SlideShare ist ein Scribd-Unternehmen logo
1 von 163
Legendre Functions
SOLO HERMELIN
Updated: 20.02.13
1
http://www.solohermelin.com
Table of Content
SOLO
2
Legendre Functions
Introduction
Legendre Polynomials History
Second Order Linear Ordinary Differential Equation (ODE)
Laplace’s Homogeneous Differential Equation
Legendre Polynomials
The Generating Function of Legendre Polynomials
Rodrigues' Formula
Series Solutions – Frobenius’ Method
Recursive Relations for Legendre Polynomial Computation
Orthogonality of Legendre Polynomials
Expansion of Functions, Legendre Series
Schlaefli Integral
Laplace’s Integral Representation
Neumann Integral
Table of Content (continue)
SOLO
3
Legendre Functions
Associate Lagrange Differential Equation
Laplace Differential Equation in Spherical Coordinates
Analysis of Associate Lagrange Differential Equation
Associate Lagrange Differential Equation (2nd
Way)
Generating Function for Pn
m
(t)
Recurrence Relations for Pn
m
(t)
Orthogonality of Associated Legendre Functions
Recurrence Relations for Θn
m
Functions
Spherical Harmonics
References
Boundary Value Problems and Sturm–Liouville Theory
SOLO
4
Legendre Polynomials
Adrien-Marie Legendre
(1752 –1833(
In mathematics, Legendre functions are solutions to Legendre's
differential equation:
( ) ( ) ( ) ( ) 011 2
=++





− xPnnxP
xd
d
x
xd
d
nn
They are named after Adrien-Marie Legendre. This
ordinary differential equation is frequently encountered in
physics and other technical fields. In particular, it occurs
when solving Laplace's equation (and related partial
differential equations) in spherical coordinates.
The Legendre polynomials were first introduced in 1785 by Adrien-Marie
Legendre, in “Recherches sur l’attraction des sphéroides homogènes”, as the
coefficients in the expansion of the Newtonian potential
( )∑
∞
=






=






−





+
=
−+
=
−
0
222
cos
'1
cos
'
2
'
1
11
cos'2'
1
'
1
n
n
n
P
r
r
r
r
r
r
rrrrrrrr
γ
γ
γ

Return to Table of Content
Second Order Linear Ordinary Differential Equation (ODE)
Consider a Second Order Linear Ordinary Differential Equation (ODE) define by
the Operator
SOLO
( ) ( ) ( ) ( ) ( )xuxp
xd
ud
xp
xd
ud
xpxu 212
2
0: ++=L
defined in the interval a ≤ x ≤ b, with the coefficients p0 (x), p1 (x), p2 (x) real in
this region and with the first 2 – i derivatives of pi (x) continuous . Also we
require that p0 (x) is nonzero in the interval.
Define the Quadratic Form of the Operator L as:
( ) ( ) ( ) dxuup
xd
ud
p
xd
ud
pdxxuxuxu
b
a
b
a
∫∫ 





++== 212
2
0: LLu,
( ) ( ) ( )
( ) ( ) ( ) ( )∫ ∫∫
∫ ∫∫
∫∫∫
+−++





−





=
+−+−





=
++
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
xdupuxdup
xd
d
uupudxup
xd
d
uup
xd
d
u
xd
ud
up
xdupuxdup
xd
d
uupudx
xd
ud
up
xd
d
xd
ud
up
xdupxdu
xd
ud
pxdu
xd
ud
p
21102
2
00
21100
2
212
2
0
5
SOLO
( ) ( ) ( ) dxuup
xd
ud
p
xd
ud
pdxxuxuxu
b
a
b
a
∫∫ 





++== 212
2
0: LLu,
( ) ( )
( ) ( )
b
a
b
a
b
a
b
a
b
a
xu
xd
pd
pxu
upu
xd
ud
upu
xd
pd
u
xd
ud
upupuup
xd
d
u
xd
ud
up












−=






+−−=+





−





0
1
10
0
0100
Therefore:
( ) ( ) ( ) ( )∫ 





+−+











−=
b
a
b
a
dxupup
xd
d
up
xd
d
uxu
xd
pd
pxu 2102
2
0
1
Define the Adjoint Operator:
( ) ( ) ( ) upup
xd
d
up
xd
d
xu 2102
2
: +−=L
6
Second Order Linear Ordinary Differential Equation (ODE)
SOLO
( ) dx
u
up
xd
ud
p
xd
ud
puxu
b
a
∫ 





++=
  
L
Lu, 212
2
0
The two Integrals are equal if:
( ) ( ) ( ) ( )∫ 





+−+











−=
b
a
b
a
dxupup
xd
d
up
xd
d
uxu
xd
pd
pxu
  
uL
2102
2
0
1
or:
( ) ( ) ( ) ( ) ( ) ( )xuxq
xd
xud
xp
xd
d
xuxu +





== LL
( ) ( )
02 1
01
2
0
2
2102
2
212
2
0
=





−+





−=






+−−





++
xd
ud
p
xd
pd
uu
xd
pd
xd
pd
u
upup
xd
d
up
xd
d
uup
xd
ud
p
xd
ud
pu
( ) ( )
xd
xpd
xp 0
1 =
If this condition is satisfied, then the terms at the boundary x = a and x = b also
vanish, and we have by defining p (x): = p0 (x) and q (x) := p2 (x)
7
Second Order Linear Ordinary Differential Equation (ODE)
SOLO
( ) ( ) ( ) ( ) ( ) ( )xuxq
xd
xud
xp
xd
d
xuxu +





== LL
This Operator is called Self-Adjoint
( )
( )
( )
( )
( )
( )
( )
( ) ( ) ( ) ( )





++





=





∫∫ xuxp
xd
ud
xp
xd
ud
xptd
tp
tp
xp
xutd
tp
tp
xp xx
212
2
0
0
1
00
1
0
expexp
1
L
1
( )
( )
( )
( )
( )
( )
( )
( )
( )xutd
tp
tp
xp
xp
xd
ud
td
tp
tp
xd
d
xq
x
xp
x
    






+


















= ∫∫ 0
1
0
2
0
1
expexp This is clearly Self-Adjoint.
We can see that p0 (x) is in the denominator. This is the reason that we requested the
p0 (x) to be nonzero in the interval a ≤ x ≤ b. p0 (x1) = 0 means that the Differential
Equation is not Second Order at that point.
We can always transform the Non-Self-Adjoint Operator to a Self-Adjoint one
by multipling L by
( )
( )
( ) 





∫x
td
tp
tp
xp 0
1
0
exp
1
8
Second Order Linear Ordinary Differential Equation (ODE)
Consider a Second Order Linear Ordinary Differential Equation (ODE)
SOLO
( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
2
210 :'':'0''':
xd
ud
u
xd
ud
uxuxpxuxpxuxpxu ===++=L
If we know one Solution u1 (x) we can find a second u2 (x).
Proof
If we have two Solutions u1 (x) and u2 (x), then
0'''
0'''
222120
121110
=++
=++
upupup
upupup
Multiply first equation by u2 (x) and second by u1 (x) and subtract:
( ) ( ) 0'''''' 1221112210 =−+− uuuupuuuup
The Wronskian W is defined as:
1221
21
21
''
''
: uuuu
uu
uu
W −==
0' 10 =+ WpWp
9
Theorem: “Method of Reduction of Order”
Second Order Linear Ordinary Differential Equation (ODE)
Consider a Second Order Linear Ordinary Differential Equation (ODE)
SOLO
( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
2
210 :'':'0''':
xd
ud
u
xd
ud
uxuxpxuxpxuxpxu ===++=L
Theorem: “Method of Reduction of Order”
If we know one Solution u1 (x) we can find a second u2 (x).
Proof (continue -1)
0' 10 =+ WpWp xd
p
p
W
Wd
0
1
−= ( ) ( ) ( )
( ) 







−= ∫
x
x
d
p
p
xWxW
0 0
1
0 exp τ
τ
τ
From: ( ) ( ) ( ) ( ) ( )xuxuxuxuxW 1221 '' −=
q.e.d.
Therefore: ( ) ( ) ( )
( )∫=
x
x
d
u
W
xuxu
0
2
1
12 τ
τ
τ
( )
( )
( )
( )
( )
( )
( ) 





=−=
1
2
22
1
1
1
2
2
1
''
u
u
xd
d
xu
xu
xu
xu
xu
xu
xW
Divide by u1
2
(x)
x0 and W (x0) are given (or not).
10
Second Order Linear Ordinary Differential Equation (ODE)
If the Second Order Linear Ordinary Differential Equation (ODE) is in the
Self-Adjoint Mode:
SOLO
Then:
The Wronskian is given by
( ) ( ) ( ) ( ) ( ) ( ) 0=+





== xuxq
xd
xud
xp
xd
d
xuxu LL
( )
( ) ( ) ( ) ( ) ( ) 0
1
0
2
2
=++ xuxq
xd
xud
xd
xpd
xd
xud
xp
p
p 
( ) ( ) ( )
( )
( ) ( )
( )
( )xp
xp
xW
p
pd
xWd
p
p
xWxW
x
x
x
x
0
00
0
0
0
0
0
1
0
00
expexp =








−=








−= ∫∫ τ
τ
τ
11
Return to Table of Content
Second Order Linear Ordinary Differential Equation (ODE)
12
SOLO
The Laplace’s Homogeneous Differential Equation is:
We want to find the Potential Φ at the point F (field) due to all the sources (S) in the
volume V, including its boundaries .
n
i
iSS
1=
=
iS
nS

n
i
iSS
1=
=dV
dSn
→
1
V
Fr

Sr

F
0r
SF rrr

−= iS
nS
dV
dSn
→
1
V
Fr

Sr

F
0r SF rrr

−=
F inside V F on the boundary of V
Therefore is the vector from S to F.SF rrr

−=
→→→
++= zzyyxxr 111

→→→
++= zzyyxxr SSSS 111

→→→
++= zzyyxxr FFFF 111

Let define the operator
that acts only on the
source coordinate.
→→→
∂
∂
+
∂
∂
+
∂
∂
=∇ z
z
y
y
x
x SSS
S 111
Sr

Laplace’s Homogeneous Differential Equation
( ) 02
=Φ∇ r
Pierre-Simon,
marquis de Laplace
(1749 1827)
13
SOLO
Laplace’s Homogeneous Differential Equation
Laplace Differential Equation in Spherical Coordinates
( ) 02
=Φ∇ r
Spherical Coordinates:
θ
ϕθ
ϕθ
cos
sinsin
cossin
rz
ry
rx
=
=
=
A Solution in Spherical Coordinates is: ( ) 0
1
≠=Φ r
r
r
( ) 0
111
22
≠−=∇−=∇=Φ∇ r
r
r
r
r
rr
r

( ) ( ) 00
33111
35333
2
≠=−⋅=⋅∇−⋅





−∇=





⋅−∇=Φ∇⋅∇=Φ∇ r
r
rr
r
r
r
r
r
r
r
rr

r
r
r
z
r
y
r
x
zyx
zyx
r zyxzyx

=++=++





∂
∂
+
∂
∂
+
∂
∂
=∇ 111111 222
( ) 3111111 =++⋅





∂
∂
+
∂
∂
+
∂
∂
=⋅∇ zyx
zyx
r zyxzyx

2222
zyxr ++=
14
SOLO
Laplace’s Homogeneous Differential Equation
Laplace Differential Equation in Spherical Coordinates
Spherical Coordinates:
θ
ϕθ
ϕθ
cos
sinsin
cossin
rz
ry
rx
=
=
=
θcos=
∂
∂
z
r
2222
zyxr ++=
0
cos11
22
≠−=
∂
∂
−=





∂
∂
=
∂
Φ∂
r
rz
r
rrzz
θ
0
1cos3331
3
2
5
22
4332
2
≠
−
=
−
=
∂
∂
+−=





−
∂
∂
=
∂
Φ∂
r
rr
rz
z
r
r
z
rr
z
zz
θ
0
cos9cos159153
5
26
3
4
23
7
23
6
22
55
22
3
3
≠
−
=
−
−=
∂
∂−
−
∂
∂
−
=




 −
∂
∂
=
∂
Φ∂
r
r
r
r
rzz
z
r
r
rz
r
z
r
rz
r
rz
zz
θθ
We note that ∂n
Φ/∂zn
is a n-degree polynomial in cos θ divided by rn+1
.
( ) ( ) ( ) ( ) ( ) ( )zyx
zn
hzyx
z
hzyx
z
hzyxhzyx n
nn
n
,,
!
1
,,
!2
1
,,,,,, 2
2
2
∂
Φ∂−
++
∂
Φ∂
+
∂
Φ∂
−Φ=−Φ 
Using Taylor’s Series development we obtain
15
SOLO
Laplace’s Homogeneous Differential Equation
Laplace Differential Equation in Spherical Coordinates
Spherical Coordinates:
θ
ϕθ
ϕθ
cos
sinsin
cossin
rz
ry
rx
=
=
=
2222
zyxr ++=
( )
( )
( )






∂
∂−
++





∂
∂
+





∂
∂
−=
−++
=−Φ
rzn
h
rz
h
rz
h
rhzyx
hzyx n
nn
n 1
!
11
!2
1111
,, 2
2
2
222

( )
∑
∞
=






∂
∂−
=
+− 0
22
1
!
1
cos2
1
n
n
nn
n
rzn
h
hhrr θ
or:
Let define:
( ) ( )






∂
∂−
= +
rzn
rP n
nn
n
n
1
!
1
:cos 1
θ
( ) rhP
r
h
rhhrr n
n
n
≤





=
+−
∑
∞
=0
22
cos
1
cos2
1
θ
θ
Therefore:
16
SOLO
Laplace’s Homogeneous Differential Equation
Laplace Differential Equation in Spherical Coordinates
Spherical Coordinates:
θ
ϕθ
ϕθ
cos
sinsin
cossin
rz
ry
rx
=
=
=
2222
zyxr ++=
Let define w:=Pn (cos θ) and substitute w/rn+1
in the
Laplace Equations in Spherical Coordinates instead of Φ
Therefore, since w:=Pn (cos θ) (Partial Derivative becomes Total Derivative):
0
sin
1
sin
sin
11
0
12
2
22121
2
2
=





∂
∂
+











∂
∂
∂
∂
+











∂
∂
∂
∂
+++

nnn
r
w
rr
w
rr
w
r
r
rr φθθ
θ
θθ
0sin
sin
111
1
=





∂
∂
∂
∂
+


 +
−
∂
∂
+
θ
θ
θθ
w
rr
n
r
w nn
or:
( ) 0sin
sin
1
1 =





++
θ
θ
θθ d
wd
d
d
wnn
Substitute t=cos θ (dt = - sinθ dθ):

( ) ( ) 





−=








−−=










=





−−
td
wd
t
td
d
td
wd
t
td
d
d
td
td
wd
d
td
d
d
d
wd
d
d 2
sin
2
1sin
11
sin
1
sin
sin
1
sin
sin
1
2

 θ
θ
θθθ
θ
θθθ
θ
θθ
Finally we obtain: ( ) ( ) 1011 2
≤=++





− twnn
td
wd
t
td
d
Return to Table of Content
17
SOLO
This is the Legendre Differential Equation and Pn (t) the Legendre Polynomials
are one of the two solutions of the ODE.
( ) ( ) ( ) ( ) 1011 2
≤=++





− ttPnntP
td
d
t
td
d
nn
( )∑
∞
=






=






+−
0
2
cos
cos21
1
n
n
n
P
r
h
r
h
r
h
θ
θ
We found
( ) 1cos
cos21
1
0
2
≤=
+−
∑
∞
=
uPu
uu n
n
n
θ
θFor u:=h/r
The left-hand side is called “The Generating Function of Legendre
Polynomials”
Legendre Polynomials
The Generating Function of Legendre Polynomials
18
SOLO
Let use Taylor expansion
for the function:
( ) ( )
( )
( ) ( )
( ) ( )
( )  +++++= n
n
x
n
f
x
f
x
f
fxf
!
0
!2
0
1
0
0 2
21
( )
( ) 1,
21
1
0
2
≤=
−+
∑
∞
=
tutPu
tuu n
n
n
( ) ( ) ( ) 101 2
1
=−=
−
fxxf
( )
( ) ( ) ( )
( )
2
1
01
2
1 1
2
3
1
=−=
−
fxxf
( )
( ) ( ) ( )
( )
2
3
2
1
01
2
3
2
1 2
2
5
2
⋅=−⋅=
−
fxxf
( )
( ) ( ) ( )
( ) ( ) ( )
!2
!2
!2
!2
2
1231
2
12
2
3
2
1
01
2
12
2
3
2
1
2
2
12
n
n
n
nnn
fx
n
xf nn
n
n
n
n
n
=⋅
−⋅
=
−
⋅=−
−
⋅=
+
− 

Tacking x = 2 u t - u2
we obtain
( )
( )
( )
( ) 12
!2
!2
21
1
0
2
222
≤−=
−−
∑
∞
=
uutu
n
n
utu n
n
n
Let prove that Pn (t) are indeed Polynomials.
Legendre Polynomials
The Generating Function of Legendre Polynomials
19
SOLO
Using Taylor expansion we obtained:
( )
( ) 1,
21
1
0
2
≤=
−+
∑
∞
=
tutPu
tuu n
n
n
Take the binomial expansion of (2 u t - u2
)n
we obtain
( )
( )
( )
( ) 12
!2
!2
21
1
0
2
222
≤−=
−−
∑
∞
=
uutu
n
n
utu n
n
n
( )
( )
( )
( )
( )
( ) ( ) ( )
( )
( ) 12
!!!2
!2
12
!!
!
1
!2
!2
21
1
0 0
2
0 0
222
≤
−
−=
−
−=
−−
∑∑∑ ∑
∞
= =
+−
∞
= =
−
uut
knkn
n
ut
knk
n
n
n
utu n
n
k
knkn
n
k
n
n
k
kknk
n
Change Variables in the second sum from n+k to n
( )
( ) ( )
( ) ( )
( )
[ ]
( )


−
=





≤
−−
−
−=
−−
∑ ∑
∞
= =
−
−
evennifn
oddnifnn
uut
knknk
kn
utu n
n
k
nkn
kn
k
2/1
2/
2
12
!2!!2
!22
1
21
1
0
2/
0
2
222
Equating in the two power series the un
coefficients, we obtain
( ) ( ) ( )
( ) ( )
[ ]
∑=
−
≤
−−
−
−=
2/
0
2
1
!2!!2
!22
1
n
k
kn
n
k
n tt
knknk
kn
tP
Polynomial
of order n in t
Return to Rodrtgues Formula
Return to Frobenius Series
We can see that for n odd the polynomial Pn (t) has only odd powers of t and
for n even only even powers of t.
Legendre Polynomials
The Generating Function of Legendre Polynomials
20
SOLO
Let use Taylor expansion
for the function:
( ) ( )
( )
( ) ( )
( ) ( )
( )  +++++= n
n
x
n
f
x
f
x
f
fxf
!
0
!2
0
1
0
0 2
21
( )
( ) 1,
21
1
0
2
≤=
−+
∑
∞
=
tutPu
tuu n
n
n
Tacking x = u2
-2 u t we obtain
( ) ( ) ( ) 101 2
1
=+=
−
fxxf
( )
( ) ( ) ( )
( )
2
1
01
2
1 1
2
3
1
−=+−=
−
fxxf
( )
( ) ( ) ( )
( )
2
3
2
1
01
2
3
2
1 2
2
5
2
⋅=+⋅=
−
fxxf
( )
( ) ( ) ( ) ( )
( ) ( )
2
12
2
3
2
1
101
2
12
2
3
2
1
1 2
12 −
⋅−=+
−
⋅−=
+
− n
fx
n
xf
nn
n
nn

( )
( ) ( ) ( ) ( )
( )∑
∞
=
=




 +−
+




 −
+




 −
++=
−+−−−+−−=
−+
0
24
4
3
3
2
20
4232222
2
8
33035
2
35
2
13
1
2
128
35
2
16
5
2
8
3
2
1
1
21
1
n
n
n
tPu
tt
u
tt
u
t
utuu
tuutuutuutuu
ttuu


Legendre Polynomials
The Generating Function of Legendre Polynomials
SOLO
21
Legendre Polynomials
The first few Legendre polynomials are:
( )
( )
( )
( )
( )
( )
( )
( )
( )
( ) 256/63346530030900901093954618910
128/31546201801825740121559
128/35126069301201264358
16/353156934297
16/51053152316
8/1570635
8/330354
2/353
2/132
1
10
246810
3579
2468
357
246
35
24
3
2
−+++−
+−+−
+−+−
−+−
−+−
+−
+−
−
−
xxxxx
xxxxx
xxxx
xxxx
xxx
xxx
xx
xx
x
x
xPn n
22
SOLO
( ) 1,
21
1
0
2
≤=
+−
∑
∞
=
tutPu
utu n
n
n
Substitute u by – u in this equation:
( ) ( ) ( ) 11
21
1
00
2
≤−=−=
++
∑∑
∞
=
∞
=
utPutPu
utu n
n
n
n
n
nn
which results in the following identity: ( ) ( ) ( )tPtP n
n
n 1−=−
For t =1 we have
( ) 11
1
1
21
1
0
2
≤=
−
=
+−
∑
∞
=
uPu
uuu n
n
n
But 1
1
1
0
≤=
−
∑
∞
=
uu
u n
n
By equalizing the coefficients of un
in the two sums, we obtain:
( ) nPn ∀=11
and
( ) ( ) ( ) ( )n
n
n
n PP 1111 −=−=−
Legendre Polynomials
The Generating Function of Legendre Polynomials
23
SOLO
( ) 1,
21
1
0
2
≤=
+−
∑
∞
=
tutPu
utu n
n
n
For t = 0 we obtain:
Legendre Polynomials
( ) 10
1
1
0
2
≤=
+
∑
∞
=
uPu
u n
n
n
( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )∑∑∑
∞
=
∞
=
∞
=
−
−=
⋅−⋅⋅−⋅⋅
−=
−⋅⋅
−=
+
−−−−
++
−−
+





−+=+=
+
0
22
2
0
1
2
0
2
22222/12
2
!2
!2
1
!2
222642
!2
12531
1
!2
12531
1
!
2/123/12/1
!2
3/12/1
2
1
11
1
1
n
n
n
n
n
nn
n
n
n
n
n
n
n
n
un
n
nn
n
un
n
un
t
n
n
ttu
u
  




Therefore we have:
( ) ( )
( )
( ) 10
!2
!2
1
1
1
00
22
2
2
≤=−=
+
∑∑
∞
=
∞
=
uPu
n
un
u n
n
n
n
n
n
n
By equating coefficients of un
on both sides we obtain:
( ) ( ) ( )
( )
( ) 00
!2
!2
10
12
222
=
−=
+n
n
n
n
P
n
n
P
Return to Table of Content
The Generating Function of Legendre Polynomials
Derivation of Legendre Polynomials via Rodrigues’ Formula
SOLO
24
Legendre Polynomials
Benjamin Olinde Rodrigues
(1794-1851)
In mathematics, Rodrigues' Formula (formerly called the Ivory–
Jacobi formula) is a formula for Legendre polynomials
independently introduced by Olinde Rodrigues (1816), Sir James
Ivory (1824) and Carl Gustav Jacobi (1827). The name
"Rodrigues’ formula" was introduced by Heine in 1878, after
Hermite pointed out in 1865 that Rodrigues was the first to
discover it, and is also used for generalizations to other orthogonal
polynomials. Askey (2005) describes the history of the Rodrigues’
Formula in detail.
Rodrigues stated his formula for Legendre polynomials Pn
Carl Gustav Jacob Jacobi
(1804 –1851)
( ) ( )[ ]n
n
n
nn x
xd
d
n
xP 1
!2
1 2
−=
SOLO
25
Legendre Polynomials
Olinde Rodrigues
(1794-1851)
Start from the function: ( ) .12
constkxky
n
=−=
( ) 12
12:'
−
−==
n
xxkn
xd
yd
y
( ) ( ) ( ) 22212
2
2
11412:''
−−
−−+−==
nn
xxnknxkn
xd
yd
y
Let compute:
( ) ( ) ( ) ( ) ( ) '12211412''1
12222
yxnynxxnknxknyx
nn
−+=−−+−=−
−
or: ( ) ( ) 02'12''12
=−−+− ynyxnyx
Let differentiate the last equation n times with respect to x:
( )[ ] ( ) ( ) ( ) ( )
( ) ( ) ''1''2''1
00''1
3
''1
2
''1
1
''1''1
2
2
1
1
2
3
3
0
2
3
3
2
2
2
2
2
1
1
222
y
xd
d
nny
xd
d
xny
xd
d
x
y
xd
d
x
xd
dn
y
xd
d
x
xd
dn
y
xd
d
x
xd
dn
y
xd
d
xyx
xd
d
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
−
−
−
−
−
−
−
−
−
−
−++−=
+−





+−





+−





+−=− 

( ) ( ) ( ) ( ) 





+−=











+−=− −
−
−
−
''12'
1
'12'12 1
1
1
1
y
xd
d
ny
xd
d
xny
xd
d
x
xd
dn
y
xd
d
xnyx
xd
d
n n
n
n
n
n
n
n
n
n
n
Derivation of Legendre Polynomials via Rodrigues’ Formula
SOLO
26
Legendre Polynomials
Olinde Rodrigues
(1794-1851)
Start from the function: ( ) .12
constkxky
n
=−=
( ) ( ) 02'12''12
=−−+− ynyxnyxDifferentiate n times with
respect to x:
( ) ( ) ''1''2''1 2
2
1
1
2
y
xd
d
nny
xd
d
xny
xd
d
x n
n
n
n
n
n
−
−
−
−
−++−
( ) 02''12 1
1
=−





+−+ −
−
y
xd
d
ny
xd
d
ny
xd
d
xn n
n
n
n
n
n
Define: a Polynomial( ) ( )[ ]n
n
n
n
n
x
xd
d
k
xd
yd
xw 1: 2
−==
( ) ( ) ( )[ ] 02'121'2''12
=−+−+−++− wnwnwxnwnnwxnwx
( ) ( ) ( ) ( )[ ] 02121'2''12
=−−+−+−++− wnnnnnwxnxxnwx
( ) ( ) 01'2''12
=+−+− wnnwxwx
This is Legendre’s Differential Equation. We proved that one of the solutions
are Polynomials. We can rewrite this equation in a Sturm-Liouville Form:
( ) ( ) 0112
=+−





− wnnw
xd
d
x
xd
d
Derivation of Legendre Polynomials via Rodrigues’ Formula
SOLO
27
Legendre Polynomials
Olinde Rodrigues
(1794-1851)
Let find k such that:
by using the fact that Pn (1) = 1
( ) ( )[ ]n
n
n
n
n
n x
xd
d
k
xd
yd
xP 12
−==
( ) ( )[ ] ( ) ( ) ( ) ( ) 





−+=








+−=−= ∑>0
22
1!2111
i
inn
v
n
u
n
n
n
n
n
n
n xxaxnkxx
xd
d
kxk
xd
d
xP

!2
1
n
k n
=
We recover the Rodrigues Formula:
( ) ( )[ ]n
n
n
nn x
xd
d
n
xP 1
!2
1 2
−=
Let use Leibnitz’s Rule (Binomial Expansion for the n Derivative
of a Product - with u:=(x-1)n
and v:=(x+1)n
):
( )
( )
( ) udvudvdnvddu
nn
vddunvdu
vdud
mnm
n
vud
nnnnn
n
m
mnmn
+++
−
++=
−
=⋅
−−−
=
−
∑
1221
0
!2
1
!!
!

We have:
( )  
( )
   1!2
!2
1
1
1!20
12
0
21
00
==







+++
−
++==
=
−−−
nkudvudvdnvddu
nn
vddunvdukxP n
xn
nnnnn
n
n

We can see from this Formula that Pn (x) is indeed a Polynomial of Order n in t.
Derivation of Legendre Polynomials via Rodrigues’ Formula
SOLO
28
Legendre Polynomials
Olinde Rodrigues
(1794-1851)
Let find an explicit expression for Pn (x) from Rodrigues’ Formula:
( ) ( )[ ]n
n
n
nn
n
n x
xd
d
nxd
yd
xP 1
!2
1 2
−==
Start with:
( ) ( )
( )∑=
−
−
−
=−
n
m
mnmn
x
mnm
n
x
0
22
1
!!
!
1
( ) ( )[ ] ( )
( )
( ) ( )
( )
( )
( )
( )
( ) ( )
( ) ( )
( )


+
=
−−
−
−=
−−
−=
+−−
−
−=−=
∑
∑
∑
=
−
−=
≥
−−
≥
−−
oddnn
evennn
p
x
knknk
kn
x
nm
m
mnm
xnmmm
mnm
n
n
x
xd
d
n
xP
p
k
knk
n
knm
n
pm
nmmn
n
n
pm
nmmn
n
n
n
n
nn
2/12
2/
!2!!
!22
1
2
1
!2
!2
!!
1
1
2
1
12122
!!
!
1
!2
1
1
!2
1
0
2
2
22

( ) ( )



<
≥+−−
=
2/0
2/121222
nm
nmnmmm
x
xd
d m
n
n

We recover the result obtained by the Generating Function of Legendre Polynomials
Return to Frobenius Series
Return to Table of Content
Derivation of Legendre Polynomials via Rodrigues’ Formula
SOLO
Series Solutions – Frobenius’ Method
Ferdinand Georg
Frobenius
(1849 –1917)
( ) ( ) .0121 2
2
22
constrealryrr
xd
yd
yx
xd
yd
x =++−−
Example: General Legendre Equation
∑
∞
=
+
=
0λ
λ
λ
k
xay
Let check the Frobenius’s expansion:
We have:
( ) ( ) ( )∑∑
∞
=
−+
∞
=
−+
−++=+=
0
2
2
2
0
1
1&
λ
λ
λ
λ
λ
λ λλλ kk
xkka
xd
yd
xka
xd
yd
Substitute in the General Legendre Equation:
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ] 0111
121
00
2
000
2
=+++−++−++=
+++−−−++
∑∑
∑∑∑
∞
=
+
∞
=
−+
∞
=
+
∞
=
+
∞
=
+−+
λ
λ
λ
λ
λ
λ
λ
λ
λ
λ
λ
λ
λ
λλ
λ
λλλλ
λλλ
kk
kkkk
xkkrraxkka
xrraxkaxxkka
29
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 1)
( ) ( ) ( ) ( ) ( )[ ] 0111
00
2
=+++−++−++ ∑∑
∞
=
+
∞
=
−+
λ
λ
λ
λ
λ
λ λλλλ kk
xkkrraxkka
Denote, in the first sum λ = j +2 and in the second sum λ = j, to obtain:
( ) ( )
( ) ( ) ( ) ( ) ( )[ ]{ } 01112
11
0
2
1
1
2
0
=+++−+++++++
++−
∑
∞
=
+
+
−−
j
jk
jj
kk
xjkjkrrajkjka
xkkaxkka
All the coefficients of xk+j
must be zero, therefore
( ) 001 00 ≠=− akka
( ) 011 =+kka
( ) ( ) ( ) ( ) ( )[ ] 011122 =+++−+++++++ jkjkrrajkjka jj
30
Ferdinand Georg
Frobenius
1849 - 1917
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 2)
( ) ( ) ( )
( ) ( )
( )[ ] ( )
( ) ( )
,2,1,0
12
1
12
11
2 =
++++
++++−
−=
++++
+++−+
−=+ j
jkjk
jkrjkr
a
jkjk
jkjkrr
aa jjj
( ) 01 =−kk
( ) 011 =+kka
( ) ( ) ( ) ( ) ( )[ ] 011122 =+++−+++++++ jkjkrrajkjka jj
0&1.3
0&0.2
0&0.1
1
1
1
==
≠=
==
ak
ak
akThree possible
solutions
The equation that, k (k+1) = 0, comes from the coefficient of the lowest power
of x, and is called Indicial Equation. It has two solutions for k
k = 0 and k = 1
The equation
gives the recursive relation
31
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 3)
( ) 1001: ==⇒=− korkkkEquationIndicial
1. Using k = 0 and a1 = 0 we obtain a series of even powers of x
( ) ( )
( ) ( )
( ) ( )
( ) ( )
,2,1,0
21
1
21
11
2 =
++
++−
−=
++
+−+
−=+ j
jj
jrjr
a
jj
jjrr
aa jjj
( ) ( ) ( ) ( ) ( ) ( )






+
++−
+
+
−== 42
0
!4
312
!2
1
1: x
rrrr
x
rr
axpxy reven
( ) 01231 ==== +naaa 
The recurrence relation results in the following expression for the coefficients
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )


,3,2,1
!2
123124222
1 02 =
−+++⋅−+−+−
−= ma
m
mrrrrrmrmr
a
m
m
32
( ) ( ) ( )
( ) ( )
( )[ ] ( )
( ) ( )
,2,1,0
12
1
12
11
2 =
++++
++++−
−=
++++
+++−+
−=+ j
jkjk
jkrjkr
a
jkjk
jkjkrr
aa jjj
( ) ∑
∞
=
= 0
2
2m
m
meven xaxy
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 4)
( ) 1001: ==⇒=− korkkkEquationIndicial
3. Using k = 1 and a1 = 0 we obtain a series of odd powers of x
( ) ( )( )
( ) ( )
( )( )
( ) ( )
.2,1,0
32
21
32
211
2 =
++
++−−
−=
++
++−+
−=+ j
jj
jrjr
a
jj
jjrr
aa jjj
( ) ( ) ( )( ) ( ) ( )( ) ( )






+
++−−
+
+−
−== 53
0
!4
4213
!3
21
: x
rrrr
x
rr
xaxqxy rodd
( ) 01231 ==== +naaa 
The recurrence relation results in the following expression for the coefficients
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )


,3,2,1
!12
24213212
1 02 =
+
+++−+−+−
−= ma
m
mrrrrmrmr
a
m
m
33Since pr (x) and qr (x) are two linearly independent solutions of the 2nd
Order
Linear Lagrange ODE, the final solution is y = c1 pn (x) + c2 qn (x)
( ) ( ) ( )
( ) ( )
( )[ ] ( )
( ) ( )
,2,1,0
12
1
12
11
2 =
++++
++++−
−=
++++
+++−+
−=+ j
jkjk
jkrjkr
a
jkjk
jkjkrr
aa jjj
( ) ∑
∞
=
+
= 0
12
2m
m
modd xaxy
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 5)
Using d’Alembert – Cauchy test for convergence of an Infinite Series, we have
Convergence Test:
( ) ( ) ( )
( ) ( ) 



≥≥
<<
=
++++
+++−+
=
∞→
+
+
∞→ divergex
convergex
xx
jkjk
jkjkrr
xa
xa
jj
j
j
j
j 11
11
12
11
limlim 22
2
2
The even series stops at j = n. The expansion is a Polynomial of order n (even).
1. If n is even, using k = 0 and a1 = 0 we obtain a series of even powers of x .
( ) ( )
( ) ( )
,..1,0
21
11
2 =
++
+−+
−=+ j
jj
jjnn
aa jj
For the case that r = n, a positive integer:
,...2,1,,02 ++==+ nnnjaj
3. If n is odd, using k = 1 and a1 = 0 we obtain a series of odd powers of x .
( ) ( )( )
( ) ( )
,..2,1
32
211
2 =
++
++−+
−=+ j
jj
jjnn
aa jj
,...2,1,,1,02 ++−==+ nnnnjaj
The odd series stops at j = n-1. The expansion is a Polynomial of order n (odd).34
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 6)
1. If n is even, using k = 0 and a1 = 0 we obtain a series of even powers of x
( ) ( ) ( )( ) ( )






+
++−
+
+
−= 42
0
!4
312
!2
1
1 x
nnnn
x
nn
axyeven
3. If n is odd using k = 1 and a1 = 0 we obtain a series of odd powers of x
( ) ( )( ) ( ) ( )( ) ( )






+
++−−
+
+−
−= 53
0
!4
4231
!3
21
x
nnnn
x
nn
xaxyodd
( ) ( )
( ) ( )( ) ( )






+−=




 ++−
+
+
−==
−=




 +
−==
==
42
0
42
0
2
0
2
0
0
6
70
101
!4
3414244
!2
144
14
31
!2
122
12
0
xxaxxayn
xaxayn
ayn
even
even
even
( )( )






−=




 +−
−==
==
3
0
3
0
0
3
5
!3
2313
3
1
xxaxxayn
xayn
odd
odd
We obtain the Legendre Polynomials Solutions for a0 = 1. 35
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 7)
1. The recurrence relation for even x powers results in the following expression for the
coefficients
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
2/,,3,2,1
!2
123124222
1 02 nma
m
mnnnnnmnmn
a
m
m 

=
−+++⋅−+−+−
−=
( ) ( ) ( ) ( ) ( ) ( )
( )!
!
2121224222 11
2
mp
p
ppmpmpnnmnmn mm
pn
−
=−+−+−=−+−+− −−
=

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( )( ) ( )
( )
( ) ( )( ) ( )
( )
( ) ( )!!22
!!22
212
1
!2
!22
242
242
1231
!
!
1231
22
mpp
pmp
mpppp
mp
mnnn
mnnn
mnnn
n
n
mnnn
m
pn
m
pn
+
+
=
+++
+
=
+++
+++
−+++=−+++
==




( )
( )
( )
( ) ( ) ( )
( )
( )
( ) ( )
( ) ( )
( ) ( )
2/,,3,2,1
!!!22
!221
!!!2!2
!
2
!22
1
!!2!2
!!22
!
!
2
1
1
0
0
2
2
02 nm
snssn
sn
a
snssnn
n
sn
a
mpmp
pmp
mp
p
a n
sthatsucha
choose
s
nmps
m
m =
−−
−−
=
−−












−
−=
+
+
−
−=
−
−
−=
( ) ( )
( ) ( )∑=
−−
<
−−
−
−=
2/
0
2
1
!2!!2
!22
1
n
s
sn
n
s
even xx
snsns
sn
y 36
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 8)
3. The recurrence relation for odd x powers results in the following expression for the
coefficients
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 2
1
,,3,2,1
!12
24213212
1 02
−
=
+
+++−+−+−
−=
n
ma
m
mnnnnmnmn
a
m
m 

( ) ( ) ( ) ( )( ) ( )
( )!
!
222242222213212 1
12
mp
p
ppmpmpnmnmn m
pn
−
=−+−+−=−+−+− −
+=

( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )
( )
( ) ( )!!122
!!122
212
224222
1225232
!12
!12
242
1
1
12
mpp
pmp
mppp
mppp
mppp
p
p
mnnn
m
m
pn
++
++
=
+++
+++
++++
+
+
=+++
−
−
+=


( ) ( ) ( )
( ) ( ) ( ) ( )
( )
( )
( ) ( ) 2
1
,,3,2,1
!2!1!!
!
2
1
!122
1
!12!!!12
!!122
1 0
2
0
2
2
−
=
−−−











 −
−−
−=
++−+
++
−=
−
−=
n
ma
snsnsn
n
sn
a
mmpmpp
pmp
a
sp
mps
m
m 
37
( )
( ) ( )
( )[ ] ( ) ( )
( )
( )
( ) ( ) 2
1
,...,1,0
!2!!!2
!
2
1
!22
1
!2!12!!
!
2
1
!12222
1 0
2
0
2
−
=
−−











 −
−
−=
−−−−











 −
−−−
−=
−
−=
−
−=
n
sa
snsnsn
n
sn
a
snsnsnsn
n
snsn
sp
mps
sp
mps
Series Solutions – Frobenius’ Method
Legendre Polynomials
Example: Legendre Equation (continue – 9)
3. The recurrence relation for odd x powers results in the following expression for the
coefficients
( ) ( )
( ) ( )
( ) ( )
( ) ( ) 2
1
,...,1,0
!2!!2
!22
1
!2!!
!22
!
2
1
!2
1
1
0
0
2
2
1
2
−
=
−−
−
−=
−−
−











 −
−=
−−
− n
s
snsns
sn
a
snsns
snn
n
a n
s
thatsucha
Choose
s
n
m
( ) ( ) ( )
( ) ( )
( )
1&
!2!!
!22
1
2
1 2/1
0
2
<
−−
−
−= ∑
−
=
−−
xoddnx
snsns
sn
xy
n
s
sns
nodd
We also found that the solution for k = 0 and a1 = 0 is
( ) ( ) ( )
( ) ( )
1&
!2!!2
!22
1
2/
0
2
<
−−
−
−= ∑=
−−
xevennx
snsns
sn
xy
n
s
sn
n
s
even
We recover the result obtained by the Generating Function of Legendre Polynomials
and by Rodrigues’ Formula 38
Therefore we can unify those two relations to obtain:
( ) ( ) ( )
( ) ( )
[ ]
1
!2!!2
!22
1
2/
0
2
<
−−
−
−= ∑=
−−
xx
snsns
sn
xP
n
s
sn
n
s
n
Series Solutions – Frobenius’ Method
SOLO
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 10)
2. Using k = 0 and a1 ≠ 0 we obtain an infinite series and not a polynomial.
This is the Second Solution of the Legendre Differential Equation.
The solution is the sum of the two infinite series, one with even powers of x
and the other with odd powers of x. The series solution, in this case,
diverges
at x = ± 1.
Those are Legendre Functions of the Second Kind.
The Polynomial solutions are Legendre Functions of the First Kind.
39
( ) ( )
( ) ( )
( ) ( )
( ) ( )
,2,1,0
21
1
21
11
2 =
++
++−
−=
++
+−+
−=+ j
jj
jnjn
a
jj
jjnn
aa jjj
In this case we have
The recurrence relation results in the following expression for the coefficients
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )


,3,2,1
!2
123124222
1 02 =
−+++⋅−+−+−
−= ma
m
mnnnnnmnmn
a
m
m
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )


,3,2,1
!12
123124222
1 112 =
+
−+++⋅−+−+−
−=+ ma
m
mnnnnnmnmn
a
m
m
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 11)
40
We want to find a series that converges for |x| > 1.
Let return to the conditions to have a series solution for Legendre ODE
For k = 0 and a0 = 0
By substituting j = m – 2 we obtain
( ) ( )
( ) ( )
,2,1,0
1
21
2 ==
++−
++
−= + ja
jnjn
jj
a jj
( )
( ) ( ) mm a
mnmn
mm
a
12
1
2
−++−
−
−=−
( ) ( ) .0121 2
2
22
constrealryrr
xd
yd
yx
xd
yd
x =++−−
( ) ( )
( ) ( )
( ) ( )
( ) ( )
,2,1,0
21
1
21
11
2 =
++
++−
−=
++
+−+
−=+ j
jj
jrjr
a
jj
jjrr
aa jjj
We can make am+2, am+4, am+6,…. To vanish for m = r = n or m = -n – 1.
If we start for am ≠ 0 we can obtain the following recursive formula
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 12)
41
( )
( ) ( ) mm a
mnmn
mm
a
12
1
2
−++−
−
−=−
Tacking m = n we obtain
( )
( )
( ) ( )
( )
( )( ) ( )
( ) ( ) nnn
nn
a
nn
nnnn
a
n
nn
a
a
n
nn
a
321242
321
324
32
122
1
24
2
−⋅−⋅⋅
−−−
+=
−
−−
−=
−
−
−=
−−
−
The first solution can be written as
( ) ( )
( )
( )( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 





+
+−−⋅−⋅⋅
−−−−
++
−⋅−⋅⋅
−−−
+
−
−
−= −−−



 innnn
n x
innni
ininnn
x
nn
nnnn
x
n
nn
xaxy 242
1
1223212242
1221
321242
321
122
1
Using d’Alembert – Cauchy test for convergence of an Infinite Series, we have
( )( )
( ) 



≤≥
><
=
+−
−−−
= −−
∞→+−
+−
−
−
∞→ divergex
convergex
xx
ini
inin
xa
xa
iin
in
in
in
j 11
11
1222
122
limlim 22
22
22
2
2
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 13)
42
( )
( ) ( ) mm a
mnmn
mm
a
12
1
2
−++−
−
−=−
Tacking m =- n - 1 we obtain
( ) ( )
( )
( ) ( )
( )
( ) ( )( ) ( )
( ) ( ) 135
13
523242
4321
524
43
322
21
−−−−−−
−−−−
+⋅+⋅⋅
++++
+=
+
++
=
+
++
+=
nnn
nn
a
nn
nnnn
a
n
nn
a
a
n
nn
a
The second solution can be written as
( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) 





+
+++⋅+⋅⋅
+−+++
++
+⋅+⋅⋅
++++
+
+
++
+= −−−−−−−−−
−− 


 12531
12
1225232242
21221
523242
4321
322
21 innnn
n x
innni
ininnn
x
nn
nnnn
x
n
nn
xaxy
Using d’Alembert – Cauchy test for convergence of an Infinite Series, we have
( ) ( )
( ) 



≤≥
><
=
++
+−+
= −−
∞→+−
+−
−−
−−−
∞→ divergex
convergex
xx
ini
inin
xa
xa
iin
in
in
in
j 11
11
1222
212
limlim 22
12
12
12
12
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 14)
43
( )( )
!
1353212
n
nn
an
⋅⋅−−
=
By choosing
we have
( ) ( ) ( )( ) ( )
( )
( )( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
1]
1223212242
1221
1
321242
321
122
1
[
!
1353212
2
42
1
>+
+−−⋅−⋅⋅
−−−−
−+
+
−⋅−⋅⋅
−−−
+
−
−
−
⋅⋅−−
==
−
−−
xx
innni
ininnn
x
nn
nnnn
x
n
nn
x
n
nn
xyxP
ini
nnn
n






Return to Table of Content
Finally ( ) ( ) ( )
( ) ( )
1
!2!!2
!22
1
0
2
>
−−
−
−= ∑
∞
=
−
xx
inini
in
xP
i
in
n
i
n
( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( )
( )
( )
( )
( )
( ) ( )
( ) ( )!2!!2
!22
1
!2
!22
!2!2
1
1
!2!2
135122
1
1223212242
1221
1
!
1353212
inini
in
in
in
iiniin
in
innni
ininnn
n
nn
n
i
ini
i
i
i
i
−−
−
−=
−
−
−
−=
−
⋅⋅−−
−=
+−−⋅−⋅⋅
−−−−
−
⋅⋅−−
−



Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 14)
44
( )( ) 1351212
!
1
⋅⋅−+
== −−
nn
n
aa nn
By choosing
we have
( ) ( )
( )( )
( ) ( )
( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
1]
1225232242
21221
523242
4321
322
21
[
1351212
!
12
531
2
>+
+++⋅+⋅⋅
+−+++
+
+
+⋅+⋅⋅
++++
+
+
++
+
⋅⋅−+
==
−−−
−−−−−−
xx
innni
ininnn
x
nn
nnnn
x
n
nn
x
nn
n
xyxQ
in
nnn
n






( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( )!122!
!2!
!
!12
!
!2
!122
!12
!
!2
2
1
!122
2222!12
!
!2
!2
1
1225232242
21221
2
++
+++
=
+
++
++
=
++
++++
=
+++⋅+⋅⋅
+−+++
ini
inin
n
n
n
in
in
n
n
in
in
innn
n
in
iinnni
ininnn
i
i
i



( ) ( ) ( )
( )
( )
1
!122!
!2!
2
0
12
>
++
++
= ∑
∞
=
++−
xx
ini
inin
xQ
i
inn
n
Go to Neumann Integral
( )( ) ( )!12
!2
!
1351212
!
+
=
⋅⋅−+ n
n
n
nn
n n

Finally
Series Solutions – Frobenius’ Method
Legendre Polynomials
SOLO
Example: Legendre Equation (continue – 15)
45
Summarize
( ) ( ) ( )
( )
( )
1
!122!
!2!
2
0
12
>
++
++
= ∑
∞
=
++−
xx
ini
inin
xQ
i
inn
n
Return to Table of Content
( ) ( ) ( )
( ) ( )
1
!2!!
!22
1
2
1
0
2
>
−−
−
−= ∑
∞
=
−
xx
inini
in
xP
i
ini
nn
( ) ( ) ( )
( ) ( )
[ ]
1
!2!!
!22
1
2
1 2/
0
2
<
−−
−
−= ∑=
−−
xx
inini
in
xP
n
i
ini
nn
Return to
Similar to Rodrigues Formula
Using Frobenius’ Method we found that solutions of Legendre ODE
are
( ) ( ) integerpositive0121 2
2
22
nynn
xd
yd
yx
xd
yd
x =++−−
Series Solutions – Frobenius’ Method
Legendre Polynomials
( )
4,3,2,1
1
=
>
l
xxPl
( )
4,3,2,1
1
=
>
l
xxQl
46
SOLO
( ) 1
21
1
0
2
≤=
+−
∑
∞
=
utPu
utu n
n
n
For u=0 we obtain ( ) 10 =tP
For t = 1 we obtain ( ) ( ) 111
1
1
21
1
00
2
=⇒==
−
=
+−
∑∑
∞
=
∞
=
n
n
n
n
n
n
PPuu
uuu
For t = -1 we obtain ( ) ( ) ( ) ( )n
n
n
n
n
n
nn
PPuu
uuu
1111
1
1
21
1
00
2
−=⇒=−=
+
=
++
∑∑
∞
=
∞
=
Let find a Recursive Relation for Legendre Polynomial computation
Start with:
( ) ( )
( ) ( )
( )
( )
( )






∂
∂
+
−
=





∂
∂−
+
−
=





∂
∂
+
−
= ++
+
+
++
+
+
11
1
1
11
2
1 cos
1
11
!
1
1
11
!1
1cos
n
n
n
nn
n
nn
n
n
r
P
znrznnrznr
P θθ
( )
( )
( ) ( ) ( )( ) ( )






∂
∂
+
∂
∂+
−
+
−
= +++
+
zd
Pd
rz
r
r
Pn
nr
P n
nn
n
n
n θ
θ
θθθ cos
cos
cos1cos1
1
1cos
122
1
Recursive Relations for Legendre Polynomial Computation
First Recursive Relation
Legendre Polynomials
47
SOLO
Recursive Relations for Legendre Polynomial Computation
( )
( )
( ) ( ) ( )( ) ( )






∂
∂
+
∂
∂+
−
+
−
= +++
+
zd
Pd
rz
r
r
Pn
nr
P n
nn
n
n
n θ
θ
θθθ cos
cos
cos1cos1
1
1cos
122
1
θcosrz =
θcos=
∂
∂
z
r
 z
r
z
r
z
z
∂
∂
+
∂
∂
=
∂
∂
=
θ
θ
θ
cos
cos1
cos
rz
θθ 2
cos1cos −
=
∂
∂
( )
( )
( ) ( ) ( )( )





 −
+
+
−
+
−
= +++
+
rd
Pd
rr
Pn
nr
P n
nn
n
n
n θ
θ
θ
θ
θθ 2
122
1 cos1
cos
cos1
cos
cos1
1
1cos
( ) ( ) ( )( )
θ
θθ
θθθ
cos
cos
1
cos1
coscoscos
2
1
d
Pd
n
PP n
nn
+
−
−=+
Substituting t = cos θ we obtain
( ) ( ) ( )
td
tPd
n
t
tPttP n
nn
1
1 2
1
+
−
−=+
First Recursive Relation (continue – 1)
Legendre Polynomials
48
SOLO
Recursive Relations for Legendre Polynomial Computation
( ) ( ) ( ) 0,1
1
1 2
1 ≥≤
+
−
−=+ nt
td
tPd
n
t
tPttP n
nn
Use to start ( ) ( ) 01 0
0 =⇒=
td
tPd
tP
( )
( )
( )
( )
( )
8
157063
8
33035
2
35
2
13
35
5
24
4
3
3
2
2
1
ttt
tP
tt
tP
tt
tP
t
tP
ttP
+−
=
+−
=
−
=
−
=
=
First Recursive Relation (continue – 2)
Legendre Polynomials
49
SOLO
Recursive Relations for Legendre Polynomial Computation
Start from ( ) ( ) 1
21
1
:,
0
2
≤=
+−
= ∑
∞
=
utPu
utu
tug
n
n
n
Let differentiate both sides with respect to u and rearranging
( ) ( )∑
∞
=
−
+−=
+−
−
=
∂
∂
1
12
2
21
21 n
n
n
tPunutu
utu
ut
u
g
( ) ( ) ( ) ( )∑∑
∞
=
−
∞
=
+−=−
1
12
0
21
n
n
n
n
n
n
tPunututPuut
( ) ( ) ( ) ( )∑∑
∞
=
+−
∞
=
+
+−=−
1
11
0
1
2
n
n
nnn
n
n
nn
tPunutnuntPuut
( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑∑∑∑
∞
=
−
∞
=
∞
=
+
∞
=
−
∞
=
−+−+=−
2
1
10
1
1
1
0
121
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
tPuntPutntPuntPutPut
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )




≥+=−+
=−=−
==
+− 2112
122
0
11
1201
10
ntPuntPuntPutn
ntPtutPutPutuPt
ntPtPt
n
n
n
n
n
n
We can see that the last relation agrees also with the previous
relations, for n = 0 and n = 1.
Second Recursive Relation
Legendre Polynomials
50
SOLO
Recursive Relations for Legendre Polynomial Computation
We find the Recursive Relation:
( ) ( ) ( ) 1
11
12
11 ≥
+
−
+
+
= −+ ntP
n
n
tPt
n
n
tP nnn
( ) 10 =tP
This is called the Bonnet’s Recursion Relation. It starts with:
Examples:
( ) ( ) ( )
2
3
1 01
2
tPtPt
tPn
−
=→=
( )
2
1
2
3 2
2 −= ttP
( )
( )
( )

tP
tP
ttttPn
1
2
3
2
2
1
2
3
3
5
2 2
3 −





−=→=

( )
2
35 3
3
tt
tP
−
=
( )
( ) ( )

tPtP
tttttPn
23
2
1
2
3
4
3
2
3
2
5
4
7
3 23
4 





−−





−=→= ( )
8
33035 24
4
+−
=
tt
tP
( ) ttP =1
Second Recursive Relation (continue)
Legendre Polynomials
51
SOLO
Recursive Relations for Legendre Polynomial Computation
Start from ( ) ( ) 1
21
1
:,
0
2
≤=
+−
= ∑
∞
=
utPu
utu
tug
n
n
n
Let differentiate both sides with respect to t and rearranging
( )
( )
∑
∞
=
=
+−
=
∂
∂
0
2/32
21 n
nn
td
tPd
u
utu
u
t
g
( ) ( ) ( )
∑∑
∞
=
∞
=
+−=
0
2
0
21
n
nn
n
n
n
td
tPd
uututPuuor
Equaling coefficients of each power of u gives
( ) ( ) ( ) ( )
td
tPd
td
tPd
t
td
tPd
tP nnn
n
11
2 −+
+−=
( ) ( ) ( ) ( ) ( )tPntPntPtn nnn 11112 −+ ++=+
Differentiate the Second Recursive Relation
with respect to t and rearranging
( ) ( ) ( )
( )
( )
( )
( )
td
tPd
n
n
td
tPd
n
n
td
tPd
ttP nnn
n
11
1212
1 −+
+
+
+
+
=+
Third Recursive Relation
Legendre Polynomials
52
SOLO
Recursive Relations for Legendre Polynomial Computation
We found ( ) ( ) ( ) ( )
td
tPd
ttP
td
tPd
td
tPd n
n
nn
211
+=+ −+
( )
( )
( )
( )
( ) ( ) ( )
td
tPd
ttP
td
tPd
n
n
td
tPd
n
n n
n
nn
+=
+
+
+
+ −+ 11
1212
1
Third Recursive Relation (continue)
Let solve for and in terms of and( )tPn
( )
td
tPd n( )
td
tPd n 1+( )
td
tPd n 1−
( ) ( ) ( )
td
tPd
ttPn
td
tPd n
n
n
+−=−1
( ) ( ) ( ) ( )
td
tPd
ttPn
td
tPd n
n
n
++=+
11
Subtracting the first relation from the second gives the Third Recursive Relation
( ) ( ) ( ) ( )
td
tPd
td
tPd
tPn nn
n
11
12 −+
−=+
Legendre Polynomials
53
SOLO
Recursive Relations for Legendre Polynomial Computation
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }yPxPyPxP
yx
n
yPxPk
tPtntPn
td
tPd
t
tPntPtn
td
tPd
t
tPn
td
tPd
t
td
tPd
tPn
td
tPd
td
tPd
t
tPn
td
tPd
td
tPd
tPntPtntPn
tP
n
n
tP
n
n
tPt
tPin
td
tPd
nnnn
n
k
kk
nn
n
nn
n
n
nn
n
nn
n
nn
nnn
nnn
l
i
in
n
11
0
1
2
1
2
1
1
1
11
11
11
1
2
1
0
12
1
129
1118
17
6
5
124
01213
1212
1
2
1421
++
=
+
−
−
−
−
−+
−+
−+






−
=
−−
−
−
+
=+
+−+=−
−=−
=−
=−
+=−
=++−+
+
+
+
+
=
−−=
∑
∑
Recursive Relation between Legendre Polynomials and their Derivatives)
Legendre Polynomials
Return to Table of Content
54
SOLO
Orthogonality of Legendre Polynomials
Define ( ) ( )tPwtPv nm == :&:
We use Legendre’s Differential Equations:
( ) ( ) 011 2
=++





− vmm
td
vd
t
td
d
( ) ( ) 011 2
=++





− wnn
td
wd
t
td
d
Multiply first equation by w and integrate from t = -1 to t = +1.
( ) ( ) 011
1
1
1
1
2
=++





− ∫∫
+
−
+
−
dtwvmmdtw
td
vd
t
td
d
Integrate the first integral by parts we get
( ) ( ) ( ) 0111
1
1
1
1
2
0
1
1
2
=++−−− ∫∫
+
−
+
−
+=
−=
dtwvmmdt
td
wd
td
vd
tw
td
vd
t
t
t
  
In the same way, multiply second equation by v and integrate from t = -1 to t = +1.
( ) ( ) 011
1
1
1
1
2
=++−− ∫∫
+
−
+
−
dtwvnndt
td
wd
td
vd
t
Legendre Polynomials
55
SOLO
Orthogonality of Legendre Polynomials
( ) ( ) 011
1
1
1
1
2
=++−− ∫∫
+
−
+
−
dtwvmmdt
td
wd
td
vd
t
Subtracting those two equations we obtain
( ) ( ) 011
1
1
1
1
2
=++−− ∫∫
+
−
+
−
dtwvnndt
td
wd
td
vd
t
( ) ( )[ ] ( ) ( )[ ] ( ) ( ) 01111
1
1
1
1
=+−+=+−+ ∫∫
+
−
+
−
dttPtPnnmmdtwvnnmm nm
This gives the Orthogonality Condition for m ≠ n
( ) ( ) nmdttPtP nm ≠=∫
+
−
0
1
1
To find let square the relation and integrate
between t = -1 to t = +1. Due to orthogonality only the integrals of terms
having Pn
2
(t) survive on the right-hand side. So we get
( )∫
+
−
1
1
2
dttPn
( )∑
∞
=
=
+− 0
2
21
1
n
n
n
tPu
utu
( )∑ ∫∫
∞
=
+
−
+
−
=
+− 0
1
1
22
1
1 2
21
1
n
n
n
dttPudt
utu
Legendre Polynomials
56
SOLO
Orthogonality of Legendre Polynomials
( )∑ ∫∫
∞
=
+
−
+
−
=
+− 0
1
1
22
1
1 2
21
1
n
n
n
dttPudt
utu
( ) ( )
( )
1
1
1
ln
1
1
1
ln
2
1
21ln
2
1
21
1
2
21
1
2
1
1 2
<
−
+
=
+
−
−
=−+
−
=
−+
+=
−=
+
−∫ u
u
u
uu
u
u
tuu
u
dt
tuu
t
t
( ) ( ) ( ) ( ) ( ) ( ) ( )
∑∑∑
∞ ++∞ +∞ +
+
−−
−=
+
−
−−
+
−=−−+
0
11
0
1
0
1
1
1
1
1
1
1
1
1
1
1ln
1
1ln
1
n
uu
un
u
un
u
u
u
u
u
u
nn
n
n
n
n
n
( ) ( ) ( )
( )
( ) ( )
( ) ∑∑∑∑
∞∞ +∞ ++
+
∞ ++
+
=
+
=
+
−−
−+
+
−−
−=
0
2
0
12
0
0
1212
12
0
1212
2
12
2
12
1
2
12
1
1
12
1
1 n
nnn
n
nn
n
u
nn
u
un
uu
un
uu
u
  
Let compute first
Therefore
( )∑ ∫∑∫
∞ +
−
∞+
−
=
+
=
+− 0
1
1
22
0
2
1
1 2
12
2
21
1
dttPuu
n
dt
utu
n
nn
Comparing the coefficients of u2n
we get ( )
12
21
1
2
+
=∫
+
− n
dttPn
Legendre Polynomials
( ) ( ) nmmn
n
dttPtP δ
12
21
1 +
=∫
+
−
Hence
57
SOLO
Using Rodrigues’ Formula
let calculate
( ) ( ) ( ) ( )[ ]∫∫
+
−
+
−
−
=
1
1
2
1
1
1
!2
1
dt
td
td
tP
n
dttPtP n
nn
knnk
Legendre Polynomials
( ) ( )[ ]n
nn
nn
td
td
n
tP
1
!2
1 2
−
=
Orthogonality of Legendre Polynomials (Second Method)
Assume, without loss of generality, that n > k, and integrate by parts
( ) ( ) ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )
∫∫
∫∫
+
−
+
− −
−
+
−
−
−
+
−
+
−
−−==
−
−
−
=
−
=
1
1
2
1
1 1
21
0
1
1
1
21
1
1
2
1
1
1
!2
1
1
1
!2
11
!2
1
1
!2
1
dt
td
tPd
t
n
dt
td
td
td
tPd
ntd
td
tP
n
dt
td
td
tP
n
dttPtP
n
k
n
n
n
n
n
nn
k
nn
nn
kn
n
nn
knnk

  
Since Pk (t) is a Polynomial of Order k and we assume that n > k, we have
( ) 0=n
k
n
td
tPd
Therefore
( ) ( ) nkdttPtP nk ≠=∫
+
−
0
1
1
58
SOLO
For k = n we have
Legendre Polynomials
Orthogonality of Legendre Polynomials (Second Method) (continue – 1)
( )[ ] ( ) ( ) ( )
∫∫
+
−
+
−
−−=
1
1
2
1
1
2
1
!2
1
1 dt
td
tPd
t
n
dttP n
n
n
n
n
n
n
But we found that Pn (t) is given by:
( ) ( ) ( )
( ) ( )
[ ]
∑=
−
−−
−
−=
2/
0
2
!2!!2
!22
1
n
k
kn
n
k
n t
knknk
kn
tP
Therefore to compute it is sufficient to consider only the highest power of t
in the series, i.e. for k = 0, and we obtain
( )
n
n
n
td
tPd
( ) ( )
( )
( )
!2
!2
!
!2
!2
2
n
n
n
n
n
td
tPd
nnn
n
n
==
( )[ ] ( ) ( ) ( ) ( )
( )
( )∫∫∫
+
−
+
−
+
−
−=−−=
1
1
2
22
1
1
2
1
1
2
1
!2
!2
!2
!2
1
!2
1
1 dtt
n
n
dt
n
n
t
n
dttP
n
nn
n
n
n
n
SOLO
Legendre Polynomials
Orthogonality of Legendre Polynomials (Second Method) (continue – 2)
( )[ ] ( ) ( ) ( ) ( )
( )
( )∫∫∫
+
−
+
−
+
−
−=−−=
1
1
2
22
1
1
2
1
1
2
1
!2
!2
!2
!2
1
!2
1
1 dtt
n
n
dt
n
n
t
n
dttP
n
nn
n
n
n
n
( ) ∫∫∫
++
=+
−
=−=−
π
π
θ
θθθθ
0
12
0
12
cos1
1
2
sinsin1 dddtt nn
tn
Therefore
( )
( ) ( ) ( ) ( ) ( )
( )
( )!12
!2
cos
2222
!2
11212
!2
sin
31212
2222
sin
12
2
sin
212
2
0
1
00
12
0
12
+
=
−⋅
⋅
−⋅+
=
−⋅+
−⋅
=
+
=
+
−+
∫∫∫ n
n
nn
n
nn
n
d
nn
nn
d
n
n
d
nnn
nn

  


π
πππ
θθθθθθθ
( ) ( ) ( )∫∫∫∫
+−−+
−=+−==
ππ
π
ππ
θθθθθθθθθθθθ
0
1212
0
212
0
0
2
0
2
0
12
sinsin2cossin2cossincossinsin dndndd nnnnnn
  
( )[ ] ( )
( )
( ) ( )
( )
( )
( )
,2,1,0
12
2
!12
!2
!2
!2
1
!2
!2
212
22
1
1
2
22
1
1
2
=
+
=
+
=−=
+
+
−
+
− ∫∫ n
nn
n
n
n
dtt
n
n
dttP
n
n
n
nn
Return to Table of Content
59
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
Using Sturm-Liouville Theory it can be seen that the Legendre
Polynomials that are Solution of the Legendre ODE, form an orthogonal
and “Complete” Set, meaning that we can expand any function f (t) ,
Piecewise Continuous in the interval -1 ≤ t ≤+1. Therefore we can define a
series of Legendre Polynomials that converges in the mean to the function
f (t)
( ) ( ) 11
0
≤≤−= ∑
∞
=
ttPatf
n
nn
The coefficients an can be defined using the
Orthogonality Property of Legendre Polynomials
( ) ( ) ( ) ( ) m
n
m
mnnm a
m
tdtPtPatdtPtf
mn
12
2
0
2
12
1
1
1
1
+
== ∑ ∫∫
∞
=
+
+
−
+
−
  
δ
( ) ( )∫
+
−
+
=
1
1
2
12
tdtPtf
m
a mm
( ) ( ) ( ) ( ) 11
2
12
0
1
1
≤≤−






+
= ∑ ∫
∞
=
+
−
ttPtdtPtf
n
tf
n
nn
60
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
At any discontinuous point t0 ( f(t0- ) ≠ f(t0+) ) we have
( ) ( )[ ] ( ) ( ) ( ) 11
2
12
2
1
0
0
0
1
1
00 ≤≤−






+
=+ ∑ ∫
∞
=
+
−
+− ttPtdtPtf
n
tftf
n
nn
If f (t) is defined in the interval –a ≤ t ≤ +a then
( ) ( ) ataatPatf
n
nn ≤≤−= ∑
∞
=0
/ ( ) ( )∫
+
−
+
=
a
a
nn tdatPtf
a
n
a /
2
12
61
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
If f (t) is an odd function ( f(-t ) =- f(t) ) we have
( ) ( ) ( ) ( ) ( ) ( )
( )
( )
( )
( ) ( )
( ) ( )
( ) ( )



=+−−=
+==
+
∫
∫∫
∫∫∫
+
++
−−
+
−→
−
+
−
1
0
1
0
1
0
1
1
0
0
1
1
1
2
0
12
2
oddndttPtf
evenn
dttPtfdttPtf
dttPtfdttPtfdttPtfa
n
n
n
tP
n
tf
n
tt
nnn
n
n

  
If f (t) is an even function ( f(-t ) = f(t) ) we have
( ) ( ) ( ) ( ) ( ) ( )
( )
( )
( )
( ) ( )
( ) ( )
( ) ( )




=+−−=
+==
+
∫∫∫
∫∫∫
+
++
−
+
−→
−
+
−
oddn
evenndttPtf
dttPtfdttPtf
dttPtfdttPtfdttPtfa
n
n
n
tP
n
tf
n
tt
nnn
n
n 0
2
12
2
1
0
1
0
1
0
1
1
0
0
1
1
1

  
62
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
Using Rodrigues’ Formula
let calculate
( ) ( )[ ]n
nn
nn
td
td
n
tP
1
!2
1 2
−
=
( ) ( ) ( )[ ] ( )
( ) ( )[ ] ( )[ ] ( ) ( ) ( ) ( )
∫∫
∫∫
+
−
+
−
−
−
+
−
−
−
+
−
+
−
−−==
−
−
−
=
−
=
1
1
2
1
1
1
21
0
1
1
1
21
1
1
21
1
1
!2
1
1
1
!2
11
!2
1
1
!2
1
td
td
tfd
t
n
td
td
tfd
td
td
ntd
td
tf
n
tdtf
td
td
n
tdtftP
n
n
n
n
n
n
nn
nn
nn
n
n
nn
nn

  
( ) ( ) ( ) ( ) ( ) ( ) ( )
∫∫∫
+
−
+
−
+
−
−=−−=
1
1
2
1
1
2
1
1
1
!2
1
1
!2
1
1 td
td
tfd
t
n
td
td
tfd
t
n
tdtPtf n
n
n
nn
n
n
n
n
n
or
63
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
Example f (t) = tk
,|t| < 1
( ) ( ) ( ) ( ) ( ) ( ) ( )




≥−+−−
+
<
=−
+
=
+
=
∫
∫∫ +
−
−
+
+
−
+
+
−
nktdttnkkk
n
n
nk
td
td
td
t
n
n
tdtPt
n
a nkn
n
n
kn
n
nn
k
n
1
1
2
1
1
1
2
1
1
1
111
!2
12
0
1
!2
12
2
12

We have
( )
( ) ( )
( ) ( )
( )
( )( )
( ) ( )
( )
( )( ) ( )[ ]
( ) ( ) ( )
( ) ( )
( )
( )
( )
( )
( )∫
∫
∫
∫∫
+
−
+
−−
+
−
−−−+
+
−
−−+
+
−
−−+
+
−
−−+=
−=
+
−
−
−
−
−
+
=
−
+++
−−−−−−−−
=
=−
++
−−−−
=
−
+
−−
+−
+
−=−
−−
1
1
2
1
1
22222
1
1
422222
1
1
222122
0
1
1
122122
1
2
1
1
1
2222
1
!2
!22
!2
!2
1
2222122
12222322122
1
222122
322122
1
122
122
1
122
1
1
122
222
tdt
nm
nm
mn
n
tdtt
mnnn
nmnmnmnm
tdtt
nn
nmnm
tdtt
n
nm
tt
n
tdtt
mn
nmnm
nmnmmn
nmn
nmnnmntu
tdtdv
nmn
nm
n




  
Take k = 2m and since t2m
is even, they are only even coefficients nonzero so
we take 2 n instead of n, and 2n ≤ 2m
64
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
Example f (t) = tk
, |t| < 1 (continue – 1)
( )
( )
( )
( )
( )




≥−
−
+
<
=
∫
+
−
−
+
nmtdtt
nm
m
n
n
nm
a nmn
n
n
1
1
2222
12
2
1
!22
!2
!22
14
0
We have for f (t) = t2m
( ) ( )
( )
( )
( )
( )
( )
( )
( )
( )
( )( )
( )!122
!2
!2
!22
!2
!2
1
!2
!22
!2
!2
1
2122
1
1
2
1
1
2222
++
+
−
−
+
=
−
−
−
+
=−
++
−−
+
−
+
−−
+
−
−
∫∫
nm
mn
nm
nm
mn
n
tdt
nm
nm
mn
n
tdtt
nm
nmnm
mn
nmnm
nmn
( )
( )
( )
( )
( )
( )
( )
( )
( )( )
( )
( ) ( ) ( )
( ) ( )!122!
!!2142
!122
!2
!2
!22
!2
!2
!22
!2
!22
14 22122
122
++−
++
=
++
+
−
−
+−
+
=
++
−−+
nmnm
nmmn
nm
nm
nm
nm
nm
n
nm
m
n
n
a
nnm
nmnmnn
( ) ( )
( )!12
!2
1
212
1
1
2
+
=−
+
+
−∫ n
n
dtt
n
n
Where we used the previous result
Therefore
( ) ( ) ( )
( ) ( )
( )∑= ++−
++
=
m
n
n
n
m
tP
nmnm
nmmn
t
0
2
2
2
!122!
!!2142
65
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
( ) ( ) ( ) ( ) ( ) ( ) ( )




≥−+−−
+
<
=−
+
=
+
=
∫
∫∫ +
−
−
+
+
−
+
+
−
nktdttnkkk
n
n
nk
td
td
td
t
n
n
tdtPt
n
a nkn
n
n
kn
n
nn
k
n
1
1
2
1
1
1
2
1
1
1
111
!2
12
0
1
!2
12
2
12

We have
( )
( ) ( )
( ) ( )
( )
( )( )
( ) ( )
( )
( )( ) ( )[ ]
( ) ( ) ( )
( ) ( )
( )
( )
( )
( )
( )( )
( )
( )∫
∫
∫
∫∫
+
−
++
++
−−
+
−
−−−++
+
−
−−+
+
−
−−+
+
−
−−+=
−=
+
−
−+
−
++
+
−
−
++
+
=
−
++++
−−−−−−−−
=
=−
++
−−−−
=
−
+
−−
+−
+
−=−
−−
+
1
1
12
2122
1
1
222212
1
1
422322
1
1
222222
0
1
1
122222
1
2
1
1
1
22122
1
!122
!2
!2
!22
!12
!12
1
12322222
12222322122
1
322222
322122
1
222
122
1
222
1
1
122
2122
tdt
nm
mn
nm
nm
mn
n
tdtt
mnnn
nmnmnmnm
tdtt
nn
nmnm
tdtt
n
nm
tt
n
tdtt
mn
nm
nmnm
nmnmmn
nmn
nmnnmntu
tdtdv
nmn
nm
n




  
Take k = 2m+1 and since t2m+1
is odd, they are only odd coefficients nonzero so
we take 2 n+1 instead of n, and 2n+1 ≤ 2m+1
66
Example f (t) = tk
, |t| < 1 (continue – 2)
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
( )
( )
( )
( )
( )




≥−
−+
+
<
=
∫
+
−
−+
+
+
nmtdtt
nm
m
n
n
nm
a nmn
n
n
1
1
22122
22
12
1
!22
!2
!122
34
0
We have for f (t) = t2m+1
( ) ( )
( )
( )
( )
( )( )
( )
( )
( )
( )
( )
( )
( )( )
( )!322
!12
!2
!22
!12
!12
1
!122
!2
!2
!22
!12
!12
1
2322
1
1
12
21221
1
22122
++
++
−
−
++
+
=
−
++
+
−
−
++
+
=−
++
−−
+
−
++
++
−−
+
−
−+
∫∫
nm
mn
nm
nm
mn
n
tdt
nm
mn
nm
nm
mn
n
tdtt
nm
nmnm
mn
nm
nmnm
nmn
( )
( )
( )
( )
( )
( )
( )
( )
( )( )
( )
( ) ( ) ( )
( ) ( )!322!
!1!12342
!322
!12
!2
!22
!12
!12
!22
!2
!122
34 122322
2212
++−
++++
=
++
++
−
−
++
+
−+
+
=
+++
−−++
nmnm
nmmn
nm
nm
nm
nm
nm
n
nm
m
n
n
a
nnm
nmnmnn
( ) ( )
( )!12
!2
1
212
1
1
2
+
=−
+
+
−∫ n
n
dtt
n
n
Where we used the previous result
Therefore
( ) ( ) ( )
( ) ( )
( )∑=
+
+
+
++−
++++
=
m
n
n
n
m
tP
nmnm
nmmn
t
0
12
12
12
!322!
!1!12342
Return to Neumann Integral
67
Example f (t) = tk
, |t| < 1 (continue – 3)
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
Neumann Integral
1
1
1
111
0
2
12
0
12
2
0
1
0
<+==





=
−
=
−
∑∑∑∑
∞
=
−∞
=
+
∞
=
+
∞
= x
t
x
t
x
t
x
t
x
t
x
x
txtx m
m
m
m
m
m
m
m
m
m
m
Start from
Use
( ) ( ) ( )
( ) ( )
( )∑=
+
+
+
++−
++++
=
m
n
n
n
m
tP
nmnm
nmmn
t
0
12
12
12
!322!
!1!12342
( ) ( ) ( )
( ) ( )
( )∑= ++−
++
=
m
n
n
n
m
tP
nmnm
nmmn
t
0
2
2
2
!122!
!!2142
( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( )
( )
( ) ( ) ( ) ( )
( )
( )∑ ∑∑ ∑
∑ ∑∑ ∑
∑ ∑∑ ∑
∞
=
∞
=
+
−
+∞
=
∞
=
++−
+=
∞
=
∞
=
+
−
+∞
=
∞
=
+−
∞
= =
−
+
+∞
=
+−
=
++
+++++
+
++
+++
=
++−
++++
+
++−
++
=
++−
++++
+
++−
++
=
−
0 0
12
2
12
0 0
2
212
2
0
12
2
12
0
2
12
2
0 0
2
12
12
0
12
0
2
2
!322!
!12!122342
!124!
!2!22142
!322!
!1!12342
!122!
!!2142
!322!
!1!12342
!122!
!!21421
n i
n
m
n
n i
n
in
ninm
n nm
n
m
n
n nm
n
m
nOrder
Summation
Change
m
m
n
m
n
n
m
m
m
n
n
n
tPx
nmi
ininn
tPx
ini
ininn
tPx
nmnm
nmmn
tPx
nmnm
nmmn
xtP
nmnm
nmmn
xtP
nmnm
nmmn
tx
68
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
Neumann Integral (continue – 1)
( ) ( ) ( )
( )
( )
( ) ( ) ( ) ( )
( )
( )∑ ∑∑ ∑
∞
=
+
∞
=
−
+∞
=
∞
=
++−






++
+++++
+





++
+++
=
− 0
12
0
2
12
0
2
0
212
2
!322!
!12!122342
!124!
!2!221421
n
n
i
m
n
n
n
i
in
n
tPx
nmi
ininn
tPx
ini
ininn
tx
We found
( ) ( ) ( )
( )
( )
1
!122!
!2!
2
0
12
>
++
++
= ∑
∞
=
++−
xx
ini
inin
xQ
i
inn
n
Use the Frobenius Series development of Legendre Functions of the
Second Kind Qn (x)
We have ( ) ( ) ( ) ( ) ( ) ( )∑∑
∞
=
++
∞
=
+++=
− 0
1212
0
22 3414
1
n
nn
n
nn tPxQntPxQn
tx
( ) ( ) ( )∑
∞
=
<+=
− 0
12
1
n
nn xttPxQn
tx
Return to Qn
Frobenius Series
69
SOLO
Legendre Polynomials
Expansion of Functions, Legendre Series
Neumann Integral (continue – 2)
We found
( ) ( ) ( )∑
∞
=
+=
− 0
12
1
n
nn tPxQn
tx
Multiply both sides by Pm (t) and integrate between -1 to +1
( )
( ) ( ) ( ) ( ) ( )xQtdtPtPxQntd
tx
tP
m
n
n
mnn
m
nm
212
0
12
2
1
1
1
1
=+=
−
∑ ∫∫
∞
=
+
+
−
+
−
  
δ
We obtain
( )
( )
∫
+
−
−
=
1
1
2
1
td
tx
tP
xQ
n
n
Franz Neumann's Integral of 1848
Franz Ernst Neumann
(1798 –1895)
Return to Table of Content
70
SOLO
71
Legendre Polynomials
Schlaefli Integral
Start with
Using Rodrigues's Formula we obtain( ) ( )[ ]n
n
n
nn x
xd
d
n
xP 1
!2
1 2
−=
( ) ( )
∫ −
= td
zt
tf
j
zf
π2
1
Cauchy's Integral
with ( ) ( )n
zzf 12
−=
( ) ( )
∫ −
−
=− td
zt
t
j
z
n
n 1
2
1
1
2
2
π
Differentiate n times this equation with respect to z and multiply by 1/ (2n
n!)
( ) ( )
( )∫ +
−
−
−
=− td
zt
t
j
z
zd
d
n n
nn
n
n
n
n 1
2
2 1
2
2
1
!2
1
π
with the contour enclosing the point t = z.
Schlaefli Integral ( ) ( )
( )∫ +
−
−
−
= td
zt
t
j
zP n
nn
n 1
2
1
2
2
π
Return to Table of Content
SOLO
72
Legendre Polynomials
Laplace’s Integral Representation
Start with
( )
( )
( )[ ]
( )[ ] ( )[ ]
( )
[ ] [ ] ( ) ( )
22
0
1
2
0
22
0
2
0
22
2/tan
0
22
2
0
2
2
0
121
2
1
1
tan
1
2
1
1
1
1
1
1
2
11
2
11
2
2/tan12/tan1
2/tan1
2/tan1
2/tan1
1
cos1
λ
ππ
λλ
λ
λ
λ
λ
λ
λ
λ
λλλφλφ
φφ
φ
φ
λ
φ
φλ
φ φπππ
−
=
−
=







+
−
−
=








+
−
+
+
−
−
=
−++
=
−++
=
−++
+
=
+
−
+
=
+
∞
−
∞
∞∞=
∫
∫∫∫∫∫
t
t
td
t
td
tt
tdddd t
( )
( )
( )
( )
( ) { }[ ] ( ) { }∑
∞
=
−−
−
±=
−±−=−±−−=
−±−
−
=
−
−
±
=
+ 0
2
1
2
22
1
1
cos11cos111
cos11
1
cos
1
1
1
1
cos1
1
2
n
n
n
xu
xu
xxuxuxxuxu
xuxu
xu
xu
xu
φφ
φ
φ
φλ
λ
Let write
where we used ( ) ∑
∞
=
−
=−
0
1
1
n
n
aa
( )
( )
( )
( )
( )
( ) ( )
( )
2222
2
22
1
1
2
21
1
11
1
1
1
1
1
1
1
2
uxu
xu
xuxu
xu
xu
xu
xu
xu
+−
−
=
−−−
−
=
−
−
−
=
−
−
−
±=λ
λ
( ) { } ( ) { } ( )
22
0 0
2
0 0
2
0 21
1
1
cos11cos11
cos1 uxu
xu
dxxuxudxxuxu
d
n
n
n
n
n
n
+−
−
=
−
=−±−=−±−=
+
∑ ∫∫ ∑∫
∞
=
∞
=
π
λ
π
φφφφ
φλ
φ πππ
SOLO
73
Legendre Polynomials
Laplace’s Integral Representation (continue -
1)
{ } ( )∑∑ ∫
∞
=
∞
=
=
+−
=−±
0
2
0 0
2
21
cos1
n
n
n
n
n
n
xPu
uxu
dxxu π
π
φφ
π
We obtained
Equating un
coefficients we obtain :
( ) { }∫ −±=
π
φφ
π 0
2
cos1
1
dxxxP
n
n
( ) ( ) 0112
=+−





− ynny
xd
d
x
xd
d
If we replace in the Legendre ODE n by –n – 1
the equation does not change. Therefore , and( ) ( )xPxP nn 1−−=
( ) { }∫
−−
−±=
π
φφ
π 0
1
2
cos1
1
dxxxP
n
n
Substitute x = cosθ
( ) { }∫ ±=
π
φφθθ
π
θ
0
cossincos
1
cos djP
n
n
Laplace’s First Integral
Laplace’s Second Integral
SOLO
74
Legendre Polynomials
Laplace’s Integral Representation (continue -
2)
Use the Generating Function
[ ] ( )∑
∞
=
=
+− 0
2/12
21
1
n
n
n
tPu
uut
Substitute t = cosθ and u = ejφ
[ ] ( )∑
∞
=
=
+− 0
2/12
cos
cos21
1
n
n
nj
jj
Pe
ee
θ
θ
ϕ
ϕϕ
[ ] [ ] [ ] [ ] [ ] 2/12/12/12/12/12
coscos2cos2cos21 θϕθθ ϕϕϕϕϕϕ
−=+−=+− − jjjjjj
eeeeeeBut
Therefore
( )
( )
( )
( )






>
−
<
−
=
−
∞
=
∑
θϕ
θϕ
θϕ
θϕ
θ
πϕ
ϕ
ϕ
2/12/
2/12/
0
coscos2
1
coscos2
1
cos
j
j
n
n
nj
e
e
Pe
Equating the real and
imaginary parts, we obtain
( ) ( )
( )
( )
( )
( )






>
−
<
−
=∑
∞
=
θϕ
θϕ
ϕ
θϕ
θϕ
ϕ
θϕ
2/1
2/1
0
coscos2
2/sin2
coscos2
2/cos2
coscos
n
nPn
( ) ( )
( )
( )
( )
( )






>
−
<
−
−
=∑
∞
=
θϕ
θϕ
ϕ
θϕ
θϕ
ϕ
θϕ
2/1
2/1
0
coscos2
2/cos2
coscos2
2/sin2
cossin
n
nPn
SOLO
75
Legendre Polynomials
Laplace’s Integral Representation (continue -
3)
Let multiply first relation by cos (nφ) and the second by sin (nφ) and integrate
over φ on (0,π), we obtain two integrals
( ) ( )
( )
( )
( )
( )






>
−
<
−
=∑
∞
=
θϕ
θϕ
ϕ
θϕ
θϕ
ϕ
θϕ
2/1
2/1
0
coscos2
2/sin2
coscos2
2/cos2
coscos
i
iPi ( ) ( )
( )
( )
( )
( )






>
−
<
−
−
=∑
∞
=
θϕ
θϕ
ϕ
θϕ
θϕ
ϕ
θϕ
2/1
2/1
0
coscos2
2/cos2
coscos2
2/sin2
cossin
i
iPi
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ( )
( )∫ ∫∑∫ −
+
−
==
∞
=
θ π
θ
δ
π
π
ϕ
θϕ
ϕϕ
ϕ
θϕ
ϕϕ
θ
π
θϕϕϕ
0
2/12/1
0
2
0 coscos2
cos2/sin2
coscos2
cos2/cos2
cos
2
coscoscos d
n
d
n
PPdni n
i
i
in
  
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ( )
( )∫ ∫∑∫ −
+
−
−==
∞
=
θ π
θ
δ
π
π
ϕ
θϕ
ϕϕ
ϕ
θϕ
ϕϕ
θ
π
θϕϕϕ
0
2/12/1
0
2
0 coscos2
sin2/cos2
coscos2
sin2/sin2
cos
2
cossinsin d
n
d
n
PPdni n
i
i
in
  
( ) ( ) ( )
( )
( ) ( )
( ) 





−
+
−
= ∫ ∫
θ π
θ
ϕ
θϕ
ϕϕ
ϕ
θϕ
ϕϕ
π
θ
0
2/12/1
coscos
cos2/sin
coscos
cos2/cos2
cos d
n
d
n
Pn
( ) ( ) ( )
( )
( ) ( )
( ) 





−
+
−
−= ∫ ∫
θ π
θ
ϕ
θϕ
ϕϕ
ϕ
θϕ
ϕϕ
π
θ
0
2/12/1
coscos
sin2/cos
coscos
sin2/sin2
cos d
n
d
n
Pn
Dirichlet Integrals
Johann Peter Gustav
Lejeune Dirichlet
(1805 –1859)
SOLO
76
Legendre Polynomials
Add and subtract those two equations
( ) ( ) ( )
( )
( ) ( )
( ) 





−
+
−
= ∫ ∫
θ π
θ
ϕ
θϕ
ϕϕ
ϕ
θϕ
ϕϕ
π
θ
0
2/12/1
coscos
cos2/sin
coscos
cos2/cos2
cos d
n
d
n
Pn
( ) ( ) ( )
( )
( ) ( )
( ) 





−
+
−
−= ∫ ∫
θ π
θ
ϕ
θϕ
ϕϕ
ϕ
θϕ
ϕϕ
π
θ
0
2/12/1
coscos
sin2/cos
coscos
sin2/sin2
cos d
n
d
n
Pn
Dirichlet Integrals
( ) ( )[ ]
( )
( )[ ]
( ) 





−
+
+
−
+
= ∫ ∫
θ π
θ
ϕ
θϕ
ϕ
ϕ
θϕ
ϕ
π
θ
0
2/12/1
coscos
2/1sin
coscos
2/1cos
2
1
cos d
n
d
n
Pn
( )[ ]
( )
( )[ ]
( )∫ ∫ −
−
−
−
−
=
θ π
θ
ϕ
θϕ
ϕ
ϕ
θϕ
ϕ
0
2/12/1
coscos
2/1sin
coscos
2/1cos
0 d
n
d
n
Replace n by n + 1 in the last equation and substitute in the previous
( ) ( )[ ]
( )
( )[ ]
( )∫ ∫ −
+
=
−
+
=
θ π
θ
ϕ
θϕ
ϕ
π
ϕ
θϕ
ϕ
π
θ
0
2/12/1
coscos
2/1sin2
coscos
2/1cos2
cos d
n
d
n
Pn
Mehler Integrals
Gustav Ferdinand
Mehler
(1835 - 1895)
Return to Table of Content
Laplace’s Integral Representation (continue -
4)
SOLO
77
Legendre Polynomials
We found
Return to Table of Content
Integrals in terms of sin(iθ) and cos(iθ)
( ) ( ) mnnk
n
dttPtP δ
12
21
1 +
=∫
+
−
( ) ( ) mnnk
n
dPP δθθθθ
π
12
2
sincoscos
0 +
=∫
θcos=t
( ) ( ) ( )
( ) ( )




≥
++−
+
<
=
+
= −
+
−
∫ nm
nmnm
nmm
nm
a
n
tdtPt n
nn
m
!122!
!!22
0
14
2 12
2
1
1
2
2
( ) ( ) ( )
( ) ( )




≥
++−
+++
<
=
+
= +
+
+
−
+
+
∫ nm
nmnm
nmm
nm
a
n
tdtPt n
nn
m
!322!
!1!122
0
34
2 22
12
1
1
12
12
( ) ( ) ( )
( ) ( )




≥
++−
+
<
= −
∫ nm
nmnm
nmm
nm
dP n
n
m
!122!
!!22
0
sincoscos 12
0
2
2
π
θθθθ
( ) ( ) ( )
( ) ( )




≥
++−
+++
<
= +
+
+
∫ nm
nmnm
nmm
nm
dP n
n
m
!322!
!1!122
0
sincoscos 22
0
12
12
π
θθθθ
Ordinary Differential EquationsSOLO
Second Order Linear Ordinary Differential Equation (ODE)
78
Legendre Functions of the Second Kind Qn (x)
( ) [ ]
( ) ( )∑
∫
∞
=
−−
∞ −−
=
−
−
+−
−+=
0
2
12/12
0
1
2
1
cosh21
cosh1
n
n
n
n
n
txQ
x
xt
ttx
dxxxQ θθ
( ) ( )n
n
n
nn x
xd
d
n
xP 1
!2
1 2
−=
( ) ( ) 1<+= xxQBxPAy nn
( ) ( ) ( )xP
xd
d
xxP nm
m
mm
n
2/2
1−=
( ) ( ) ( )xQ
xd
d
xxQ nm
m
mm
n
2/2
1−=
( ) ( ) ( )xW
x
x
xPxQ nnn 1
1
1
ln
2
1
−−
−
+
=
( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
3
2
2
5
2
3
1
1
1
ln
2
1
2
033
022
011
0
+−=
−=
−=
−
+
=
xxQxPxQ
xxQxPxQ
xQxPxQ
x
x
xQ
( ) ( ) ( )∑=
−−− =
n
m
mnmn xPxP
m
xW
1
11
1 ( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
[ ]
( )
( )


−
−
=


 −





 −
−
+−
−
−
+
=
−+
−−
−
−
+
=
∑
∑
=
−
=+





 −
=
−−
evennifn
oddnifnn
xP
m
nm
mn
x
x
xP
xP
rnr
rn
x
x
xPxQ
n
m
mnn
mr
n
r
rnnn
2/2
2/1
2
1
2
1
122
1
1
ln
2
1
12
142
1
1
ln
2
1
1
12
2
1
0
12
Legendre Ordinary Differential EquationSOLO
79
Legendre Functions of the Second Kind Qn (x)
( ) ( ) ( )xPxuxy nnn =
With Pn (x) being a solution of the Legendre Differential Equation
we look for the second solution having the form
( ) ( ) 0121 2
2
2
=++−− wnn
xd
wd
x
xd
wd
x
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
2
2
2
2
2
2
2
xd
xPd
xu
xd
xPd
xd
xud
xP
xd
xud
xd
xyd
xd
xPd
xuxP
xd
xud
xd
xyd
n
n
nn
n
nn
n
nn
nn
++=
+=
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01221121 2
2
22
2
2
2
=++−−−+−+− xPxunn
xd
xPd
xuxxP
xd
xud
x
xd
xPd
xxu
xd
xPd
xd
xud
xxP
xd
xud
x nn
n
nn
nn
n
nn
n
n
Substituting in the Legendre ODE we obtain
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01212121
0
2
2
22
2
2
2
=





++−−+−−+− xuxPnn
xd
xPd
x
xd
xPd
xxP
xd
xud
x
xd
xPd
xd
xud
xxP
xd
xud
x nn
nn
n
nnn
n
n
  
or
SOLO
80
Legendre Functions of the Second Kind Qn (x) (continue – 1)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 02121 2
2
2
2
=−−+− xP
xd
xud
x
xd
xPd
xd
xud
xxP
xd
xud
x n
nnn
n
n
Equivalent to
( )
( )
( )
( )
0
1
2/
2
/
/
2
22
=
−
−+
x
x
xP
xdxPd
xdxud
xdxud
n
n
n
n
( ) ( ) ( ) 01lnln2ln 2
=−++ x
xd
d
xP
xd
d
xd
xud
xd
d
n
n
or
Integrating we obtain
( ) ( )[ ] ( ) .1lnlnln 22
constxxP
xd
xud
n
n
=−++
Therefore ( ) ( )[ ] ( ) AconstxxP
xd
xud
n
n
==−⋅⋅ .1 22
( )
( )[ ] ( )∫ −⋅
= 22
1 xxP
xd
Axu
n
n
This means that the second solution has the form
( ) ( ) ( ) ( )
( )[ ] ( )∫ −⋅
== 22
1 xxP
xd
xPxuxPxQ
n
nnnn
Legendre Ordinary Differential Equation
SOLO
81
Legendre Functions of the Second Kind Qn (x) (continue – 2)
We obtained
( ) ( ) ( ) ( )
( )[ ] ( )
1
1 22
<
−⋅
== ∫ x
xxP
xd
xPxuxPxQ
n
nnnn
( ) ( ) ( )[ ] ( )
( ) ( )[ ]
x
x
xxxd
xxxxP
xd
xPxQ
−
+
=++−−=





+
+
−
=
−⋅
= ∫∫ 1
1
ln
2
1
1ln1ln
2
1
1
1
1
1
2
1
1 2
1
2
01
00

Let calculate Q0 (x), Q1 (x)
( ) ( ) ( )[ ] ( ) ( ) 1
1
1
ln
2
1
1
2/1
1
2/1
1
1
1
22222
1
11
2
−
−
+
=





+
+
+
−
=
−
=
−⋅
= ∫∫∫ x
xx
xd
xxx
xxd
xx
x
xxP
xd
xPxQ
x
x 
Legendre Ordinary Differential Equation
SOLO
82
Legendre Functions of the Second Kind Qn (x) (continue – 2)
( )
( ) ( )
( ) ( )
( ) ( )
3
2
2
5
1
1
ln
2
1
3
2
2
5
1
1
ln
4
35
2
3
1
1
ln
2
1
2
3
1
1
ln
4
43
1
1
1
ln
2
1
1
1
1
ln
2
1
1
ln
2
1
2
3
23
3
2
2
2
11
0
+−





−
+
=+−





−
+−
=
−





−
+
=−





−
+−
=
−





−
+
=−





−
+
=






−
+
=
x
x
x
xP
x
x
xxx
xQ
x
x
x
xP
x
x
xx
xQ
x
x
xP
x
xx
xQ
x
x
xQ
Legendre Ordinary Differential Equation
SOLO
83
Legendre Functions of the Second Kind Qn (x) (continue – 3)
To obtain a general formula for Qn (x), start from the Polynomial Pn (x) that has
n zeros αi, i=1,2,…,n
( ) ( ) ( ) ( )nnn xxxkxP ααα −−−= 21
( )[ ] ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )∑=






−
+
−
+
+
+
−
=
+⋅−⋅−−−
=
−⋅
n
i i
i
i
i
nnn
x
d
x
c
x
b
x
a
xxxxxkxxP
1
2
00
22
2
2
1
222
11
11
1
1
1
αα
ααα 
( ) ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( ) ( )∑=






−
+
−
−⋅+−++=
n
i i
i
i
i
nnn
x
d
x
c
xxPxPxbxPxa
1
2
222
0
2
0 1111
αα
If we put x=1 and x = -1, and remembering that Pn (1) = 1 and Pn(-1)=(-1)n
, we obtain
2/100 == ba
Let prove that
( )
( )[ ] ( )
0
1
1
22
2
=














−⋅
−=
= ixn
ii
xxP
x
xd
d
c
α
α
Legendre Ordinary Differential Equation
SOLO
84
Legendre Functions of the Second Kind Qn (x) (continue – 4)
Let prove that ( )
( )[ ] ( )
0
1
1
22
2
=














−⋅
−=
= ixn
ii
xxP
x
xd
d
c
α
α
Start with
( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) i
x
iixi xatfinitexfprovided
xd
xfd
xxfxxfx
xd
d
i
i
αααα
α
α ==





−+−=−
=
=
02
22
The only terms that are not finite in
at x = αi are the terms ci/(x-αi) and di/(x-αi)2
, therefore
( )[ ] ( ) ( ) ( )∑=






−
+
−
+
+
+
−
=
−⋅
n
i i
i
i
i
n x
d
x
c
x
b
x
a
xxP 1
2
00
22
111
1
αα
( )
( )[ ] ( )
( )
( ) ( )
( )[ ] i
x
iii
xi
i
i
i
i
xn
i cdxc
xd
d
x
d
x
c
x
xd
d
xxP
x
xd
d
iii
=






+−=














−
+
−
−=






−⋅
−
=== ααα
α
αα
αα 2
2
22
2
1
1
Therefore if we write Pn (x) = (x-αi) Li (x), we have
( )[ ] ( ) ( )[ ] ( )
( )
( )[ ] ( )
( ) ( ) ( )
( )[ ] ( )
( ) ( ) ( )
( )[ ] ( )22
2
223
2
2322222
1
/1
2
1
/122
1
/2
1
2
1
1
iii
iiiiii
xi
ii
xi
i
ixi
i
L
xdxLdL
xxL
xdxLdxxLx
xxL
xdxLd
xxL
x
xxLxd
d
c
iii
αα
αααα
ααα
−⋅
=−−
=








−⋅
−⋅−
=








−⋅
−
−⋅
=














−⋅
=
===
Legendre Ordinary Differential Equation
SOLO
85
Legendre Functions of the Second Kind Qn (x) (continue – 5)
We proved that ( )
( )[ ] ( ) ixn
ii
xxP
x
xd
d
c
α
α
=














−⋅
−= 22
2
1
1
( ) ( ) ( )
( )[ ] ( )22
2
1
/1
2
iii
iiiiii
i
L
xdxLdL
c
αα
αααα
−⋅
=−−
=Therefore if we write Pn (x) = (x-αi) Li (x), we have
Since Pn (x) = (x-αi) Li (x) satisfies the Legendre ODE, we have
( ) ( ) ( ){ } ( ) ( ){ } ( ) ( ) ( ){ } 0121 2
2
2
=−++−−−− xLxnnxLx
xd
d
xxLx
xd
d
x iiiiii ααα
Performing the calculation and substituting x = αi, we have
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 01221 2
2
2
=






−++





+−−





+−−
= ix
iii
i
i
ii
i xLxnnxL
xd
xLd
xx
xd
xLd
xd
xLd
xx
α
ααα
( ) ( ) ( ) 0212
2
=−
=
− iii
ii
i L
xd
xLd
αα
α
α
Substituting in ci equation we get
( ) ( ) ( )
( )[ ] ( ) 0
1
/1
2 22
2
=
−⋅
=−−
=
iii
iiiiii
i
L
xdxLdL
c
αα
αααα
Therefore ( )[ ] ( ) ( )∑= −
+





+
+
−
=
−⋅
n
i i
i
n x
d
xxxxP 1
222
1
1
1
1
2
1
1
1
α
Legendre Ordinary Differential Equation
SOLO
86
Legendre Functions of the Second Kind Qn (x) (continue – 6)
We can prove that but the exact value is not important, as
we shall see
( )
( )[ ] ( ) ixn
i
i
xxP
x
d
α
α
=





−⋅
−
= 22
2
1
Therefore
( )[ ] ( ) ( )∑= −
+





+
+
−
=
−⋅
n
i i
i
n x
d
xxxxP 1
222
1
1
1
1
2
1
1
1
α
( )[ ] ( ) ( ) ∑∑∫∫∫ == −
−
−
+
=
−
+





+
+
−
=
−⋅
n
i i
i
n
i i
i
n
x
d
x
x
dx
x
d
dx
xxxxP
dx
11
222
1
1
ln
2
1
1
1
1
1
2
1
1 αα
( ) ( ) ( )
∑= −
−
−
+
=
n
i i
n
inn
x
xP
d
x
x
xPxQ
11
1
ln
2
1
α
Since Pn (x)/(x-αi) is a polynomial of order (n-1) the sum above is also a
polynomial of order (n-1), and we define it as
( ) ( )
∑=
−
−
=
n
i i
n
in
x
xP
dxW
1
1 :
α
so
( ) ( ) ( ) 1
1
1
ln
2
1
1 <−
−
+
= − xxW
x
x
xPxQ nnn
Legendre Ordinary Differential Equation
SOLO
87
Legendre Functions of the Second Kind Qn (x) (continue – 7)
To find Wn-1 (x) let use the fact that Qn (x) is a solution of Legendre’s ODE
or
( ) ( ) ( ) ( ) ( ) 0121 2
2
2
=++−− xQnn
xd
xQd
x
xd
xQd
x n
nn
( ) ( ) ( ) ( )
xd
xWd
xP
xx
x
xd
xPd
xd
xQd n
n
nn 1
2
1
1
1
1
ln
2
1 −
−
−
+
−
+
=
( ) ( ) ( )
( )
( ) ( )
2
1
2
2222
2
2
2
1
2
1
2
1
1
ln
2
1
xd
xWd
xP
x
x
xd
xPd
xx
x
xd
xPd
xd
xQd n
n
nnn −
−
−
+
−
+
−
+
=
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0121
1
2
2
1
2
1
1
ln
2
1
121
1
1
2
1
2
2
22
0
2
2
2
=+−+−−
−
−+
−
+
−
+






++−−
−
−−
xWnn
xd
xWd
x
xd
xWd
xxP
x
x
xd
xPd
xP
x
x
x
x
xPnn
xd
xPd
x
xd
xPd
x
n
nn
n
n
n
n
nn
  
( ) ( ) ( ) ( ) ( ) ( )
xd
xPd
xWnn
xd
xWd
x
xd
xWd
x n
n
nn
2121 1
1
2
1
2
2
=++−− −
−−
Legendre Ordinary Differential Equation
( ) ( ) ( ) 1
1
1
ln
2
1
1 <−
−
+
= − xxW
x
x
xPxQ nnn
SOLO
88
Legendre Functions of the Second Kind Qn (x) (continue – 8)
Use the Recursive Formula
( ) ( ) ( ) ( ) ( )
xd
xPd
xWnn
xd
xWd
x
xd
d n
n
n
211 1
12
=++






− −
−
( ) ( ) ( ) ( )
( )
∑






−
=
−−−−=
1
2
1
0
121421
l
i
in
n
xPin
xd
xPd
Since Wn-1(x) is a polynomial of order n – 1, let write
( ) ( ) ( ) ( )
( )
∑






−
=
−−−−− =++=
1
2
1
0
1231101
n
i
ininnn xPaxPaxPaxW 
Substitute those two equation in the Wn-1(x) O.D.E. to obtain
( ) ( ){ }
( )
( ) ( )
( )
( ) ( )
( )
∑∑∑






−
=
−−






−
=
−−






−
=
−− −−=++−
1
2
1
0
12
1
2
1
0
12
1
2
1
0
12
2
142211
l
i
in
n
i
ini
n
i
ini xPinxPannxPx
xd
d
a
But by Legendre O.D.E.: ( ) ( ){ } ( ) ( ) ( ) 02121 1212
2
=−−−+− −−−− xPininxPx
xd
d
inin
( ) ( ) ( ){ } ( )
( )
( ) ( )
( )
∑∑






−
=
−−






−
=
−− −−=++−−−−
1
2
1
0
12
1
2
1
0
12 14221212
l
i
in
n
i
ini xPinxPnninina
Let solve
Legendre Ordinary Differential Equation
SOLO
89
Legendre Functions of the Second Kind Qn (x) (continue – 9)
The coefficients of the same polynomial in both sides must be equal
( ) ( ) ( ){ } ( )
( )
( ) ( )
( )
∑∑






−
=
−−






−
=
−− −−=++−−−−
1
2
1
0
12
1
2
1
0
12 14221212
l
i
in
n
i
ini xPinxPnninina
( ) ( ) ( ){ } ( )14221212 −−=++−−−− innnininai
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )12224244
1221212
222
2
+−=−+−=++−+−+−=
++−+−−=++−−−−
iininininniniinn
nnininnninin
But
which gives
( ) ( )12
142
+−
−−
=
iin
in
ai
( )
( ) ( )
( )
( )
( ) ( ) ( ) ( )
[ ][ ]
∑ ∑∑ = =
−−
=+






−
=
−−−
+−
+−
=





 −
−
+−
=
+−
−−
=
n
m
n
m
mnmn
mi
n
i
inn xP
mn
mn
m
xP
m
n
mn
m
xP
iin
in
xW
1 1
12
1
2
1
0
121
12
12221
2
1
1221
12
142
and
( ) ( ) ( )∑=
−−− =
n
m
mnmn xPxP
m
xW
1
11
1
?????
Legendre Ordinary Differential Equation
SOLO
90
Legendre Functions of the Second Kind Qn (x) (continue -10)
( )
3,2,1,0
10
=
<≤
n
xxQn
Legendre Ordinary Differential Equation
( )
( ) ( )
( ) ( )
( ) ( )
3
2
2
5
1
1
ln
2
1
3
2
2
5
1
1
ln
4
35
2
3
1
1
ln
2
1
2
3
1
1
ln
4
43
1
1
1
ln
2
1
1
1
1
ln
2
1
1
ln
2
1
2
3
23
3
2
2
2
11
0
+−





−
+
=+−





−
+−
=
−





−
+
=−





−
+−
=
−





−
+
=−





−
+
=






−
+
=
x
x
x
xP
x
x
xxx
xQ
x
x
x
xP
x
x
xx
xQ
x
x
xP
x
xx
xQ
x
x
xQ
SOLO
91
Legendre Functions of the Second Kind Qn (x) (continue -11)
Similar to Rodrigues Formula for Legendre Functions of the Second Kind Qn (x)
Start with
( )
( ) ( )12
2212
1
1
1
1 +−−
++
−=
−
n
nn
x
xx
( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )
( ) ( )( )( ) ( )
( )
( ) ( ) ( )( ) ( )1
32211
11,
,121,11,1:
++−
+−+−+−
−++=
−++=−+=−=
ini
nnn
uinnuf
unnufunufuuf


( )
( ) ( ) ( )
1
!!
!
!!
!1
1
1 12
0
2
0
2212
>
+
=
+
=
−
++−
∞
=
−
∞
=
++ ∑∑ xx
in
in
x
in
in
xx
in
i
i
i
nn
( )
( )
( ) ( )( ) ( ) 1
!
21
!
0
00
<
+++
== ∑∑
∞
=
∞
=
uu
i
innn
u
i
f
uf
i
i
i
i
i

Taylor expansion around u = 0
Use u = x-2
Legendre Ordinary Differential Equation
SOLO
92
Legendre Functions of the Second Kind Qn (x) (continue -12)
Similar to Rodrigues Formula for Legendre Functions of the Second Kind Qn (x)
Integrate relative to x
( )
( )
( )
( ) ( )
( )
( )
( )
( )
( ) ( )
( )
( )
∑∑
∫∑∫∑∫
∞
=
++−
∞
=
∞
++−
∞
++−
∞
=
∞
++−
∞
=
∞
+
−+
+
=
++
+
=
+
=
+
=
−
0
122
0
122
12
0
2
12
0
212
122!!
!
122!!
!
!
!
!
!
1
i
in
i
xin
x
in
ix
in
ix
n
x
inni
in
inni
in
d
n
in
d
n
ind
η
ηηηη
η
η
Integrate this n more times
( )
( )
( )
( )
( )
( ) ( ) ( ) ( )
( )
( ) ( )
( )
( )
∑
∑
∑ ∫ ∫∫∫ ∫
∞
=
++−
∞
=
++−
∞
=
∞ ∞
++−
∞ ∞ ∞
+
+
++
++
=
+++++++
+
=
++
+
=
−
0
12
0
12
0
122
12
1
!122!!
!2!
122222122!!
!
122!!
!
1
i
in
i
in
i x
nin
x
n
n
x
inni
inin
x
ininininni
in
d
inni
ind


ηη η
ηη
η
η
Legendre Ordinary Differential Equation
SOLO
93
Legendre Functions of the Second Kind Qn (x) (continue -13)
Similar to Rodrigues Formula for Legendre Functions of the Second Kind Qn (x)
(continue)
( )
( ) ( )
( )
( )
1
!122!
!2!
!
1
1 0
12
12
1
>
++
++
=
−
∑∫∫ ∫
∞
=
++−
∞ ∞ ∞
+
+
xx
ini
inin
n
d
i
in
x
n
n
η η η
η

We found, using Frobenius Series
By comparing those two relations we obtain
( )
( )
1
1
!2 12
1
>
−
= ∫∫ ∫
∞∞ ∞
+
+
x
d
nxQ
x
n
n
n
n
η η η
η

Return to
Frobenius Series
( ) ( ) ( )
( )
( )
1
!122!
!2!
2
0
12
>
++
++
= ∑
∞
=
++−
xx
ini
inin
xQ
i
inn
n
Legendre Ordinary Differential Equation
SOLO
94
Legendre Functions of the Second Kind Qn (x) (continue -14)
Another Expression for Legendre Functions of the Second Kind Qn (x)
Start with the following Differential Equation
( ) ( ) 02121 2
2
2
=+−+− un
xd
ud
xn
xd
ud
x
One of the Solutions is . Check:( ) ( )n
xxu 12
1 −=
( ) ( ) ( ) ( ) 22212
2
1
2
121
11412&12
−−−
−−+−=−=
nnn
xxnnxn
xd
ud
xxn
xd
ud
( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 01211411412
2121
21221222
1
1
2
1
2
2
=−−−−+−−−−−=
+−+−
−− nnnn
xnxnxnxxnnxn
un
xd
ud
xn
xd
ud
x
The Second Solution can be find using u1 (x) by finding a function v (x) that satisfies:
( ) ( ) ( )n
xxvxu 12
2 −=
Legendre Ordinary Differential Equation
SOLO
95
Legendre Functions of the Second Kind Qn (x) (continue -15)
Another Expression for Legendre Functions of the Second Kind Qn (x)
(continue – 1)
( ) ( ) ( ) ( )
( ) ( ) 01221
21212121
112
2
1
12
0
1
1
2
1
2
2
2
2
2
2
2
2
=−+





+−+






+−+−=+−+−
xd
vd
uxnu
xd
vd
u
xd
vd
xd
ud
x
un
xd
ud
xn
xd
ud
xvun
xd
ud
xn
xd
ud
x
  
The Second Solution can be find using u1 (x) by finding a function v (x) that satisfies:
( ) ( ) ( )n
xxvxu 12
2 −=
2
1
2
1
12
2
2
2
2
1
1
2
2&
xd
ud
v
xd
ud
xd
vd
u
xd
vd
xd
ud
xd
ud
vu
xd
vd
xd
ud
++=+=
( )
( )
( )
( ) ( ) ( )
( )1
121
2
2
1
12
2
1
12
/
/
2
1
2
1
2
1
1
1
2
1
22
−
+
−=
−
−
−
−
=
−
−
−
−
=
x
xn
u
x
uxn
x
uxn
u
xd
ud
x
uxn
xdvd
xdvd
Legendre Ordinary Differential Equation
SOLO
96
Legendre Functions of the Second Kind Qn (x) (continue -16)
Another Expression for Legendre Functions of the Second Kind Qn (x)
(continue – 2)
Therefore
( )
( )1
12
/
/
2
22
−
+
−=
x
xn
xdvd
xdvd
( ) ( )
( )
( )
( )∫
∞
++
−
=⇒
−
=⇒−+−=
x
nn
d
xv
xxd
vd
xn
xd
vd
1212
2
11
1
1ln1
η
η
( ) ( ) ( ) ( )
( )∫
∞
+
−
−==
x
n
n d
xxuxvxu 12
2
12
1
1
η
η
Differentiate the Differential Equation ( ) ( ) 02121 2
2
2
=+−+− un
xd
ud
xn
xd
ud
x
( ) ( ) ( )
( ) ( ) ( ) 0122221
2121221
2
2
3
3
2
2
2
2
2
2
=−+−+−=
+−+−+−−
xd
ud
n
xd
ud
xn
xd
ud
x
xd
ud
n
xd
ud
xd
d
xn
xd
ud
n
xd
ud
x
xd
ud
xd
d
x
Legendre Ordinary Differential Equation
SOLO
97
Legendre Functions of the Second Kind Qn (x) (continue -17)
Another Expression for Legendre Functions of the Second Kind Qn (x)
(continue – 3)
Differentiate relative to x the Ordinary Differential Equation n times
( ) ( ) ( ) 0122221: 2
2
3
3
2
=−+−+−
xd
ud
n
xd
ud
xn
xd
ud
xODE
xd
d
( ) ( ) ( ) 0223321: 2
2
4
4
2
2
2
=−+−+−
xd
ud
n
xd
ud
xn
xd
ud
xODE
xd
d
( ) ( ) 02121: 2
2
2
=+−+− un
xd
ud
xn
xd
ud
xODE
( ) ( ) 0121: 1
1
2
2
2
=++−− +
+
+
+
n
n
n
n
n
n
n
n
xd
ud
nn
xd
ud
x
xd
ud
xODE
xd
d
Derive ( ) ( )[ ] ( )( ) 021121: 1
1
2
2
2
=−+++−+− +
+
+
+
i
i
i
i
i
i
i
i
xd
ud
ini
xd
ud
xin
xd
ud
xODE
xd
d
( ) ( )[ ]{ } ( )[ ] ( )( ){ }
( ) ( )[ ] ( )( ) 0122221
21121221:
1
1
1
1
3
3
2
1
1
1
1
3
3
2
=−−+++−+−
−+++−++−+−+−
+
+
+
+
+
+
+
+
+
+
+
+
i
i
i
i
i
i
i
i
i
i
i
i
i
i
xd
ud
ini
xd
ud
xin
xd
ud
x
xd
ud
iniin
xd
ud
xin
xd
ud
xODE
xd
d
xd
d
Proof
by
Induction q.e.d.
i = n
i → i+1
Legendre Ordinary Differential Equation
SOLO
98
Legendre Functions of the Second Kind Qn (x) (continue -18)
Another Expression for Legendre Functions of the Second Kind Qn (x) (continue – 4)
This is the Legendre Ordinary Differential Equation for dn
u/dxn
, having the solution
Pn (x) and Qn (x). Thus, the solution Pn (x) and Qn (x) can be written in the following
form:
( ) ( ) 0121: 1
1
2
2
2
=++−− +
+
+
+
n
n
n
n
n
n
n
n
xd
ud
nn
xd
ud
x
xd
ud
xODE
xd
d
We obtain
( ) ( )[ ]n
n
n
nn
n
nn x
xd
d
nxd
ud
n
xP 1
!2
1
!2
1 21
−==
( ) ( )
( )
( )
( )
( )
( )
1
1
1
!2
!21
!2
!21
12
22
>








−
−
−
=
−
= ∫
∞
+
x
d
x
xd
d
n
n
xd
ud
n
n
xQ
x
n
n
n
nnn
n
nnn
n
η
η
Rodrigues Formula
An integral for Qn (x) valid in |x| < 1 can be obtained from the previous result
( ) ( )
( )
( )
( )
1
1
1
!2
!21
0
12
2
<








−
−
−
= ∫ +
x
d
x
xd
d
n
n
xQ
x
n
n
n
nnn
n
η
η
Return to Table of Content
Legendre Ordinary Differential Equation
99
SOLO
Laplace Differential Equation in Spherical Coordinates
0
sin
1
sin
sin
11
2
2
222
2
2
2
=
∂
Φ∂
+





∂
Φ∂
∂
∂
+





∂
Φ∂
∂
∂
=Φ∇
φθθ
θ
θθ rrr
r
rr
Let solve this equation by the method of Separation of Variables,
by assuming a solution of the form :
( ) ( )ϕθ,SrR=Φ
Spherical Coordinates:
θ
ϕθ
ϕθ
cos
sinsin
cossin
rz
ry
rx
=
=
=
In Spherical Coordinates the Laplace equation becomes:
Substituting in the Laplace Equation and dividing by Φ gives:
0sinsin
sin
11
2
2
22
2
2
=





∂
∂
+





∂
∂
∂
∂
+





φθ
θ
θ
θ
θ
SS
Srrd
Rd
r
rd
d
Rr
The first term is a function of r only, and the second of angular
coordinates. For the sum to be zero each must be a constant, therefore:
λ
φθ
θ
θ
θ
θ
λ
−=





∂
∂
+





∂
∂
∂
∂
=





2
2
2
2
sinsin
sin
1
1
SS
S
rd
Rd
r
rd
d
R
Associate Legendre Differential Equation
100
SOLO
λ
φθ
θ
θ
θ
θ
−=





∂
∂
+





∂
∂
∂
∂
2
2
2
sinsin
sin
1 SS
S
( ) ( ) ( )φθφθ ,,, SrRr =Φ
We obtain:
Multiply this by S sin2
θ and put to get:( ) ( ) ( )φθφθ ΦΘ=,S
0
1
sinsinsin
1
2
2
2
=
Φ
Φ
+





+




 Θ
∂
∂
Θ φ
θλ
θ
θ
θ
θ
d
d
d
d
Again, the first term, in the square bracket, and the last term must
be equal and opposite constants, which we write m2
, -m2
. Thus:
Φ−=
Φ
=Θ





−+




 Θ
2
2
2
2
2
0
sin
sin
sin
1
m
d
d
m
d
d
d
d
φ
θ
λ
θ
θ
θθ
The Φ ( ) must be periodical in (a period of 2 π) and becauseϕ ϕ
this we choose the constant m2
, with m an integer. Thus:
( ) φφφ mbma sincos +=Φ
Laplace Differential Equation in Spherical Coordinates
( ) φφ
φ mjmj
ee +−
=Φ ,or
With m integer, we have the Orthogonality Condition
21
21
,
2
0
2 mm
mjmj
dee δπφ
π
φφ
=⋅∫
+−
Return to Table of Content
Associate Legendre Differential Equation
101
SOLO
( ) ( ) ( )φθ ΦΘ=Φ rR
We obtain:
or:
Θ−=Θ−
Θ
+
Θ
λ
θθ
θ
θ 2
2
2
2
sin
cot
m
d
d
d
d
0
sin
sin
sin
1
2
2
=Θ





−+




 Θ
∂
∂
θ
λ
θ
θ
θθ
m
d
d
Analysis of Associate Lagrange Differential Equation
Laplace Differential Equation in Spherical Coordinates
Change of variables: t = cos θ
θθ dtd sin−=
td
d
d
d Θ
−=
Θ
θ
θ
sin

( ) td
d
t
td
d
t
td
d
d
d
td
d
td
d
td
d
td
d
d
d
d
d
d
d Θ
−
Θ
−=
Θ
+
Θ
=




 Θ
−−=




 Θ
=
Θ
−
2
2
2
cossin/1
2
2
2
2
2
1
sin
sinsinsinsin

θθ
θ
θθ
θθθθ
θθθ
Θ





−
−+
Θ
−
Θ
−
Θ
=Θ





−+
Θ
+
Θ
=
=
2
2
2
2cos
2
2
2
2
1sin
cot0
t
m
td
d
t
td
d
t
td
dm
d
d
d
d t
λ
θ
λ
θ
θ
θ
θ
We obtain:
1cos
0
1
2 2
2
2
2
≤⇒=
=Θ





−
−+
Θ
−
Θ
tt
t
m
td
d
t
td
d
θ
λ
Associate Legendre Differential Equation
102
SOLO
( ) ( ) ( )ϕθ gfrR=Φ
We obtain:
or:
ff
m
d
fd
d
fd
λ
θθ
θ
θ
−=−+ 2
2
2
2
sin
cot
Let try to factorize the left-hand side, second order differential
equation into two first-order operators:
0
sin
sin
sin
1
2
2
=





−+





∂
∂
f
m
d
fd
θ
λ
θ
θ
θθ
The two equations are identical if the coefficient are equal. This
is obtained by choosing α and β as follows:
( ) integer1
1
2
==−
=+
mmαβ
βα
( )
( ) ( ) ff
d
fd
d
fd
ff
d
fd
d
fd
f
d
fd
d
d
f
d
d
d
d
βα
θ
αβ
θ
θβα
θ
θβα
θ
β
θ
θβα
θ
θβ
θ
θα
θ
θβ
θ
θα
θ
θ
−−−++=
+−++=






+





+=





+





+
−
22
2
1
sin
1
2
22
2
sin
1
1cot
cot
sin
cot
cotcotcotcot
2

Laplace Differential Equation in Spherical Coordinates
Analysis of Associate Lagrange Differential Equation (continue – 1)
Associate Legendre Differential Equation
103
SOLO
( ) ( ) ( )ϕθ gfrR=Φ
We obtain:
and:
ff
m
d
fd
d
fd
λ
θθ
θ
θ
−=−+ 2
2
2
2
sin
cot
We have two solutions for α and β as follows:
1.β1 = m, α1 = 1-m
2.β2 = -m, α2 = 1+m
Since m is an integer α, β are also integers.
( ) integer1
1
2
==−
=+
mmαβ
βα
( ) ( ) ( ) fff
d
fd
d
fd

λ
βαλβα
θ
αβ
θ
θβα
θ
+−=−−−++ '
sin
1
1cot 22
2
βα −=1
integer22
== mmβ
Let define the two operators:
( )
( )
( ) θ
θ
θ
θ
cot1
cot
++=
−=
−
+
m
d
d
M
m
d
d
M
m
m
Laplace Differential Equation in Spherical Coordinates
Analysis of Associate Lagrange Differential Equation (continue – 2)
Associate Legendre Differential Equation
104
SOLO
( ) ( ) ( )ϕθ gfrR=Φ
We obtain:
We have two solutions for α and β as follows:
1.β1 = m, α1 = 1-m
2.β2 = -m, α2 = 1+m
Since m is an integer α, β are also integers.
( )
( )
( ) θ
θ
θ
θ
cot1
cot
++=
−=
−
+
m
d
d
M
m
d
d
M
m
m
ff
d
d
d
d
λθβ
θ
θα
θ
−=





+





+ cotcot
( )

( )

( )

( ) ( )11
11
11
11
1 mmmm fmmfMM








−−−=
−
−
−
+
−
αβ
βα
λ
We have:
( )

( )

( )

( ) ( )22
22
22
1 mmmm fmmfMM








+−−=
−
+−
αβ
βα
λ
fm
(1)
– the solution for α1, β1
fm
(2)
– the solution for α2, β2
Laplace Differential Equation in Spherical Coordinates
Analysis of Associate Lagrange Differential Equation (continue – 3)
Associate Legendre Differential Equation
105
SOLO
( ) ( ) ( )ϕθ gfrR=Φ
We obtain:
( ) ( ) ( )
( )[ ] ( )11
11 1 mmmm fmmfMM −−−=−
−
+
− λ
( ) ( ) ( )
( )[ ] ( )22
1 mmmm fmmfMM +−−=+−
λ
Let operate on first of those equations with
( )−
−1mM
( ) ( ) ( ) ( )
[ ] ( )[ ] ( ) ( )
[ ]1
1
1
111 1 mmmmmm fMmmfMMM −
−
−
−
+
−
−
− −−−= λ
In the Second Equation replace m by m-1
( ) ( ) ( )
( )[ ] ( )2
1
2
111 1 −−
+
−
−
− −−−= mmmm fmmfMM λ
Let operate on second of those equations with
( )+
mM
1
2
( ) ( ) ( ) ( )
[ ] ( )[ ] ( ) ( )
[ ]22
1 mmmmmm fMmmfMMM ++−+
+−−= λ
In the First Equation replace m by m+1
( ) ( ) ( )
( )[ ] ( )1
1
1
1 1 ++
−+
+−−= mmmm fmmfMM λ
( ) ( ) ( )21
1 mmmm fpfM =+
−
( ) ( ) ( )1
1
2
+
+
= mmmm fqfM
Laplace Differential Equation in Spherical Coordinates
pm is a constant
qm is a constant
mm →−1
mm →−1
Analysis of Associate Lagrange Differential Equation (continue – 4)
Associate Legendre Differential Equation
106
SOLO
We
obtained:( ) ( ) ( )21
1 mmmm fpfM =+
−
( ) ( ) ( )1
1
2
+
+
= mmmm fqfM
Laplace Differential Equation in Spherical Coordinates
( )
( )
( )
θ
θ
θ
θ
cot
cot1
m
d
d
M
m
d
d
M
m
m
−=
++=
+
−
where:
Theorem:
( ) ( )
( ) ( ) ( )
( )∫∫
+−
−=
ππ
θθθθθθθθ
00
sinsin dgMfdfMg mm
where f and g are arbitrary bounded function of θ.
Proof:
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )
( )∫∫
∫
∫∫
+
−
−=





−−=






+−−=






++=
ππ
π
π
ππ
θθθθθθθ
θ
θ
θθ
θ
θθ
θθθθθθ
θ
θθθθ
θθθ
θ
θθθθθθ
00
0
0
0
00
sinsin
sin
cos
sin
cos1sinsin
cot1sinsin
dgMfdgfmg
d
d
f
dgfmg
d
d
ffg
dfm
d
d
gdfMg
m
m
  
Those are Recursive Relations in m.
Analysis of Associate Lagrange Differential Equation (continue – 5)
Associate Legendre Differential Equation
107
SOLO
Laplace Differential Equation in Spherical Coordinates
( ) ( )
( )( ) ( ) ( )
( )( )∫∫
+−
−=
ππ
θθθθθθθθ
00
sinsin dgMfdfMg mm
( )
( ) ( )
( ) ( ) ( )
( )∫∫ +
−+
++
−
+
−
−=
ππ
θθθθ
0
11
0
11 sinsin dfMMfdfMfM mmmmmmmm
( )
( ) ( )
( ) ( ) ( )
∫
∫∫
=
=+
−
+
−
π
ππ
θθ
θθθθ
0
22
00
11
sin
sinsin
dfp
dfpfpdfMfM
mm
mmmmmmmm
Choose f := fm+1 and g := Mm
(-)
fm+1:
( ) ( )
( ) ( )[ ]{ }
( )[ ] ∫
∫∫
+
+++
−+
+
+−=
+−−−=−
π
ππ
θθλ
θλθθθ
0
2
1
0
11
0
11
sin1
1sinsin
dfmm
dfmmfdfMMf
m
mmmmmm
Assuming: we have1sinsin
0
2
1
0
2
== ∫∫ +
ππ
θθθθ dfdf mm
( ) ( ) λλ ≤+→+−= 11 mmmmpm
Analysis of Associate Lagrange Differential Equation (continue – 6)
Associate Legendre Differential Equation
108
SOLO
Laplace Differential Equation in Spherical Coordinates
( ) ( )
( )( ) ( ) ( )
( )( )∫∫
+−
−=
ππ
θθθθθθθθ
00
sinsin dgMfdfMg mm
Choose now f := Mm
(+)
fm and g := fm, to obtain as before
We obtained
( ) ( ) λλ ≤+→+−= 11 mmmmqm
( ) ( ) λλ ≤+→+−= 11 mmmmpm
We see that m, an integer, is bounded by λ, therefore we must choose λ as
( ) 0integer1 >=+= lllλ
In this case we have mMAX = l, mmin = -(l+1), or
( ) integer0,integer1 =>=≤≤+− mllml
Therefore
( ) ( ) ( ) lmlmmllqp mm ≤≤+−→+−+== 111
Analysis of Associate Lagrange Differential Equation (continue – 7)
Associate Legendre Differential Equation
109
SOLO
Laplace Differential Equation in Spherical Coordinates
We obtained
( ) ( ) ( ) lmlmmllqp mm ≤≤+−→+−+== 111
( )
( )
( )
θ
θ
θ
θ
cot
cot1
m
d
d
M
m
d
d
M
m
m
−=
++=
+
−
( ) ( ) ( )21
1 mmmm fpfM =+
−
( ) ( ) ( )1
1
2
+
+
= mmmm fqfM
( ) ( )
( ) ( ) ( )
( )
( ) ( )
( ) lml
mmllfm
d
d
fmmllfm
d
d
m
mm
≤≤+−







+−+=





−
+−+=





++ +
1
11cot
11cot1
2
21
1
θ
θ
θ
θ
Substituting m = - (l+1) in the First Equation and m = l in the Second we obtain:
( )
( )







=





−
=





− −
0cot
0cot
2
1
l
l
fl
d
d
fl
d
d
θ
θ
θ
θ
( )
( )
( )
( )
( )
( )
θ
θ
θ
θ
sin
sin
sin
sin
2
2
1
1
d
l
f
fd
d
l
f
fd
l
l
l
l
=
=
+
+
−
−
( ) ( )
θl
lll Cff sin
21
== +−
If we can find a Solution for a particular m, we can use the Recursive Relations
above to find the others.
Analysis of Associate Lagrange Differential Equation (continue – 8)
Associate Legendre Differential Equation
110
SOLO
Laplace Differential Equation in Spherical Coordinates
We obtained ( ) ( )
θl
lll Cff sin
21
== +−
Cl must be chosen to normalize fi and f-l:
1sinsin
0
122
0
2
== ∫∫
+
±
ππ
θθθθ dCdf l
ll
( )
( )!12
!21
212
2
+
=
+
n
n
C
n
l
( )
( )212
!2
!12
n
n
C nl +
+
=
( ) ( ) ( )∫∫∫∫
+−−+
−=+−=−=
ππ
π
ππ
θθθθθθθθθθθθ
0
1212
0
212
0
0
2
0
2
0
12
sinsin2cossin2cossincossinsin dndndd nnnnnn
  
Therefore
( )
( ) ( ) ( ) ( ) ( )
( )
( )!12
!2
cos
2222
!2
11212
!2
sin
31212
2222
sin
12
2
sin
212
2
0
1
00
12
0
12
+
=
−⋅
⋅
−⋅+
=
−⋅+
−⋅
=
+
=
+
−+
∫∫∫ n
n
nn
n
nn
n
d
nn
nn
d
n
n
d
nnn
nn

  


π
πππ
θθθθθθθ
Analysis of Associate Lagrange Differential Equation (continue – 9)
Associate Legendre Differential Equation
111
SOLO
Laplace Differential Equation in Spherical Coordinates
The Normalized Solution for m = l is defined as
( )
( )
θl
n
lm
l
lm
l
n
n
sin
!2
!12
212 +
−== +
=Θ=Θ
The Solutions for m < l can be found using the Recursive Relation:
( )
( ) ( )
( )1,,,0,,1,cot
11
11
1
1
1
+−−−=Θ





+
−−+
=Θ=Θ −
−
−
−
llllmm
d
d
mmll
M
p
m
l
m
lm
m
m
l θ
θ
( ) ( ) ( )21
1 mmmm fpfM =+
−
From which the Normalized Solutions for m < l are given by
Or we can find the Solutions for m >- l by using the Recursive Relation:
( ) ( ) ( )1
1
2
+
+
= mmmm fqfM
( )
( ) ( )
llllmm
d
d
mmll
M
q
m
l
m
lm
m
m
l ,1,,0,,,1cot
11
111
−−−−=Θ





−
+−+
=Θ=Θ ++
θ
θ
Analysis of Associate Lagrange Differential Equation (continue – 10)
Associate Legendre Differential Equation
112
SOLO
Laplace Differential Equation in Spherical Coordinates
( )
( )
θl
n
lm
l
lm
l
n
n
sin
!2
!12
212 +
−== +
=Θ=Θ
( )
( ) ( )
( )1,,,0,,1,cot
11
11
1
1
1
+−−−=Θ





+
−−+
=Θ=Θ −
−
−
−
llllmm
d
d
mmll
M
p
m
l
m
lm
m
m
l θ
θ
Examples:
( )
( ) ( )
llllmm
d
d
mmll
M
q
m
l
m
lm
m
m
l ,1,,0,,,1cot
11
111
−−−−=Θ





−
+−+
=Θ=Θ ++
θ
θ
Analysis of Associate Lagrange Differential Equation (continue – 11)
2
cos
1
1
cos
0
1
2
cos
1
1
0
0
1
2
3
sin
2
3
2
3
cos
2
3
1
2
3
sin
2
3
1
2
1
0
x
x
xl
l
x
x
x
−−=−=Θ
==Θ
−==Θ=
=Θ=
=
−
=
=
θ
θ
θ
θ
θ
θ
( )
( ) ( )
( )2
cos
22
2
2
cos
1
2
2
cos
20
2
2
cos
1
2
2
cos
22
2
1
4
15
sin
4
15
1
2
15
cossin
2
15
13
22
5
1cos3
22
5
1
2
15
cossin
2
15
1
4
15
sin
4
15
2
x
xx
x
xx
xl
x
x
x
x
x
−−=−=Θ
−−=−=Θ
−=−=Θ
−==Θ
−==Θ=
=
−
=
−
=
=
=
θ
θ
θ
θ
θ
θ
θθ
θ
θθ
θ
Return to Table of Content
Associate Legendre Differential Equation
SOLO
113
Associated Legendre Functions
Let Differentiate this equation m times with respect to t, and use
Leibnitz Rule of
Product Differentiation: ( ) ( )[ ]
( )
( ) ( )
im
im
i
im
i
m
m
td
tgd
td
tsd
imi
m
tgts
td
d
−
−
=
∑ −
=⋅
0 !!
!
Start with: ( ) ( ) ( ) ( ) 1011 2
≤=++





− ttwnntw
td
d
t
td
d
nn
or: ( ) ( ) ( ) ( ) ( ) 10121 2
2
2
≤=++−− ttwnntw
td
d
ttw
td
d
t nnn
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( )twmmtwtmtwttw
td
d
t
td
d m
n
m
n
m
nnm
m
1211
122
2
2
2
−−−−=





−
++
( ) ( )
( ) ( )
( )twmtwttw
td
d
t
td
d m
n
m
nnm
m
+=




 +1
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( )twnntwmtwttwmmtwtmtwt
m
n
m
n
m
n
m
n
m
n
m
n 122121
1122
++−−−−−−
+++
( ) ( )
( ) ( ) ( )
( ) ( ) ( )[ ] ( )
( ) 011121
122
=+−+++−−=
++
twmmnntwtmtwt
m
n
m
n
m
n
2nd
Way
SOLO
114
Associated Legendre Functions
( ) ( )
( ) ( ) ( )
( ) ( ) ( )[ ] ( )
( ) 011121
122
=+−+++−−
++
twmmnntwtmtwt
m
n
m
n
m
n
Define: ( ) ( )
( )twty
m
n=:
( ) ( )
( ) ( ) ( )
( ) ( ) ( )[ ] ( ) 011121 122
=+−+++−− tymmnntytmtyt
Now define: ( ) ( ) ( )tyttu
m
22
1: −=
Let compute:
( ) ( ) ( )1221
22
11 ytyttm
td
ud mm
−+−−=
−
( ) ( ) ( ) ( )11
22222
111 ytyttm
td
ud
t
mm
+
−+−−=−
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )21
221221221
2222222
1121111 ytyttmyttmyttmytm
td
ud
t
td
d mmmmm
+−
−+−+−−−−+−−=





−
( ) ( ) ( )
( ) ( )
( ) ( )[ ]{ } ( ) ( ) y
t
tm
mnnmmtymmnnytmytt
mm






−
+−+−+−++−+++−−−= 2
22
222
0
12222
1
11111211
  
We get: ( ) ( ) 0
1
11 2
2
2
=





−
−++





− u
t
m
nn
td
ud
t
td
d
2nd
Way
SOLO
115
Associated Legendre Functions
Define: ( ) ( ) ( )tw
td
d
ttu nm
mm
22
1: −=
We get: ( ) ( ) 0
1
11 2
2
2
=





−
−++





− u
t
m
nn
td
ud
t
td
d
Start with Legendre Differential Equation:
( ) ( ) ( ) ( ) 1011 2
≤=++





− ttwnntw
td
d
t
td
d
nn
Summarize
But this is the Differential Equation of f (θ) obtained by solving Laplace’s Equation
by Separation of Variables in Spherical Coordinates .
02
=Φ∇
( ) ( ) ( ) ( )φθφθ ΦΘ=Φ rRr ,,
The Solutions of this Differential Equation are called Associated Legendre
Functions, because they are derived from the Legendre Polynomials, and
Legendre Functions of the Second Kind Qn (x) and are denoted:
( ) ( ) ( )tP
td
d
ttP nm
mm
m
n
22
1: −=
2nd
Way
( ) ( ) ( )tQ
td
d
ttQ nm
mm
m
n
22
1: −=
SOLO
116
Associated Legendre Functions
Let use Rodrigues Formula for Pn (t):
We see that we can define the Associated Legendre Function even for negative
m (In the Differential equation m2
appears):
( ) ( ) ( )tP
td
d
ttP nm
mm
m
n
22
1: −=
( ) ( )[ ]n
n
n
nn t
td
d
n
tP 1
!2
1 2
−=
we obtain:
Associated Legendre Functions
( ) ( ) ( )[ ]n
mn
mnm
n
m
n t
td
d
t
n
tP 11
!2
1
: 222
−−= +
+
From this equation we obtain:
( ) ( )tPtP nn =
0
2nd
Way
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained
Legendre Functions Explained

Weitere ähnliche Inhalte

Was ist angesagt?

Complex integration its uses and types
Complex integration its uses and typesComplex integration its uses and types
Complex integration its uses and typesSohailAkbar14
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler methodSohaib Butt
 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applicationsPratik Gadhiya
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 
Coordinate systems
Coordinate systemsCoordinate systems
Coordinate systemsAmeenSoomro1
 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximationZahid Mehmood
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinatesEmiey Shaari
 
Differential equations
Differential equationsDifferential equations
Differential equationsSeyid Kadher
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationRai University
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationMohammed_AQ
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equationNofal Umair
 
Integration presentation
Integration presentationIntegration presentation
Integration presentationUrmila Bhardwaj
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
 

Was ist angesagt? (20)

Complex integration its uses and types
Complex integration its uses and typesComplex integration its uses and types
Complex integration its uses and types
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applications
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Coordinate systems
Coordinate systemsCoordinate systems
Coordinate systems
 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximation
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
2nd order ode applications
2nd order ode applications2nd order ode applications
2nd order ode applications
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
maths
maths maths
maths
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
 
Integration presentation
Integration presentationIntegration presentation
Integration presentation
 
Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 

Andere mochten auch

Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equationkishor pokar
 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's functionOneirosErebus
 
Metric tensor in general relativity
Metric tensor in general relativityMetric tensor in general relativity
Metric tensor in general relativityHalo Anwar
 
Legendre's eqaution
Legendre's eqautionLegendre's eqaution
Legendre's eqautionSachin Patel
 
الحلول العددية للمعادلات التفاضلية العادية
الحلول العددية للمعادلات التفاضلية العاديةالحلول العددية للمعادلات التفاضلية العادية
الحلول العددية للمعادلات التفاضلية العاديةDr Abd Allah Mousa
 
Application of differential equation in real life
Application of differential equation in real   lifeApplication of differential equation in real   life
Application of differential equation in real lifeTanjil Hasan
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesHernanFula
 

Andere mochten auch (13)

Legendre
LegendreLegendre
Legendre
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equation
 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's function
 
Metric tensor in general relativity
Metric tensor in general relativityMetric tensor in general relativity
Metric tensor in general relativity
 
3. tensor calculus jan 2013
3. tensor calculus jan 20133. tensor calculus jan 2013
3. tensor calculus jan 2013
 
Legendre's eqaution
Legendre's eqautionLegendre's eqaution
Legendre's eqaution
 
الحلول العددية للمعادلات التفاضلية العادية
الحلول العددية للمعادلات التفاضلية العاديةالحلول العددية للمعادلات التفاضلية العادية
الحلول العددية للمعادلات التفاضلية العادية
 
Application of differential equation in real life
Application of differential equation in real   lifeApplication of differential equation in real   life
Application of differential equation in real life
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercices
 
Basel norms
Basel normsBasel norms
Basel norms
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
 
Special functions
Special functionsSpecial functions
Special functions
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 

Ähnlich wie Legendre Functions Explained

413193.pdf
413193.pdf413193.pdf
413193.pdfHo Nam
 
Ultrasound lecture 1 post
Ultrasound lecture 1 postUltrasound lecture 1 post
Ultrasound lecture 1 postlucky shumail
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
fourierseries-121010133546-phpapp02.pdf
fourierseries-121010133546-phpapp02.pdffourierseries-121010133546-phpapp02.pdf
fourierseries-121010133546-phpapp02.pdfdiehardgamer1
 
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwell’s Equat...
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwell’s Equat...A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwell’s Equat...
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwell’s Equat...IOSR Journals
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Poleijtsrd
 
Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindIJECEIAES
 

Ähnlich wie Legendre Functions Explained (20)

413193.pdf
413193.pdf413193.pdf
413193.pdf
 
Ultrasound lecture 1 post
Ultrasound lecture 1 postUltrasound lecture 1 post
Ultrasound lecture 1 post
 
Thesis
ThesisThesis
Thesis
 
A05330107
A05330107A05330107
A05330107
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Ch05 6
Ch05 6Ch05 6
Ch05 6
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
Ch05 7
Ch05 7Ch05 7
Ch05 7
 
U unit3 vm
U unit3 vmU unit3 vm
U unit3 vm
 
fourierseries-121010133546-phpapp02.pdf
fourierseries-121010133546-phpapp02.pdffourierseries-121010133546-phpapp02.pdf
fourierseries-121010133546-phpapp02.pdf
 
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwell’s Equat...
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwell’s Equat...A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwell’s Equat...
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwell’s Equat...
 
1532 fourier series
1532 fourier series1532 fourier series
1532 fourier series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
Matrix calculus
Matrix calculusMatrix calculus
Matrix calculus
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
 
Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kind
 

Mehr von Solo Hermelin

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachSolo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Solo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode ObserversSolo Hermelin
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizationsSolo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectoriesSolo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles iiSolo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles iSolo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part ivSolo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iiiSolo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part iiSolo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part iSolo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hmsSolo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systemsSolo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instrumentsSolo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutawaySolo Hermelin
 

Mehr von Solo Hermelin (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 

Kürzlich hochgeladen

Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 

Kürzlich hochgeladen (20)

Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 

Legendre Functions Explained

  • 1. Legendre Functions SOLO HERMELIN Updated: 20.02.13 1 http://www.solohermelin.com
  • 2. Table of Content SOLO 2 Legendre Functions Introduction Legendre Polynomials History Second Order Linear Ordinary Differential Equation (ODE) Laplace’s Homogeneous Differential Equation Legendre Polynomials The Generating Function of Legendre Polynomials Rodrigues' Formula Series Solutions – Frobenius’ Method Recursive Relations for Legendre Polynomial Computation Orthogonality of Legendre Polynomials Expansion of Functions, Legendre Series Schlaefli Integral Laplace’s Integral Representation Neumann Integral
  • 3. Table of Content (continue) SOLO 3 Legendre Functions Associate Lagrange Differential Equation Laplace Differential Equation in Spherical Coordinates Analysis of Associate Lagrange Differential Equation Associate Lagrange Differential Equation (2nd Way) Generating Function for Pn m (t) Recurrence Relations for Pn m (t) Orthogonality of Associated Legendre Functions Recurrence Relations for Θn m Functions Spherical Harmonics References Boundary Value Problems and Sturm–Liouville Theory
  • 4. SOLO 4 Legendre Polynomials Adrien-Marie Legendre (1752 –1833( In mathematics, Legendre functions are solutions to Legendre's differential equation: ( ) ( ) ( ) ( ) 011 2 =++      − xPnnxP xd d x xd d nn They are named after Adrien-Marie Legendre. This ordinary differential equation is frequently encountered in physics and other technical fields. In particular, it occurs when solving Laplace's equation (and related partial differential equations) in spherical coordinates. The Legendre polynomials were first introduced in 1785 by Adrien-Marie Legendre, in “Recherches sur l’attraction des sphéroides homogènes”, as the coefficients in the expansion of the Newtonian potential ( )∑ ∞ =       =       −      + = −+ = − 0 222 cos '1 cos ' 2 ' 1 11 cos'2' 1 ' 1 n n n P r r r r r r rrrrrrrr γ γ γ  Return to Table of Content
  • 5. Second Order Linear Ordinary Differential Equation (ODE) Consider a Second Order Linear Ordinary Differential Equation (ODE) define by the Operator SOLO ( ) ( ) ( ) ( ) ( )xuxp xd ud xp xd ud xpxu 212 2 0: ++=L defined in the interval a ≤ x ≤ b, with the coefficients p0 (x), p1 (x), p2 (x) real in this region and with the first 2 – i derivatives of pi (x) continuous . Also we require that p0 (x) is nonzero in the interval. Define the Quadratic Form of the Operator L as: ( ) ( ) ( ) dxuup xd ud p xd ud pdxxuxuxu b a b a ∫∫       ++== 212 2 0: LLu, ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ ∫ ∫∫ ∫∫∫ +−++      −      = +−+−      = ++ b a b a b a b a b a b a b a b a b a b a b a b a b a b a xdupuxdup xd d uupudxup xd d uup xd d u xd ud up xdupuxdup xd d uupudx xd ud up xd d xd ud up xdupxdu xd ud pxdu xd ud p 21102 2 00 21100 2 212 2 0 5
  • 6. SOLO ( ) ( ) ( ) dxuup xd ud p xd ud pdxxuxuxu b a b a ∫∫       ++== 212 2 0: LLu, ( ) ( ) ( ) ( ) b a b a b a b a b a xu xd pd pxu upu xd ud upu xd pd u xd ud upupuup xd d u xd ud up             −=       +−−=+      −      0 1 10 0 0100 Therefore: ( ) ( ) ( ) ( )∫       +−+            −= b a b a dxupup xd d up xd d uxu xd pd pxu 2102 2 0 1 Define the Adjoint Operator: ( ) ( ) ( ) upup xd d up xd d xu 2102 2 : +−=L 6 Second Order Linear Ordinary Differential Equation (ODE)
  • 7. SOLO ( ) dx u up xd ud p xd ud puxu b a ∫       ++=    L Lu, 212 2 0 The two Integrals are equal if: ( ) ( ) ( ) ( )∫       +−+            −= b a b a dxupup xd d up xd d uxu xd pd pxu    uL 2102 2 0 1 or: ( ) ( ) ( ) ( ) ( ) ( )xuxq xd xud xp xd d xuxu +      == LL ( ) ( ) 02 1 01 2 0 2 2102 2 212 2 0 =      −+      −=       +−−      ++ xd ud p xd pd uu xd pd xd pd u upup xd d up xd d uup xd ud p xd ud pu ( ) ( ) xd xpd xp 0 1 = If this condition is satisfied, then the terms at the boundary x = a and x = b also vanish, and we have by defining p (x): = p0 (x) and q (x) := p2 (x) 7 Second Order Linear Ordinary Differential Equation (ODE)
  • 8. SOLO ( ) ( ) ( ) ( ) ( ) ( )xuxq xd xud xp xd d xuxu +      == LL This Operator is called Self-Adjoint ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )      ++      =      ∫∫ xuxp xd ud xp xd ud xptd tp tp xp xutd tp tp xp xx 212 2 0 0 1 00 1 0 expexp 1 L 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xutd tp tp xp xp xd ud td tp tp xd d xq x xp x            +                   = ∫∫ 0 1 0 2 0 1 expexp This is clearly Self-Adjoint. We can see that p0 (x) is in the denominator. This is the reason that we requested the p0 (x) to be nonzero in the interval a ≤ x ≤ b. p0 (x1) = 0 means that the Differential Equation is not Second Order at that point. We can always transform the Non-Self-Adjoint Operator to a Self-Adjoint one by multipling L by ( ) ( ) ( )       ∫x td tp tp xp 0 1 0 exp 1 8 Second Order Linear Ordinary Differential Equation (ODE)
  • 9. Consider a Second Order Linear Ordinary Differential Equation (ODE) SOLO ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 210 :'':'0''': xd ud u xd ud uxuxpxuxpxuxpxu ===++=L If we know one Solution u1 (x) we can find a second u2 (x). Proof If we have two Solutions u1 (x) and u2 (x), then 0''' 0''' 222120 121110 =++ =++ upupup upupup Multiply first equation by u2 (x) and second by u1 (x) and subtract: ( ) ( ) 0'''''' 1221112210 =−+− uuuupuuuup The Wronskian W is defined as: 1221 21 21 '' '' : uuuu uu uu W −== 0' 10 =+ WpWp 9 Theorem: “Method of Reduction of Order” Second Order Linear Ordinary Differential Equation (ODE)
  • 10. Consider a Second Order Linear Ordinary Differential Equation (ODE) SOLO ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 210 :'':'0''': xd ud u xd ud uxuxpxuxpxuxpxu ===++=L Theorem: “Method of Reduction of Order” If we know one Solution u1 (x) we can find a second u2 (x). Proof (continue -1) 0' 10 =+ WpWp xd p p W Wd 0 1 −= ( ) ( ) ( ) ( )         −= ∫ x x d p p xWxW 0 0 1 0 exp τ τ τ From: ( ) ( ) ( ) ( ) ( )xuxuxuxuxW 1221 '' −= q.e.d. Therefore: ( ) ( ) ( ) ( )∫= x x d u W xuxu 0 2 1 12 τ τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( )       =−= 1 2 22 1 1 1 2 2 1 '' u u xd d xu xu xu xu xu xu xW Divide by u1 2 (x) x0 and W (x0) are given (or not). 10 Second Order Linear Ordinary Differential Equation (ODE)
  • 11. If the Second Order Linear Ordinary Differential Equation (ODE) is in the Self-Adjoint Mode: SOLO Then: The Wronskian is given by ( ) ( ) ( ) ( ) ( ) ( ) 0=+      == xuxq xd xud xp xd d xuxu LL ( ) ( ) ( ) ( ) ( ) ( ) 0 1 0 2 2 =++ xuxq xd xud xd xpd xd xud xp p p  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xp xp xW p pd xWd p p xWxW x x x x 0 00 0 0 0 0 0 1 0 00 expexp =         −=         −= ∫∫ τ τ τ 11 Return to Table of Content Second Order Linear Ordinary Differential Equation (ODE)
  • 12. 12 SOLO The Laplace’s Homogeneous Differential Equation is: We want to find the Potential Φ at the point F (field) due to all the sources (S) in the volume V, including its boundaries . n i iSS 1= = iS nS  n i iSS 1= =dV dSn → 1 V Fr  Sr  F 0r SF rrr  −= iS nS dV dSn → 1 V Fr  Sr  F 0r SF rrr  −= F inside V F on the boundary of V Therefore is the vector from S to F.SF rrr  −= →→→ ++= zzyyxxr 111  →→→ ++= zzyyxxr SSSS 111  →→→ ++= zzyyxxr FFFF 111  Let define the operator that acts only on the source coordinate. →→→ ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ z z y y x x SSS S 111 Sr  Laplace’s Homogeneous Differential Equation ( ) 02 =Φ∇ r Pierre-Simon, marquis de Laplace (1749 1827)
  • 13. 13 SOLO Laplace’s Homogeneous Differential Equation Laplace Differential Equation in Spherical Coordinates ( ) 02 =Φ∇ r Spherical Coordinates: θ ϕθ ϕθ cos sinsin cossin rz ry rx = = = A Solution in Spherical Coordinates is: ( ) 0 1 ≠=Φ r r r ( ) 0 111 22 ≠−=∇−=∇=Φ∇ r r r r r rr r  ( ) ( ) 00 33111 35333 2 ≠=−⋅=⋅∇−⋅      −∇=      ⋅−∇=Φ∇⋅∇=Φ∇ r r rr r r r r r r r rr  r r r z r y r x zyx zyx r zyxzyx  =++=++      ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ 111111 222 ( ) 3111111 =++⋅      ∂ ∂ + ∂ ∂ + ∂ ∂ =⋅∇ zyx zyx r zyxzyx  2222 zyxr ++=
  • 14. 14 SOLO Laplace’s Homogeneous Differential Equation Laplace Differential Equation in Spherical Coordinates Spherical Coordinates: θ ϕθ ϕθ cos sinsin cossin rz ry rx = = = θcos= ∂ ∂ z r 2222 zyxr ++= 0 cos11 22 ≠−= ∂ ∂ −=      ∂ ∂ = ∂ Φ∂ r rz r rrzz θ 0 1cos3331 3 2 5 22 4332 2 ≠ − = − = ∂ ∂ +−=      − ∂ ∂ = ∂ Φ∂ r rr rz z r r z rr z zz θ 0 cos9cos159153 5 26 3 4 23 7 23 6 22 55 22 3 3 ≠ − = − −= ∂ ∂− − ∂ ∂ − =      − ∂ ∂ = ∂ Φ∂ r r r r rzz z r r rz r z r rz r rz zz θθ We note that ∂n Φ/∂zn is a n-degree polynomial in cos θ divided by rn+1 . ( ) ( ) ( ) ( ) ( ) ( )zyx zn hzyx z hzyx z hzyxhzyx n nn n ,, ! 1 ,, !2 1 ,,,,,, 2 2 2 ∂ Φ∂− ++ ∂ Φ∂ + ∂ Φ∂ −Φ=−Φ  Using Taylor’s Series development we obtain
  • 15. 15 SOLO Laplace’s Homogeneous Differential Equation Laplace Differential Equation in Spherical Coordinates Spherical Coordinates: θ ϕθ ϕθ cos sinsin cossin rz ry rx = = = 2222 zyxr ++= ( ) ( ) ( )       ∂ ∂− ++      ∂ ∂ +      ∂ ∂ −= −++ =−Φ rzn h rz h rz h rhzyx hzyx n nn n 1 ! 11 !2 1111 ,, 2 2 2 222  ( ) ∑ ∞ =       ∂ ∂− = +− 0 22 1 ! 1 cos2 1 n n nn n rzn h hhrr θ or: Let define: ( ) ( )       ∂ ∂− = + rzn rP n nn n n 1 ! 1 :cos 1 θ ( ) rhP r h rhhrr n n n ≤      = +− ∑ ∞ =0 22 cos 1 cos2 1 θ θ Therefore:
  • 16. 16 SOLO Laplace’s Homogeneous Differential Equation Laplace Differential Equation in Spherical Coordinates Spherical Coordinates: θ ϕθ ϕθ cos sinsin cossin rz ry rx = = = 2222 zyxr ++= Let define w:=Pn (cos θ) and substitute w/rn+1 in the Laplace Equations in Spherical Coordinates instead of Φ Therefore, since w:=Pn (cos θ) (Partial Derivative becomes Total Derivative): 0 sin 1 sin sin 11 0 12 2 22121 2 2 =      ∂ ∂ +            ∂ ∂ ∂ ∂ +            ∂ ∂ ∂ ∂ +++  nnn r w rr w rr w r r rr φθθ θ θθ 0sin sin 111 1 =      ∂ ∂ ∂ ∂ +    + − ∂ ∂ + θ θ θθ w rr n r w nn or: ( ) 0sin sin 1 1 =      ++ θ θ θθ d wd d d wnn Substitute t=cos θ (dt = - sinθ dθ):  ( ) ( )       −=         −−=           =      −− td wd t td d td wd t td d d td td wd d td d d d wd d d 2 sin 2 1sin 11 sin 1 sin sin 1 sin sin 1 2   θ θ θθθ θ θθθ θ θθ Finally we obtain: ( ) ( ) 1011 2 ≤=++      − twnn td wd t td d Return to Table of Content
  • 17. 17 SOLO This is the Legendre Differential Equation and Pn (t) the Legendre Polynomials are one of the two solutions of the ODE. ( ) ( ) ( ) ( ) 1011 2 ≤=++      − ttPnntP td d t td d nn ( )∑ ∞ =       =       +− 0 2 cos cos21 1 n n n P r h r h r h θ θ We found ( ) 1cos cos21 1 0 2 ≤= +− ∑ ∞ = uPu uu n n n θ θFor u:=h/r The left-hand side is called “The Generating Function of Legendre Polynomials” Legendre Polynomials The Generating Function of Legendre Polynomials
  • 18. 18 SOLO Let use Taylor expansion for the function: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  +++++= n n x n f x f x f fxf ! 0 !2 0 1 0 0 2 21 ( ) ( ) 1, 21 1 0 2 ≤= −+ ∑ ∞ = tutPu tuu n n n ( ) ( ) ( ) 101 2 1 =−= − fxxf ( ) ( ) ( ) ( ) ( ) 2 1 01 2 1 1 2 3 1 =−= − fxxf ( ) ( ) ( ) ( ) ( ) 2 3 2 1 01 2 3 2 1 2 2 5 2 ⋅=−⋅= − fxxf ( ) ( ) ( ) ( ) ( ) ( ) ( ) !2 !2 !2 !2 2 1231 2 12 2 3 2 1 01 2 12 2 3 2 1 2 2 12 n n n nnn fx n xf nn n n n n n =⋅ −⋅ = − ⋅=− − ⋅= + −   Tacking x = 2 u t - u2 we obtain ( ) ( ) ( ) ( ) 12 !2 !2 21 1 0 2 222 ≤−= −− ∑ ∞ = uutu n n utu n n n Let prove that Pn (t) are indeed Polynomials. Legendre Polynomials The Generating Function of Legendre Polynomials
  • 19. 19 SOLO Using Taylor expansion we obtained: ( ) ( ) 1, 21 1 0 2 ≤= −+ ∑ ∞ = tutPu tuu n n n Take the binomial expansion of (2 u t - u2 )n we obtain ( ) ( ) ( ) ( ) 12 !2 !2 21 1 0 2 222 ≤−= −− ∑ ∞ = uutu n n utu n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 12 !!!2 !2 12 !! ! 1 !2 !2 21 1 0 0 2 0 0 222 ≤ − −= − −= −− ∑∑∑ ∑ ∞ = = +− ∞ = = − uut knkn n ut knk n n n utu n n k knkn n k n n k kknk n Change Variables in the second sum from n+k to n ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( )   − =      ≤ −− − −= −− ∑ ∑ ∞ = = − − evennifn oddnifnn uut knknk kn utu n n k nkn kn k 2/1 2/ 2 12 !2!!2 !22 1 21 1 0 2/ 0 2 222 Equating in the two power series the un coefficients, we obtain ( ) ( ) ( ) ( ) ( ) [ ] ∑= − ≤ −− − −= 2/ 0 2 1 !2!!2 !22 1 n k kn n k n tt knknk kn tP Polynomial of order n in t Return to Rodrtgues Formula Return to Frobenius Series We can see that for n odd the polynomial Pn (t) has only odd powers of t and for n even only even powers of t. Legendre Polynomials The Generating Function of Legendre Polynomials
  • 20. 20 SOLO Let use Taylor expansion for the function: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  +++++= n n x n f x f x f fxf ! 0 !2 0 1 0 0 2 21 ( ) ( ) 1, 21 1 0 2 ≤= −+ ∑ ∞ = tutPu tuu n n n Tacking x = u2 -2 u t we obtain ( ) ( ) ( ) 101 2 1 =+= − fxxf ( ) ( ) ( ) ( ) ( ) 2 1 01 2 1 1 2 3 1 −=+−= − fxxf ( ) ( ) ( ) ( ) ( ) 2 3 2 1 01 2 3 2 1 2 2 5 2 ⋅=+⋅= − fxxf ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 12 2 3 2 1 101 2 12 2 3 2 1 1 2 12 − ⋅−=+ − ⋅−= + − n fx n xf nn n nn  ( ) ( ) ( ) ( ) ( ) ( )∑ ∞ = =      +− +      − +      − ++= −+−−−+−−= −+ 0 24 4 3 3 2 20 4232222 2 8 33035 2 35 2 13 1 2 128 35 2 16 5 2 8 3 2 1 1 21 1 n n n tPu tt u tt u t utuu tuutuutuutuu ttuu   Legendre Polynomials The Generating Function of Legendre Polynomials
  • 21. SOLO 21 Legendre Polynomials The first few Legendre polynomials are: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 256/63346530030900901093954618910 128/31546201801825740121559 128/35126069301201264358 16/353156934297 16/51053152316 8/1570635 8/330354 2/353 2/132 1 10 246810 3579 2468 357 246 35 24 3 2 −+++− +−+− +−+− −+− −+− +− +− − − xxxxx xxxxx xxxx xxxx xxx xxx xx xx x x xPn n
  • 22. 22 SOLO ( ) 1, 21 1 0 2 ≤= +− ∑ ∞ = tutPu utu n n n Substitute u by – u in this equation: ( ) ( ) ( ) 11 21 1 00 2 ≤−=−= ++ ∑∑ ∞ = ∞ = utPutPu utu n n n n n nn which results in the following identity: ( ) ( ) ( )tPtP n n n 1−=− For t =1 we have ( ) 11 1 1 21 1 0 2 ≤= − = +− ∑ ∞ = uPu uuu n n n But 1 1 1 0 ≤= − ∑ ∞ = uu u n n By equalizing the coefficients of un in the two sums, we obtain: ( ) nPn ∀=11 and ( ) ( ) ( ) ( )n n n n PP 1111 −=−=− Legendre Polynomials The Generating Function of Legendre Polynomials
  • 23. 23 SOLO ( ) 1, 21 1 0 2 ≤= +− ∑ ∞ = tutPu utu n n n For t = 0 we obtain: Legendre Polynomials ( ) 10 1 1 0 2 ≤= + ∑ ∞ = uPu u n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑∑ ∞ = ∞ = ∞ = − −= ⋅−⋅⋅−⋅⋅ −= −⋅⋅ −= + −−−− ++ −− +      −+=+= + 0 22 2 0 1 2 0 2 22222/12 2 !2 !2 1 !2 222642 !2 12531 1 !2 12531 1 ! 2/123/12/1 !2 3/12/1 2 1 11 1 1 n n n n n nn n n n n n n n n un n nn n un n un t n n ttu u        Therefore we have: ( ) ( ) ( ) ( ) 10 !2 !2 1 1 1 00 22 2 2 ≤=−= + ∑∑ ∞ = ∞ = uPu n un u n n n n n n n By equating coefficients of un on both sides we obtain: ( ) ( ) ( ) ( ) ( ) 00 !2 !2 10 12 222 = −= +n n n n P n n P Return to Table of Content The Generating Function of Legendre Polynomials
  • 24. Derivation of Legendre Polynomials via Rodrigues’ Formula SOLO 24 Legendre Polynomials Benjamin Olinde Rodrigues (1794-1851) In mathematics, Rodrigues' Formula (formerly called the Ivory– Jacobi formula) is a formula for Legendre polynomials independently introduced by Olinde Rodrigues (1816), Sir James Ivory (1824) and Carl Gustav Jacobi (1827). The name "Rodrigues’ formula" was introduced by Heine in 1878, after Hermite pointed out in 1865 that Rodrigues was the first to discover it, and is also used for generalizations to other orthogonal polynomials. Askey (2005) describes the history of the Rodrigues’ Formula in detail. Rodrigues stated his formula for Legendre polynomials Pn Carl Gustav Jacob Jacobi (1804 –1851) ( ) ( )[ ]n n n nn x xd d n xP 1 !2 1 2 −=
  • 25. SOLO 25 Legendre Polynomials Olinde Rodrigues (1794-1851) Start from the function: ( ) .12 constkxky n =−= ( ) 12 12:' − −== n xxkn xd yd y ( ) ( ) ( ) 22212 2 2 11412:'' −− −−+−== nn xxnknxkn xd yd y Let compute: ( ) ( ) ( ) ( ) ( ) '12211412''1 12222 yxnynxxnknxknyx nn −+=−−+−=− − or: ( ) ( ) 02'12''12 =−−+− ynyxnyx Let differentiate the last equation n times with respect to x: ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ''1''2''1 00''1 3 ''1 2 ''1 1 ''1''1 2 2 1 1 2 3 3 0 2 3 3 2 2 2 2 2 1 1 222 y xd d nny xd d xny xd d x y xd d x xd dn y xd d x xd dn y xd d x xd dn y xd d xyx xd d n n n n n n n n n n n n n n n n − − − − − − − − − − −++−= +−      +−      +−      +−=−   ( ) ( ) ( ) ( )       +−=            +−=− − − − − ''12' 1 '12'12 1 1 1 1 y xd d ny xd d xny xd d x xd dn y xd d xnyx xd d n n n n n n n n n n n Derivation of Legendre Polynomials via Rodrigues’ Formula
  • 26. SOLO 26 Legendre Polynomials Olinde Rodrigues (1794-1851) Start from the function: ( ) .12 constkxky n =−= ( ) ( ) 02'12''12 =−−+− ynyxnyxDifferentiate n times with respect to x: ( ) ( ) ''1''2''1 2 2 1 1 2 y xd d nny xd d xny xd d x n n n n n n − − − − −++− ( ) 02''12 1 1 =−      +−+ − − y xd d ny xd d ny xd d xn n n n n n n Define: a Polynomial( ) ( )[ ]n n n n n x xd d k xd yd xw 1: 2 −== ( ) ( ) ( )[ ] 02'121'2''12 =−+−+−++− wnwnwxnwnnwxnwx ( ) ( ) ( ) ( )[ ] 02121'2''12 =−−+−+−++− wnnnnnwxnxxnwx ( ) ( ) 01'2''12 =+−+− wnnwxwx This is Legendre’s Differential Equation. We proved that one of the solutions are Polynomials. We can rewrite this equation in a Sturm-Liouville Form: ( ) ( ) 0112 =+−      − wnnw xd d x xd d Derivation of Legendre Polynomials via Rodrigues’ Formula
  • 27. SOLO 27 Legendre Polynomials Olinde Rodrigues (1794-1851) Let find k such that: by using the fact that Pn (1) = 1 ( ) ( )[ ]n n n n n n x xd d k xd yd xP 12 −== ( ) ( )[ ] ( ) ( ) ( ) ( )       −+=         +−=−= ∑>0 22 1!2111 i inn v n u n n n n n n n xxaxnkxx xd d kxk xd d xP  !2 1 n k n = We recover the Rodrigues Formula: ( ) ( )[ ]n n n nn x xd d n xP 1 !2 1 2 −= Let use Leibnitz’s Rule (Binomial Expansion for the n Derivative of a Product - with u:=(x-1)n and v:=(x+1)n ): ( ) ( ) ( ) udvudvdnvddu nn vddunvdu vdud mnm n vud nnnnn n m mnmn +++ − ++= − =⋅ −−− = − ∑ 1221 0 !2 1 !! !  We have: ( )   ( )    1!2 !2 1 1 1!20 12 0 21 00 ==        +++ − ++== = −−− nkudvudvdnvddu nn vddunvdukxP n xn nnnnn n n  We can see from this Formula that Pn (x) is indeed a Polynomial of Order n in t. Derivation of Legendre Polynomials via Rodrigues’ Formula
  • 28. SOLO 28 Legendre Polynomials Olinde Rodrigues (1794-1851) Let find an explicit expression for Pn (x) from Rodrigues’ Formula: ( ) ( )[ ]n n n nn n n x xd d nxd yd xP 1 !2 1 2 −== Start with: ( ) ( ) ( )∑= − − − =− n m mnmn x mnm n x 0 22 1 !! ! 1 ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   + = −− − −= −− −= +−− − −=−= ∑ ∑ ∑ = − −= ≥ −− ≥ −− oddnn evennn p x knknk kn x nm m mnm xnmmm mnm n n x xd d n xP p k knk n knm n pm nmmn n n pm nmmn n n n n nn 2/12 2/ !2!! !22 1 2 1 !2 !2 !! 1 1 2 1 12122 !! ! 1 !2 1 1 !2 1 0 2 2 22  ( ) ( )    < ≥+−− = 2/0 2/121222 nm nmnmmm x xd d m n n  We recover the result obtained by the Generating Function of Legendre Polynomials Return to Frobenius Series Return to Table of Content Derivation of Legendre Polynomials via Rodrigues’ Formula
  • 29. SOLO Series Solutions – Frobenius’ Method Ferdinand Georg Frobenius (1849 –1917) ( ) ( ) .0121 2 2 22 constrealryrr xd yd yx xd yd x =++−− Example: General Legendre Equation ∑ ∞ = + = 0λ λ λ k xay Let check the Frobenius’s expansion: We have: ( ) ( ) ( )∑∑ ∞ = −+ ∞ = −+ −++=+= 0 2 2 2 0 1 1& λ λ λ λ λ λ λλλ kk xkka xd yd xka xd yd Substitute in the General Legendre Equation: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 0111 121 00 2 000 2 =+++−++−++= +++−−−++ ∑∑ ∑∑∑ ∞ = + ∞ = −+ ∞ = + ∞ = + ∞ = +−+ λ λ λ λ λ λ λ λ λ λ λ λ λ λλ λ λλλλ λλλ kk kkkk xkkrraxkka xrraxkaxxkka 29 Legendre Polynomials
  • 30. SOLO Example: Legendre Equation (continue – 1) ( ) ( ) ( ) ( ) ( )[ ] 0111 00 2 =+++−++−++ ∑∑ ∞ = + ∞ = −+ λ λ λ λ λ λ λλλλ kk xkkrraxkka Denote, in the first sum λ = j +2 and in the second sum λ = j, to obtain: ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]{ } 01112 11 0 2 1 1 2 0 =+++−+++++++ ++− ∑ ∞ = + + −− j jk jj kk xjkjkrrajkjka xkkaxkka All the coefficients of xk+j must be zero, therefore ( ) 001 00 ≠=− akka ( ) 011 =+kka ( ) ( ) ( ) ( ) ( )[ ] 011122 =+++−+++++++ jkjkrrajkjka jj 30 Ferdinand Georg Frobenius 1849 - 1917 Series Solutions – Frobenius’ Method Legendre Polynomials
  • 31. SOLO Example: Legendre Equation (continue – 2) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ,2,1,0 12 1 12 11 2 = ++++ ++++− −= ++++ +++−+ −=+ j jkjk jkrjkr a jkjk jkjkrr aa jjj ( ) 01 =−kk ( ) 011 =+kka ( ) ( ) ( ) ( ) ( )[ ] 011122 =+++−+++++++ jkjkrrajkjka jj 0&1.3 0&0.2 0&0.1 1 1 1 == ≠= == ak ak akThree possible solutions The equation that, k (k+1) = 0, comes from the coefficient of the lowest power of x, and is called Indicial Equation. It has two solutions for k k = 0 and k = 1 The equation gives the recursive relation 31 Series Solutions – Frobenius’ Method Legendre Polynomials
  • 32. SOLO Example: Legendre Equation (continue – 3) ( ) 1001: ==⇒=− korkkkEquationIndicial 1. Using k = 0 and a1 = 0 we obtain a series of even powers of x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,2,1,0 21 1 21 11 2 = ++ ++− −= ++ +−+ −=+ j jj jrjr a jj jjrr aa jjj ( ) ( ) ( ) ( ) ( ) ( )       + ++− + + −== 42 0 !4 312 !2 1 1: x rrrr x rr axpxy reven ( ) 01231 ==== +naaa  The recurrence relation results in the following expression for the coefficients ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   ,3,2,1 !2 123124222 1 02 = −+++⋅−+−+− −= ma m mrrrrrmrmr a m m 32 ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ,2,1,0 12 1 12 11 2 = ++++ ++++− −= ++++ +++−+ −=+ j jkjk jkrjkr a jkjk jkjkrr aa jjj ( ) ∑ ∞ = = 0 2 2m m meven xaxy Series Solutions – Frobenius’ Method Legendre Polynomials
  • 33. SOLO Example: Legendre Equation (continue – 4) ( ) 1001: ==⇒=− korkkkEquationIndicial 3. Using k = 1 and a1 = 0 we obtain a series of odd powers of x ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) .2,1,0 32 21 32 211 2 = ++ ++−− −= ++ ++−+ −=+ j jj jrjr a jj jjrr aa jjj ( ) ( ) ( )( ) ( ) ( )( ) ( )       + ++−− + +− −== 53 0 !4 4213 !3 21 : x rrrr x rr xaxqxy rodd ( ) 01231 ==== +naaa  The recurrence relation results in the following expression for the coefficients ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   ,3,2,1 !12 24213212 1 02 = + +++−+−+− −= ma m mrrrrmrmr a m m 33Since pr (x) and qr (x) are two linearly independent solutions of the 2nd Order Linear Lagrange ODE, the final solution is y = c1 pn (x) + c2 qn (x) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ,2,1,0 12 1 12 11 2 = ++++ ++++− −= ++++ +++−+ −=+ j jkjk jkrjkr a jkjk jkjkrr aa jjj ( ) ∑ ∞ = + = 0 12 2m m modd xaxy Series Solutions – Frobenius’ Method Legendre Polynomials
  • 34. SOLO Example: Legendre Equation (continue – 5) Using d’Alembert – Cauchy test for convergence of an Infinite Series, we have Convergence Test: ( ) ( ) ( ) ( ) ( )     ≥≥ << = ++++ +++−+ = ∞→ + + ∞→ divergex convergex xx jkjk jkjkrr xa xa jj j j j j 11 11 12 11 limlim 22 2 2 The even series stops at j = n. The expansion is a Polynomial of order n (even). 1. If n is even, using k = 0 and a1 = 0 we obtain a series of even powers of x . ( ) ( ) ( ) ( ) ,..1,0 21 11 2 = ++ +−+ −=+ j jj jjnn aa jj For the case that r = n, a positive integer: ,...2,1,,02 ++==+ nnnjaj 3. If n is odd, using k = 1 and a1 = 0 we obtain a series of odd powers of x . ( ) ( )( ) ( ) ( ) ,..2,1 32 211 2 = ++ ++−+ −=+ j jj jjnn aa jj ,...2,1,,1,02 ++−==+ nnnnjaj The odd series stops at j = n-1. The expansion is a Polynomial of order n (odd).34 Series Solutions – Frobenius’ Method Legendre Polynomials
  • 35. SOLO Example: Legendre Equation (continue – 6) 1. If n is even, using k = 0 and a1 = 0 we obtain a series of even powers of x ( ) ( ) ( )( ) ( )       + ++− + + −= 42 0 !4 312 !2 1 1 x nnnn x nn axyeven 3. If n is odd using k = 1 and a1 = 0 we obtain a series of odd powers of x ( ) ( )( ) ( ) ( )( ) ( )       + ++−− + +− −= 53 0 !4 4231 !3 21 x nnnn x nn xaxyodd ( ) ( ) ( ) ( )( ) ( )       +−=      ++− + + −== −=      + −== == 42 0 42 0 2 0 2 0 0 6 70 101 !4 3414244 !2 144 14 31 !2 122 12 0 xxaxxayn xaxayn ayn even even even ( )( )       −=      +− −== == 3 0 3 0 0 3 5 !3 2313 3 1 xxaxxayn xayn odd odd We obtain the Legendre Polynomials Solutions for a0 = 1. 35 Series Solutions – Frobenius’ Method Legendre Polynomials
  • 36. SOLO Example: Legendre Equation (continue – 7) 1. The recurrence relation for even x powers results in the following expression for the coefficients ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2/,,3,2,1 !2 123124222 1 02 nma m mnnnnnmnmn a m m   = −+++⋅−+−+− −= ( ) ( ) ( ) ( ) ( ) ( ) ( )! ! 2121224222 11 2 mp p ppmpmpnnmnmn mm pn − =−+−+−=−+−+− −− =  ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )!!22 !!22 212 1 !2 !22 242 242 1231 ! ! 1231 22 mpp pmp mpppp mp mnnn mnnn mnnn n n mnnn m pn m pn + + = +++ + = +++ +++ −+++=−+++ ==     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2/,,3,2,1 !!!22 !221 !!!2!2 ! 2 !22 1 !!2!2 !!22 ! ! 2 1 1 0 0 2 2 02 nm snssn sn a snssnn n sn a mpmp pmp mp p a n sthatsucha choose s nmps m m = −− −− = −−             − −= + + − −= − − −= ( ) ( ) ( ) ( )∑= −− < −− − −= 2/ 0 2 1 !2!!2 !22 1 n s sn n s even xx snsns sn y 36 Series Solutions – Frobenius’ Method Legendre Polynomials
  • 37. SOLO Example: Legendre Equation (continue – 8) 3. The recurrence relation for odd x powers results in the following expression for the coefficients ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 ,,3,2,1 !12 24213212 1 02 − = + +++−+−+− −= n ma m mnnnnmnmn a m m   ( ) ( ) ( ) ( )( ) ( ) ( )! ! 222242222213212 1 12 mp p ppmpmpnmnmn m pn − =−+−+−=−+−+− − +=  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )!!122 !!122 212 224222 1225232 !12 !12 242 1 1 12 mpp pmp mppp mppp mppp p p mnnn m m pn ++ ++ = +++ +++ ++++ + + =+++ − − +=   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 ,,3,2,1 !2!1!! ! 2 1 !122 1 !12!!!12 !!122 1 0 2 0 2 2 − = −−−             − −− −= ++−+ ++ −= − −= n ma snsnsn n sn a mmpmpp pmp a sp mps m m  37 ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) 2 1 ,...,1,0 !2!!!2 ! 2 1 !22 1 !2!12!! ! 2 1 !12222 1 0 2 0 2 − = −−             − − −= −−−−             − −−− −= − −= − −= n sa snsnsn n sn a snsnsnsn n snsn sp mps sp mps Series Solutions – Frobenius’ Method Legendre Polynomials
  • 38. Example: Legendre Equation (continue – 9) 3. The recurrence relation for odd x powers results in the following expression for the coefficients ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 ,...,1,0 !2!!2 !22 1 !2!! !22 ! 2 1 !2 1 1 0 0 2 2 1 2 − = −− − −= −− −             − −= −− − n s snsns sn a snsns snn n a n s thatsucha Choose s n m ( ) ( ) ( ) ( ) ( ) ( ) 1& !2!! !22 1 2 1 2/1 0 2 < −− − −= ∑ − = −− xoddnx snsns sn xy n s sns nodd We also found that the solution for k = 0 and a1 = 0 is ( ) ( ) ( ) ( ) ( ) 1& !2!!2 !22 1 2/ 0 2 < −− − −= ∑= −− xevennx snsns sn xy n s sn n s even We recover the result obtained by the Generating Function of Legendre Polynomials and by Rodrigues’ Formula 38 Therefore we can unify those two relations to obtain: ( ) ( ) ( ) ( ) ( ) [ ] 1 !2!!2 !22 1 2/ 0 2 < −− − −= ∑= −− xx snsns sn xP n s sn n s n Series Solutions – Frobenius’ Method SOLO Legendre Polynomials
  • 39. SOLO Example: Legendre Equation (continue – 10) 2. Using k = 0 and a1 ≠ 0 we obtain an infinite series and not a polynomial. This is the Second Solution of the Legendre Differential Equation. The solution is the sum of the two infinite series, one with even powers of x and the other with odd powers of x. The series solution, in this case, diverges at x = ± 1. Those are Legendre Functions of the Second Kind. The Polynomial solutions are Legendre Functions of the First Kind. 39 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,2,1,0 21 1 21 11 2 = ++ ++− −= ++ +−+ −=+ j jj jnjn a jj jjnn aa jjj In this case we have The recurrence relation results in the following expression for the coefficients ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   ,3,2,1 !2 123124222 1 02 = −+++⋅−+−+− −= ma m mnnnnnmnmn a m m ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   ,3,2,1 !12 123124222 1 112 = + −+++⋅−+−+− −=+ ma m mnnnnnmnmn a m m Series Solutions – Frobenius’ Method Legendre Polynomials
  • 40. SOLO Example: Legendre Equation (continue – 11) 40 We want to find a series that converges for |x| > 1. Let return to the conditions to have a series solution for Legendre ODE For k = 0 and a0 = 0 By substituting j = m – 2 we obtain ( ) ( ) ( ) ( ) ,2,1,0 1 21 2 == ++− ++ −= + ja jnjn jj a jj ( ) ( ) ( ) mm a mnmn mm a 12 1 2 −++− − −=− ( ) ( ) .0121 2 2 22 constrealryrr xd yd yx xd yd x =++−− ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,2,1,0 21 1 21 11 2 = ++ ++− −= ++ +−+ −=+ j jj jrjr a jj jjrr aa jjj We can make am+2, am+4, am+6,…. To vanish for m = r = n or m = -n – 1. If we start for am ≠ 0 we can obtain the following recursive formula Series Solutions – Frobenius’ Method Legendre Polynomials
  • 41. SOLO Example: Legendre Equation (continue – 12) 41 ( ) ( ) ( ) mm a mnmn mm a 12 1 2 −++− − −=− Tacking m = n we obtain ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) nnn nn a nn nnnn a n nn a a n nn a 321242 321 324 32 122 1 24 2 −⋅−⋅⋅ −−− += − −− −= − − −= −− − The first solution can be written as ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )       + +−−⋅−⋅⋅ −−−− ++ −⋅−⋅⋅ −−− + − − −= −−−     innnn n x innni ininnn x nn nnnn x n nn xaxy 242 1 1223212242 1221 321242 321 122 1 Using d’Alembert – Cauchy test for convergence of an Infinite Series, we have ( )( ) ( )     ≤≥ >< = +− −−− = −− ∞→+− +− − − ∞→ divergex convergex xx ini inin xa xa iin in in in j 11 11 1222 122 limlim 22 22 22 2 2 Series Solutions – Frobenius’ Method Legendre Polynomials
  • 42. SOLO Example: Legendre Equation (continue – 13) 42 ( ) ( ) ( ) mm a mnmn mm a 12 1 2 −++− − −=− Tacking m =- n - 1 we obtain ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 135 13 523242 4321 524 43 322 21 −−−−−− −−−− +⋅+⋅⋅ ++++ += + ++ = + ++ += nnn nn a nn nnnn a n nn a a n nn a The second solution can be written as ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )       + +++⋅+⋅⋅ +−+++ ++ +⋅+⋅⋅ ++++ + + ++ += −−−−−−−−− −−     12531 12 1225232242 21221 523242 4321 322 21 innnn n x innni ininnn x nn nnnn x n nn xaxy Using d’Alembert – Cauchy test for convergence of an Infinite Series, we have ( ) ( ) ( )     ≤≥ >< = ++ +−+ = −− ∞→+− +− −− −−− ∞→ divergex convergex xx ini inin xa xa iin in in in j 11 11 1222 212 limlim 22 12 12 12 12 Series Solutions – Frobenius’ Method Legendre Polynomials
  • 43. SOLO Example: Legendre Equation (continue – 14) 43 ( )( ) ! 1353212 n nn an ⋅⋅−− = By choosing we have ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1] 1223212242 1221 1 321242 321 122 1 [ ! 1353212 2 42 1 >+ +−−⋅−⋅⋅ −−−− −+ + −⋅−⋅⋅ −−− + − − − ⋅⋅−− == − −− xx innni ininnn x nn nnnn x n nn x n nn xyxP ini nnn n       Return to Table of Content Finally ( ) ( ) ( ) ( ) ( ) 1 !2!!2 !22 1 0 2 > −− − −= ∑ ∞ = − xx inini in xP i in n i n ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )!2!!2 !22 1 !2 !22 !2!2 1 1 !2!2 135122 1 1223212242 1221 1 ! 1353212 inini in in in iiniin in innni ininnn n nn n i ini i i i i −− − −= − − − −= − ⋅⋅−− −= +−−⋅−⋅⋅ −−−− − ⋅⋅−− −    Series Solutions – Frobenius’ Method Legendre Polynomials
  • 44. SOLO Example: Legendre Equation (continue – 14) 44 ( )( ) 1351212 ! 1 ⋅⋅−+ == −− nn n aa nn By choosing we have ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1] 1225232242 21221 523242 4321 322 21 [ 1351212 ! 12 531 2 >+ +++⋅+⋅⋅ +−+++ + + +⋅+⋅⋅ ++++ + + ++ + ⋅⋅−+ == −−− −−−−−− xx innni ininnn x nn nnnn x n nn x nn n xyxQ in nnn n       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )!122! !2! ! !12 ! !2 !122 !12 ! !2 2 1 !122 2222!12 ! !2 !2 1 1225232242 21221 2 ++ +++ = + ++ ++ = ++ ++++ = +++⋅+⋅⋅ +−+++ ini inin n n n in in n n in in innn n in iinnni ininnn i i i    ( ) ( ) ( ) ( ) ( ) 1 !122! !2! 2 0 12 > ++ ++ = ∑ ∞ = ++− xx ini inin xQ i inn n Go to Neumann Integral ( )( ) ( )!12 !2 ! 1351212 ! + = ⋅⋅−+ n n n nn n n  Finally Series Solutions – Frobenius’ Method Legendre Polynomials
  • 45. SOLO Example: Legendre Equation (continue – 15) 45 Summarize ( ) ( ) ( ) ( ) ( ) 1 !122! !2! 2 0 12 > ++ ++ = ∑ ∞ = ++− xx ini inin xQ i inn n Return to Table of Content ( ) ( ) ( ) ( ) ( ) 1 !2!! !22 1 2 1 0 2 > −− − −= ∑ ∞ = − xx inini in xP i ini nn ( ) ( ) ( ) ( ) ( ) [ ] 1 !2!! !22 1 2 1 2/ 0 2 < −− − −= ∑= −− xx inini in xP n i ini nn Return to Similar to Rodrigues Formula Using Frobenius’ Method we found that solutions of Legendre ODE are ( ) ( ) integerpositive0121 2 2 22 nynn xd yd yx xd yd x =++−− Series Solutions – Frobenius’ Method Legendre Polynomials ( ) 4,3,2,1 1 = > l xxPl ( ) 4,3,2,1 1 = > l xxQl
  • 46. 46 SOLO ( ) 1 21 1 0 2 ≤= +− ∑ ∞ = utPu utu n n n For u=0 we obtain ( ) 10 =tP For t = 1 we obtain ( ) ( ) 111 1 1 21 1 00 2 =⇒== − = +− ∑∑ ∞ = ∞ = n n n n n n PPuu uuu For t = -1 we obtain ( ) ( ) ( ) ( )n n n n n n nn PPuu uuu 1111 1 1 21 1 00 2 −=⇒=−= + = ++ ∑∑ ∞ = ∞ = Let find a Recursive Relation for Legendre Polynomial computation Start with: ( ) ( ) ( ) ( ) ( ) ( ) ( )       ∂ ∂ + − =      ∂ ∂− + − =      ∂ ∂ + − = ++ + + ++ + + 11 1 1 11 2 1 cos 1 11 ! 1 1 11 !1 1cos n n n nn n nn n n r P znrznnrznr P θθ ( ) ( ) ( ) ( ) ( )( ) ( )       ∂ ∂ + ∂ ∂+ − + − = +++ + zd Pd rz r r Pn nr P n nn n n n θ θ θθθ cos cos cos1cos1 1 1cos 122 1 Recursive Relations for Legendre Polynomial Computation First Recursive Relation Legendre Polynomials
  • 47. 47 SOLO Recursive Relations for Legendre Polynomial Computation ( ) ( ) ( ) ( ) ( )( ) ( )       ∂ ∂ + ∂ ∂+ − + − = +++ + zd Pd rz r r Pn nr P n nn n n n θ θ θθθ cos cos cos1cos1 1 1cos 122 1 θcosrz = θcos= ∂ ∂ z r  z r z r z z ∂ ∂ + ∂ ∂ = ∂ ∂ = θ θ θ cos cos1 cos rz θθ 2 cos1cos − = ∂ ∂ ( ) ( ) ( ) ( ) ( )( )       − + + − + − = +++ + rd Pd rr Pn nr P n nn n n n θ θ θ θ θθ 2 122 1 cos1 cos cos1 cos cos1 1 1cos ( ) ( ) ( )( ) θ θθ θθθ cos cos 1 cos1 coscoscos 2 1 d Pd n PP n nn + − −=+ Substituting t = cos θ we obtain ( ) ( ) ( ) td tPd n t tPttP n nn 1 1 2 1 + − −=+ First Recursive Relation (continue – 1) Legendre Polynomials
  • 48. 48 SOLO Recursive Relations for Legendre Polynomial Computation ( ) ( ) ( ) 0,1 1 1 2 1 ≥≤ + − −=+ nt td tPd n t tPttP n nn Use to start ( ) ( ) 01 0 0 =⇒= td tPd tP ( ) ( ) ( ) ( ) ( ) 8 157063 8 33035 2 35 2 13 35 5 24 4 3 3 2 2 1 ttt tP tt tP tt tP t tP ttP +− = +− = − = − = = First Recursive Relation (continue – 2) Legendre Polynomials
  • 49. 49 SOLO Recursive Relations for Legendre Polynomial Computation Start from ( ) ( ) 1 21 1 :, 0 2 ≤= +− = ∑ ∞ = utPu utu tug n n n Let differentiate both sides with respect to u and rearranging ( ) ( )∑ ∞ = − +−= +− − = ∂ ∂ 1 12 2 21 21 n n n tPunutu utu ut u g ( ) ( ) ( ) ( )∑∑ ∞ = − ∞ = +−=− 1 12 0 21 n n n n n n tPunututPuut ( ) ( ) ( ) ( )∑∑ ∞ = +− ∞ = + +−=− 1 11 0 1 2 n n nnn n n nn tPunutnuntPuut ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑∑∑∑ ∞ = − ∞ = ∞ = + ∞ = − ∞ = −+−+=− 2 1 10 1 1 1 0 121 n n n n n n n n n n n n n n n tPuntPutntPuntPutPut ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )     ≥+=−+ =−=− == +− 2112 122 0 11 1201 10 ntPuntPuntPutn ntPtutPutPutuPt ntPtPt n n n n n n We can see that the last relation agrees also with the previous relations, for n = 0 and n = 1. Second Recursive Relation Legendre Polynomials
  • 50. 50 SOLO Recursive Relations for Legendre Polynomial Computation We find the Recursive Relation: ( ) ( ) ( ) 1 11 12 11 ≥ + − + + = −+ ntP n n tPt n n tP nnn ( ) 10 =tP This is called the Bonnet’s Recursion Relation. It starts with: Examples: ( ) ( ) ( ) 2 3 1 01 2 tPtPt tPn − =→= ( ) 2 1 2 3 2 2 −= ttP ( ) ( ) ( )  tP tP ttttPn 1 2 3 2 2 1 2 3 3 5 2 2 3 −      −=→=  ( ) 2 35 3 3 tt tP − = ( ) ( ) ( )  tPtP tttttPn 23 2 1 2 3 4 3 2 3 2 5 4 7 3 23 4       −−      −=→= ( ) 8 33035 24 4 +− = tt tP ( ) ttP =1 Second Recursive Relation (continue) Legendre Polynomials
  • 51. 51 SOLO Recursive Relations for Legendre Polynomial Computation Start from ( ) ( ) 1 21 1 :, 0 2 ≤= +− = ∑ ∞ = utPu utu tug n n n Let differentiate both sides with respect to t and rearranging ( ) ( ) ∑ ∞ = = +− = ∂ ∂ 0 2/32 21 n nn td tPd u utu u t g ( ) ( ) ( ) ∑∑ ∞ = ∞ = +−= 0 2 0 21 n nn n n n td tPd uututPuuor Equaling coefficients of each power of u gives ( ) ( ) ( ) ( ) td tPd td tPd t td tPd tP nnn n 11 2 −+ +−= ( ) ( ) ( ) ( ) ( )tPntPntPtn nnn 11112 −+ ++=+ Differentiate the Second Recursive Relation with respect to t and rearranging ( ) ( ) ( ) ( ) ( ) ( ) ( ) td tPd n n td tPd n n td tPd ttP nnn n 11 1212 1 −+ + + + + =+ Third Recursive Relation Legendre Polynomials
  • 52. 52 SOLO Recursive Relations for Legendre Polynomial Computation We found ( ) ( ) ( ) ( ) td tPd ttP td tPd td tPd n n nn 211 +=+ −+ ( ) ( ) ( ) ( ) ( ) ( ) ( ) td tPd ttP td tPd n n td tPd n n n n nn += + + + + −+ 11 1212 1 Third Recursive Relation (continue) Let solve for and in terms of and( )tPn ( ) td tPd n( ) td tPd n 1+( ) td tPd n 1− ( ) ( ) ( ) td tPd ttPn td tPd n n n +−=−1 ( ) ( ) ( ) ( ) td tPd ttPn td tPd n n n ++=+ 11 Subtracting the first relation from the second gives the Third Recursive Relation ( ) ( ) ( ) ( ) td tPd td tPd tPn nn n 11 12 −+ −=+ Legendre Polynomials
  • 53. 53 SOLO Recursive Relations for Legendre Polynomial Computation ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }yPxPyPxP yx n yPxPk tPtntPn td tPd t tPntPtn td tPd t tPn td tPd t td tPd tPn td tPd td tPd t tPn td tPd td tPd tPntPtntPn tP n n tP n n tPt tPin td tPd nnnn n k kk nn n nn n n nn n nn n nn nnn nnn l i in n 11 0 1 2 1 2 1 1 1 11 11 11 1 2 1 0 12 1 129 1118 17 6 5 124 01213 1212 1 2 1421 ++ = + − − − − −+ −+ −+       − = −− − − + =+ +−+=− −=− =− =− +=− =++−+ + + + + = −−= ∑ ∑ Recursive Relation between Legendre Polynomials and their Derivatives) Legendre Polynomials Return to Table of Content
  • 54. 54 SOLO Orthogonality of Legendre Polynomials Define ( ) ( )tPwtPv nm == :&: We use Legendre’s Differential Equations: ( ) ( ) 011 2 =++      − vmm td vd t td d ( ) ( ) 011 2 =++      − wnn td wd t td d Multiply first equation by w and integrate from t = -1 to t = +1. ( ) ( ) 011 1 1 1 1 2 =++      − ∫∫ + − + − dtwvmmdtw td vd t td d Integrate the first integral by parts we get ( ) ( ) ( ) 0111 1 1 1 1 2 0 1 1 2 =++−−− ∫∫ + − + − += −= dtwvmmdt td wd td vd tw td vd t t t    In the same way, multiply second equation by v and integrate from t = -1 to t = +1. ( ) ( ) 011 1 1 1 1 2 =++−− ∫∫ + − + − dtwvnndt td wd td vd t Legendre Polynomials
  • 55. 55 SOLO Orthogonality of Legendre Polynomials ( ) ( ) 011 1 1 1 1 2 =++−− ∫∫ + − + − dtwvmmdt td wd td vd t Subtracting those two equations we obtain ( ) ( ) 011 1 1 1 1 2 =++−− ∫∫ + − + − dtwvnndt td wd td vd t ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) 01111 1 1 1 1 =+−+=+−+ ∫∫ + − + − dttPtPnnmmdtwvnnmm nm This gives the Orthogonality Condition for m ≠ n ( ) ( ) nmdttPtP nm ≠=∫ + − 0 1 1 To find let square the relation and integrate between t = -1 to t = +1. Due to orthogonality only the integrals of terms having Pn 2 (t) survive on the right-hand side. So we get ( )∫ + − 1 1 2 dttPn ( )∑ ∞ = = +− 0 2 21 1 n n n tPu utu ( )∑ ∫∫ ∞ = + − + − = +− 0 1 1 22 1 1 2 21 1 n n n dttPudt utu Legendre Polynomials
  • 56. 56 SOLO Orthogonality of Legendre Polynomials ( )∑ ∫∫ ∞ = + − + − = +− 0 1 1 22 1 1 2 21 1 n n n dttPudt utu ( ) ( ) ( ) 1 1 1 ln 1 1 1 ln 2 1 21ln 2 1 21 1 2 21 1 2 1 1 2 < − + = + − − =−+ − = −+ += −= + −∫ u u u uu u u tuu u dt tuu t t ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑∑∑ ∞ ++∞ +∞ + + −− −= + − −− + −=−−+ 0 11 0 1 0 1 1 1 1 1 1 1 1 1 1 1ln 1 1ln 1 n uu un u un u u u u u u nn n n n n n ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑∑∑∑ ∞∞ +∞ ++ + ∞ ++ + = + = + −− −+ + −− −= 0 2 0 12 0 0 1212 12 0 1212 2 12 2 12 1 2 12 1 1 12 1 1 n nnn n nn n u nn u un uu un uu u    Let compute first Therefore ( )∑ ∫∑∫ ∞ + − ∞+ − = + = +− 0 1 1 22 0 2 1 1 2 12 2 21 1 dttPuu n dt utu n nn Comparing the coefficients of u2n we get ( ) 12 21 1 2 + =∫ + − n dttPn Legendre Polynomials ( ) ( ) nmmn n dttPtP δ 12 21 1 + =∫ + − Hence
  • 57. 57 SOLO Using Rodrigues’ Formula let calculate ( ) ( ) ( ) ( )[ ]∫∫ + − + − − = 1 1 2 1 1 1 !2 1 dt td td tP n dttPtP n nn knnk Legendre Polynomials ( ) ( )[ ]n nn nn td td n tP 1 !2 1 2 − = Orthogonality of Legendre Polynomials (Second Method) Assume, without loss of generality, that n > k, and integrate by parts ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ∫∫ ∫∫ + − + − − − + − − − + − + − −−== − − − = − = 1 1 2 1 1 1 21 0 1 1 1 21 1 1 2 1 1 1 !2 1 1 1 !2 11 !2 1 1 !2 1 dt td tPd t n dt td td td tPd ntd td tP n dt td td tP n dttPtP n k n n n n n nn k nn nn kn n nn knnk     Since Pk (t) is a Polynomial of Order k and we assume that n > k, we have ( ) 0=n k n td tPd Therefore ( ) ( ) nkdttPtP nk ≠=∫ + − 0 1 1
  • 58. 58 SOLO For k = n we have Legendre Polynomials Orthogonality of Legendre Polynomials (Second Method) (continue – 1) ( )[ ] ( ) ( ) ( ) ∫∫ + − + − −−= 1 1 2 1 1 2 1 !2 1 1 dt td tPd t n dttP n n n n n n n But we found that Pn (t) is given by: ( ) ( ) ( ) ( ) ( ) [ ] ∑= − −− − −= 2/ 0 2 !2!!2 !22 1 n k kn n k n t knknk kn tP Therefore to compute it is sufficient to consider only the highest power of t in the series, i.e. for k = 0, and we obtain ( ) n n n td tPd ( ) ( ) ( ) ( ) !2 !2 ! !2 !2 2 n n n n n td tPd nnn n n == ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ + − + − + − −=−−= 1 1 2 22 1 1 2 1 1 2 1 !2 !2 !2 !2 1 !2 1 1 dtt n n dt n n t n dttP n nn n n n n
  • 59. SOLO Legendre Polynomials Orthogonality of Legendre Polynomials (Second Method) (continue – 2) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ + − + − + − −=−−= 1 1 2 22 1 1 2 1 1 2 1 !2 !2 !2 !2 1 !2 1 1 dtt n n dt n n t n dttP n nn n n n n ( ) ∫∫∫ ++ =+ − =−=− π π θ θθθθ 0 12 0 12 cos1 1 2 sinsin1 dddtt nn tn Therefore ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )!12 !2 cos 2222 !2 11212 !2 sin 31212 2222 sin 12 2 sin 212 2 0 1 00 12 0 12 + = −⋅ ⋅ −⋅+ = −⋅+ −⋅ = + = + −+ ∫∫∫ n n nn n nn n d nn nn d n n d nnn nn       π πππ θθθθθθθ ( ) ( ) ( )∫∫∫∫ +−−+ −=+−== ππ π ππ θθθθθθθθθθθθ 0 1212 0 212 0 0 2 0 2 0 12 sinsin2cossin2cossincossinsin dndndd nnnnnn    ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,2,1,0 12 2 !12 !2 !2 !2 1 !2 !2 212 22 1 1 2 22 1 1 2 = + = + =−= + + − + − ∫∫ n nn n n n dtt n n dttP n n n nn Return to Table of Content 59
  • 60. SOLO Legendre Polynomials Expansion of Functions, Legendre Series Using Sturm-Liouville Theory it can be seen that the Legendre Polynomials that are Solution of the Legendre ODE, form an orthogonal and “Complete” Set, meaning that we can expand any function f (t) , Piecewise Continuous in the interval -1 ≤ t ≤+1. Therefore we can define a series of Legendre Polynomials that converges in the mean to the function f (t) ( ) ( ) 11 0 ≤≤−= ∑ ∞ = ttPatf n nn The coefficients an can be defined using the Orthogonality Property of Legendre Polynomials ( ) ( ) ( ) ( ) m n m mnnm a m tdtPtPatdtPtf mn 12 2 0 2 12 1 1 1 1 + == ∑ ∫∫ ∞ = + + − + −    δ ( ) ( )∫ + − + = 1 1 2 12 tdtPtf m a mm ( ) ( ) ( ) ( ) 11 2 12 0 1 1 ≤≤−       + = ∑ ∫ ∞ = + − ttPtdtPtf n tf n nn 60
  • 61. SOLO Legendre Polynomials Expansion of Functions, Legendre Series At any discontinuous point t0 ( f(t0- ) ≠ f(t0+) ) we have ( ) ( )[ ] ( ) ( ) ( ) 11 2 12 2 1 0 0 0 1 1 00 ≤≤−       + =+ ∑ ∫ ∞ = + − +− ttPtdtPtf n tftf n nn If f (t) is defined in the interval –a ≤ t ≤ +a then ( ) ( ) ataatPatf n nn ≤≤−= ∑ ∞ =0 / ( ) ( )∫ + − + = a a nn tdatPtf a n a / 2 12 61
  • 62. SOLO Legendre Polynomials Expansion of Functions, Legendre Series If f (t) is an odd function ( f(-t ) =- f(t) ) we have ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )    =+−−= +== + ∫ ∫∫ ∫∫∫ + ++ −− + −→ − + − 1 0 1 0 1 0 1 1 0 0 1 1 1 2 0 12 2 oddndttPtf evenn dttPtfdttPtf dttPtfdttPtfdttPtfa n n n tP n tf n tt nnn n n     If f (t) is an even function ( f(-t ) = f(t) ) we have ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )     =+−−= +== + ∫∫∫ ∫∫∫ + ++ − + −→ − + − oddn evenndttPtf dttPtfdttPtf dttPtfdttPtfdttPtfa n n n tP n tf n tt nnn n n 0 2 12 2 1 0 1 0 1 0 1 1 0 0 1 1 1     62
  • 63. SOLO Legendre Polynomials Expansion of Functions, Legendre Series Using Rodrigues’ Formula let calculate ( ) ( )[ ]n nn nn td td n tP 1 !2 1 2 − = ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )[ ] ( ) ( ) ( ) ( ) ∫∫ ∫∫ + − + − − − + − − − + − + − −−== − − − = − = 1 1 2 1 1 1 21 0 1 1 1 21 1 1 21 1 1 !2 1 1 1 !2 11 !2 1 1 !2 1 td td tfd t n td td tfd td td ntd td tf n tdtf td td n tdtftP n n n n n n nn nn nn n n nn nn     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫∫ + − + − + − −=−−= 1 1 2 1 1 2 1 1 1 !2 1 1 !2 1 1 td td tfd t n td td tfd t n tdtPtf n n n nn n n n n n or 63
  • 64. SOLO Legendre Polynomials Expansion of Functions, Legendre Series Example f (t) = tk ,|t| < 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )     ≥−+−− + < =− + = + = ∫ ∫∫ + − − + + − + + − nktdttnkkk n n nk td td td t n n tdtPt n a nkn n n kn n nn k n 1 1 2 1 1 1 2 1 1 1 111 !2 12 0 1 !2 12 2 12  We have ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫∫ + − + −− + − −−−+ + − −−+ + − −−+ + − −−+= −= + − − − − − + = − +++ −−−−−−−− = =− ++ −−−− = − + −− +− + −=− −− 1 1 2 1 1 22222 1 1 422222 1 1 222122 0 1 1 122122 1 2 1 1 1 2222 1 !2 !22 !2 !2 1 2222122 12222322122 1 222122 322122 1 122 122 1 122 1 1 122 222 tdt nm nm mn n tdtt mnnn nmnmnmnm tdtt nn nmnm tdtt n nm tt n tdtt mn nmnm nmnmmn nmn nmnnmntu tdtdv nmn nm n        Take k = 2m and since t2m is even, they are only even coefficients nonzero so we take 2 n instead of n, and 2n ≤ 2m 64
  • 65. SOLO Legendre Polynomials Expansion of Functions, Legendre Series Example f (t) = tk , |t| < 1 (continue – 1) ( ) ( ) ( ) ( ) ( )     ≥− − + < = ∫ + − − + nmtdtt nm m n n nm a nmn n n 1 1 2222 12 2 1 !22 !2 !22 14 0 We have for f (t) = t2m ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )!122 !2 !2 !22 !2 !2 1 !2 !22 !2 !2 1 2122 1 1 2 1 1 2222 ++ + − − + = − − − + =− ++ −− + − + −− + − − ∫∫ nm mn nm nm mn n tdt nm nm mn n tdtt nm nmnm mn nmnm nmn ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )!122! !!2142 !122 !2 !2 !22 !2 !2 !22 !2 !22 14 22122 122 ++− ++ = ++ + − − +− + = ++ −−+ nmnm nmmn nm nm nm nm nm n nm m n n a nnm nmnmnn ( ) ( ) ( )!12 !2 1 212 1 1 2 + =− + + −∫ n n dtt n n Where we used the previous result Therefore ( ) ( ) ( ) ( ) ( ) ( )∑= ++− ++ = m n n n m tP nmnm nmmn t 0 2 2 2 !122! !!2142 65
  • 66. SOLO Legendre Polynomials Expansion of Functions, Legendre Series ( ) ( ) ( ) ( ) ( ) ( ) ( )     ≥−+−− + < =− + = + = ∫ ∫∫ + − − + + − + + − nktdttnkkk n n nk td td td t n n tdtPt n a nkn n n kn n nn k n 1 1 2 1 1 1 2 1 1 1 111 !2 12 0 1 !2 12 2 12  We have ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )∫ ∫ ∫ ∫∫ + − ++ ++ −− + − −−−++ + − −−+ + − −−+ + − −−+= −= + − −+ − ++ + − − ++ + = − ++++ −−−−−−−− = =− ++ −−−− = − + −− +− + −=− −− + 1 1 12 2122 1 1 222212 1 1 422322 1 1 222222 0 1 1 122222 1 2 1 1 1 22122 1 !122 !2 !2 !22 !12 !12 1 12322222 12222322122 1 322222 322122 1 222 122 1 222 1 1 122 2122 tdt nm mn nm nm mn n tdtt mnnn nmnmnmnm tdtt nn nmnm tdtt n nm tt n tdtt mn nm nmnm nmnmmn nmn nmnnmntu tdtdv nmn nm n        Take k = 2m+1 and since t2m+1 is odd, they are only odd coefficients nonzero so we take 2 n+1 instead of n, and 2n+1 ≤ 2m+1 66 Example f (t) = tk , |t| < 1 (continue – 2)
  • 67. SOLO Legendre Polynomials Expansion of Functions, Legendre Series ( ) ( ) ( ) ( ) ( )     ≥− −+ + < = ∫ + − −+ + + nmtdtt nm m n n nm a nmn n n 1 1 22122 22 12 1 !22 !2 !122 34 0 We have for f (t) = t2m+1 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )!322 !12 !2 !22 !12 !12 1 !122 !2 !2 !22 !12 !12 1 2322 1 1 12 21221 1 22122 ++ ++ − − ++ + = − ++ + − − ++ + =− ++ −− + − ++ ++ −− + − −+ ∫∫ nm mn nm nm mn n tdt nm mn nm nm mn n tdtt nm nmnm mn nm nmnm nmn ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )!322! !1!12342 !322 !12 !2 !22 !12 !12 !22 !2 !122 34 122322 2212 ++− ++++ = ++ ++ − − ++ + −+ + = +++ −−++ nmnm nmmn nm nm nm nm nm n nm m n n a nnm nmnmnn ( ) ( ) ( )!12 !2 1 212 1 1 2 + =− + + −∫ n n dtt n n Where we used the previous result Therefore ( ) ( ) ( ) ( ) ( ) ( )∑= + + + ++− ++++ = m n n n m tP nmnm nmmn t 0 12 12 12 !322! !1!12342 Return to Neumann Integral 67 Example f (t) = tk , |t| < 1 (continue – 3)
  • 68. SOLO Legendre Polynomials Expansion of Functions, Legendre Series Neumann Integral 1 1 1 111 0 2 12 0 12 2 0 1 0 <+==      = − = − ∑∑∑∑ ∞ = −∞ = + ∞ = + ∞ = x t x t x t x t x t x x txtx m m m m m m m m m m m Start from Use ( ) ( ) ( ) ( ) ( ) ( )∑= + + + ++− ++++ = m n n n m tP nmnm nmmn t 0 12 12 12 !322! !1!12342 ( ) ( ) ( ) ( ) ( ) ( )∑= ++− ++ = m n n n m tP nmnm nmmn t 0 2 2 2 !122! !!2142 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∞ = ∞ = + − +∞ = ∞ = ++− += ∞ = ∞ = + − +∞ = ∞ = +− ∞ = = − + +∞ = +− = ++ +++++ + ++ +++ = ++− ++++ + ++− ++ = ++− ++++ + ++− ++ = − 0 0 12 2 12 0 0 2 212 2 0 12 2 12 0 2 12 2 0 0 2 12 12 0 12 0 2 2 !322! !12!122342 !124! !2!22142 !322! !1!12342 !122! !!2142 !322! !1!12342 !122! !!21421 n i n m n n i n in ninm n nm n m n n nm n m nOrder Summation Change m m n m n n m m m n n n tPx nmi ininn tPx ini ininn tPx nmnm nmmn tPx nmnm nmmn xtP nmnm nmmn xtP nmnm nmmn tx 68
  • 69. SOLO Legendre Polynomials Expansion of Functions, Legendre Series Neumann Integral (continue – 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑∑ ∑ ∞ = + ∞ = − +∞ = ∞ = ++−       ++ +++++ +      ++ +++ = − 0 12 0 2 12 0 2 0 212 2 !322! !12!122342 !124! !2!221421 n n i m n n n i in n tPx nmi ininn tPx ini ininn tx We found ( ) ( ) ( ) ( ) ( ) 1 !122! !2! 2 0 12 > ++ ++ = ∑ ∞ = ++− xx ini inin xQ i inn n Use the Frobenius Series development of Legendre Functions of the Second Kind Qn (x) We have ( ) ( ) ( ) ( ) ( ) ( )∑∑ ∞ = ++ ∞ = +++= − 0 1212 0 22 3414 1 n nn n nn tPxQntPxQn tx ( ) ( ) ( )∑ ∞ = <+= − 0 12 1 n nn xttPxQn tx Return to Qn Frobenius Series 69
  • 70. SOLO Legendre Polynomials Expansion of Functions, Legendre Series Neumann Integral (continue – 2) We found ( ) ( ) ( )∑ ∞ = += − 0 12 1 n nn tPxQn tx Multiply both sides by Pm (t) and integrate between -1 to +1 ( ) ( ) ( ) ( ) ( ) ( )xQtdtPtPxQntd tx tP m n n mnn m nm 212 0 12 2 1 1 1 1 =+= − ∑ ∫∫ ∞ = + + − + −    δ We obtain ( ) ( ) ∫ + − − = 1 1 2 1 td tx tP xQ n n Franz Neumann's Integral of 1848 Franz Ernst Neumann (1798 –1895) Return to Table of Content 70
  • 71. SOLO 71 Legendre Polynomials Schlaefli Integral Start with Using Rodrigues's Formula we obtain( ) ( )[ ]n n n nn x xd d n xP 1 !2 1 2 −= ( ) ( ) ∫ − = td zt tf j zf π2 1 Cauchy's Integral with ( ) ( )n zzf 12 −= ( ) ( ) ∫ − − =− td zt t j z n n 1 2 1 1 2 2 π Differentiate n times this equation with respect to z and multiply by 1/ (2n n!) ( ) ( ) ( )∫ + − − − =− td zt t j z zd d n n nn n n n n 1 2 2 1 2 2 1 !2 1 π with the contour enclosing the point t = z. Schlaefli Integral ( ) ( ) ( )∫ + − − − = td zt t j zP n nn n 1 2 1 2 2 π Return to Table of Content
  • 72. SOLO 72 Legendre Polynomials Laplace’s Integral Representation Start with ( ) ( ) ( )[ ] ( )[ ] ( )[ ] ( ) [ ] [ ] ( ) ( ) 22 0 1 2 0 22 0 2 0 22 2/tan 0 22 2 0 2 2 0 121 2 1 1 tan 1 2 1 1 1 1 1 1 2 11 2 11 2 2/tan12/tan1 2/tan1 2/tan1 2/tan1 1 cos1 λ ππ λλ λ λ λ λ λ λ λ λλλφλφ φφ φ φ λ φ φλ φ φπππ − = − =        + − − =         + − + + − − = −++ = −++ = −++ + = + − + = + ∞ − ∞ ∞∞= ∫ ∫∫∫∫∫ t t td t td tt tdddd t ( ) ( ) ( ) ( ) ( ) { }[ ] ( ) { }∑ ∞ = −− − ±= −±−=−±−−= −±− − = − − ± = + 0 2 1 2 22 1 1 cos11cos111 cos11 1 cos 1 1 1 1 cos1 1 2 n n n xu xu xxuxuxxuxu xuxu xu xu xu φφ φ φ φλ λ Let write where we used ( ) ∑ ∞ = − =− 0 1 1 n n aa ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2222 2 22 1 1 2 21 1 11 1 1 1 1 1 1 1 2 uxu xu xuxu xu xu xu xu xu +− − = −−− − = − − − = − − − ±=λ λ ( ) { } ( ) { } ( ) 22 0 0 2 0 0 2 0 21 1 1 cos11cos11 cos1 uxu xu dxxuxudxxuxu d n n n n n n +− − = − =−±−=−±−= + ∑ ∫∫ ∑∫ ∞ = ∞ = π λ π φφφφ φλ φ πππ
  • 73. SOLO 73 Legendre Polynomials Laplace’s Integral Representation (continue - 1) { } ( )∑∑ ∫ ∞ = ∞ = = +− =−± 0 2 0 0 2 21 cos1 n n n n n n xPu uxu dxxu π π φφ π We obtained Equating un coefficients we obtain : ( ) { }∫ −±= π φφ π 0 2 cos1 1 dxxxP n n ( ) ( ) 0112 =+−      − ynny xd d x xd d If we replace in the Legendre ODE n by –n – 1 the equation does not change. Therefore , and( ) ( )xPxP nn 1−−= ( ) { }∫ −− −±= π φφ π 0 1 2 cos1 1 dxxxP n n Substitute x = cosθ ( ) { }∫ ±= π φφθθ π θ 0 cossincos 1 cos djP n n Laplace’s First Integral Laplace’s Second Integral
  • 74. SOLO 74 Legendre Polynomials Laplace’s Integral Representation (continue - 2) Use the Generating Function [ ] ( )∑ ∞ = = +− 0 2/12 21 1 n n n tPu uut Substitute t = cosθ and u = ejφ [ ] ( )∑ ∞ = = +− 0 2/12 cos cos21 1 n n nj jj Pe ee θ θ ϕ ϕϕ [ ] [ ] [ ] [ ] [ ] 2/12/12/12/12/12 coscos2cos2cos21 θϕθθ ϕϕϕϕϕϕ −=+−=+− − jjjjjj eeeeeeBut Therefore ( ) ( ) ( ) ( )       > − < − = − ∞ = ∑ θϕ θϕ θϕ θϕ θ πϕ ϕ ϕ 2/12/ 2/12/ 0 coscos2 1 coscos2 1 cos j j n n nj e e Pe Equating the real and imaginary parts, we obtain ( ) ( ) ( ) ( ) ( ) ( )       > − < − =∑ ∞ = θϕ θϕ ϕ θϕ θϕ ϕ θϕ 2/1 2/1 0 coscos2 2/sin2 coscos2 2/cos2 coscos n nPn ( ) ( ) ( ) ( ) ( ) ( )       > − < − − =∑ ∞ = θϕ θϕ ϕ θϕ θϕ ϕ θϕ 2/1 2/1 0 coscos2 2/cos2 coscos2 2/sin2 cossin n nPn
  • 75. SOLO 75 Legendre Polynomials Laplace’s Integral Representation (continue - 3) Let multiply first relation by cos (nφ) and the second by sin (nφ) and integrate over φ on (0,π), we obtain two integrals ( ) ( ) ( ) ( ) ( ) ( )       > − < − =∑ ∞ = θϕ θϕ ϕ θϕ θϕ ϕ θϕ 2/1 2/1 0 coscos2 2/sin2 coscos2 2/cos2 coscos i iPi ( ) ( ) ( ) ( ) ( ) ( )       > − < − − =∑ ∞ = θϕ θϕ ϕ θϕ θϕ ϕ θϕ 2/1 2/1 0 coscos2 2/cos2 coscos2 2/sin2 cossin i iPi ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∑∫ − + − == ∞ = θ π θ δ π π ϕ θϕ ϕϕ ϕ θϕ ϕϕ θ π θϕϕϕ 0 2/12/1 0 2 0 coscos2 cos2/sin2 coscos2 cos2/cos2 cos 2 coscoscos d n d n PPdni n i i in    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∑∫ − + − −== ∞ = θ π θ δ π π ϕ θϕ ϕϕ ϕ θϕ ϕϕ θ π θϕϕϕ 0 2/12/1 0 2 0 coscos2 sin2/cos2 coscos2 sin2/sin2 cos 2 cossinsin d n d n PPdni n i i in    ( ) ( ) ( ) ( ) ( ) ( ) ( )       − + − = ∫ ∫ θ π θ ϕ θϕ ϕϕ ϕ θϕ ϕϕ π θ 0 2/12/1 coscos cos2/sin coscos cos2/cos2 cos d n d n Pn ( ) ( ) ( ) ( ) ( ) ( ) ( )       − + − −= ∫ ∫ θ π θ ϕ θϕ ϕϕ ϕ θϕ ϕϕ π θ 0 2/12/1 coscos sin2/cos coscos sin2/sin2 cos d n d n Pn Dirichlet Integrals Johann Peter Gustav Lejeune Dirichlet (1805 –1859)
  • 76. SOLO 76 Legendre Polynomials Add and subtract those two equations ( ) ( ) ( ) ( ) ( ) ( ) ( )       − + − = ∫ ∫ θ π θ ϕ θϕ ϕϕ ϕ θϕ ϕϕ π θ 0 2/12/1 coscos cos2/sin coscos cos2/cos2 cos d n d n Pn ( ) ( ) ( ) ( ) ( ) ( ) ( )       − + − −= ∫ ∫ θ π θ ϕ θϕ ϕϕ ϕ θϕ ϕϕ π θ 0 2/12/1 coscos sin2/cos coscos sin2/sin2 cos d n d n Pn Dirichlet Integrals ( ) ( )[ ] ( ) ( )[ ] ( )       − + + − + = ∫ ∫ θ π θ ϕ θϕ ϕ ϕ θϕ ϕ π θ 0 2/12/1 coscos 2/1sin coscos 2/1cos 2 1 cos d n d n Pn ( )[ ] ( ) ( )[ ] ( )∫ ∫ − − − − − = θ π θ ϕ θϕ ϕ ϕ θϕ ϕ 0 2/12/1 coscos 2/1sin coscos 2/1cos 0 d n d n Replace n by n + 1 in the last equation and substitute in the previous ( ) ( )[ ] ( ) ( )[ ] ( )∫ ∫ − + = − + = θ π θ ϕ θϕ ϕ π ϕ θϕ ϕ π θ 0 2/12/1 coscos 2/1sin2 coscos 2/1cos2 cos d n d n Pn Mehler Integrals Gustav Ferdinand Mehler (1835 - 1895) Return to Table of Content Laplace’s Integral Representation (continue - 4)
  • 77. SOLO 77 Legendre Polynomials We found Return to Table of Content Integrals in terms of sin(iθ) and cos(iθ) ( ) ( ) mnnk n dttPtP δ 12 21 1 + =∫ + − ( ) ( ) mnnk n dPP δθθθθ π 12 2 sincoscos 0 + =∫ θcos=t ( ) ( ) ( ) ( ) ( )     ≥ ++− + < = + = − + − ∫ nm nmnm nmm nm a n tdtPt n nn m !122! !!22 0 14 2 12 2 1 1 2 2 ( ) ( ) ( ) ( ) ( )     ≥ ++− +++ < = + = + + + − + + ∫ nm nmnm nmm nm a n tdtPt n nn m !322! !1!122 0 34 2 22 12 1 1 12 12 ( ) ( ) ( ) ( ) ( )     ≥ ++− + < = − ∫ nm nmnm nmm nm dP n n m !122! !!22 0 sincoscos 12 0 2 2 π θθθθ ( ) ( ) ( ) ( ) ( )     ≥ ++− +++ < = + + + ∫ nm nmnm nmm nm dP n n m !322! !1!122 0 sincoscos 22 0 12 12 π θθθθ
  • 78. Ordinary Differential EquationsSOLO Second Order Linear Ordinary Differential Equation (ODE) 78 Legendre Functions of the Second Kind Qn (x) ( ) [ ] ( ) ( )∑ ∫ ∞ = −− ∞ −− = − − +− −+= 0 2 12/12 0 1 2 1 cosh21 cosh1 n n n n n txQ x xt ttx dxxxQ θθ ( ) ( )n n n nn x xd d n xP 1 !2 1 2 −= ( ) ( ) 1<+= xxQBxPAy nn ( ) ( ) ( )xP xd d xxP nm m mm n 2/2 1−= ( ) ( ) ( )xQ xd d xxQ nm m mm n 2/2 1−= ( ) ( ) ( )xW x x xPxQ nnn 1 1 1 ln 2 1 −− − + = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 2 2 5 2 3 1 1 1 ln 2 1 2 033 022 011 0 +−= −= −= − + = xxQxPxQ xxQxPxQ xQxPxQ x x xQ ( ) ( ) ( )∑= −−− = n m mnmn xPxP m xW 1 11 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )   − − =    −       − − +− − − + = −+ −− − − + = ∑ ∑ = − =+       − = −− evennifn oddnifnn xP m nm mn x x xP xP rnr rn x x xPxQ n m mnn mr n r rnnn 2/2 2/1 2 1 2 1 122 1 1 ln 2 1 12 142 1 1 ln 2 1 1 12 2 1 0 12
  • 79. Legendre Ordinary Differential EquationSOLO 79 Legendre Functions of the Second Kind Qn (x) ( ) ( ) ( )xPxuxy nnn = With Pn (x) being a solution of the Legendre Differential Equation we look for the second solution having the form ( ) ( ) 0121 2 2 2 =++−− wnn xd wd x xd wd x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 xd xPd xu xd xPd xd xud xP xd xud xd xyd xd xPd xuxP xd xud xd xyd n n nn n nn n nn nn ++= += ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01221121 2 2 22 2 2 2 =++−−−+−+− xPxunn xd xPd xuxxP xd xud x xd xPd xxu xd xPd xd xud xxP xd xud x nn n nn nn n nn n n Substituting in the Legendre ODE we obtain ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01212121 0 2 2 22 2 2 2 =      ++−−+−−+− xuxPnn xd xPd x xd xPd xxP xd xud x xd xPd xd xud xxP xd xud x nn nn n nnn n n    or
  • 80. SOLO 80 Legendre Functions of the Second Kind Qn (x) (continue – 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 02121 2 2 2 2 =−−+− xP xd xud x xd xPd xd xud xxP xd xud x n nnn n n Equivalent to ( ) ( ) ( ) ( ) 0 1 2/ 2 / / 2 22 = − −+ x x xP xdxPd xdxud xdxud n n n n ( ) ( ) ( ) 01lnln2ln 2 =−++ x xd d xP xd d xd xud xd d n n or Integrating we obtain ( ) ( )[ ] ( ) .1lnlnln 22 constxxP xd xud n n =−++ Therefore ( ) ( )[ ] ( ) AconstxxP xd xud n n ==−⋅⋅ .1 22 ( ) ( )[ ] ( )∫ −⋅ = 22 1 xxP xd Axu n n This means that the second solution has the form ( ) ( ) ( ) ( ) ( )[ ] ( )∫ −⋅ == 22 1 xxP xd xPxuxPxQ n nnnn Legendre Ordinary Differential Equation
  • 81. SOLO 81 Legendre Functions of the Second Kind Qn (x) (continue – 2) We obtained ( ) ( ) ( ) ( ) ( )[ ] ( ) 1 1 22 < −⋅ == ∫ x xxP xd xPxuxPxQ n nnnn ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] x x xxxd xxxxP xd xPxQ − + =++−−=      + + − = −⋅ = ∫∫ 1 1 ln 2 1 1ln1ln 2 1 1 1 1 1 2 1 1 2 1 2 01 00  Let calculate Q0 (x), Q1 (x) ( ) ( ) ( )[ ] ( ) ( ) 1 1 1 ln 2 1 1 2/1 1 2/1 1 1 1 22222 1 11 2 − − + =      + + + − = − = −⋅ = ∫∫∫ x xx xd xxx xxd xx x xxP xd xPxQ x x  Legendre Ordinary Differential Equation
  • 82. SOLO 82 Legendre Functions of the Second Kind Qn (x) (continue – 2) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 2 2 5 1 1 ln 2 1 3 2 2 5 1 1 ln 4 35 2 3 1 1 ln 2 1 2 3 1 1 ln 4 43 1 1 1 ln 2 1 1 1 1 ln 2 1 1 ln 2 1 2 3 23 3 2 2 2 11 0 +−      − + =+−      − +− = −      − + =−      − +− = −      − + =−      − + =       − + = x x x xP x x xxx xQ x x x xP x x xx xQ x x xP x xx xQ x x xQ Legendre Ordinary Differential Equation
  • 83. SOLO 83 Legendre Functions of the Second Kind Qn (x) (continue – 3) To obtain a general formula for Qn (x), start from the Polynomial Pn (x) that has n zeros αi, i=1,2,…,n ( ) ( ) ( ) ( )nnn xxxkxP ααα −−−= 21 ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑=       − + − + + + − = +⋅−⋅−−− = −⋅ n i i i i i nnn x d x c x b x a xxxxxkxxP 1 2 00 22 2 2 1 222 11 11 1 1 1 αα ααα  ( ) ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( ) ( )∑=       − + − −⋅+−++= n i i i i i nnn x d x c xxPxPxbxPxa 1 2 222 0 2 0 1111 αα If we put x=1 and x = -1, and remembering that Pn (1) = 1 and Pn(-1)=(-1)n , we obtain 2/100 == ba Let prove that ( ) ( )[ ] ( ) 0 1 1 22 2 =               −⋅ −= = ixn ii xxP x xd d c α α Legendre Ordinary Differential Equation
  • 84. SOLO 84 Legendre Functions of the Second Kind Qn (x) (continue – 4) Let prove that ( ) ( )[ ] ( ) 0 1 1 22 2 =               −⋅ −= = ixn ii xxP x xd d c α α Start with ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) i x iixi xatfinitexfprovided xd xfd xxfxxfx xd d i i αααα α α ==      −+−=− = = 02 22 The only terms that are not finite in at x = αi are the terms ci/(x-αi) and di/(x-αi)2 , therefore ( )[ ] ( ) ( ) ( )∑=       − + − + + + − = −⋅ n i i i i i n x d x c x b x a xxP 1 2 00 22 111 1 αα ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] i x iii xi i i i i xn i cdxc xd d x d x c x xd d xxP x xd d iii =       +−=               − + − −=       −⋅ − === ααα α αα αα 2 2 22 2 1 1 Therefore if we write Pn (x) = (x-αi) Li (x), we have ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( )22 2 223 2 2322222 1 /1 2 1 /122 1 /2 1 2 1 1 iii iiiiii xi ii xi i ixi i L xdxLdL xxL xdxLdxxLx xxL xdxLd xxL x xxLxd d c iii αα αααα ααα −⋅ =−− =         −⋅ −⋅− =         −⋅ − −⋅ =               −⋅ = === Legendre Ordinary Differential Equation
  • 85. SOLO 85 Legendre Functions of the Second Kind Qn (x) (continue – 5) We proved that ( ) ( )[ ] ( ) ixn ii xxP x xd d c α α =               −⋅ −= 22 2 1 1 ( ) ( ) ( ) ( )[ ] ( )22 2 1 /1 2 iii iiiiii i L xdxLdL c αα αααα −⋅ =−− =Therefore if we write Pn (x) = (x-αi) Li (x), we have Since Pn (x) = (x-αi) Li (x) satisfies the Legendre ODE, we have ( ) ( ) ( ){ } ( ) ( ){ } ( ) ( ) ( ){ } 0121 2 2 2 =−++−−−− xLxnnxLx xd d xxLx xd d x iiiiii ααα Performing the calculation and substituting x = αi, we have ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 01221 2 2 2 =       −++      +−−      +−− = ix iii i i ii i xLxnnxL xd xLd xx xd xLd xd xLd xx α ααα ( ) ( ) ( ) 0212 2 =− = − iii ii i L xd xLd αα α α Substituting in ci equation we get ( ) ( ) ( ) ( )[ ] ( ) 0 1 /1 2 22 2 = −⋅ =−− = iii iiiiii i L xdxLdL c αα αααα Therefore ( )[ ] ( ) ( )∑= − +      + + − = −⋅ n i i i n x d xxxxP 1 222 1 1 1 1 2 1 1 1 α Legendre Ordinary Differential Equation
  • 86. SOLO 86 Legendre Functions of the Second Kind Qn (x) (continue – 6) We can prove that but the exact value is not important, as we shall see ( ) ( )[ ] ( ) ixn i i xxP x d α α =      −⋅ − = 22 2 1 Therefore ( )[ ] ( ) ( )∑= − +      + + − = −⋅ n i i i n x d xxxxP 1 222 1 1 1 1 2 1 1 1 α ( )[ ] ( ) ( ) ∑∑∫∫∫ == − − − + = − +      + + − = −⋅ n i i i n i i i n x d x x dx x d dx xxxxP dx 11 222 1 1 ln 2 1 1 1 1 1 2 1 1 αα ( ) ( ) ( ) ∑= − − − + = n i i n inn x xP d x x xPxQ 11 1 ln 2 1 α Since Pn (x)/(x-αi) is a polynomial of order (n-1) the sum above is also a polynomial of order (n-1), and we define it as ( ) ( ) ∑= − − = n i i n in x xP dxW 1 1 : α so ( ) ( ) ( ) 1 1 1 ln 2 1 1 <− − + = − xxW x x xPxQ nnn Legendre Ordinary Differential Equation
  • 87. SOLO 87 Legendre Functions of the Second Kind Qn (x) (continue – 7) To find Wn-1 (x) let use the fact that Qn (x) is a solution of Legendre’s ODE or ( ) ( ) ( ) ( ) ( ) 0121 2 2 2 =++−− xQnn xd xQd x xd xQd x n nn ( ) ( ) ( ) ( ) xd xWd xP xx x xd xPd xd xQd n n nn 1 2 1 1 1 1 ln 2 1 − − − + − + = ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 2222 2 2 2 1 2 1 2 1 1 ln 2 1 xd xWd xP x x xd xPd xx x xd xPd xd xQd n n nnn − − − + − + − + = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0121 1 2 2 1 2 1 1 ln 2 1 121 1 1 2 1 2 2 22 0 2 2 2 =+−+−− − −+ − + − +       ++−− − −− xWnn xd xWd x xd xWd xxP x x xd xPd xP x x x x xPnn xd xPd x xd xPd x n nn n n n n nn    ( ) ( ) ( ) ( ) ( ) ( ) xd xPd xWnn xd xWd x xd xWd x n n nn 2121 1 1 2 1 2 2 =++−− − −− Legendre Ordinary Differential Equation ( ) ( ) ( ) 1 1 1 ln 2 1 1 <− − + = − xxW x x xPxQ nnn
  • 88. SOLO 88 Legendre Functions of the Second Kind Qn (x) (continue – 8) Use the Recursive Formula ( ) ( ) ( ) ( ) ( ) xd xPd xWnn xd xWd x xd d n n n 211 1 12 =++       − − − ( ) ( ) ( ) ( ) ( ) ∑       − = −−−−= 1 2 1 0 121421 l i in n xPin xd xPd Since Wn-1(x) is a polynomial of order n – 1, let write ( ) ( ) ( ) ( ) ( ) ∑       − = −−−−− =++= 1 2 1 0 1231101 n i ininnn xPaxPaxPaxW  Substitute those two equation in the Wn-1(x) O.D.E. to obtain ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑∑∑       − = −−       − = −−       − = −− −−=++− 1 2 1 0 12 1 2 1 0 12 1 2 1 0 12 2 142211 l i in n i ini n i ini xPinxPannxPx xd d a But by Legendre O.D.E.: ( ) ( ){ } ( ) ( ) ( ) 02121 1212 2 =−−−+− −−−− xPininxPx xd d inin ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ∑∑       − = −−       − = −− −−=++−−−− 1 2 1 0 12 1 2 1 0 12 14221212 l i in n i ini xPinxPnninina Let solve Legendre Ordinary Differential Equation
  • 89. SOLO 89 Legendre Functions of the Second Kind Qn (x) (continue – 9) The coefficients of the same polynomial in both sides must be equal ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ∑∑       − = −−       − = −− −−=++−−−− 1 2 1 0 12 1 2 1 0 12 14221212 l i in n i ini xPinxPnninina ( ) ( ) ( ){ } ( )14221212 −−=++−−−− innnininai ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )12224244 1221212 222 2 +−=−+−=++−+−+−= ++−+−−=++−−−− iininininniniinn nnininnninin But which gives ( ) ( )12 142 +− −− = iin in ai ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ][ ] ∑ ∑∑ = = −− =+       − = −−− +− +− =       − − +− = +− −− = n m n m mnmn mi n i inn xP mn mn m xP m n mn m xP iin in xW 1 1 12 1 2 1 0 121 12 12221 2 1 1221 12 142 and ( ) ( ) ( )∑= −−− = n m mnmn xPxP m xW 1 11 1 ????? Legendre Ordinary Differential Equation
  • 90. SOLO 90 Legendre Functions of the Second Kind Qn (x) (continue -10) ( ) 3,2,1,0 10 = <≤ n xxQn Legendre Ordinary Differential Equation ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 2 2 5 1 1 ln 2 1 3 2 2 5 1 1 ln 4 35 2 3 1 1 ln 2 1 2 3 1 1 ln 4 43 1 1 1 ln 2 1 1 1 1 ln 2 1 1 ln 2 1 2 3 23 3 2 2 2 11 0 +−      − + =+−      − +− = −      − + =−      − +− = −      − + =−      − + =       − + = x x x xP x x xxx xQ x x x xP x x xx xQ x x xP x xx xQ x x xQ
  • 91. SOLO 91 Legendre Functions of the Second Kind Qn (x) (continue -11) Similar to Rodrigues Formula for Legendre Functions of the Second Kind Qn (x) Start with ( ) ( ) ( )12 2212 1 1 1 1 +−− ++ −= − n nn x xx ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 32211 11, ,121,11,1: ++− +−+−+− −++= −++=−+=−= ini nnn uinnuf unnufunufuuf   ( ) ( ) ( ) ( ) 1 !! ! !! !1 1 1 12 0 2 0 2212 > + = + = − ++− ∞ = − ∞ = ++ ∑∑ xx in in x in in xx in i i i nn ( ) ( ) ( ) ( )( ) ( ) 1 ! 21 ! 0 00 < +++ == ∑∑ ∞ = ∞ = uu i innn u i f uf i i i i i  Taylor expansion around u = 0 Use u = x-2 Legendre Ordinary Differential Equation
  • 92. SOLO 92 Legendre Functions of the Second Kind Qn (x) (continue -12) Similar to Rodrigues Formula for Legendre Functions of the Second Kind Qn (x) Integrate relative to x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑∑ ∫∑∫∑∫ ∞ = ++− ∞ = ∞ ++− ∞ ++− ∞ = ∞ ++− ∞ = ∞ + −+ + = ++ + = + = + = − 0 122 0 122 12 0 2 12 0 212 122!! ! 122!! ! ! ! ! ! 1 i in i xin x in ix in ix n x inni in inni in d n in d n ind η ηηηη η η Integrate this n more times ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ ∑ ∑ ∫ ∫∫∫ ∫ ∞ = ++− ∞ = ++− ∞ = ∞ ∞ ++− ∞ ∞ ∞ + + ++ ++ = +++++++ + = ++ + = − 0 12 0 12 0 122 12 1 !122!! !2! 122222122!! ! 122!! ! 1 i in i in i x nin x n n x inni inin x ininininni in d inni ind   ηη η ηη η η Legendre Ordinary Differential Equation
  • 93. SOLO 93 Legendre Functions of the Second Kind Qn (x) (continue -13) Similar to Rodrigues Formula for Legendre Functions of the Second Kind Qn (x) (continue) ( ) ( ) ( ) ( ) ( ) 1 !122! !2! ! 1 1 0 12 12 1 > ++ ++ = − ∑∫∫ ∫ ∞ = ++− ∞ ∞ ∞ + + xx ini inin n d i in x n n η η η η  We found, using Frobenius Series By comparing those two relations we obtain ( ) ( ) 1 1 !2 12 1 > − = ∫∫ ∫ ∞∞ ∞ + + x d nxQ x n n n n η η η η  Return to Frobenius Series ( ) ( ) ( ) ( ) ( ) 1 !122! !2! 2 0 12 > ++ ++ = ∑ ∞ = ++− xx ini inin xQ i inn n Legendre Ordinary Differential Equation
  • 94. SOLO 94 Legendre Functions of the Second Kind Qn (x) (continue -14) Another Expression for Legendre Functions of the Second Kind Qn (x) Start with the following Differential Equation ( ) ( ) 02121 2 2 2 =+−+− un xd ud xn xd ud x One of the Solutions is . Check:( ) ( )n xxu 12 1 −= ( ) ( ) ( ) ( ) 22212 2 1 2 121 11412&12 −−− −−+−=−= nnn xxnnxn xd ud xxn xd ud ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01211411412 2121 21221222 1 1 2 1 2 2 =−−−−+−−−−−= +−+− −− nnnn xnxnxnxxnnxn un xd ud xn xd ud x The Second Solution can be find using u1 (x) by finding a function v (x) that satisfies: ( ) ( ) ( )n xxvxu 12 2 −= Legendre Ordinary Differential Equation
  • 95. SOLO 95 Legendre Functions of the Second Kind Qn (x) (continue -15) Another Expression for Legendre Functions of the Second Kind Qn (x) (continue – 1) ( ) ( ) ( ) ( ) ( ) ( ) 01221 21212121 112 2 1 12 0 1 1 2 1 2 2 2 2 2 2 2 2 =−+      +−+       +−+−=+−+− xd vd uxnu xd vd u xd vd xd ud x un xd ud xn xd ud xvun xd ud xn xd ud x    The Second Solution can be find using u1 (x) by finding a function v (x) that satisfies: ( ) ( ) ( )n xxvxu 12 2 −= 2 1 2 1 12 2 2 2 2 1 1 2 2& xd ud v xd ud xd vd u xd vd xd ud xd ud vu xd vd xd ud ++=+= ( ) ( ) ( ) ( ) ( ) ( ) ( )1 121 2 2 1 12 2 1 12 / / 2 1 2 1 2 1 1 1 2 1 22 − + −= − − − − = − − − − = x xn u x uxn x uxn u xd ud x uxn xdvd xdvd Legendre Ordinary Differential Equation
  • 96. SOLO 96 Legendre Functions of the Second Kind Qn (x) (continue -16) Another Expression for Legendre Functions of the Second Kind Qn (x) (continue – 2) Therefore ( ) ( )1 12 / / 2 22 − + −= x xn xdvd xdvd ( ) ( ) ( ) ( ) ( )∫ ∞ ++ − =⇒ − =⇒−+−= x nn d xv xxd vd xn xd vd 1212 2 11 1 1ln1 η η ( ) ( ) ( ) ( ) ( )∫ ∞ + − −== x n n d xxuxvxu 12 2 12 1 1 η η Differentiate the Differential Equation ( ) ( ) 02121 2 2 2 =+−+− un xd ud xn xd ud x ( ) ( ) ( ) ( ) ( ) ( ) 0122221 2121221 2 2 3 3 2 2 2 2 2 2 =−+−+−= +−+−+−− xd ud n xd ud xn xd ud x xd ud n xd ud xd d xn xd ud n xd ud x xd ud xd d x Legendre Ordinary Differential Equation
  • 97. SOLO 97 Legendre Functions of the Second Kind Qn (x) (continue -17) Another Expression for Legendre Functions of the Second Kind Qn (x) (continue – 3) Differentiate relative to x the Ordinary Differential Equation n times ( ) ( ) ( ) 0122221: 2 2 3 3 2 =−+−+− xd ud n xd ud xn xd ud xODE xd d ( ) ( ) ( ) 0223321: 2 2 4 4 2 2 2 =−+−+− xd ud n xd ud xn xd ud xODE xd d ( ) ( ) 02121: 2 2 2 =+−+− un xd ud xn xd ud xODE ( ) ( ) 0121: 1 1 2 2 2 =++−− + + + + n n n n n n n n xd ud nn xd ud x xd ud xODE xd d Derive ( ) ( )[ ] ( )( ) 021121: 1 1 2 2 2 =−+++−+− + + + + i i i i i i i i xd ud ini xd ud xin xd ud xODE xd d ( ) ( )[ ]{ } ( )[ ] ( )( ){ } ( ) ( )[ ] ( )( ) 0122221 21121221: 1 1 1 1 3 3 2 1 1 1 1 3 3 2 =−−+++−+− −+++−++−+−+− + + + + + + + + + + + + i i i i i i i i i i i i i i xd ud ini xd ud xin xd ud x xd ud iniin xd ud xin xd ud xODE xd d xd d Proof by Induction q.e.d. i = n i → i+1 Legendre Ordinary Differential Equation
  • 98. SOLO 98 Legendre Functions of the Second Kind Qn (x) (continue -18) Another Expression for Legendre Functions of the Second Kind Qn (x) (continue – 4) This is the Legendre Ordinary Differential Equation for dn u/dxn , having the solution Pn (x) and Qn (x). Thus, the solution Pn (x) and Qn (x) can be written in the following form: ( ) ( ) 0121: 1 1 2 2 2 =++−− + + + + n n n n n n n n xd ud nn xd ud x xd ud xODE xd d We obtain ( ) ( )[ ]n n n nn n nn x xd d nxd ud n xP 1 !2 1 !2 1 21 −== ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 !2 !21 !2 !21 12 22 >         − − − = − = ∫ ∞ + x d x xd d n n xd ud n n xQ x n n n nnn n nnn n η η Rodrigues Formula An integral for Qn (x) valid in |x| < 1 can be obtained from the previous result ( ) ( ) ( ) ( ) ( ) 1 1 1 !2 !21 0 12 2 <         − − − = ∫ + x d x xd d n n xQ x n n n nnn n η η Return to Table of Content Legendre Ordinary Differential Equation
  • 99. 99 SOLO Laplace Differential Equation in Spherical Coordinates 0 sin 1 sin sin 11 2 2 222 2 2 2 = ∂ Φ∂ +      ∂ Φ∂ ∂ ∂ +      ∂ Φ∂ ∂ ∂ =Φ∇ φθθ θ θθ rrr r rr Let solve this equation by the method of Separation of Variables, by assuming a solution of the form : ( ) ( )ϕθ,SrR=Φ Spherical Coordinates: θ ϕθ ϕθ cos sinsin cossin rz ry rx = = = In Spherical Coordinates the Laplace equation becomes: Substituting in the Laplace Equation and dividing by Φ gives: 0sinsin sin 11 2 2 22 2 2 =      ∂ ∂ +      ∂ ∂ ∂ ∂ +      φθ θ θ θ θ SS Srrd Rd r rd d Rr The first term is a function of r only, and the second of angular coordinates. For the sum to be zero each must be a constant, therefore: λ φθ θ θ θ θ λ −=      ∂ ∂ +      ∂ ∂ ∂ ∂ =      2 2 2 2 sinsin sin 1 1 SS S rd Rd r rd d R Associate Legendre Differential Equation
  • 100. 100 SOLO λ φθ θ θ θ θ −=      ∂ ∂ +      ∂ ∂ ∂ ∂ 2 2 2 sinsin sin 1 SS S ( ) ( ) ( )φθφθ ,,, SrRr =Φ We obtain: Multiply this by S sin2 θ and put to get:( ) ( ) ( )φθφθ ΦΘ=,S 0 1 sinsinsin 1 2 2 2 = Φ Φ +      +      Θ ∂ ∂ Θ φ θλ θ θ θ θ d d d d Again, the first term, in the square bracket, and the last term must be equal and opposite constants, which we write m2 , -m2 . Thus: Φ−= Φ =Θ      −+      Θ 2 2 2 2 2 0 sin sin sin 1 m d d m d d d d φ θ λ θ θ θθ The Φ ( ) must be periodical in (a period of 2 π) and becauseϕ ϕ this we choose the constant m2 , with m an integer. Thus: ( ) φφφ mbma sincos +=Φ Laplace Differential Equation in Spherical Coordinates ( ) φφ φ mjmj ee +− =Φ ,or With m integer, we have the Orthogonality Condition 21 21 , 2 0 2 mm mjmj dee δπφ π φφ =⋅∫ +− Return to Table of Content Associate Legendre Differential Equation
  • 101. 101 SOLO ( ) ( ) ( )φθ ΦΘ=Φ rR We obtain: or: Θ−=Θ− Θ + Θ λ θθ θ θ 2 2 2 2 sin cot m d d d d 0 sin sin sin 1 2 2 =Θ      −+      Θ ∂ ∂ θ λ θ θ θθ m d d Analysis of Associate Lagrange Differential Equation Laplace Differential Equation in Spherical Coordinates Change of variables: t = cos θ θθ dtd sin−= td d d d Θ −= Θ θ θ sin  ( ) td d t td d t td d d d td d td d td d td d d d d d d d Θ − Θ −= Θ + Θ =      Θ −−=      Θ = Θ − 2 2 2 cossin/1 2 2 2 2 2 1 sin sinsinsinsin  θθ θ θθ θθθθ θθθ Θ      − −+ Θ − Θ − Θ =Θ      −+ Θ + Θ = = 2 2 2 2cos 2 2 2 2 1sin cot0 t m td d t td d t td dm d d d d t λ θ λ θ θ θ θ We obtain: 1cos 0 1 2 2 2 2 2 ≤⇒= =Θ      − −+ Θ − Θ tt t m td d t td d θ λ Associate Legendre Differential Equation
  • 102. 102 SOLO ( ) ( ) ( )ϕθ gfrR=Φ We obtain: or: ff m d fd d fd λ θθ θ θ −=−+ 2 2 2 2 sin cot Let try to factorize the left-hand side, second order differential equation into two first-order operators: 0 sin sin sin 1 2 2 =      −+      ∂ ∂ f m d fd θ λ θ θ θθ The two equations are identical if the coefficient are equal. This is obtained by choosing α and β as follows: ( ) integer1 1 2 ==− =+ mmαβ βα ( ) ( ) ( ) ff d fd d fd ff d fd d fd f d fd d d f d d d d βα θ αβ θ θβα θ θβα θ β θ θβα θ θβ θ θα θ θβ θ θα θ θ −−−++= +−++=       +      +=      +      + − 22 2 1 sin 1 2 22 2 sin 1 1cot cot sin cot cotcotcotcot 2  Laplace Differential Equation in Spherical Coordinates Analysis of Associate Lagrange Differential Equation (continue – 1) Associate Legendre Differential Equation
  • 103. 103 SOLO ( ) ( ) ( )ϕθ gfrR=Φ We obtain: and: ff m d fd d fd λ θθ θ θ −=−+ 2 2 2 2 sin cot We have two solutions for α and β as follows: 1.β1 = m, α1 = 1-m 2.β2 = -m, α2 = 1+m Since m is an integer α, β are also integers. ( ) integer1 1 2 ==− =+ mmαβ βα ( ) ( ) ( ) fff d fd d fd  λ βαλβα θ αβ θ θβα θ +−=−−−++ ' sin 1 1cot 22 2 βα −=1 integer22 == mmβ Let define the two operators: ( ) ( ) ( ) θ θ θ θ cot1 cot ++= −= − + m d d M m d d M m m Laplace Differential Equation in Spherical Coordinates Analysis of Associate Lagrange Differential Equation (continue – 2) Associate Legendre Differential Equation
  • 104. 104 SOLO ( ) ( ) ( )ϕθ gfrR=Φ We obtain: We have two solutions for α and β as follows: 1.β1 = m, α1 = 1-m 2.β2 = -m, α2 = 1+m Since m is an integer α, β are also integers. ( ) ( ) ( ) θ θ θ θ cot1 cot ++= −= − + m d d M m d d M m m ff d d d d λθβ θ θα θ −=      +      + cotcot ( )  ( )  ( )  ( ) ( )11 11 11 11 1 mmmm fmmfMM         −−−= − − − + − αβ βα λ We have: ( )  ( )  ( )  ( ) ( )22 22 22 1 mmmm fmmfMM         +−−= − +− αβ βα λ fm (1) – the solution for α1, β1 fm (2) – the solution for α2, β2 Laplace Differential Equation in Spherical Coordinates Analysis of Associate Lagrange Differential Equation (continue – 3) Associate Legendre Differential Equation
  • 105. 105 SOLO ( ) ( ) ( )ϕθ gfrR=Φ We obtain: ( ) ( ) ( ) ( )[ ] ( )11 11 1 mmmm fmmfMM −−−=− − + − λ ( ) ( ) ( ) ( )[ ] ( )22 1 mmmm fmmfMM +−−=+− λ Let operate on first of those equations with ( )− −1mM ( ) ( ) ( ) ( ) [ ] ( )[ ] ( ) ( ) [ ]1 1 1 111 1 mmmmmm fMmmfMMM − − − − + − − − −−−= λ In the Second Equation replace m by m-1 ( ) ( ) ( ) ( )[ ] ( )2 1 2 111 1 −− + − − − −−−= mmmm fmmfMM λ Let operate on second of those equations with ( )+ mM 1 2 ( ) ( ) ( ) ( ) [ ] ( )[ ] ( ) ( ) [ ]22 1 mmmmmm fMmmfMMM ++−+ +−−= λ In the First Equation replace m by m+1 ( ) ( ) ( ) ( )[ ] ( )1 1 1 1 1 ++ −+ +−−= mmmm fmmfMM λ ( ) ( ) ( )21 1 mmmm fpfM =+ − ( ) ( ) ( )1 1 2 + + = mmmm fqfM Laplace Differential Equation in Spherical Coordinates pm is a constant qm is a constant mm →−1 mm →−1 Analysis of Associate Lagrange Differential Equation (continue – 4) Associate Legendre Differential Equation
  • 106. 106 SOLO We obtained:( ) ( ) ( )21 1 mmmm fpfM =+ − ( ) ( ) ( )1 1 2 + + = mmmm fqfM Laplace Differential Equation in Spherical Coordinates ( ) ( ) ( ) θ θ θ θ cot cot1 m d d M m d d M m m −= ++= + − where: Theorem: ( ) ( ) ( ) ( ) ( ) ( )∫∫ +− −= ππ θθθθθθθθ 00 sinsin dgMfdfMg mm where f and g are arbitrary bounded function of θ. Proof: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫∫ ∫ ∫∫ + − −=      −−=       +−−=       ++= ππ π π ππ θθθθθθθ θ θ θθ θ θθ θθθθθθ θ θθθθ θθθ θ θθθθθθ 00 0 0 0 00 sinsin sin cos sin cos1sinsin cot1sinsin dgMfdgfmg d d f dgfmg d d ffg dfm d d gdfMg m m    Those are Recursive Relations in m. Analysis of Associate Lagrange Differential Equation (continue – 5) Associate Legendre Differential Equation
  • 107. 107 SOLO Laplace Differential Equation in Spherical Coordinates ( ) ( ) ( )( ) ( ) ( ) ( )( )∫∫ +− −= ππ θθθθθθθθ 00 sinsin dgMfdfMg mm ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ + −+ ++ − + − −= ππ θθθθ 0 11 0 11 sinsin dfMMfdfMfM mmmmmmmm ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫∫ = =+ − + − π ππ θθ θθθθ 0 22 00 11 sin sinsin dfp dfpfpdfMfM mm mmmmmmmm Choose f := fm+1 and g := Mm (-) fm+1: ( ) ( ) ( ) ( )[ ]{ } ( )[ ] ∫ ∫∫ + +++ −+ + +−= +−−−=− π ππ θθλ θλθθθ 0 2 1 0 11 0 11 sin1 1sinsin dfmm dfmmfdfMMf m mmmmmm Assuming: we have1sinsin 0 2 1 0 2 == ∫∫ + ππ θθθθ dfdf mm ( ) ( ) λλ ≤+→+−= 11 mmmmpm Analysis of Associate Lagrange Differential Equation (continue – 6) Associate Legendre Differential Equation
  • 108. 108 SOLO Laplace Differential Equation in Spherical Coordinates ( ) ( ) ( )( ) ( ) ( ) ( )( )∫∫ +− −= ππ θθθθθθθθ 00 sinsin dgMfdfMg mm Choose now f := Mm (+) fm and g := fm, to obtain as before We obtained ( ) ( ) λλ ≤+→+−= 11 mmmmqm ( ) ( ) λλ ≤+→+−= 11 mmmmpm We see that m, an integer, is bounded by λ, therefore we must choose λ as ( ) 0integer1 >=+= lllλ In this case we have mMAX = l, mmin = -(l+1), or ( ) integer0,integer1 =>=≤≤+− mllml Therefore ( ) ( ) ( ) lmlmmllqp mm ≤≤+−→+−+== 111 Analysis of Associate Lagrange Differential Equation (continue – 7) Associate Legendre Differential Equation
  • 109. 109 SOLO Laplace Differential Equation in Spherical Coordinates We obtained ( ) ( ) ( ) lmlmmllqp mm ≤≤+−→+−+== 111 ( ) ( ) ( ) θ θ θ θ cot cot1 m d d M m d d M m m −= ++= + − ( ) ( ) ( )21 1 mmmm fpfM =+ − ( ) ( ) ( )1 1 2 + + = mmmm fqfM ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) lml mmllfm d d fmmllfm d d m mm ≤≤+−        +−+=      − +−+=      ++ + 1 11cot 11cot1 2 21 1 θ θ θ θ Substituting m = - (l+1) in the First Equation and m = l in the Second we obtain: ( ) ( )        =      − =      − − 0cot 0cot 2 1 l l fl d d fl d d θ θ θ θ ( ) ( ) ( ) ( ) ( ) ( ) θ θ θ θ sin sin sin sin 2 2 1 1 d l f fd d l f fd l l l l = = + + − − ( ) ( ) θl lll Cff sin 21 == +− If we can find a Solution for a particular m, we can use the Recursive Relations above to find the others. Analysis of Associate Lagrange Differential Equation (continue – 8) Associate Legendre Differential Equation
  • 110. 110 SOLO Laplace Differential Equation in Spherical Coordinates We obtained ( ) ( ) θl lll Cff sin 21 == +− Cl must be chosen to normalize fi and f-l: 1sinsin 0 122 0 2 == ∫∫ + ± ππ θθθθ dCdf l ll ( ) ( )!12 !21 212 2 + = + n n C n l ( ) ( )212 !2 !12 n n C nl + + = ( ) ( ) ( )∫∫∫∫ +−−+ −=+−=−= ππ π ππ θθθθθθθθθθθθ 0 1212 0 212 0 0 2 0 2 0 12 sinsin2cossin2cossincossinsin dndndd nnnnnn    Therefore ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )!12 !2 cos 2222 !2 11212 !2 sin 31212 2222 sin 12 2 sin 212 2 0 1 00 12 0 12 + = −⋅ ⋅ −⋅+ = −⋅+ −⋅ = + = + −+ ∫∫∫ n n nn n nn n d nn nn d n n d nnn nn       π πππ θθθθθθθ Analysis of Associate Lagrange Differential Equation (continue – 9) Associate Legendre Differential Equation
  • 111. 111 SOLO Laplace Differential Equation in Spherical Coordinates The Normalized Solution for m = l is defined as ( ) ( ) θl n lm l lm l n n sin !2 !12 212 + −== + =Θ=Θ The Solutions for m < l can be found using the Recursive Relation: ( ) ( ) ( ) ( )1,,,0,,1,cot 11 11 1 1 1 +−−−=Θ      + −−+ =Θ=Θ − − − − llllmm d d mmll M p m l m lm m m l θ θ ( ) ( ) ( )21 1 mmmm fpfM =+ − From which the Normalized Solutions for m < l are given by Or we can find the Solutions for m >- l by using the Recursive Relation: ( ) ( ) ( )1 1 2 + + = mmmm fqfM ( ) ( ) ( ) llllmm d d mmll M q m l m lm m m l ,1,,0,,,1cot 11 111 −−−−=Θ      − +−+ =Θ=Θ ++ θ θ Analysis of Associate Lagrange Differential Equation (continue – 10) Associate Legendre Differential Equation
  • 112. 112 SOLO Laplace Differential Equation in Spherical Coordinates ( ) ( ) θl n lm l lm l n n sin !2 !12 212 + −== + =Θ=Θ ( ) ( ) ( ) ( )1,,,0,,1,cot 11 11 1 1 1 +−−−=Θ      + −−+ =Θ=Θ − − − − llllmm d d mmll M p m l m lm m m l θ θ Examples: ( ) ( ) ( ) llllmm d d mmll M q m l m lm m m l ,1,,0,,,1cot 11 111 −−−−=Θ      − +−+ =Θ=Θ ++ θ θ Analysis of Associate Lagrange Differential Equation (continue – 11) 2 cos 1 1 cos 0 1 2 cos 1 1 0 0 1 2 3 sin 2 3 2 3 cos 2 3 1 2 3 sin 2 3 1 2 1 0 x x xl l x x x −−=−=Θ ==Θ −==Θ= =Θ= = − = = θ θ θ θ θ θ ( ) ( ) ( ) ( )2 cos 22 2 2 cos 1 2 2 cos 20 2 2 cos 1 2 2 cos 22 2 1 4 15 sin 4 15 1 2 15 cossin 2 15 13 22 5 1cos3 22 5 1 2 15 cossin 2 15 1 4 15 sin 4 15 2 x xx x xx xl x x x x x −−=−=Θ −−=−=Θ −=−=Θ −==Θ −==Θ= = − = − = = = θ θ θ θ θ θ θθ θ θθ θ Return to Table of Content Associate Legendre Differential Equation
  • 113. SOLO 113 Associated Legendre Functions Let Differentiate this equation m times with respect to t, and use Leibnitz Rule of Product Differentiation: ( ) ( )[ ] ( ) ( ) ( ) im im i im i m m td tgd td tsd imi m tgts td d − − = ∑ − =⋅ 0 !! ! Start with: ( ) ( ) ( ) ( ) 1011 2 ≤=++      − ttwnntw td d t td d nn or: ( ) ( ) ( ) ( ) ( ) 10121 2 2 2 ≤=++−− ttwnntw td d ttw td d t nnn ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )twmmtwtmtwttw td d t td d m n m n m nnm m 1211 122 2 2 2 −−−−=      − ++ ( ) ( ) ( ) ( ) ( )twmtwttw td d t td d m n m nnm m +=      +1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )twnntwmtwttwmmtwtmtwt m n m n m n m n m n m n 122121 1122 ++−−−−−− +++ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) 011121 122 =+−+++−−= ++ twmmnntwtmtwt m n m n m n 2nd Way
  • 114. SOLO 114 Associated Legendre Functions ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) 011121 122 =+−+++−− ++ twmmnntwtmtwt m n m n m n Define: ( ) ( ) ( )twty m n=: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) 011121 122 =+−+++−− tymmnntytmtyt Now define: ( ) ( ) ( )tyttu m 22 1: −= Let compute: ( ) ( ) ( )1221 22 11 ytyttm td ud mm −+−−= − ( ) ( ) ( ) ( )11 22222 111 ytyttm td ud t mm + −+−−=− ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21 221221221 2222222 1121111 ytyttmyttmyttmytm td ud t td d mmmmm +− −+−+−−−−+−−=      − ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]{ } ( ) ( ) y t tm mnnmmtymmnnytmytt mm       − +−+−+−++−+++−−−= 2 22 222 0 12222 1 11111211    We get: ( ) ( ) 0 1 11 2 2 2 =      − −++      − u t m nn td ud t td d 2nd Way
  • 115. SOLO 115 Associated Legendre Functions Define: ( ) ( ) ( )tw td d ttu nm mm 22 1: −= We get: ( ) ( ) 0 1 11 2 2 2 =      − −++      − u t m nn td ud t td d Start with Legendre Differential Equation: ( ) ( ) ( ) ( ) 1011 2 ≤=++      − ttwnntw td d t td d nn Summarize But this is the Differential Equation of f (θ) obtained by solving Laplace’s Equation by Separation of Variables in Spherical Coordinates . 02 =Φ∇ ( ) ( ) ( ) ( )φθφθ ΦΘ=Φ rRr ,, The Solutions of this Differential Equation are called Associated Legendre Functions, because they are derived from the Legendre Polynomials, and Legendre Functions of the Second Kind Qn (x) and are denoted: ( ) ( ) ( )tP td d ttP nm mm m n 22 1: −= 2nd Way ( ) ( ) ( )tQ td d ttQ nm mm m n 22 1: −=
  • 116. SOLO 116 Associated Legendre Functions Let use Rodrigues Formula for Pn (t): We see that we can define the Associated Legendre Function even for negative m (In the Differential equation m2 appears): ( ) ( ) ( )tP td d ttP nm mm m n 22 1: −= ( ) ( )[ ]n n n nn t td d n tP 1 !2 1 2 −= we obtain: Associated Legendre Functions ( ) ( ) ( )[ ]n mn mnm n m n t td d t n tP 11 !2 1 : 222 −−= + + From this equation we obtain: ( ) ( )tPtP nn = 0 2nd Way

Hinweis der Redaktion

  1. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  2. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  3. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  4. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  5. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  6. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  7. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  8. http://en.wikipedia.org/wiki/Legendre_polynomials
  9. W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  10. http://en.wikipedia.org/wiki/Rodrigues%27_formula http://books.google.co.il/books?id=oTyJYUx8Jr4C&amp;pg=PA105&amp;redir_esc=y#v=onepage&amp;q&amp;f=false http://www-history.mcs.st-andrews.ac.uk/Biographies/Rodrigues.html
  11. http://en.wikipedia.org/wiki/Rodrigues%27_formula
  12. http://en.wikipedia.org/wiki/Rodrigues%27_formula
  13. http://en.wikipedia.org/wiki/Rodrigues%27_formula
  14. http://en.wikipedia.org/wiki/Rodrigues%27_formula
  15. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  16. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  17. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  18. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  19. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  20. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  21. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  22. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  23. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  24. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  25. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 K.T. Tang, “Mathematical Methods for Engineers and Scientists”, Vol 3, Springer-Verlag, 2007 http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
  26. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  27. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  28. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  29. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  30. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  31. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001 W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  32. http://www.serc.iisc.ernet.in/~amohanty/SE288/l.pdf
  33. Wallace, P.R., “Mathematical Analysis of Physical Problems”, Dover 1972, 1984
  34. Wallace, P.R., “Mathematical Analysis of Physical Problems”, Dover 1972, 1984
  35. W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  36. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  37. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  38. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  39. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  40. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  41. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  42. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  43. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  44. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  45. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  46. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  47. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  48. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  49. L.C. Andrews, “Special Functions for Engineers and Applied Mathematics”, MacMillan Publishing Companie, 1985 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001 http://en.wikipedia.org/wiki/Franz_Ernst_Neumann http://journals.cambridge.org/action/displayAbstract;jsessionid=4BE79E68247E19A6FFC459F00AAFE923.journals?fromPage=online&amp;aid=2061924 S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  50. http://en.wikipedia.org/wiki/Legendre_polynomials
  51. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  52. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  53. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  54. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  55. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  56. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  57. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables”, M. Abramowitz, I. Stegun
  58. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  59. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  60. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  61. http://mathworld.wolfram.com/LegendreFunctionoftheSecondKind.html
  62. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  63. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  64. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  65. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  66. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  67. W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  68. W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  69. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables”, M. Abramowitz, I. Stegun
  70. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  71. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  72. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  73. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  74. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  75. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  76. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  77. S.I. Hayek, “Advanced Mathematical Methods in Science and Engineering”, Marcel Dekker Inc., 2001
  78. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  79. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  80. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  81. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  82. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  83. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  84. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  85. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  86. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  87. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  88. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  89. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  90. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  91. Wallace, P.R., “Mathematical Analysis of PhysicaL Problems”, Dover 1972, 1984
  92. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  93. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  94. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  95. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  96. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  97. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  98. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  99. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  100. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  101. http://en.wikipedia.org/wiki/
  102. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  103. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  104. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  105. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  106. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  107. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  108. W. W. Bell, “Special Functions for Scientists and Engineers”, D. van Nostrand Company ltd., 1968
  109. Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  110. Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  111. Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  112. Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  113. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  114. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  115. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  116. http://en.wikipedia.org/wiki/Spherical_Harmonics
  117. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin
  118. G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin Wallace, P.R., “Mathematical Analysis of Physical Problems”, Dover 1972, 1984 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  119. http://en.wikipedia.org/wiki/Spherical_Harmonics G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin Wallace, P.R., “Mathematical Analysis of Physical Problems”, Dover 1972, 1984 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  120. http://en.wikipedia.org/wiki/Spherical_Harmonics G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin Wallace, P.R., “Mathematical Analysis of Physical Problems”, Dover 1972, 1984 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  121. http://en.wikipedia.org/wiki/Spherical_Harmonics G.M. Wysin, “Associated Legendre Functions and Dipole Transition Matrix Elements”, http://www.phys.ksu.edu/personal/wysin Wallace, P.R., “Mathematical Analysis of Physical Problems”, Dover 1972, 1984 Afken, Weber, “Mathematical Methods for Physicists”, Harcourt Academic Press, 5th Ed., 2001
  122. http://en.wikipedia.org/wiki/Spherical_Harmonics
  123. http://en.wikipedia.org/wiki/Spherical_Harmonics
  124. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  125. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  126. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations” http://en.wikipedia.org/wiki/Lagrange’s_identity_(boundary_value_problem)
  127. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations” http://en.wikipedia.org/wiki/Lagrange’s_identity_(boundary_value_problem)
  128. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations” http://en.wikipedia.org/wiki/Lagrange’s_identity_(boundary_value_problem)
  129. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations” http://en.wikipedia.org/wiki/Lagrange’s_identity_(boundary_value_problem)
  130. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  131. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  132. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  133. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  134. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  135. Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  136. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001”
  137. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”
  138. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001
  139. Arfken, Weber, “Mathematical Methods for the Physicists”, 5 Ed., Harcourt – Academic Press, 2001 Nagle, Saff, Snider, “Fundamentals of Differential Equations and Boundary Value Problems“, 4th Ed., Pearson/Addison Wesley, 2004, Ch. 11, “Eigenvalue Problems and Sturm-Liouville Equations”