SlideShare ist ein Scribd-Unternehmen logo
1 von 16
COMPONENTES
ELECTRÓNICOS BÁSICOS
INTRODUCCION
Def: La electrónica es la ciencia que estudia las variaciones de las magnitudes
de la corriente eléctrica y sus aplicaciones, utilizando para ello la recepción,
tratamiento y transmisión de la información mediante una señal eléctrica.
Def: Una señal eléctrica es una corriente, de mayor o menor duración, con unas
características determinadas. Para conseguir estas modificaciones, se utilizan
componentes específicos, cada uno de los cuales realiza una función concreta.
Las modificaciones que pueden hacerse a una señal eléctrica (corriente) son las
siguientes:
• Amplificación o atenuación: Consiste en aumentar o reducir la intensidad de
• la corriente.
• Rectificación: Consiste en obligar a los electrones a circular en un único sentido,
• es decir, conducir la corriente.
• Filtrado: Consiste en dejar pasar a aquellos electrones que circulen a una
• determinada velocidad.
COMPONENTES ELECTRÓNICOS
COMPONENTES PASIVOS: Están constituidos por materiales o bien
conductores o bien aislantes.
•Resistencias eléctricas.
•Fijas y variables.
•Resistencias dependientes de un parámetro físico.
•Condensadores.
•No polares.
•Electróliticos.
•Bobinas. (El relé)
COMPONENTES ACTIVOS: Están constituidos por materiales
semiconductores, como el Si, Se y Ge (tienen un comportamiento
intermedio entre los conductores y los aislantes, es decir, en condiciones
normales no conducen la electricidad, pero si se les aplica una pequeña
cantidad de corriente eléctrica, entonces se vuelven conductores).
•Diodo.
•Rectificador.
•Led.
•Transistor Bipolar.
•Circuitos Integrados.
RESISTENCIAS ELÉCTRICAS
La función de las resistencias electrónicas es la
de impedir en mayor o menor grado el paso de la
corriente eléctrica, dependiendo esto del tipo de
material con el que hayan sido fabricadas. Su
magnitud se mide en OHMIOS (Ω).
COLOR 1ª CIFRA 2ª CIFRA Multiplicador Tolerancia
Oro --- --- 0.1 5%
Plata --- --- 0.01 10%
Negro 0 0 x1
Marrón 1 1 0 1%
Rojo 2 2 00 2%
Naranja 3 3 000
Sin color 20%
Amarillo 4 4 0000
Verde 5 5 00000
Azul 6 6 000000
Morado 7 7 0000000
Gris 8 8 00000000
Blanco 9 9 000000000
RESISTENCIAS FIJAS:
•Su valor es fijo. Viene definido de fábrica. Poseen un
valor nominal y una tolerancia, que es el error
máximo con el que se fabrica la resistencia.
•Están formadas por una mezcla de materiales, por lo
general carbón y un aglutinante adecuado. Todo ello
se envuelve con una cubierta de material plástico o
cerámico.
•Tienen forma de cilindro, y dos alambres en sus
extremos que hacen de polos (aunque no tienen
polaridad), y tres, cuatro o cinco franjas de colores,
que se corresponden, según un código, al valor de su
resistencia.
•Utilizando la siguiente tabla podemos calcular el
valor de cualquiera. Para ello hay que tener en
cuenta la colocación de las bandas de la resistencia,
situando la más separada de todas a la derecha.
RESISTENCIAS VARIABLES.
A) POTENCIÓMETRO:
La característica principal de un potenciómetro es que el valor de su
resistencia puede ajustarse entre los valores 0 Ω y el máximo especificado
por el fabricante. La modificación del valor se consigue moviendo un
elemento mecánico giratorio o deslizante sobre otro elemento resistivo. Son
potenciómetros muchos de los elementos de mando que incorporan
algunoselectrodomésticos para regular temperatura, volumen, nivel
luminoso,etc.
B) RESISTENCIAS QUE VARÍAN CON UN PARÁMETRO FÍSICO.
B.1. Termistores. Estas resistencias varían su valor según la temperatura
a la que estén sometidas. Pueden ser de dos tipos:
NTC (coeficiente de temperatura negativo): la resistencia disminuye al aumentar la temperatura.
PTC (coeficiente de temperatura positivo): la resistencia aumenta al subir la temperatura.
B.2. Fotoresistencias o LDR. Estas resistencias varían su valor según la cantidad de luz que
incida sobre ellas, disminuyendo la resistencia cuando aumenta la luz.
CONDENSADORES:
Son componentes capaces de almacenar temporalmente cargas
eléctricas y después cederlas. Actúan como “despensas” de energía.
Se usan fundamentalmente en circuitos temporizadores, es decir,
circuitos en los que se hace funcionar algún elemento durante algún
tiempo y luego lo paran, por ejemplo: las luces de una escalera, el
secador de manos de algunos lavabos públicos,…..etc.
Está formado por dos placas metálicas conductoras y paralelas,
llamadas armaduras, separadas entre sí por un material aislante
denominado dieléctrico.
Símbolo
Funcionamiento
PROCESO DE CARGA: si unimos una de las placas al polo positivo de una pila
y la otra al polo negativo, como no existe paso de corriente a través del dieléctrico, en la placa
conectada al polo positivo se producirá una acumulación de cargas positivas (protones), ya que
los electrones se ven atraídos por el polo positivo de la pila. En la placa conectada al polo
negativo, se producirá una acumulación de cargas negativas (electrones) ya que los protones
se ven atraídos por los electrones del polo negativo de la pila .
A medida que las placas van adquiriendo carga aparece entre ellas una diferencia de
potencial. Cuando esta diferencia de potencial entre placas es igual a la de la batería cesa el
transporte de electrones y cada placa queda con la carga Q que haya adquirido hasta ese
momento y deja de circular intensidad, comportándose entonces como un interruptor (ver figura
y esquema eléctrico).
PROCESO DE DESCARGA: en el circuito anterior, cuando el condensador ha sido cargado,
cambiamos el conmutador de la posición (1) a la posición (2). El condensador comienza en ese
momento a descargarse, creando una corriente que hace que se encienda la bombilla B2,
tardando para ello un tiempo determinado (según la carga que haya almacenado).
Constante de tiempo
Los condensadores se caracterizan por una magnitud denominada constante de tiempo,
que se calcula mediante la siguiente expresión:
‫ڂ‬ = R • C
donde :
• ‫=ڂ‬ constante de tiempo (segundos)
• R= resistencia (ohmios)
• C= capacidad (faradios)
NOTA: El tiempo en que el condensador alcanza el mismo potencial que la fuente de
alimentación, es decir, el tiempo total que el condensador tarda en cargarse es cinco
veces la constante de tiempo
NOTA: Cuando pasa la primera constante de tiempo, el condensador se carga con un 63% del
voltaje total de la pila. El resto del voltaje, hasta llegar al 100% lo obtiene en las otras
cuatro constantes de tiempo restantes.
NOTA: El tiempo de carga y descarga no tiene porqué coincidir, todo depende de la resistencia
a través de la cual se cargue o se descargue el condensador
CONDENSADORES:
Capacidad de un condensador
La capacidad de un condensador para almacenar
carga eléctrica depende de la superficie de las
armaduras, la distancia que las separa y la
naturaleza del dieléctrico. Matemáticamente se
calcula mediante la siguiente expresión:
Como el Faradio es una unidad muy grande,
normalmente se usan submúltiplos como el
microfaradio (μF), el nanofaradio (nF) y el
picofaradio (pF), que equivalen a 10-6, 10-9 y 10-12
F respectivamente.
VCQ 
Donde:
Q = Carga (Culombios)
V = ddp (Voltios)
C = Capacidad (Faradios)
Existen muchos tipos de condensadores, en función del
material con el que están fabricados: de papel,
cerámicos, de poliéster, de aluminio, etc. Pero puede
decirse que hay dos tipos de condensadores
básicamente:
a.Condensadores sin polaridad: Sus
polos pueden ser conectados a
cualquier polo de la pila.
b.Condensadores con polaridad o
electrolíticos: Debe tenerse en cuenta
la polaridad para conectarlos. Suelen
tener mayor capacidad.
Tipos de condensadores
BOBINAS: El relé
La bobina es el componente electrónico que menos ha evolucionado. Se emplea en sintonización, filtros etc.
Nosotros vamos a ver sus efectos electromagnéticos, como componente de los relés.
Un operador eléctrico muy útil que se utiliza mucho en
circuitos eléctricos, y que funciona como un
electroimán es un RELÉ.
Un relé está formado por una bobina enrollada sobre un
núcleo de hiero. Cuando la bobina es recorrida por la
corriente, genera un campo magnético a su alrededor
(se comporta como un imán), por lo que atrae una
palanca metálica. Ésta, a su vez, mueve una
pequeña lámina, con la que se puede cerrar un
segundo circuito.
Por tanto en un relé existen dos circuitos:
a) Circuito de excitación, que coincide con los terminales
de la bobina
b) Circuito de conmutación, que coincide con los
terminales del interruptor.
Símbolo
DIODO: FUNCIONAMIENTO
Es uno de los componentes más empleados en los circuitos electrónicos.
Está fabricado con dos materiales semiconductores unidos, uno de tipo N (electronegativo) llamado
ánodo, y otro de tipo P (electropositivo) llamado cátodo.
La función principal de un diodo es la de permitir el paso de la corriente en un solo sentido, es decir,
tiene la función de dirigirla
Los materiales semiconductores más utilizados son el Selenio (Se), el Germanio (Ge) y sobre todo el Silicio
(Si)
Una precaución importante a la hora de montar un diodo LED en un circuito es que la tensión en bornes no
debe sobrepasar los 2 V, por lo que cuando la tensión es superior, se debe poner una resistencia en serie
con el diodo para ajustar dicha tensión.
Además el diodo debe recibir como mínimo una corriente de 0,001 A (1 mA).
Ejm: Queremos conectar un diodo a una pila de 9 V, ¿qué haremos para no fundirlo?
Para calcular el valor de R aplicamos la
ley de Ohm:
V = I · R → R = V / I
R = 7 / 0,001 A
DIODOS: POLARIZACIÓN
Polarización directa: se
produce cuando el polo
positivo de la pila se una al
ánodo y el negativo al
cátodo. En este caso el
diodo se comporta como un
conductor y deja pasar la
corriente eléctrica.
Polarización inversa: se
consigue conectando el polo
negativo de la pila al ánodo
y el positivo al cátodo. En
este caso el diodo se
comporta como un aislante y
no permite el paso de la
corriente.
POLARIZACIÓN
DIRECTA
POLARIZACIÓN
INVERSA
DIODOS: TIPOS
Diodo rectificador
 Permite la rectificación de la corriente
alterna, transformándola en continua.
 Polarizado directamente, conduce a partir de
una tensión entre 0.2 y 0.8 V.
 Su encapsulado puede ser de plástico, de
metal o cerámico, dependiendo de su
potencia.
 El cátodo siempre va marcado de forma que
permite su reconocimiento.
 Se identifica mediante un código
alfanumérico.
Diodo LED (Light Emisor Diode)
 Emite luz al ser polarizado directamente.
 Se emplea para señalización luminosa.
 Se fabrican en varios colores: rojos, verdes,
amarillos, azules, y también infrarrojos.
 Precisa de una tensión mínima para emitir
luz (de 1.5 a 2 voltios). Para conseguirla,
puede intercalarse una resistencia en serie.
 El cátodo se identifica fácilmente
observando el interior de la cápsula (lado
plano) o la longitud de los terminales
(terminal corto).
TRANSISTORES: CONSTITUCIÓN Y TIPOS
•El transistor es un componente de control y regulación de la corriente eléctrica, es decir, permite, impide o regula
el paso de la corriente eléctrica y su intensidad.
•Es el componente más importante de la electrónica. Fue desarrollado por los investigadores Bardeen, Brattain y
Shockley a finales de los años 40, siendo premiados con el Nobel de Física en el año 1956.
•Un transistor se puede considerar como la unión de dos diodos y está formado por la unión de tres cristales
semiconductores combinados, dando lugar a los dos tipos existentes: Transistor PNP y transistor NPN.
El transistor posee tres patillas, que son:
a) Colector: Es el polo, cristal o conexión del transistor que recibe la corriente eléctrica.
b) Base: Es el polo, cristal o conexión del transistor que recibe una pequeña corriente eléctrica con la que regula el
paso de la corriente principal, en mayor o menor intensidad, proporcional a la de control recibida por la base. Para
regular la intensidad de la corriente que recibe la base debe conectarse en serie una resistencia grande.
c) Emisor: Es el polo, cristal o conexión del transistor por el que sale la intensidad de la corriente una vez que lo ha
atravesado (la cantidad de corriente emitida depende de la base)
TRANSISTORES: FUNCIONAMIENTO
El principio de funcionamiento de un transistor depende de la acción coordinada de sus
tres componentes (emisor, base y colector), pudiendo funcionar en tres regímenes
distintos:
VÉASE EL SÍMIL HIDRAULICO (VÁLVULA) DE LA
SIGUIENTE FIGURA Y SU EXPLICACIÓN.
a.En activa: como amplificador, de forma que deje pasar más o menos corriente.
b.En corte: No pasa corriente por él, actuando como un interruptor abierto.
c.En saturación: por él pasa prácticamente toda la corriente que recibe.
•Si no hay presión e B (base) no puede abrir la válvula y el fluido no pasa de E a C (funcionamiento en corte). Es
decir, el transistor se comporta como si fuese un interruptor abierto al impedir que la corriente eléctrica circule
entre E y C.
•Si llega algo de presión a B (base), ésta abrirá más o menos la válvula y dejará pasar más o menos fluido de E a
C (funcionamiento en activa). En este caso, el transistor permitirá un paso de corriente proporcional a la abertura
de la válvula y siempre superior a la corriente que llega a la base. La relación entre ambas corrientes se llama
amplificación o ganancia (G).
•Si llega a B (base) suficiente presión para abrir totalmente la válvula, E se comunica con C y el fluido pasa sin
dificultad (funcionamiento en saturación). En este caso, el transistor se comporta como un interruptor cerrado, ya
que permite el paso o circulación de la corriente eléctrica entre E y C con toda libertad.
CARACTERÍSTICAS DE LOS TRANSISTORES
El transistor permite a partir de una pequeña corriente que circule por su base, provocar una corriente mayor del
colector al emisor, es decir, una de sus misiones es la de actuar como amplificador. Por tanto una de sus
características más importantes es su ganancia, que se calcula mediante la siguiente expresión:
β = IC / IB
Otra característica importante, es que la intensidad que se obtiene en el emisor, es igual a la suma de la
intensidad que entra al colector más la que entra a la base, es decir,
IE = IC + IB
El aspecto real de un transistor es el siguiente:
CIRCUITO INTEGRADO
Actualmente, la tecnología electrónica permite fabricar circuitos de dimensiones microscópicas,
formados por transistores y otros componentes sobre una placa de material semiconductor, obteniendo
así los circuitos integrados.
El tamaño de un transistor depende del calor que deba disipar. Si se consigue que éstos trabajen con
corrientes y tensiones extremadamente pequeñas, podrá ser reducido el tamaño, y podrán conectarse
para formar estos diminutos circuitos.
Los circuitos integrados utilizan pequeños chips de silicio, cada uno de los cuales está
instalado dentro de una funda de plástico conectado a un juego de patillas situado en los laterales de la
funda. En las siguientes figuras se muestra el interior de un circuito integrado, así como sus conexiones y
una nota con la curiosa procedencia del nombre “chip”.
APLICACIONES: Se utilizan circuitos integrados en muchos aparatos
de uso doméstico común: electrodomésticos como lavadoras, frigoríficos,
hornos, microondas, etc., en dispositivos de grabación y reproducción de
imágenes y sonido como video-cámaras, televisores, telefonos móviles
equipos de música, móviles, etc., y como no, en ordenadores.

Weitere ähnliche Inhalte

Was ist angesagt?

Componentes pasivos
Componentes pasivosComponentes pasivos
Componentes pasivos
LUIS MANUEL
 
Catálogo de semiconductores
Catálogo de semiconductoresCatálogo de semiconductores
Catálogo de semiconductores
Pablo Hernandez
 

Was ist angesagt? (13)

Electrónica: Semiconductores
Electrónica: SemiconductoresElectrónica: Semiconductores
Electrónica: Semiconductores
 
El Diodo Semiconductor
El Diodo SemiconductorEl Diodo Semiconductor
El Diodo Semiconductor
 
Electrónica analógica
Electrónica analógicaElectrónica analógica
Electrónica analógica
 
Componentes pasivos
Componentes pasivosComponentes pasivos
Componentes pasivos
 
Electronica
ElectronicaElectronica
Electronica
 
Electrónica de 3º E. S. O.
Electrónica de 3º E. S. O.Electrónica de 3º E. S. O.
Electrónica de 3º E. S. O.
 
Electronica 4ºEso
Electronica 4ºEsoElectronica 4ºEso
Electronica 4ºEso
 
La electrónica
La electrónicaLa electrónica
La electrónica
 
Electrónica Analógica
Electrónica AnalógicaElectrónica Analógica
Electrónica Analógica
 
Practica 5 electricidad y magnetismo
Practica 5 electricidad y magnetismoPractica 5 electricidad y magnetismo
Practica 5 electricidad y magnetismo
 
Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...
Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...
Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...
 
Electrónica de 4º E. S. O.
Electrónica de 4º E. S. O.Electrónica de 4º E. S. O.
Electrónica de 4º E. S. O.
 
Catálogo de semiconductores
Catálogo de semiconductoresCatálogo de semiconductores
Catálogo de semiconductores
 

Andere mochten auch

Communist party line fbi file series in 25 parts - vol. (24)
Communist party line   fbi file series in 25 parts - vol. (24)Communist party line   fbi file series in 25 parts - vol. (24)
Communist party line fbi file series in 25 parts - vol. (24)
RareBooksnRecords
 
Tondeuse honda.ppt cindy
Tondeuse honda.ppt cindyTondeuse honda.ppt cindy
Tondeuse honda.ppt cindy
jean
 
Wi fi en_afrique
Wi fi en_afriqueWi fi en_afrique
Wi fi en_afrique
dabiassi
 
les retombées économiques
les retombées économiques les retombées économiques
les retombées économiques
Cassandra Polito
 

Andere mochten auch (20)

Sogedev - Infographie PME et croissance
Sogedev - Infographie PME et croissanceSogedev - Infographie PME et croissance
Sogedev - Infographie PME et croissance
 
Évolution du climat à court terme: Projections et prévisibilité
Évolution du climat à court terme: Projections et prévisibilité Évolution du climat à court terme: Projections et prévisibilité
Évolution du climat à court terme: Projections et prévisibilité
 
Communist party line fbi file series in 25 parts - vol. (24)
Communist party line   fbi file series in 25 parts - vol. (24)Communist party line   fbi file series in 25 parts - vol. (24)
Communist party line fbi file series in 25 parts - vol. (24)
 
Openerp Titres et Effets de Commerce
Openerp Titres et Effets de CommerceOpenerp Titres et Effets de Commerce
Openerp Titres et Effets de Commerce
 
Tondeuse honda.ppt cindy
Tondeuse honda.ppt cindyTondeuse honda.ppt cindy
Tondeuse honda.ppt cindy
 
La pêche en Lot-et-Garonne par le CDT 47
La pêche en Lot-et-Garonne par le CDT 47La pêche en Lot-et-Garonne par le CDT 47
La pêche en Lot-et-Garonne par le CDT 47
 
Paris de 1900
Paris de 1900Paris de 1900
Paris de 1900
 
Filtros
FiltrosFiltros
Filtros
 
Discover Bali's Green Highlights
Discover Bali's Green HighlightsDiscover Bali's Green Highlights
Discover Bali's Green Highlights
 
béton bloc machine
béton bloc machinebéton bloc machine
béton bloc machine
 
Reflexion mirando hacia atrás
Reflexion  mirando hacia atrásReflexion  mirando hacia atrás
Reflexion mirando hacia atrás
 
Les aides Bpifrance : des dispositifs à chaque étape de vos projets
Les aides Bpifrance : des dispositifs à chaque étape de vos projetsLes aides Bpifrance : des dispositifs à chaque étape de vos projets
Les aides Bpifrance : des dispositifs à chaque étape de vos projets
 
Wi fi en_afrique
Wi fi en_afriqueWi fi en_afrique
Wi fi en_afrique
 
La Géopolitique du tourisme: Cas de la République centrafricaine.
La Géopolitique du tourisme: Cas de la République centrafricaine.La Géopolitique du tourisme: Cas de la République centrafricaine.
La Géopolitique du tourisme: Cas de la République centrafricaine.
 
Formatos elio
Formatos elioFormatos elio
Formatos elio
 
les retombées économiques
les retombées économiques les retombées économiques
les retombées économiques
 
Favoris & RSS sur l'ENT Univ Nantes
Favoris & RSS sur l'ENT Univ NantesFavoris & RSS sur l'ENT Univ Nantes
Favoris & RSS sur l'ENT Univ Nantes
 
2AE - Programme AlumniVision
2AE - Programme AlumniVision2AE - Programme AlumniVision
2AE - Programme AlumniVision
 
El nanotransistor una aplicación descriptiva ing. ancizar paredes
El nanotransistor una aplicación descriptiva ing. ancizar paredesEl nanotransistor una aplicación descriptiva ing. ancizar paredes
El nanotransistor una aplicación descriptiva ing. ancizar paredes
 
Lycee anne de bretagne (locmine) agri game
Lycee anne de bretagne (locmine) agri gameLycee anne de bretagne (locmine) agri game
Lycee anne de bretagne (locmine) agri game
 

Ähnlich wie Electrónica analógica

ElectróNica AnalogíCa 1
ElectróNica AnalogíCa 1ElectróNica AnalogíCa 1
ElectróNica AnalogíCa 1
Royer García
 
Electronica analogica 2013
Electronica analogica 2013Electronica analogica 2013
Electronica analogica 2013
Julio Sanchez
 
ELECTRÓNICA
ELECTRÓNICAELECTRÓNICA
ELECTRÓNICA
mnovella1
 
fundamentos de electricidad y electrónica
fundamentos de electricidad y electrónica fundamentos de electricidad y electrónica
fundamentos de electricidad y electrónica
Valen Muñoz
 
Chevrotronica Ii
Chevrotronica IiChevrotronica Ii
Chevrotronica Ii
guest07963
 
Electronica Basica
Electronica BasicaElectronica Basica
Electronica Basica
guestdc092bf
 
Deber de ensamblaje
Deber de ensamblajeDeber de ensamblaje
Deber de ensamblaje
Daniela Slt
 

Ähnlich wie Electrónica analógica (20)

electronicaanalogica-151126094331-lva1-app6892.pdf
electronicaanalogica-151126094331-lva1-app6892.pdfelectronicaanalogica-151126094331-lva1-app6892.pdf
electronicaanalogica-151126094331-lva1-app6892.pdf
 
ElectróNica AnalogíCa 1
ElectróNica AnalogíCa 1ElectróNica AnalogíCa 1
ElectróNica AnalogíCa 1
 
Electronica analogica 2013
Electronica analogica 2013Electronica analogica 2013
Electronica analogica 2013
 
Manual electronica
Manual electronicaManual electronica
Manual electronica
 
Taller a
Taller aTaller a
Taller a
 
3032
30323032
3032
 
PRESENTACIÓN - COMPONENTES ELECTRÓNICOS.pptx
PRESENTACIÓN - COMPONENTES ELECTRÓNICOS.pptxPRESENTACIÓN - COMPONENTES ELECTRÓNICOS.pptx
PRESENTACIÓN - COMPONENTES ELECTRÓNICOS.pptx
 
ElectróNica
ElectróNicaElectróNica
ElectróNica
 
DiodoSemiconductor.pdf
DiodoSemiconductor.pdfDiodoSemiconductor.pdf
DiodoSemiconductor.pdf
 
Manual_de_electronica_Basica_compressed.pdf
Manual_de_electronica_Basica_compressed.pdfManual_de_electronica_Basica_compressed.pdf
Manual_de_electronica_Basica_compressed.pdf
 
Tema 1 electrónica analógica
Tema 1 electrónica analógicaTema 1 electrónica analógica
Tema 1 electrónica analógica
 
ELECTRÓNICA
ELECTRÓNICAELECTRÓNICA
ELECTRÓNICA
 
Capacitancia
CapacitanciaCapacitancia
Capacitancia
 
fundamentos de electricidad y electrónica
fundamentos de electricidad y electrónica fundamentos de electricidad y electrónica
fundamentos de electricidad y electrónica
 
Electronica
ElectronicaElectronica
Electronica
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Chevrotronica Ii
Chevrotronica IiChevrotronica Ii
Chevrotronica Ii
 
Electronica Basica
Electronica BasicaElectronica Basica
Electronica Basica
 
Deber de ensamblaje
Deber de ensamblajeDeber de ensamblaje
Deber de ensamblaje
 
Presentación dispositivos electrónicos
Presentación dispositivos electrónicosPresentación dispositivos electrónicos
Presentación dispositivos electrónicos
 

Mehr von sonsolesbar

Mehr von sonsolesbar (20)

Letra P Día 1
Letra P Día 1Letra P Día 1
Letra P Día 1
 
6. electro digital
6. electro digital6. electro digital
6. electro digital
 
4. electronica digital
4. electronica digital4. electronica digital
4. electronica digital
 
16. simplificar funciones
16. simplificar funciones16. simplificar funciones
16. simplificar funciones
 
9. sistemas de numeracion
9. sistemas de numeracion9. sistemas de numeracion
9. sistemas de numeracion
 
10. present sist-nume
10. present sist-nume10. present sist-nume
10. present sist-nume
 
7. sistemas digitales
7. sistemas digitales7. sistemas digitales
7. sistemas digitales
 
14. elect digital
14. elect digital14. elect digital
14. elect digital
 
12. cambiosdebase1
12. cambiosdebase112. cambiosdebase1
12. cambiosdebase1
 
13. conversion sistemas numericos
13. conversion sistemas numericos13. conversion sistemas numericos
13. conversion sistemas numericos
 
11. cambios base
11. cambios base11. cambios base
11. cambios base
 
15. puertas logicas
15. puertas logicas15. puertas logicas
15. puertas logicas
 
22. c combin-ovejas
22. c combin-ovejas22. c combin-ovejas
22. c combin-ovejas
 
23. c comb-ascensor_monedas
23. c comb-ascensor_monedas23. c comb-ascensor_monedas
23. c comb-ascensor_monedas
 
24. problema aviones
24. problema aviones24. problema aviones
24. problema aviones
 
2. electronica digital
2. electronica digital2. electronica digital
2. electronica digital
 
1. elec digital
1. elec digital1. elec digital
1. elec digital
 
19. control semaforico
19. control semaforico19. control semaforico
19. control semaforico
 
14. representacion de funciones semaforo
14. representacion de funciones semaforo14. representacion de funciones semaforo
14. representacion de funciones semaforo
 
13. sistemas digitales1
13. sistemas digitales113. sistemas digitales1
13. sistemas digitales1
 

Kürzlich hochgeladen

EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
FagnerLisboa3
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdf
AnnimoUno1
 

Kürzlich hochgeladen (11)

pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21
 
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvana
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdf
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estos
 

Electrónica analógica

  • 2. INTRODUCCION Def: La electrónica es la ciencia que estudia las variaciones de las magnitudes de la corriente eléctrica y sus aplicaciones, utilizando para ello la recepción, tratamiento y transmisión de la información mediante una señal eléctrica. Def: Una señal eléctrica es una corriente, de mayor o menor duración, con unas características determinadas. Para conseguir estas modificaciones, se utilizan componentes específicos, cada uno de los cuales realiza una función concreta. Las modificaciones que pueden hacerse a una señal eléctrica (corriente) son las siguientes: • Amplificación o atenuación: Consiste en aumentar o reducir la intensidad de • la corriente. • Rectificación: Consiste en obligar a los electrones a circular en un único sentido, • es decir, conducir la corriente. • Filtrado: Consiste en dejar pasar a aquellos electrones que circulen a una • determinada velocidad.
  • 3. COMPONENTES ELECTRÓNICOS COMPONENTES PASIVOS: Están constituidos por materiales o bien conductores o bien aislantes. •Resistencias eléctricas. •Fijas y variables. •Resistencias dependientes de un parámetro físico. •Condensadores. •No polares. •Electróliticos. •Bobinas. (El relé) COMPONENTES ACTIVOS: Están constituidos por materiales semiconductores, como el Si, Se y Ge (tienen un comportamiento intermedio entre los conductores y los aislantes, es decir, en condiciones normales no conducen la electricidad, pero si se les aplica una pequeña cantidad de corriente eléctrica, entonces se vuelven conductores). •Diodo. •Rectificador. •Led. •Transistor Bipolar. •Circuitos Integrados.
  • 4. RESISTENCIAS ELÉCTRICAS La función de las resistencias electrónicas es la de impedir en mayor o menor grado el paso de la corriente eléctrica, dependiendo esto del tipo de material con el que hayan sido fabricadas. Su magnitud se mide en OHMIOS (Ω). COLOR 1ª CIFRA 2ª CIFRA Multiplicador Tolerancia Oro --- --- 0.1 5% Plata --- --- 0.01 10% Negro 0 0 x1 Marrón 1 1 0 1% Rojo 2 2 00 2% Naranja 3 3 000 Sin color 20% Amarillo 4 4 0000 Verde 5 5 00000 Azul 6 6 000000 Morado 7 7 0000000 Gris 8 8 00000000 Blanco 9 9 000000000 RESISTENCIAS FIJAS: •Su valor es fijo. Viene definido de fábrica. Poseen un valor nominal y una tolerancia, que es el error máximo con el que se fabrica la resistencia. •Están formadas por una mezcla de materiales, por lo general carbón y un aglutinante adecuado. Todo ello se envuelve con una cubierta de material plástico o cerámico. •Tienen forma de cilindro, y dos alambres en sus extremos que hacen de polos (aunque no tienen polaridad), y tres, cuatro o cinco franjas de colores, que se corresponden, según un código, al valor de su resistencia. •Utilizando la siguiente tabla podemos calcular el valor de cualquiera. Para ello hay que tener en cuenta la colocación de las bandas de la resistencia, situando la más separada de todas a la derecha.
  • 5. RESISTENCIAS VARIABLES. A) POTENCIÓMETRO: La característica principal de un potenciómetro es que el valor de su resistencia puede ajustarse entre los valores 0 Ω y el máximo especificado por el fabricante. La modificación del valor se consigue moviendo un elemento mecánico giratorio o deslizante sobre otro elemento resistivo. Son potenciómetros muchos de los elementos de mando que incorporan algunoselectrodomésticos para regular temperatura, volumen, nivel luminoso,etc. B) RESISTENCIAS QUE VARÍAN CON UN PARÁMETRO FÍSICO. B.1. Termistores. Estas resistencias varían su valor según la temperatura a la que estén sometidas. Pueden ser de dos tipos: NTC (coeficiente de temperatura negativo): la resistencia disminuye al aumentar la temperatura. PTC (coeficiente de temperatura positivo): la resistencia aumenta al subir la temperatura. B.2. Fotoresistencias o LDR. Estas resistencias varían su valor según la cantidad de luz que incida sobre ellas, disminuyendo la resistencia cuando aumenta la luz.
  • 6. CONDENSADORES: Son componentes capaces de almacenar temporalmente cargas eléctricas y después cederlas. Actúan como “despensas” de energía. Se usan fundamentalmente en circuitos temporizadores, es decir, circuitos en los que se hace funcionar algún elemento durante algún tiempo y luego lo paran, por ejemplo: las luces de una escalera, el secador de manos de algunos lavabos públicos,…..etc. Está formado por dos placas metálicas conductoras y paralelas, llamadas armaduras, separadas entre sí por un material aislante denominado dieléctrico. Símbolo Funcionamiento PROCESO DE CARGA: si unimos una de las placas al polo positivo de una pila y la otra al polo negativo, como no existe paso de corriente a través del dieléctrico, en la placa conectada al polo positivo se producirá una acumulación de cargas positivas (protones), ya que los electrones se ven atraídos por el polo positivo de la pila. En la placa conectada al polo negativo, se producirá una acumulación de cargas negativas (electrones) ya que los protones se ven atraídos por los electrones del polo negativo de la pila . A medida que las placas van adquiriendo carga aparece entre ellas una diferencia de potencial. Cuando esta diferencia de potencial entre placas es igual a la de la batería cesa el transporte de electrones y cada placa queda con la carga Q que haya adquirido hasta ese momento y deja de circular intensidad, comportándose entonces como un interruptor (ver figura y esquema eléctrico). PROCESO DE DESCARGA: en el circuito anterior, cuando el condensador ha sido cargado, cambiamos el conmutador de la posición (1) a la posición (2). El condensador comienza en ese momento a descargarse, creando una corriente que hace que se encienda la bombilla B2, tardando para ello un tiempo determinado (según la carga que haya almacenado).
  • 7. Constante de tiempo Los condensadores se caracterizan por una magnitud denominada constante de tiempo, que se calcula mediante la siguiente expresión: ‫ڂ‬ = R • C donde : • ‫=ڂ‬ constante de tiempo (segundos) • R= resistencia (ohmios) • C= capacidad (faradios) NOTA: El tiempo en que el condensador alcanza el mismo potencial que la fuente de alimentación, es decir, el tiempo total que el condensador tarda en cargarse es cinco veces la constante de tiempo NOTA: Cuando pasa la primera constante de tiempo, el condensador se carga con un 63% del voltaje total de la pila. El resto del voltaje, hasta llegar al 100% lo obtiene en las otras cuatro constantes de tiempo restantes. NOTA: El tiempo de carga y descarga no tiene porqué coincidir, todo depende de la resistencia a través de la cual se cargue o se descargue el condensador
  • 8. CONDENSADORES: Capacidad de un condensador La capacidad de un condensador para almacenar carga eléctrica depende de la superficie de las armaduras, la distancia que las separa y la naturaleza del dieléctrico. Matemáticamente se calcula mediante la siguiente expresión: Como el Faradio es una unidad muy grande, normalmente se usan submúltiplos como el microfaradio (μF), el nanofaradio (nF) y el picofaradio (pF), que equivalen a 10-6, 10-9 y 10-12 F respectivamente. VCQ  Donde: Q = Carga (Culombios) V = ddp (Voltios) C = Capacidad (Faradios) Existen muchos tipos de condensadores, en función del material con el que están fabricados: de papel, cerámicos, de poliéster, de aluminio, etc. Pero puede decirse que hay dos tipos de condensadores básicamente: a.Condensadores sin polaridad: Sus polos pueden ser conectados a cualquier polo de la pila. b.Condensadores con polaridad o electrolíticos: Debe tenerse en cuenta la polaridad para conectarlos. Suelen tener mayor capacidad. Tipos de condensadores
  • 9. BOBINAS: El relé La bobina es el componente electrónico que menos ha evolucionado. Se emplea en sintonización, filtros etc. Nosotros vamos a ver sus efectos electromagnéticos, como componente de los relés. Un operador eléctrico muy útil que se utiliza mucho en circuitos eléctricos, y que funciona como un electroimán es un RELÉ. Un relé está formado por una bobina enrollada sobre un núcleo de hiero. Cuando la bobina es recorrida por la corriente, genera un campo magnético a su alrededor (se comporta como un imán), por lo que atrae una palanca metálica. Ésta, a su vez, mueve una pequeña lámina, con la que se puede cerrar un segundo circuito. Por tanto en un relé existen dos circuitos: a) Circuito de excitación, que coincide con los terminales de la bobina b) Circuito de conmutación, que coincide con los terminales del interruptor. Símbolo
  • 10. DIODO: FUNCIONAMIENTO Es uno de los componentes más empleados en los circuitos electrónicos. Está fabricado con dos materiales semiconductores unidos, uno de tipo N (electronegativo) llamado ánodo, y otro de tipo P (electropositivo) llamado cátodo. La función principal de un diodo es la de permitir el paso de la corriente en un solo sentido, es decir, tiene la función de dirigirla Los materiales semiconductores más utilizados son el Selenio (Se), el Germanio (Ge) y sobre todo el Silicio (Si) Una precaución importante a la hora de montar un diodo LED en un circuito es que la tensión en bornes no debe sobrepasar los 2 V, por lo que cuando la tensión es superior, se debe poner una resistencia en serie con el diodo para ajustar dicha tensión. Además el diodo debe recibir como mínimo una corriente de 0,001 A (1 mA). Ejm: Queremos conectar un diodo a una pila de 9 V, ¿qué haremos para no fundirlo? Para calcular el valor de R aplicamos la ley de Ohm: V = I · R → R = V / I R = 7 / 0,001 A
  • 11. DIODOS: POLARIZACIÓN Polarización directa: se produce cuando el polo positivo de la pila se una al ánodo y el negativo al cátodo. En este caso el diodo se comporta como un conductor y deja pasar la corriente eléctrica. Polarización inversa: se consigue conectando el polo negativo de la pila al ánodo y el positivo al cátodo. En este caso el diodo se comporta como un aislante y no permite el paso de la corriente. POLARIZACIÓN DIRECTA POLARIZACIÓN INVERSA
  • 12. DIODOS: TIPOS Diodo rectificador  Permite la rectificación de la corriente alterna, transformándola en continua.  Polarizado directamente, conduce a partir de una tensión entre 0.2 y 0.8 V.  Su encapsulado puede ser de plástico, de metal o cerámico, dependiendo de su potencia.  El cátodo siempre va marcado de forma que permite su reconocimiento.  Se identifica mediante un código alfanumérico. Diodo LED (Light Emisor Diode)  Emite luz al ser polarizado directamente.  Se emplea para señalización luminosa.  Se fabrican en varios colores: rojos, verdes, amarillos, azules, y también infrarrojos.  Precisa de una tensión mínima para emitir luz (de 1.5 a 2 voltios). Para conseguirla, puede intercalarse una resistencia en serie.  El cátodo se identifica fácilmente observando el interior de la cápsula (lado plano) o la longitud de los terminales (terminal corto).
  • 13. TRANSISTORES: CONSTITUCIÓN Y TIPOS •El transistor es un componente de control y regulación de la corriente eléctrica, es decir, permite, impide o regula el paso de la corriente eléctrica y su intensidad. •Es el componente más importante de la electrónica. Fue desarrollado por los investigadores Bardeen, Brattain y Shockley a finales de los años 40, siendo premiados con el Nobel de Física en el año 1956. •Un transistor se puede considerar como la unión de dos diodos y está formado por la unión de tres cristales semiconductores combinados, dando lugar a los dos tipos existentes: Transistor PNP y transistor NPN. El transistor posee tres patillas, que son: a) Colector: Es el polo, cristal o conexión del transistor que recibe la corriente eléctrica. b) Base: Es el polo, cristal o conexión del transistor que recibe una pequeña corriente eléctrica con la que regula el paso de la corriente principal, en mayor o menor intensidad, proporcional a la de control recibida por la base. Para regular la intensidad de la corriente que recibe la base debe conectarse en serie una resistencia grande. c) Emisor: Es el polo, cristal o conexión del transistor por el que sale la intensidad de la corriente una vez que lo ha atravesado (la cantidad de corriente emitida depende de la base)
  • 14. TRANSISTORES: FUNCIONAMIENTO El principio de funcionamiento de un transistor depende de la acción coordinada de sus tres componentes (emisor, base y colector), pudiendo funcionar en tres regímenes distintos: VÉASE EL SÍMIL HIDRAULICO (VÁLVULA) DE LA SIGUIENTE FIGURA Y SU EXPLICACIÓN. a.En activa: como amplificador, de forma que deje pasar más o menos corriente. b.En corte: No pasa corriente por él, actuando como un interruptor abierto. c.En saturación: por él pasa prácticamente toda la corriente que recibe. •Si no hay presión e B (base) no puede abrir la válvula y el fluido no pasa de E a C (funcionamiento en corte). Es decir, el transistor se comporta como si fuese un interruptor abierto al impedir que la corriente eléctrica circule entre E y C. •Si llega algo de presión a B (base), ésta abrirá más o menos la válvula y dejará pasar más o menos fluido de E a C (funcionamiento en activa). En este caso, el transistor permitirá un paso de corriente proporcional a la abertura de la válvula y siempre superior a la corriente que llega a la base. La relación entre ambas corrientes se llama amplificación o ganancia (G). •Si llega a B (base) suficiente presión para abrir totalmente la válvula, E se comunica con C y el fluido pasa sin dificultad (funcionamiento en saturación). En este caso, el transistor se comporta como un interruptor cerrado, ya que permite el paso o circulación de la corriente eléctrica entre E y C con toda libertad.
  • 15. CARACTERÍSTICAS DE LOS TRANSISTORES El transistor permite a partir de una pequeña corriente que circule por su base, provocar una corriente mayor del colector al emisor, es decir, una de sus misiones es la de actuar como amplificador. Por tanto una de sus características más importantes es su ganancia, que se calcula mediante la siguiente expresión: β = IC / IB Otra característica importante, es que la intensidad que se obtiene en el emisor, es igual a la suma de la intensidad que entra al colector más la que entra a la base, es decir, IE = IC + IB El aspecto real de un transistor es el siguiente:
  • 16. CIRCUITO INTEGRADO Actualmente, la tecnología electrónica permite fabricar circuitos de dimensiones microscópicas, formados por transistores y otros componentes sobre una placa de material semiconductor, obteniendo así los circuitos integrados. El tamaño de un transistor depende del calor que deba disipar. Si se consigue que éstos trabajen con corrientes y tensiones extremadamente pequeñas, podrá ser reducido el tamaño, y podrán conectarse para formar estos diminutos circuitos. Los circuitos integrados utilizan pequeños chips de silicio, cada uno de los cuales está instalado dentro de una funda de plástico conectado a un juego de patillas situado en los laterales de la funda. En las siguientes figuras se muestra el interior de un circuito integrado, así como sus conexiones y una nota con la curiosa procedencia del nombre “chip”. APLICACIONES: Se utilizan circuitos integrados en muchos aparatos de uso doméstico común: electrodomésticos como lavadoras, frigoríficos, hornos, microondas, etc., en dispositivos de grabación y reproducción de imágenes y sonido como video-cámaras, televisores, telefonos móviles equipos de música, móviles, etc., y como no, en ordenadores.