SlideShare ist ein Scribd-Unternehmen logo
1 von 27
Linear Differential Equation
with constant coefficient
Sanjay Singh
Research Scholar
UPTU, Lucknow
The order linear differential equation
with constant coefficient
th
n
1 2
0 1 2 11 2
.......
n n n
n nn n n
The Differential Equation of the form
d y d y d y dy
a a a a a y Q
dxdx dx dx
− −
−− −
+ + + + + =
3 2
3 2
3 6 2 sin 5
Example
d y d y dy
y x
dxdx dx
+ − + =
( )F D y Q=
If
d D
dx
=
1 2
1 2 1( ) .......n n n
o n nWhere F D a D a D a D a D a− −
−= + + + + +
3 2
3 2
3 6 2 sin5Example d y d y dy y x
dxdx dx
+ − + =
3 2( 3 6 2 ) 5D y D y Dy y Sin x⇒ + − + =
3 2( 3 6 2) 5D D D y Sin x⇒ + − + =
( ) 5F D y Sin x⇒ =
3 2( ) ( 3 6 2)F D D D D∴ = + − +
Auxiliary Equation(A.E.)
. . . ( )Suppose L D E is F D y Q=
. . ( ) 0A E is F m =
1 2
1 2 1
....... 0n n n
o n n
OR a m a m a m a m a− −
−
+ + + + + =
3 2
3 2
3 6 2 sin5
d y d y dy
y x
dxdx dx
Example + − + =
3 2( 3 6 2) 5D D D y Sin x⇒ + − + = ( ) 5F D y Sin x⇒ =
3 2( ) ( 3 6 2)F D D D D∴ = + − +
3 2. . ( ) 0 3 6 2 0Hence A E is F m m m m= ⇒ + − + =
Complementary Function (C.F.) of L.D.E.
A function of ‘x’ which satisfies the L.D.E is known as
complementary function of L.D.E . .
Particular Integral (P.I.) of L.D.E.
A function of ‘x’ which satisfies the L.D.E. is known as
particular integral of L.D.E .
General Solution of L.D.E.
The general solution of L.D.E is given by
y = C.F. + P.I
( ) 0F D y =
( )F D y Q=
( )F D y Q=
General Solution of L.D.E.
Complete Solution :
y = C.F+P.I
Where C.F Complementary Function
P.I Particular Integral
. . . ( )Suppose L D E is F D y Q=
Complementary Function
A function of ‘x’ which satisfies the L.D.E
F(D)y = 0
is known as complementary function of
L.D.E . .
Determination of C.F.
 Consider the L.D.E . F(D)y = 0
 Write A.E. of L.D.E. F(m) = 0
 Solve A.E.
 Suppose
are the ‘n’ roots of the auxiliary equation.
1 2
1 2 1....... 0n n n
o n na m a m a m a m a− −
−⇒ + + + + + =
1 2 3, , ,........., nm m m m
Case I: (Roots are real)
1 2 3, , ,........., nIf m m m m are distinctW
31 2
1 2 3. ....... nm xm x m x m x
nthen C F c e c e c e c e= + + + +
Determination of C.F.
Consider the L.D.E .
# Write A.E. of L.D.E.
i.e.
.
# Solve A.E.
Suppose are the ‘n’ roots of the
auxiliary equation.
# Case I: (Roots are real)
# If are distinct then
( )F D y Q=
( ) 0F m =
1 2
1 2 1....... 0n n n
o n na m a m a m a m a− −
−+ + + + + =
1 2 3, , ,........., nm m m m
1 2 3, , ,........., nIf m m m m are distinct
31 2
1 2 3. ....... nm x m xm x m x
nthen C F c e c e c e c e= + + + +
# If are distinct then
# If are distinct then
# If are distinct then
# If are distinct then
1 2 3 4,( ) , ........., nm m k say and m m m= =
3 4
1 2 3 4. ( ) ....... nm x m xm xkx
nC F c c x e c e c e c e= + + + +
1 2 3 4 5,( ) , ........., nm m m k say and m m m= = =
542
1 2 3 4 5. ( ) ....... nm x m xm xkx
nC F c c x c x e c e c e c e= + + + + +
1 2 3 4,, ........., nm m and m m mα β α β= + = −
3 4
1 2 3 4. ( cosh sinh ) ....... nm x m xm xx
nC F e c x c x c e c e c eα
β β= + + + +
1 2 3 4 5, , ,......, nm m m m and m mα β α β= = + = = −
5
1 2 3 4 5. [( )cosh ( )sinh )] ...... nm x m xx
nC F e c c x x c c x x c e c eα
β β= + + + + + +
# Case II: (Roots are comlex)
# If are real and distinct then
# If are real and distinct
then
1 2 3 4, , ......, nm i m i and m m mα β α β= + = −
3 4
1 2 3 4. ( cos sin 0 ....... nm x m xm xx
nC F e c x c x c e c e c eα
β β= + + + +
1 2 3 4 5
, ,......, n
andm m i m m i m mα β α β= = + = = −
3
1 2 3 4 5. [( )cos ( )sin ] ..... nm x m xx
nC F e c xc x c xc x c e c eα
β β= + + + + + +
Determination of P.I.Determination of P.I.
P.I. of L.D.E. is given by
Thus P.I. =
Case I: when
# If then
( )F D y Q=
1
( )
Q
F D
1
( )
Q
F D
: ax
when QCASE I e=
1 1
. , ( ) 0
( ) ( )
ax axP I F a
F D F a
e e= ≠=
( ) 0F a =
'
'
1 1
. , ( ) 0
( ) ( )
ax axP I F a
F D F a
e x e= ≠=
# if then
Case II: when
'
( ) 0F a =
2
'
''
''
'
1
. .
( )
1
,
( )
1
,
( )
( ) 0
( ) 0
0
,
( )
ax
ax
ax
then P I
F D
x
F D
F
F a
x
F a
F a
e
e
e a
=
=
=
=
=
≠
sin cos( )Q ax or ax b= +
2 2
2 2
1
. ( )
[ ( )]
1
( ), [ ( )] 0
[ ( )] D a
D a
P I Sin ax b
F D
Sin ax b F D
F D =−
=−
= +
= + ≠
# if
# if
2 2
'
[ ( )] 0D a
If F D = −
=W
2 2
2 2
2 2
'
'
1
. ( ), [ ( )] 0
[ ( )]
1
( ), [ ( )] 0
[ ( )]
D a
D a
D a
P I Sin ax b F D
F D
x Sin ax b F D
F D
=−
= −
=−
= + =
= + ≠
2 2
'
[ ( )] 0D a
F D = −
=
2
2 2
2 2
2 2
2 2
'
'
''
''
1
. ( ), [ ( )] 0
[ ( )]
1
( ), [ ( )] 0
[ ( )]
1
( ), [ ( )] 0
[ ( )]
D a
D a
D a
D a
P I Sin ax b F D
F D
x Sin ax b F D
F D
x Sin ax b F D
F D
= −
= −
= −
= −
= + =
= + =
= + ≠
Case III: when , m non negative integer
Expending by Binomial theorem P.I. can be
evaluated
m
Q x=
1
1
.
( )
1
deg [1 ( )]
1
[1 ( )] ( )
m
m
m
P I x
F D
x
Lowest ree term D
D x
LDT
φ
φ −
=
±
= ±
=
1
[1 ( )]Dφ −
±
Case IV: when
Case V: (General Method), Q is any function of ‘x’
ax
Q e V=
1 1
.
( ) ( )
ax ax
P I e V e V
F D F D a
= =
+
1 1
.
( ) ( )( )
1 1
( ) ( )
1
( )
x x
P I Q Q
F D D D
Q
D D
Q dx
D
e eα α
φ α
φ α
φ
−
= =
−
 
=  − 
= ∫
1. Solve
Solution: The d.e. is
The A.E. is
Factorizing
The roots are
2 2
3 2 2
2 2
2 2
1 1
. .
( 3 4) 3 6
1
.
(6 6) 6
x x
x
x
P I e x e
D D D D
x e
x e
D
= =
− + −
= =
−
The complete solution is
2. Solve
Solution: The d.e. is
The a.e. is
Factorizing
The roots are
The complete solution is
3. Solve
Solution: The d.e. is
The a.e. is Factorizing
The roots are
And
The complete solution is
4. Solve
Solution: The d.e. is
The a.e. is
The complete solution is
∴
∴
5. Solve
Solution: The d.e. is
The a.e. is
Factorizing
The roots of A.E. are
The complete solution is
6. Solve
Solution:
Here
But ,
and
The complete solution is
Legendre’s Linear Equations
A Legendre’s linear differential equation is of the form
where are constants and
This differential equation can be converted into L.D.E with
constant coefficient by subsitution
and so on
Note: If then Legendre’s equation is known as
Cauchy- Euler’s equation
7. Solve
Put Then
The C.S. is
Simultaneous Linear Differential Equations
The most general form a system of simultaneous linear differential equations
containing two dependent variable x, y and the only independent variable t is
…………………(1),
where are constants and and are functions of t only.
8. Solve :
Solution: The system is
Eleminating ‘y’ between Equations (1) and (2), we get
It is L.D.E. with constant coefficient.
1 2
1 2
1( cos sin ) cos2 . (4)
2
(1)+(2) 2 ' 2 2 sin2 cos2
2 sin2 cos2 2 2 '
1sin2 cos2 2 ( cos sin ) co
2
From (1) and (2),
(3)
t
t
x e C t C t t
x x y t t
y t t x x
t t e C t C t
Solution of eqn isgivenby
= + − −−−−−−−−−
⇒ − + = +
⇒ = + + −
= + + + −
1 2 1 2
1 2 1 2 1 2
s2
2 ( cos sin ) ( sin cos ) sin2 by using (3)
2 [ cos sin cos sin sin cos ]
sin2 cos2
t t
t
t
e C t C t e C t C t t
e C t C t C t C t C t C t
t
 
 
  
 
  
− + + − + +
= + − − + −
+ +
1 2
1 2
cos2 2sin2
2 ( sin cos ) sin2
1( sin cos ) sin2 ....................(5)
2
(5) (6) tan .
t
t
t t t
e C t C t t
C t C t ty e
Equations and give complete solution of given simul eous equations
− −
= − −
− −∴ =

Weitere ähnliche Inhalte

Was ist angesagt?

Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
itutor
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
Osama Tahir
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
mstf mstf
 

Was ist angesagt? (20)

Differential equations
Differential equationsDifferential equations
Differential equations
 
newton raphson method
newton raphson methodnewton raphson method
newton raphson method
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
 
Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
MEAN VALUE THEOREM
MEAN VALUE THEOREMMEAN VALUE THEOREM
MEAN VALUE THEOREM
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Principle of mathematical induction
Principle of mathematical inductionPrinciple of mathematical induction
Principle of mathematical induction
 
Cramers rule
Cramers ruleCramers rule
Cramers rule
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolation
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 

Andere mochten auch

First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
Nofal Umair
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
Pokkarn Narkhede
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
Viraj Patel
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
8laddu8
 
DifferentialEquations_160205_01
DifferentialEquations_160205_01DifferentialEquations_160205_01
DifferentialEquations_160205_01
Art Traynor
 
Stars - Liling
Stars - LilingStars - Liling
Stars - Liling
ihsl
 
Meeting w6 chapter 2 part 3
Meeting w6   chapter 2 part 3Meeting w6   chapter 2 part 3
Meeting w6 chapter 2 part 3
mkazree
 
Effects of poles and zeroes
Effects of poles and zeroesEffects of poles and zeroes
Effects of poles and zeroes
Akanksha Diwadi
 

Andere mochten auch (20)

First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
 
Higher order differential equations
Higher order differential equationsHigher order differential equations
Higher order differential equations
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Higher Differential Equation
Higher Differential EquationHigher Differential Equation
Higher Differential Equation
 
02 first order differential equations
02 first order differential equations02 first order differential equations
02 first order differential equations
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Exact & non differential equation
Exact & non differential equationExact & non differential equation
Exact & non differential equation
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATION
 
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First Degree
 
DifferentialEquations_160205_01
DifferentialEquations_160205_01DifferentialEquations_160205_01
DifferentialEquations_160205_01
 
Dale Play
Dale PlayDale Play
Dale Play
 
management areas
management areasmanagement areas
management areas
 
Fault - Ping Tian
Fault - Ping TianFault - Ping Tian
Fault - Ping Tian
 
Stars - Liling
Stars - LilingStars - Liling
Stars - Liling
 
Meeting w6 chapter 2 part 3
Meeting w6   chapter 2 part 3Meeting w6   chapter 2 part 3
Meeting w6 chapter 2 part 3
 
Effects of poles and zeroes
Effects of poles and zeroesEffects of poles and zeroes
Effects of poles and zeroes
 
Analog and digital control system design
Analog and digital control system designAnalog and digital control system design
Analog and digital control system design
 

Ähnlich wie Linear differential equation with constant coefficient

2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf
RajuSingh806014
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
joseluisroyo
 
1. integration-theory. Module-5 pdf
1. integration-theory. Module-5 pdf1. integration-theory. Module-5 pdf
1. integration-theory. Module-5 pdf
RajuSingh806014
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf
RajuSingh806014
 
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
polanesgumiran
 
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdflect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
HebaEng
 

Ähnlich wie Linear differential equation with constant coefficient (17)

Liner Differential Equation
Liner Differential EquationLiner Differential Equation
Liner Differential Equation
 
Derivatives
DerivativesDerivatives
Derivatives
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
1. integration-theory. Module-5 pdf
1. integration-theory. Module-5 pdf1. integration-theory. Module-5 pdf
1. integration-theory. Module-5 pdf
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf
 
Aieee 2012 Solved Paper by Prabhat Gaurav
Aieee 2012 Solved Paper by Prabhat GauravAieee 2012 Solved Paper by Prabhat Gaurav
Aieee 2012 Solved Paper by Prabhat Gaurav
 
maths
maths maths
maths
 
Algebra
AlgebraAlgebra
Algebra
 
Unit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractionsUnit2.polynomials.algebraicfractions
Unit2.polynomials.algebraicfractions
 
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
Delos-Santos-Analyn-M.-_Repoter-No.-1-Multiplication-and-Division-of-Polynomi...
 
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdflect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 

Linear differential equation with constant coefficient

  • 1. Linear Differential Equation with constant coefficient Sanjay Singh Research Scholar UPTU, Lucknow
  • 2. The order linear differential equation with constant coefficient th n 1 2 0 1 2 11 2 ....... n n n n nn n n The Differential Equation of the form d y d y d y dy a a a a a y Q dxdx dx dx − − −− − + + + + + = 3 2 3 2 3 6 2 sin 5 Example d y d y dy y x dxdx dx + − + =
  • 3. ( )F D y Q= If d D dx = 1 2 1 2 1( ) .......n n n o n nWhere F D a D a D a D a D a− − −= + + + + + 3 2 3 2 3 6 2 sin5Example d y d y dy y x dxdx dx + − + = 3 2( 3 6 2 ) 5D y D y Dy y Sin x⇒ + − + = 3 2( 3 6 2) 5D D D y Sin x⇒ + − + = ( ) 5F D y Sin x⇒ = 3 2( ) ( 3 6 2)F D D D D∴ = + − +
  • 4. Auxiliary Equation(A.E.) . . . ( )Suppose L D E is F D y Q= . . ( ) 0A E is F m = 1 2 1 2 1 ....... 0n n n o n n OR a m a m a m a m a− − − + + + + + = 3 2 3 2 3 6 2 sin5 d y d y dy y x dxdx dx Example + − + = 3 2( 3 6 2) 5D D D y Sin x⇒ + − + = ( ) 5F D y Sin x⇒ = 3 2( ) ( 3 6 2)F D D D D∴ = + − + 3 2. . ( ) 0 3 6 2 0Hence A E is F m m m m= ⇒ + − + =
  • 5. Complementary Function (C.F.) of L.D.E. A function of ‘x’ which satisfies the L.D.E is known as complementary function of L.D.E . . Particular Integral (P.I.) of L.D.E. A function of ‘x’ which satisfies the L.D.E. is known as particular integral of L.D.E . General Solution of L.D.E. The general solution of L.D.E is given by y = C.F. + P.I ( ) 0F D y = ( )F D y Q= ( )F D y Q=
  • 6. General Solution of L.D.E. Complete Solution : y = C.F+P.I Where C.F Complementary Function P.I Particular Integral . . . ( )Suppose L D E is F D y Q=
  • 7. Complementary Function A function of ‘x’ which satisfies the L.D.E F(D)y = 0 is known as complementary function of L.D.E . .
  • 8. Determination of C.F.  Consider the L.D.E . F(D)y = 0  Write A.E. of L.D.E. F(m) = 0  Solve A.E.  Suppose are the ‘n’ roots of the auxiliary equation. 1 2 1 2 1....... 0n n n o n na m a m a m a m a− − −⇒ + + + + + = 1 2 3, , ,........., nm m m m
  • 9. Case I: (Roots are real) 1 2 3, , ,........., nIf m m m m are distinctW 31 2 1 2 3. ....... nm xm x m x m x nthen C F c e c e c e c e= + + + +
  • 10. Determination of C.F. Consider the L.D.E . # Write A.E. of L.D.E. i.e. . # Solve A.E. Suppose are the ‘n’ roots of the auxiliary equation. # Case I: (Roots are real) # If are distinct then ( )F D y Q= ( ) 0F m = 1 2 1 2 1....... 0n n n o n na m a m a m a m a− − −+ + + + + = 1 2 3, , ,........., nm m m m 1 2 3, , ,........., nIf m m m m are distinct 31 2 1 2 3. ....... nm x m xm x m x nthen C F c e c e c e c e= + + + +
  • 11. # If are distinct then # If are distinct then # If are distinct then # If are distinct then 1 2 3 4,( ) , ........., nm m k say and m m m= = 3 4 1 2 3 4. ( ) ....... nm x m xm xkx nC F c c x e c e c e c e= + + + + 1 2 3 4 5,( ) , ........., nm m m k say and m m m= = = 542 1 2 3 4 5. ( ) ....... nm x m xm xkx nC F c c x c x e c e c e c e= + + + + + 1 2 3 4,, ........., nm m and m m mα β α β= + = − 3 4 1 2 3 4. ( cosh sinh ) ....... nm x m xm xx nC F e c x c x c e c e c eα β β= + + + + 1 2 3 4 5, , ,......, nm m m m and m mα β α β= = + = = − 5 1 2 3 4 5. [( )cosh ( )sinh )] ...... nm x m xx nC F e c c x x c c x x c e c eα β β= + + + + + +
  • 12. # Case II: (Roots are comlex) # If are real and distinct then # If are real and distinct then 1 2 3 4, , ......, nm i m i and m m mα β α β= + = − 3 4 1 2 3 4. ( cos sin 0 ....... nm x m xm xx nC F e c x c x c e c e c eα β β= + + + + 1 2 3 4 5 , ,......, n andm m i m m i m mα β α β= = + = = − 3 1 2 3 4 5. [( )cos ( )sin ] ..... nm x m xx nC F e c xc x c xc x c e c eα β β= + + + + + +
  • 13. Determination of P.I.Determination of P.I. P.I. of L.D.E. is given by Thus P.I. = Case I: when # If then ( )F D y Q= 1 ( ) Q F D 1 ( ) Q F D : ax when QCASE I e= 1 1 . , ( ) 0 ( ) ( ) ax axP I F a F D F a e e= ≠= ( ) 0F a = ' ' 1 1 . , ( ) 0 ( ) ( ) ax axP I F a F D F a e x e= ≠=
  • 14. # if then Case II: when ' ( ) 0F a = 2 ' '' '' ' 1 . . ( ) 1 , ( ) 1 , ( ) ( ) 0 ( ) 0 0 , ( ) ax ax ax then P I F D x F D F F a x F a F a e e e a = = = = = ≠ sin cos( )Q ax or ax b= + 2 2 2 2 1 . ( ) [ ( )] 1 ( ), [ ( )] 0 [ ( )] D a D a P I Sin ax b F D Sin ax b F D F D =− =− = + = + ≠
  • 15. # if # if 2 2 ' [ ( )] 0D a If F D = − =W 2 2 2 2 2 2 ' ' 1 . ( ), [ ( )] 0 [ ( )] 1 ( ), [ ( )] 0 [ ( )] D a D a D a P I Sin ax b F D F D x Sin ax b F D F D =− = − =− = + = = + ≠ 2 2 ' [ ( )] 0D a F D = − = 2 2 2 2 2 2 2 2 2 ' ' '' '' 1 . ( ), [ ( )] 0 [ ( )] 1 ( ), [ ( )] 0 [ ( )] 1 ( ), [ ( )] 0 [ ( )] D a D a D a D a P I Sin ax b F D F D x Sin ax b F D F D x Sin ax b F D F D = − = − = − = − = + = = + = = + ≠
  • 16. Case III: when , m non negative integer Expending by Binomial theorem P.I. can be evaluated m Q x= 1 1 . ( ) 1 deg [1 ( )] 1 [1 ( )] ( ) m m m P I x F D x Lowest ree term D D x LDT φ φ − = ± = ± = 1 [1 ( )]Dφ − ±
  • 17. Case IV: when Case V: (General Method), Q is any function of ‘x’ ax Q e V= 1 1 . ( ) ( ) ax ax P I e V e V F D F D a = = + 1 1 . ( ) ( )( ) 1 1 ( ) ( ) 1 ( ) x x P I Q Q F D D D Q D D Q dx D e eα α φ α φ α φ − = = −   =  −  = ∫
  • 18. 1. Solve Solution: The d.e. is The A.E. is Factorizing The roots are 2 2 3 2 2 2 2 2 2 1 1 . . ( 3 4) 3 6 1 . (6 6) 6 x x x x P I e x e D D D D x e x e D = = − + − = = − The complete solution is
  • 19. 2. Solve Solution: The d.e. is The a.e. is Factorizing The roots are The complete solution is
  • 20. 3. Solve Solution: The d.e. is The a.e. is Factorizing The roots are And The complete solution is
  • 21. 4. Solve Solution: The d.e. is The a.e. is The complete solution is
  • 22. ∴ ∴ 5. Solve Solution: The d.e. is The a.e. is Factorizing The roots of A.E. are The complete solution is
  • 24. Legendre’s Linear Equations A Legendre’s linear differential equation is of the form where are constants and This differential equation can be converted into L.D.E with constant coefficient by subsitution and so on
  • 25. Note: If then Legendre’s equation is known as Cauchy- Euler’s equation 7. Solve Put Then The C.S. is
  • 26. Simultaneous Linear Differential Equations The most general form a system of simultaneous linear differential equations containing two dependent variable x, y and the only independent variable t is …………………(1), where are constants and and are functions of t only. 8. Solve : Solution: The system is Eleminating ‘y’ between Equations (1) and (2), we get It is L.D.E. with constant coefficient.
  • 27. 1 2 1 2 1( cos sin ) cos2 . (4) 2 (1)+(2) 2 ' 2 2 sin2 cos2 2 sin2 cos2 2 2 ' 1sin2 cos2 2 ( cos sin ) co 2 From (1) and (2), (3) t t x e C t C t t x x y t t y t t x x t t e C t C t Solution of eqn isgivenby = + − −−−−−−−−− ⇒ − + = + ⇒ = + + − = + + + − 1 2 1 2 1 2 1 2 1 2 s2 2 ( cos sin ) ( sin cos ) sin2 by using (3) 2 [ cos sin cos sin sin cos ] sin2 cos2 t t t t e C t C t e C t C t t e C t C t C t C t C t C t t             − + + − + + = + − − + − + + 1 2 1 2 cos2 2sin2 2 ( sin cos ) sin2 1( sin cos ) sin2 ....................(5) 2 (5) (6) tan . t t t t t e C t C t t C t C t ty e Equations and give complete solution of given simul eous equations − − = − − − −∴ =