic solutions, heavy metals, solvents, softeners, coloring agents plastics, oils and fats) are used, it appears not correct to title leather as „natural products“. These chemical treated leather products can set different chemicals free, as soon as they get in contact with the human skin. These chemicals may display a dangerous potential for the consumers health.
  • 64. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Therefore migration experiments were accomplished, which simulated the release of chromium and carcinogenic Cr(VI) from leather by the application of artificial sweat solutions. The results of the coincidentally selected 29 leather samples were frightening: It was shown under the chosen conditions, that aprrox. 1/2 of the samples released hexavalent, carcinogenic chromium in the simulated sweat.
  • 65. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Total chromium of 29 leather samples of 5 different categories 0 20 40 60 80 100 120 140 160 180 Total chromium in (mg/kg) Artificial sweat at pH 5,5 Categorie 2 3 4 5 1
  • 66. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Concentration of Cr(VI) in 29 leather samples of 5 different categories 0 2 4 6 8 10 12 14 16 Concentration of Cr(VI) (mg/kg) Artificial sweat at pH 5,5 Categorie 2 3 4 5 1
  • 67. FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg Thank you for your attention