SlideShare ist ein Scribd-Unternehmen logo
1 von 89
Downloaden Sie, um offline zu lesen
NANOTUBI DI CARBONIO : struttura,
                        proprietà, sintesi, applicazioni…..
                        (SEMINARIO di CHIARA CASTIGLIONI)


Here we have what is almost certainly the strongest, stiffest, toughest
molecule that can ever be produced, the best possible molecular
conductor of both heat and electricity. In one sense the carbon
nanotube is a new man-made polymer to follow on from nylon,
polypropylene, Kevlar. In another, it is a new “graphitic” filler, but
now with the ultimate possible strength. In yet another, it is a new
species in organic chemistry, and potentially in molecular biology as
well, a carbon molecule with the almost alien property of electrical
conductivity, and super-steel strength.
R.E. Smalley, Chemistry Nobel 1996
Phase diagram of carbon emphasizing graphite, cubic diamond, and hexagonal diamond
                 phases, as well as liquid carbon. Solid lines represent equilibrium phase boundaries.

                                                                              A: commercial synthesis of diamond from
                                                                              graphite by catalysis;

                                                                              B: P=T threshold of very fast (<1 ms) solid-
                                                                              solid transformation of graphite to diamond;

                                                                              C: P=T threshold of very fast transformation of
                                                                              diamond to graphite;

                                                                              D: single crystal hexagonal graphite transforms
                                                                              to retrievable hexagonal-type diamond;
Pressure (GPa)




                                                                              E: upper ends of shock compression/quench
                                                                              cycles that convert hex-type graphite particles
                                                                              to hex-type diamond;

                                                                              F: upper ends of shock compression/quench
                                                                              cycles that convert hex-type graphite to cubic-
                                                                              type diamond;

                                                                              B, F, G: threshold of fast P=T cycles, however
                                                                              generated, that convert either graphite or
                                                                              hexagonal diamond into cubic-type diamond;

                                                                              H, I, J: path along which a single crystal hex-
                                                                              type graphite compressed in the c-direction at
                                                                              room temperature loses some graphite
                                                                              characteristics    and     acquires    properties
                                                                              consistent with a diamond-like polytype, but
                                                                              reverts to graphite upon release of pressure.
OTHER CARBON MATERIALS
  fullerenes
                                                      APPLICATIONS
                                                                           – fullerenes
                                                         electronics       – nanotubes
                                                                           – amorphous carbons

                                                         energy storage,
                                                                           – carbon nanotubes
                                                         batteries,
     nanotubes                                                             – porous graphites
                                                         sensors

Carbon nanotubes, M.S. Dresselhaus, G. Dresselhaus,
                                                       mechanical and      – carbon fibers,
Ph. Avouris (Eds.) Springer (2001)
                                                        tribological       amorphous carbons
                                                                           and DLC hard coatings
                                                        applications



                                                                       – micro and nano
                                                                       crystalline graphites
D. Donadio, L. Colombo, P. Milani, G. Benedek,
                                                                       – carbon fibers
Phys. Rev. Lett., 83, 776-779 (1999)

                                                                       – glassy carbon
                                                      “graphitic”
                                                                       – porous graphites
                                                                       – carbon black


                                                      mixed        – amorphous carbons
                                                      sp2, sp3, sp – diamond like
      disordered carbons                                           carbons (DLC)
                                                      C atoms
Legame σ tra orbitali atomici di tipo np (pz)
Legame π tra orbitali atomici di tipo np (px,py)
L'ibridazione nel carbonio
C (Z = 6)
configurazione elettronica: 1s2 2s2 2p2
                                          1s2 shell K
                                          alto potenziale di ionizzazione
                                          non e' interessata alla
                                          formazione del legame chimico




                                      2s2 2p2 shell L
                                      incompleta, a piu' alta energia
                                      (minore potenziale di ionizzazione)
                                      Responsabile del legame chimico
Ibrido sp3: lobi diretti nello spazio secondo i vertici di un
tetraedro il cui centro corrisponde al nucleo del carbonio



                                            (2s + 2 px + 2 p y + 2 pz )
                                          1
                                     ψ1 =
                                          2
                                     ψ 2 = (2 s + 2 px − 2 p y − 2 pz )
                                          1
                                          2
                                     ψ 3 = (2 s − 2 px + 2 p y − 2 pz )
                                          1
                                          2
                                     ψ 4 = (2 s − 2 px − 2 p y + 2 pz )
                                          1
                                          2


 Si ottengono 4 orbitali ibridi dalla combinazione di 1 orbitale s
 con 3 orbitali p  notazione sp3
Giustificazione dell’orientamento spaziale degli orbitali ibridi sp3


                                                  (2s + 2 px + 2 p y + 2 pz )
                                                1
                                           ψ1 =
                   z                            2
                                           ψ 2 = (2 s + 2 px − 2 p y − 2 pz )
                                                1
       (-1,-1,1)
                                                2
                   4
                                           ψ 3 = (2 s − 2 p x + 2 p y − 2 pz )
                                                1
                              (1,1,1)
                                                2
                         1
                                           ψ 4 = (2 s − 2 px − 2 p y + 2 pz )
                                                1
               (0,0,0)                          2

                                 3
                                        (-1,1,-1)
           2
                                               y
       (1,-1,-1)
   x
Ibrido sp2




                    3 elettroni di valenza
                                             1 elettrone di valenza

                (                 )
            1
      ψ1 =     2 s + 2 ⋅ 2 px                        2 pz
             3
      1⎛                             ⎞
               1            3
        ⎜ 2s −                ⋅ 2 py ⎟
 ψ2 =              ⋅ 2 px +
        ⎜                            ⎟
                            2
      3⎝        2                    ⎠
      1⎛                           ⎞
              1           3
       ⎜ 2s −               ⋅ 2 py ⎟
 ψ3 =            ⋅ 2 px −
       ⎜                           ⎟
                          2
      3⎝       2                   ⎠
Ibrido sp




                                           1
                                              (2 s + 2 pz )
                                      ψ1 =
                                            2
Restano non ibridizzati   Ibrido sp
                                           1
                                              (2 s − 2 pz )
                                      ψ2 =
2 px 2 p y                                  2
Esempio di molecole con carbonio in stato di
ibridazione sp3: metano
Esempio di molecole con carbonio in stato di
ibridazione sp3: etano
Esempi di ibridi sp2: copresenza di legame σ e π




                                     Etilene,
                          σ
                                     H2C=CH2



π
Esempi di ibridi sp2: copresenza di legame σ e π




                           σ
                       Butadiene,

                       H2C=(CH)-(CH)=CH2




                            π
Esempi di ibridi sp2: copresenza di legame σ e π




                   σ
                             Benzene,

                               C6H6




           π
Esempi di ibridi sp: copresenza di legame σ e π


                                                  Acetilene,
                                                  H-C≡C-H




Triplo legame:
1 di tipo σ,
2 di tipo π
Struttura del diamante (ibridazione sp3)
ALCANI (ibridazione sp3)

                               butano (n=4)

            metano (n=1)



                 etano (n=2)

                       pentano (n=5)



                     propano
                       (n=3)



                      esano (n=6)
Struttura della grafite (ibridazione sp2)




                            Asse c
Vista lungo l'asse c
POLYCONJUGATED MOLECULES

1D π conjugated systems:        2D π conjugated systems:
        polyenes           PAH, Polycyclic Aromatic Hydrocarbons




            conjugated 2pz orbitals
Grafite nanostrutturata
PAH
Polycyclic
Aromatic
Hydrocarbons
Nanotubi di carbonio
(ibridazione prevalente sp2)
Stable forms of carbon clusters: (a) a piece of a graphene sheet,
(b) the fullerene C60, and (c) a model for a carbon nanotube.
Graphene ribbons terminated by (a) armchair edges and (b)
zigzag edges, indicated by filled circles. The indices denote the
atomic rows for each ribbon.
High-resolution electron
                                     micrographs of graphitic particles


                                     (a) as obtained from an electric
                                     arc deposit, the particles display
                                     a well-defined faceted structure
                                     and a large inner hollow space



(b) the same particles after being
subjected to intense electron
irradiation. The particles now
show a spherical shape and a
much smaller central empty space.
Sketch of the cross section of a
PAN carbon fiber along the
fiber axis direction.
Here the in-plane (La) and c-
axis (Lc) structural coherence
lengths are indicated.
Schematic model for the microstructure of activated carbon fibers




                                     Fiber after some heat
    High surface area fiber
                                     treatment, showing partial
    where the basic structural
                                     alignment of the basic
    units are randomly
                                     structural units.
    arranged
Nanostructured amorphous carbon films




         D. Donadio, L. Colombo, P. Milani, G. Benedek,
         Phys. Rev. Lett., 83, 776-779 (1999)
Multi-walled carbon nanotubes

                                                      S.Ijima, Nature 358,
                                                      220 (1991)
                                                      Nanotubi cresciuti sul catodo
                                                      durante una scarica ad arco tra 2
                                                      elettrodi di grafite (T≈ 3000 K)




Reference book:
Carbon nanotubes, M.S. Dresselhaus, G. Dresselhaus,
Ph. Avouris (Eds.) Springer (2001)
Multi-walled carbon nanotubes
Fullerenes within SWNTs: peapods




                                   La@C82
Heat treatment of peapods produces
double-wall NT
Carbon nanotubes,
M.S. Dresselhaus, G. Dresselhaus,
Ph. Avouris (Eds.) Springer (2001)
(5,5)


(9,0)


(10,5)
Ch = 4 a1+ 2 a2   nanotubo (4,2)
Rosso: 3,3 armchair, θ=45°
Rosso: (5,0) zig-zag θ=0°
The unrolled honeycomb lattice of an Armchair nanotube




                         structural unit


  Ch = Chiral vector
  T = Translation vector (k)
Electronic 1D density of states per unit cell
of a 2D graphene sheet for two (n,0) zigzag
nanotubes:

(a) the (10,0) nanotube which has
semiconducting behaviour,

(b) the (9,0) nanotube which has metallic
behaviour.




                                                Also shown in the is the density of states for the
                                                2D graphene sheet (dotted line).
Derivative of the current-voltage dI/dV
curves obtained by scanning tunnelling
spectroscopy on various isolated single-wall
carbon nanotubes with diameters near 1.4nm.
Nanotubes #1 - 4 are semiconducting and #5
- 7 are metallic.
nanotube (n,m) → (4,2)
Ch = 4 a1+ 2 a2
Hamiltoniano elettronico H = H(θ1,θ2) alla Hückel
(i.e. tight-binding ristretto a orbitali 2pz)



 (0,-1)                                                     (1,0)

                                         T
                   1     2              1         2

                             1      2
                                                       a1
                                                                    Ch
                   1     2              1         2
                                             τ1       ϕ2 ϕ1
                                             τ2        a2
 (-1,0)                                                     (0,1)



                                 θi = k•ai
Curve di dispersione elettronica (4,2)



                               π∗
                                                                      ξ = -π
 Energia in unità di β




                                                           K1


                                                                                     K2
                                                 μ=2
                                                                                          EF
                                            K              K                   ξ=0

                                                                M

                                                                                     ξ=π
                                           μ=0
                               π    K                                 K
                                                 Γ0                              μ = N- 1


μ=0
                               Funzione del numero quantico μ = 0μ..=25
                                                                     3
                                                                μ=1
                         μ=1
                                             K             K
Curve di dispersione elettronica (6,3)
Energia in unità di β




                                                        NT conduttore




                          Funzione del numero quantico μ = 0 .. 41
Curve di dispersione elettronica (17,8)

Energia in unità di β




                            Funzione del numero quantico μ = 0..325
Densità di stati elettronici
                          di due nanotubi chirali
                                  metallici
 Van Hove
singularities


 EF


                                  (14,5)
                (11,8)




                         EF
Analytic expressions for the electronic energies have been
     obtained with a symmetry treatment of Pz orbitals in the
     frame of Hückel Theory




     ε                                 ε




                  θ/π                                      θ/π
                                                                  [                          ]}
                                                 {
                                ε p (θ , ϕ ) = m 3 + 2 cos ϕ ± 2 (1 + cos ϑ )(1 + cos ϕ )1 2
Zigzag: (10,0) Ch ≅ 2.42 nm                                                                     12


                                     (θ , ϕ ) = m{3 + 2 cos ϑ ± 2[(1 + cos ϑ )(1 + cos ϕ ) ]}
Armchair: (10,10) Ch ≅ 4.2 nm   εp                                                      12     12
(10,10) Ch ≅ 4.2 nm




(10,0) Ch ≅ 2.42 nm
Wave function, Van Hove peak at energy -0.95 Beta units
Tube axis
Energy dispersion and
density of states for
 (9,0) zigzag nanotube



                         Density of states for (150,150)
                         armchair nanotube




                         (150,150) Ch=63 nm
Figure 5: TEM micrographs of seaweed-like carbon
                                                        objects produced at 6.5 GPa and 950°C.
Figure 4: TEM micrograph (a) at low magnification
and (b), (c) at high magnification of MWNT treated at
5.5 GPa and 950°C.
Raman spectra of graphite and amorphous carbon
                                                                                                                                               D     G
                                                           Crystalline graphite
                                                                      G
                                                  1200

                                                                                     1580
                                                  1100


                                                  1000
      Raman Intensity




                                                   900


                                                   800
                                     Absorbance




                                                   700




                                                                                                               Raman Intensity
                                                   600


                                                   500


                                                   400


                                                   300


                                                   200


                                                   100

                                                    2000       1800          1600            1400
                                                                      Wavenumbers (cm-1)



                                                            Wavenumbers (cm-1)


                                                         Disordered graphite

                                                                       G
                                     900

                                                                                      1573
                                     850

                                     800
Raman Intensity




                                     750

                                     700

                                     650

                                     600


                                                                                                                                        Wavenumbers (cm-1)
                        Absorbance




                                     550

                                     500

                                     450




                                                                                                                                 Annealed amorphous carbon
                                     400




                                                                                                    D
                                     350




                                                                                                                                  courtesy of A.C. Ferrari
                                     300
                                                                                                        1330
                                     250

                                     200



                                                                                                                                    Dept. of Engineering
                                     150

                                     100




                                                                                                                                      Cambridge (UK)
                                                  2000        1800          1600             1400
                                                                      Wavenumbers (cm-1)


                                                              Wavenumbers (cm-1)
A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K. W.
Williams, M. Menon, K. R. Subbaswamy, A. Thess, R. E. Smalley,
G. Desselhaus, M.S. Dresselhaus, Science 275 (1997) 187

                                                          Spettri Raman Risonanti di un campione
                                                          di nanonotubi singola parete contenente
                                                          nanotubi di diversi diametri
Room temperature RBM spectra for bundles
of SWNTs produced by pulsed
laser vaporization using an Fe/Ni catalyst in a
carbon target. Spectra (a)-(d) are
collected at fixed laser excitation energy (1.17
eV; Nd:YAG) from samples grown at
T = 780, 860, 920 and 1000 °C, respectively.
Note that the spectral weight shifts to
smaller RBM frequencies with increasing
growth temperature (Tg) indicating that
diameter
increases with increasing Tg. The intensities
and frequencies of the RBM bands in
spectra (e)-(g) collected from the same sample
(Tg=1000°C) but with different laser
excitation energies (488nm; 514.5nm; 647
nm; 1064nm) are quite different,
demonstrating how different diameter tubes
are excited as the excitation energy changes.
Raman spectroscopy is used to characterize carbon nanotubes;
the G band brings important structural information

                                                  G- is associated to
  Studying a metal/semiconductor junction in a
                                                 metallic tubes: why ?
  nanotube using space-resolved Raman

               G+




               G+
          G-




  Taken from:
  S.K. Doorn et al., PRL 94, 016802 (2005)
Carbon nanotubes:


extended π-conjugated systems


long range electronic and vibrational interactions


crucial dependence of the electronic structure on the
geometric structure (n,m)


phonons do experimentally depend on the diameter and
electronic structure of the tube

      ⇒ Fairly challenging system to model !
Polyconjugated carbon systems


                                               Polyenes
                      Raman dispersion with chain length



Graphite & Carbon Nanotubes
 Kohn Anomalies and Electron-Phonon Interaction in
 Graphite (S. Piscanec, M. Lazzeri, F. Mauri, A. C.        C. Castiglioni, et al. Phyl. Trans. R. Soc. Lond. A., 362
 Ferrari, and J. Robertson, PRL, 93 (2004))                (2004)




                  … Polyynes also !
                                                      See poster 39-M,
                                                      M. Tommasini, A. Milani, A. Lucotti, M. Del Zoppo, C.
                                                      Castiglioni, G. Zerbi
Modeling electrons and phonons in carbon nanotubes

- Structural unit: 2 atoms     A general treatment for
- Screw axis symmetry           any carbon nanotube
- Real (curved) geometry               (n,m)




                               Calculation of phonons on
    Bloch theorem and
                                  the basis of valence
    nanotube boundary
                                      coordinates
        conditions
                                       GFL = Lω2
                                (with curved geometry)



      - band structure       - phonon dispersion
      - DOS                  - vibrational displacements
                             - phonon DOS
Describing the geometry of a generic (n,m) nanotube




          Ch = 4 a1+ 2 a2   (4, 2) nanotube
(14,5)
                         Electronic band structure of
                        semiconducting (4,2) nanotube


                         π∗
                                                             ξ = -π
  Energy (units of β)




                                                  K1
  EF
                                                                            K2
                                          μ=2
                                                                                 EF
                                     K           K                    ξ=0

                                                       M

                                                                            ξ=π
                                    μ=0
                         π    K                              K
                                          Γ0                            μ = N- 1


μ= 0
                        Function of the quantum numbersμμ,ξ
                                                         =3
                                                       μ=1
              μ= 1
                                     K           K
Ohno’s three parameters force field (1) generalised to graphite (2)
              (1)          K. Ohno, J. Chem. Phys. 95, 5524 (1995)
              (2)          C. Mapelli, C. Castiglioni, G. Zerbi, K. Müllen, Phys. Rev. B (1999)


                                                                                                                           semiempirical parameters
       bond stretching force constants



                bond
                                                                              ∂ 2 Eπ
                order
                                       bond-bond
                                                                      Π ij ≡
                                       polarizability
                                                                             ∂β i ∂β j
                                       {[c *    (θ1 ,ϑ2 )ceσ (ϑ1 ' ,ϑ2 ' ) + c *0σ (θ1 ,ϑ2 )ceν (ϑ1 ' ,ϑ2 ' )][c0λ (θ1 , ϑ2 )c *eμ (ϑ1 ' , ϑ2 ' ) + c0 μ (θ1 , ϑ2 )c *eλ (ϑ1 ' ,ϑ2 ' )] + c.c.}
                       π   π   π   π
               1
             (2π ) ∫π ∫π ∫π ∫π
                                           0ν
                                                                                                                                                                                               dϑ1 dϑ2 dϑ1 ' dϑ2 '
Π λμ ,νσ =
                                                                                                 ε 0 (θ1 , ϑ2 ) − ε e (ϑ1 ' , ϑ2 ' )
                   4
                       −   −   −   −




                                                                                                                   electronic structure (Hückel)




                                                                                                               The vibrational force field
                                                                                                                  is coupled to the
                                                                                                                 electronic structure
Phonon dispersion curves of graphite    S. Piscanec, M. Lazzeri, F. Mauri, A. C.
                                        Ferrari, and J. Robertson, PRL, 93 (2004)
   Kohn anomaly and long range
           interactions                 Kohn Anomalies and Electron-Phonon
                                        Interaction in Graphite




        ∂ 2 Eπ         Long range
Π ij ≡               stretching force
       ∂β i ∂β j        constants




                                                                         Ohno
                                                                      force field;
                                                                         variable
                                                                      threshold on
                                                                            fij
Generalization of the Ohno Force Field to nanotubes
   of any diameter and chirality

   Method based on graphene cell (2 atoms) + screw axis symmetry

  The correct long range behavior of the force field is dictated by
  the electronic-structure dependent bond-bond polarizabilities Π:




                                                Brillouin zone integration
 Boundary conditions:




Geometrical
parameters of
the (n,m) tube
Bond-bond polarizabilities Πij
        ∂ 2 Eπ      It is directly related to stretching
Π ij ≡
       ∂β i ∂β j    force constants




            Metallic: slow decay
            Semiconducting: fast decay
The G matrix is specific for any given nanotube:

                  G = G(n,m)

                 tube curvature

The F matrix is specific for any given nanotube

            electronic structure (Πij):

                  F = F(n,m)
Raman spectra of individual
                                G band:
    single wall nanotubes
                                different frequency dispersion law
               metallic
                                (while changing the tube diameter)
                                observed for metallic and
               (18,9)
                                semiconducting nanotubes
                                  G+ longitudinal ?
                                  (diameter
                                  independent…)
               (19,1)

               semiconducting
(11,2)                            G- transversal ?
                (17,7)
                                  (dramatically
                                   diameter
                                  dependent…)

                (17,3)




                (15,2)
                                      All data shown are taken from:
                                      A. Jorio, A. G. Souza Filho, et al.,
                                      Phys. Rev. B, 65, 155412 (2002)
Experimental findings                               Empirical force field
     by Jorio et al.                                   (armchair tubes)
A. Jorio, et al., Phys. Rev. B, 65, 155412 (2002)




independent theoretical works
by M. Lazzeri et al. PRB 73,
                                                                  transversal
155426 (2006)




                                                                  longitudinal


                                                    Large longitudinal/transversal
                                                    splitting: favourably compares
                                                    with experiments and…




   longitudinal G-              transversal G+
Dispersion of the G line   Full symbols:   longitudinal phonons
                           Open symbols:   transversal phonons
                           Cold colours:   metallic CNTs
                           Warm colours:   semiconducting CNTs




                                   μ=0




                                   μ=1
Phonons of the chiral (6,3) metallic tube
Conclusions


1.   Carbon nanotubes share long range interaction
     physics similarly to other π-conjugated systems
     (polyacetylene, graphite)



2.   A successful and general model of phonons in
     nanotubes has been introduced which couples
     to the electronic structure of the given (n,m) tube



3.   The correct longitudinal/transversal splitting of the G
     phonon as a function of tube diameter is found.
     The assignment of the long./transv. character of G
     phonons for general tubes is proposed

Weitere ähnliche Inhalte

Mehr von Sougata Pahari (20)

P Bande
P  BandeP  Bande
P Bande
 
9.3 P Motori
9.3   P  Motori9.3   P  Motori
9.3 P Motori
 
9.2 P Supermol
9.2   P  Supermol9.2   P  Supermol
9.2 P Supermol
 
9 P Self Ass
9   P  Self Ass9   P  Self Ass
9 P Self Ass
 
8.3 P Electrical Bistability
8.3   P  Electrical Bistability8.3   P  Electrical Bistability
8.3 P Electrical Bistability
 
8.1 P Molelectronics1
8.1   P  Molelectronics18.1   P  Molelectronics1
8.1 P Molelectronics1
 
8.2 P Molelectronicsappl
8.2   P  Molelectronicsappl8.2   P  Molelectronicsappl
8.2 P Molelectronicsappl
 
7.3 ùP Cblockade
7.3   ùP  Cblockade7.3   ùP  Cblockade
7.3 ùP Cblockade
 
7.2 P Rtd
7.2   P  Rtd7.2   P  Rtd
7.2 P Rtd
 
7.1.1 P Tunneling Barriera Singola
7.1.1   P  Tunneling Barriera Singola7.1.1   P  Tunneling Barriera Singola
7.1.1 P Tunneling Barriera Singola
 
7.1 P Tunneling
7.1   P  Tunneling7.1   P  Tunneling
7.1 P Tunneling
 
6.3 P Applicazioni
6.3   P  Applicazioni6.3   P  Applicazioni
6.3 P Applicazioni
 
6.2 P Dens Stati
6.2   P  Dens Stati6.2   P  Dens Stati
6.2 P Dens Stati
 
6.1 P Confinamento
6.1   P  Confinamento6.1   P  Confinamento
6.1 P Confinamento
 
4 P Laboratorio2007
4   P  Laboratorio20074   P  Laboratorio2007
4 P Laboratorio2007
 
4 P Presentazione2007
4     P  Presentazione20074     P  Presentazione2007
4 P Presentazione2007
 
3.2 P Filmsottili2
3.2   P  Filmsottili23.2   P  Filmsottili2
3.2 P Filmsottili2
 
2.3 P Spm
2.3   P  Spm2.3   P  Spm
2.3 P Spm
 
3.1 P Filmsottili1
3.1   P  Filmsottili13.1   P  Filmsottili1
3.1 P Filmsottili1
 
2.3 P Spm Cenni
2.3     P  Spm Cenni2.3     P  Spm Cenni
2.3 P Spm Cenni
 

Kürzlich hochgeladen

The Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case studyThe Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case studyEthan lee
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Dave Litwiller
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxAndy Lambert
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesDipal Arora
 
Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Roland Driesen
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLSeo
 
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service DewasVip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewasmakika9823
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communicationskarancommunications
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdfRenandantas16
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Roomdivyansh0kumar0
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurSuhani Kapoor
 
GD Birla and his contribution in management
GD Birla and his contribution in managementGD Birla and his contribution in management
GD Birla and his contribution in managementchhavia330
 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni
 
DEPED Work From Home WORKWEEK-PLAN.docx
DEPED Work From Home  WORKWEEK-PLAN.docxDEPED Work From Home  WORKWEEK-PLAN.docx
DEPED Work From Home WORKWEEK-PLAN.docxRodelinaLaud
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...Paul Menig
 
The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024christinemoorman
 
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Tina Ji
 

Kürzlich hochgeladen (20)

The Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case studyThe Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case study
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptx
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
 
Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...Ensure the security of your HCL environment by applying the Zero Trust princi...
Ensure the security of your HCL environment by applying the Zero Trust princi...
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
 
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service DewasVip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through Cartoons
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communications
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
 
Best Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting PartnershipBest Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting Partnership
 
GD Birla and his contribution in management
GD Birla and his contribution in managementGD Birla and his contribution in management
GD Birla and his contribution in management
 
Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.Eni 2024 1Q Results - 24.04.24 business.
Eni 2024 1Q Results - 24.04.24 business.
 
DEPED Work From Home WORKWEEK-PLAN.docx
DEPED Work From Home  WORKWEEK-PLAN.docxDEPED Work From Home  WORKWEEK-PLAN.docx
DEPED Work From Home WORKWEEK-PLAN.docx
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...
 
The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024
 
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
 

5 P Nanotubes Chiara

  • 1. NANOTUBI DI CARBONIO : struttura, proprietà, sintesi, applicazioni….. (SEMINARIO di CHIARA CASTIGLIONI) Here we have what is almost certainly the strongest, stiffest, toughest molecule that can ever be produced, the best possible molecular conductor of both heat and electricity. In one sense the carbon nanotube is a new man-made polymer to follow on from nylon, polypropylene, Kevlar. In another, it is a new “graphitic” filler, but now with the ultimate possible strength. In yet another, it is a new species in organic chemistry, and potentially in molecular biology as well, a carbon molecule with the almost alien property of electrical conductivity, and super-steel strength. R.E. Smalley, Chemistry Nobel 1996
  • 2. Phase diagram of carbon emphasizing graphite, cubic diamond, and hexagonal diamond phases, as well as liquid carbon. Solid lines represent equilibrium phase boundaries. A: commercial synthesis of diamond from graphite by catalysis; B: P=T threshold of very fast (<1 ms) solid- solid transformation of graphite to diamond; C: P=T threshold of very fast transformation of diamond to graphite; D: single crystal hexagonal graphite transforms to retrievable hexagonal-type diamond; Pressure (GPa) E: upper ends of shock compression/quench cycles that convert hex-type graphite particles to hex-type diamond; F: upper ends of shock compression/quench cycles that convert hex-type graphite to cubic- type diamond; B, F, G: threshold of fast P=T cycles, however generated, that convert either graphite or hexagonal diamond into cubic-type diamond; H, I, J: path along which a single crystal hex- type graphite compressed in the c-direction at room temperature loses some graphite characteristics and acquires properties consistent with a diamond-like polytype, but reverts to graphite upon release of pressure.
  • 3. OTHER CARBON MATERIALS fullerenes APPLICATIONS – fullerenes electronics – nanotubes – amorphous carbons energy storage, – carbon nanotubes batteries, nanotubes – porous graphites sensors Carbon nanotubes, M.S. Dresselhaus, G. Dresselhaus, mechanical and – carbon fibers, Ph. Avouris (Eds.) Springer (2001) tribological amorphous carbons and DLC hard coatings applications – micro and nano crystalline graphites D. Donadio, L. Colombo, P. Milani, G. Benedek, – carbon fibers Phys. Rev. Lett., 83, 776-779 (1999) – glassy carbon “graphitic” – porous graphites – carbon black mixed – amorphous carbons sp2, sp3, sp – diamond like disordered carbons carbons (DLC) C atoms
  • 4. Legame σ tra orbitali atomici di tipo np (pz)
  • 5. Legame π tra orbitali atomici di tipo np (px,py)
  • 6. L'ibridazione nel carbonio C (Z = 6) configurazione elettronica: 1s2 2s2 2p2 1s2 shell K alto potenziale di ionizzazione non e' interessata alla formazione del legame chimico 2s2 2p2 shell L incompleta, a piu' alta energia (minore potenziale di ionizzazione) Responsabile del legame chimico
  • 7. Ibrido sp3: lobi diretti nello spazio secondo i vertici di un tetraedro il cui centro corrisponde al nucleo del carbonio (2s + 2 px + 2 p y + 2 pz ) 1 ψ1 = 2 ψ 2 = (2 s + 2 px − 2 p y − 2 pz ) 1 2 ψ 3 = (2 s − 2 px + 2 p y − 2 pz ) 1 2 ψ 4 = (2 s − 2 px − 2 p y + 2 pz ) 1 2 Si ottengono 4 orbitali ibridi dalla combinazione di 1 orbitale s con 3 orbitali p notazione sp3
  • 8. Giustificazione dell’orientamento spaziale degli orbitali ibridi sp3 (2s + 2 px + 2 p y + 2 pz ) 1 ψ1 = z 2 ψ 2 = (2 s + 2 px − 2 p y − 2 pz ) 1 (-1,-1,1) 2 4 ψ 3 = (2 s − 2 p x + 2 p y − 2 pz ) 1 (1,1,1) 2 1 ψ 4 = (2 s − 2 px − 2 p y + 2 pz ) 1 (0,0,0) 2 3 (-1,1,-1) 2 y (1,-1,-1) x
  • 9. Ibrido sp2 3 elettroni di valenza 1 elettrone di valenza ( ) 1 ψ1 = 2 s + 2 ⋅ 2 px 2 pz 3 1⎛ ⎞ 1 3 ⎜ 2s − ⋅ 2 py ⎟ ψ2 = ⋅ 2 px + ⎜ ⎟ 2 3⎝ 2 ⎠ 1⎛ ⎞ 1 3 ⎜ 2s − ⋅ 2 py ⎟ ψ3 = ⋅ 2 px − ⎜ ⎟ 2 3⎝ 2 ⎠
  • 10. Ibrido sp 1 (2 s + 2 pz ) ψ1 = 2 Restano non ibridizzati Ibrido sp 1 (2 s − 2 pz ) ψ2 = 2 px 2 p y 2
  • 11. Esempio di molecole con carbonio in stato di ibridazione sp3: metano
  • 12. Esempio di molecole con carbonio in stato di ibridazione sp3: etano
  • 13. Esempi di ibridi sp2: copresenza di legame σ e π Etilene, σ H2C=CH2 π
  • 14. Esempi di ibridi sp2: copresenza di legame σ e π σ Butadiene, H2C=(CH)-(CH)=CH2 π
  • 15. Esempi di ibridi sp2: copresenza di legame σ e π σ Benzene, C6H6 π
  • 16. Esempi di ibridi sp: copresenza di legame σ e π Acetilene, H-C≡C-H Triplo legame: 1 di tipo σ, 2 di tipo π
  • 17. Struttura del diamante (ibridazione sp3)
  • 18. ALCANI (ibridazione sp3) butano (n=4) metano (n=1) etano (n=2) pentano (n=5) propano (n=3) esano (n=6)
  • 19. Struttura della grafite (ibridazione sp2) Asse c Vista lungo l'asse c
  • 20. POLYCONJUGATED MOLECULES 1D π conjugated systems: 2D π conjugated systems: polyenes PAH, Polycyclic Aromatic Hydrocarbons conjugated 2pz orbitals
  • 23. Stable forms of carbon clusters: (a) a piece of a graphene sheet, (b) the fullerene C60, and (c) a model for a carbon nanotube.
  • 24. Graphene ribbons terminated by (a) armchair edges and (b) zigzag edges, indicated by filled circles. The indices denote the atomic rows for each ribbon.
  • 25. High-resolution electron micrographs of graphitic particles (a) as obtained from an electric arc deposit, the particles display a well-defined faceted structure and a large inner hollow space (b) the same particles after being subjected to intense electron irradiation. The particles now show a spherical shape and a much smaller central empty space.
  • 26. Sketch of the cross section of a PAN carbon fiber along the fiber axis direction. Here the in-plane (La) and c- axis (Lc) structural coherence lengths are indicated.
  • 27. Schematic model for the microstructure of activated carbon fibers Fiber after some heat High surface area fiber treatment, showing partial where the basic structural alignment of the basic units are randomly structural units. arranged
  • 28. Nanostructured amorphous carbon films D. Donadio, L. Colombo, P. Milani, G. Benedek, Phys. Rev. Lett., 83, 776-779 (1999)
  • 29. Multi-walled carbon nanotubes S.Ijima, Nature 358, 220 (1991) Nanotubi cresciuti sul catodo durante una scarica ad arco tra 2 elettrodi di grafite (T≈ 3000 K) Reference book: Carbon nanotubes, M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Eds.) Springer (2001)
  • 31. Fullerenes within SWNTs: peapods La@C82
  • 32. Heat treatment of peapods produces double-wall NT
  • 33. Carbon nanotubes, M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Eds.) Springer (2001)
  • 35. Ch = 4 a1+ 2 a2 nanotubo (4,2)
  • 38. The unrolled honeycomb lattice of an Armchair nanotube structural unit Ch = Chiral vector T = Translation vector (k)
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46. Electronic 1D density of states per unit cell of a 2D graphene sheet for two (n,0) zigzag nanotubes: (a) the (10,0) nanotube which has semiconducting behaviour, (b) the (9,0) nanotube which has metallic behaviour. Also shown in the is the density of states for the 2D graphene sheet (dotted line).
  • 47. Derivative of the current-voltage dI/dV curves obtained by scanning tunnelling spectroscopy on various isolated single-wall carbon nanotubes with diameters near 1.4nm. Nanotubes #1 - 4 are semiconducting and #5 - 7 are metallic.
  • 48. nanotube (n,m) → (4,2) Ch = 4 a1+ 2 a2
  • 49. Hamiltoniano elettronico H = H(θ1,θ2) alla Hückel (i.e. tight-binding ristretto a orbitali 2pz) (0,-1) (1,0) T 1 2 1 2 1 2 a1 Ch 1 2 1 2 τ1 ϕ2 ϕ1 τ2 a2 (-1,0) (0,1) θi = k•ai
  • 50. Curve di dispersione elettronica (4,2) π∗ ξ = -π Energia in unità di β K1 K2 μ=2 EF K K ξ=0 M ξ=π μ=0 π K K Γ0 μ = N- 1 μ=0 Funzione del numero quantico μ = 0μ..=25 3 μ=1 μ=1 K K
  • 51. Curve di dispersione elettronica (6,3) Energia in unità di β NT conduttore Funzione del numero quantico μ = 0 .. 41
  • 52. Curve di dispersione elettronica (17,8) Energia in unità di β Funzione del numero quantico μ = 0..325
  • 53. Densità di stati elettronici di due nanotubi chirali metallici Van Hove singularities EF (14,5) (11,8) EF
  • 54. Analytic expressions for the electronic energies have been obtained with a symmetry treatment of Pz orbitals in the frame of Hückel Theory ε ε θ/π θ/π [ ]} { ε p (θ , ϕ ) = m 3 + 2 cos ϕ ± 2 (1 + cos ϑ )(1 + cos ϕ )1 2 Zigzag: (10,0) Ch ≅ 2.42 nm 12 (θ , ϕ ) = m{3 + 2 cos ϑ ± 2[(1 + cos ϑ )(1 + cos ϕ ) ]} Armchair: (10,10) Ch ≅ 4.2 nm εp 12 12
  • 55. (10,10) Ch ≅ 4.2 nm (10,0) Ch ≅ 2.42 nm
  • 56. Wave function, Van Hove peak at energy -0.95 Beta units Tube axis
  • 57. Energy dispersion and density of states for (9,0) zigzag nanotube Density of states for (150,150) armchair nanotube (150,150) Ch=63 nm
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67. Figure 5: TEM micrographs of seaweed-like carbon objects produced at 6.5 GPa and 950°C. Figure 4: TEM micrograph (a) at low magnification and (b), (c) at high magnification of MWNT treated at 5.5 GPa and 950°C.
  • 68.
  • 69.
  • 70. Raman spectra of graphite and amorphous carbon D G Crystalline graphite G 1200 1580 1100 1000 Raman Intensity 900 800 Absorbance 700 Raman Intensity 600 500 400 300 200 100 2000 1800 1600 1400 Wavenumbers (cm-1) Wavenumbers (cm-1) Disordered graphite G 900 1573 850 800 Raman Intensity 750 700 650 600 Wavenumbers (cm-1) Absorbance 550 500 450 Annealed amorphous carbon 400 D 350 courtesy of A.C. Ferrari 300 1330 250 200 Dept. of Engineering 150 100 Cambridge (UK) 2000 1800 1600 1400 Wavenumbers (cm-1) Wavenumbers (cm-1)
  • 71. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K. W. Williams, M. Menon, K. R. Subbaswamy, A. Thess, R. E. Smalley, G. Desselhaus, M.S. Dresselhaus, Science 275 (1997) 187 Spettri Raman Risonanti di un campione di nanonotubi singola parete contenente nanotubi di diversi diametri
  • 72.
  • 73. Room temperature RBM spectra for bundles of SWNTs produced by pulsed laser vaporization using an Fe/Ni catalyst in a carbon target. Spectra (a)-(d) are collected at fixed laser excitation energy (1.17 eV; Nd:YAG) from samples grown at T = 780, 860, 920 and 1000 °C, respectively. Note that the spectral weight shifts to smaller RBM frequencies with increasing growth temperature (Tg) indicating that diameter increases with increasing Tg. The intensities and frequencies of the RBM bands in spectra (e)-(g) collected from the same sample (Tg=1000°C) but with different laser excitation energies (488nm; 514.5nm; 647 nm; 1064nm) are quite different, demonstrating how different diameter tubes are excited as the excitation energy changes.
  • 74. Raman spectroscopy is used to characterize carbon nanotubes; the G band brings important structural information G- is associated to Studying a metal/semiconductor junction in a metallic tubes: why ? nanotube using space-resolved Raman G+ G+ G- Taken from: S.K. Doorn et al., PRL 94, 016802 (2005)
  • 75. Carbon nanotubes: extended π-conjugated systems long range electronic and vibrational interactions crucial dependence of the electronic structure on the geometric structure (n,m) phonons do experimentally depend on the diameter and electronic structure of the tube ⇒ Fairly challenging system to model !
  • 76. Polyconjugated carbon systems Polyenes Raman dispersion with chain length Graphite & Carbon Nanotubes Kohn Anomalies and Electron-Phonon Interaction in Graphite (S. Piscanec, M. Lazzeri, F. Mauri, A. C. C. Castiglioni, et al. Phyl. Trans. R. Soc. Lond. A., 362 Ferrari, and J. Robertson, PRL, 93 (2004)) (2004) … Polyynes also ! See poster 39-M, M. Tommasini, A. Milani, A. Lucotti, M. Del Zoppo, C. Castiglioni, G. Zerbi
  • 77. Modeling electrons and phonons in carbon nanotubes - Structural unit: 2 atoms A general treatment for - Screw axis symmetry any carbon nanotube - Real (curved) geometry (n,m) Calculation of phonons on Bloch theorem and the basis of valence nanotube boundary coordinates conditions GFL = Lω2 (with curved geometry) - band structure - phonon dispersion - DOS - vibrational displacements - phonon DOS
  • 78. Describing the geometry of a generic (n,m) nanotube Ch = 4 a1+ 2 a2 (4, 2) nanotube
  • 79. (14,5) Electronic band structure of semiconducting (4,2) nanotube π∗ ξ = -π Energy (units of β) K1 EF K2 μ=2 EF K K ξ=0 M ξ=π μ=0 π K K Γ0 μ = N- 1 μ= 0 Function of the quantum numbersμμ,ξ =3 μ=1 μ= 1 K K
  • 80. Ohno’s three parameters force field (1) generalised to graphite (2) (1) K. Ohno, J. Chem. Phys. 95, 5524 (1995) (2) C. Mapelli, C. Castiglioni, G. Zerbi, K. Müllen, Phys. Rev. B (1999) semiempirical parameters bond stretching force constants bond ∂ 2 Eπ order bond-bond Π ij ≡ polarizability ∂β i ∂β j {[c * (θ1 ,ϑ2 )ceσ (ϑ1 ' ,ϑ2 ' ) + c *0σ (θ1 ,ϑ2 )ceν (ϑ1 ' ,ϑ2 ' )][c0λ (θ1 , ϑ2 )c *eμ (ϑ1 ' , ϑ2 ' ) + c0 μ (θ1 , ϑ2 )c *eλ (ϑ1 ' ,ϑ2 ' )] + c.c.} π π π π 1 (2π ) ∫π ∫π ∫π ∫π 0ν dϑ1 dϑ2 dϑ1 ' dϑ2 ' Π λμ ,νσ = ε 0 (θ1 , ϑ2 ) − ε e (ϑ1 ' , ϑ2 ' ) 4 − − − − electronic structure (Hückel) The vibrational force field is coupled to the electronic structure
  • 81. Phonon dispersion curves of graphite S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, PRL, 93 (2004) Kohn anomaly and long range interactions Kohn Anomalies and Electron-Phonon Interaction in Graphite ∂ 2 Eπ Long range Π ij ≡ stretching force ∂β i ∂β j constants Ohno force field; variable threshold on fij
  • 82. Generalization of the Ohno Force Field to nanotubes of any diameter and chirality Method based on graphene cell (2 atoms) + screw axis symmetry The correct long range behavior of the force field is dictated by the electronic-structure dependent bond-bond polarizabilities Π: Brillouin zone integration Boundary conditions: Geometrical parameters of the (n,m) tube
  • 83. Bond-bond polarizabilities Πij ∂ 2 Eπ It is directly related to stretching Π ij ≡ ∂β i ∂β j force constants Metallic: slow decay Semiconducting: fast decay
  • 84. The G matrix is specific for any given nanotube: G = G(n,m) tube curvature The F matrix is specific for any given nanotube electronic structure (Πij): F = F(n,m)
  • 85. Raman spectra of individual G band: single wall nanotubes different frequency dispersion law metallic (while changing the tube diameter) observed for metallic and (18,9) semiconducting nanotubes G+ longitudinal ? (diameter independent…) (19,1) semiconducting (11,2) G- transversal ? (17,7) (dramatically diameter dependent…) (17,3) (15,2) All data shown are taken from: A. Jorio, A. G. Souza Filho, et al., Phys. Rev. B, 65, 155412 (2002)
  • 86. Experimental findings Empirical force field by Jorio et al. (armchair tubes) A. Jorio, et al., Phys. Rev. B, 65, 155412 (2002) independent theoretical works by M. Lazzeri et al. PRB 73, transversal 155426 (2006) longitudinal Large longitudinal/transversal splitting: favourably compares with experiments and… longitudinal G- transversal G+
  • 87. Dispersion of the G line Full symbols: longitudinal phonons Open symbols: transversal phonons Cold colours: metallic CNTs Warm colours: semiconducting CNTs μ=0 μ=1
  • 88. Phonons of the chiral (6,3) metallic tube
  • 89. Conclusions 1. Carbon nanotubes share long range interaction physics similarly to other π-conjugated systems (polyacetylene, graphite) 2. A successful and general model of phonons in nanotubes has been introduced which couples to the electronic structure of the given (n,m) tube 3. The correct longitudinal/transversal splitting of the G phonon as a function of tube diameter is found. The assignment of the long./transv. character of G phonons for general tubes is proposed