SlideShare ist ein Scribd-Unternehmen logo
1 von 45
1
Gamma Function
SOLO HERMELIN
Updated 28.10.12http://www.solohermelin.com
2
SOLO
TABLE OF CONTENT
Gamma Function
Gamma Function History
Gamma Function: Euler’s Second Integral
Properties of Gamma Function
Other Gamma Function Definitions: Gauss’ Formula
Some Special Values of Gamma Function:
Bohr-Mollerup-Artin Theorem
Other Gamma Function Definitions: Weierstrass’ Formula
Differentiation of Gamma Function
Beta Function: Euler’s First Integral
Euler Reflection Formula
Duplication and Multiplication Formula
Stirling Approximation Formula
References
3
SOLO
Gamma Function History
The Gamma Function was first introduced by the Swiss mathematician
Leonhard Euler (1707 – 1783). His goal was to generalize the factorial
to non-integer values. Later, it was studied by Adrien-Marie Legendre
(1752-1833), Carl Friedrich Gauss (1777-1855), Christoph Gudermann
(1798-1852), Joseph Liouville (1809 – 1882), Karl Weierstrass (1815-
1897), Charles Hermite (1822-1901),…and others
Leonhard Euler
)1707–1783(
( ) ( ) 0ln
1
0
1
>−=Γ ∫
=
=
−
xtdtz
t
t
x
Adrien-Marie Legendre
)1752–1833(
The problem of extending the factorial to non-integer arguments was
apparently first considered by Daniel Bernoulli and Christian
Goldbach in the 1720s, and was solved at the end of the same decade
by Leonhard Euler. Euler gave two different definitions: the first was
not his integral but an infinite product,
∏
∞
=
+






+
=
1
1
1
1
!
k
n
k
n
k
n
of which he informed Goldbach in a letter dated October 13, 1729. He wrote to
Goldbach again on January 8, 1730, to announce his discovery of the integral
representation
Gamma Function
4
SOLO
Gamma Function History
Leonhard Euler
)1707–1783(
( ) ( ) 0ln
1
0
1
>−=Γ ∫
=
=
−
xtdtz
t
t
x
During the years 1729 and 1730, Euler introduced the following
analytic function,
By changing of variables we can obtain more known forms
( ) ( ) ( ) 0ln
0
10
1
1
0
1
>=−=−=Γ ∫∫∫
∞=
=
−=
∞=
−−
=
−=
=
=
−
−
−
xtd
e
t
tdetuduz
t
t
t
xt
t
tx
eu
dtedu
u
u
x
t
t
( ) ( ) ( )
( ) 022ln
0
12
0
12
2
1
0
1 22
2
2
>=−=−=Γ ∫∫∫
∞=
=
−−
=
∞=
−−
=
−=
=
=
−
−
−
xtdettdettuduz
t
t
tx
t
t
tx
eu
dtetdu
u
u
x
t
t
The notation Γ (x) is due to Legendre in 1809,
while Gauss used Π (x) = Γ (x+1)
Carl Friedrich
Gauss
(1777 – 1855)
Adrien-Marie Legendre
)1752–1833(
Gamma Function
5
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof:
Gamma Function
0& >+= xyixz
∫∫∫
∞=
=
−=
+=
−∞=
+=
−
+=
t
t
t
zt
t
t
zt
t
t
z
td
e
t
td
e
t
td
e
t
1
11
0
1
0
1
For the first part:
x
t
xx
t
x
tdttd
e
t
td
e
t x
t
t
t
x
t
t
x
et
t
t
yixt
t
t
z t
1
lim
111
0
1
0
1
0
1
11
0
11
0
1
=−==≤=
+→
=
+=
=
+=
−
>=
+=
−+=
+=
−
∫∫∫
The first integral converges for any x ≥ δ > 0.
For the second integral, using integration by parts:
( ) ( )
( ) ( ) ( )( ) ∫
∫∫∫∫
∞=
=
−
∞=
=
−−
=
=
∞=
=
−
∞=
=
−−
=
=
∞=
=
−∞=
=
−+∞=
=
−
−−+−−+=
−+−===
−
−
−
−
t
t
t
x
e
t
t
tx
edv
tu
t
t
t
x
e
t
t
tx
edv
tu
t
t
t
xt
t
t
yixt
t
t
z
td
e
t
xxetx
e
td
e
t
xettd
e
t
td
e
t
td
e
t
t
x
t
x
1
3
/1
1
2
1
2
/1
1
1
1
1
1
1
1
1
211
1
1
2
1


Euler’s Second Integral
Gamma integral is defined, and
converges uniformly for x > 0.
Gamma Function
6
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof (continue):
Gamma Function
0& >+= xyixz
For the second integral, using integration by parts:
( ) ( )
( ) ( ) ( )( ) ∫
∫∫∫∫
∞=
=
−
∞=
=
−−
=
=
∞=
=
−
∞=
=
−−
=
=
∞=
=
−∞=
=
−+∞=
=
−
−−+−−+=
−+−===
−
−
−
−
t
t
t
x
e
t
t
tx
edv
tu
t
t
t
x
e
t
t
tx
edv
tu
t
t
t
xt
t
t
yixt
t
t
z
td
e
t
xxetx
e
td
e
t
xettd
e
t
td
e
t
td
e
t
t
x
t
x
1
3
/1
1
2
1
2
/1
1
1
1
1
1
1
1
1
211
1
1
2
1


After [x] (the integer defined such that x-[x] < 1) such integration the power of t in
the integrand becomes x-[x]-1 < 0. and we have:
( )( ) [ ]( ) [ ]( ) ( )( ) [ ]( ) ∞<−−−<−−− ∫∫
∞=
=
∞=
=
−−
t
t
t
t
t
txx
td
e
xxxxtd
et
xxxx
11
1
1
21
1
21 
Therefore the Gamma integral is defined, and converges uniformly for x > 0.
Gamma integral is defined, and
converges uniformly for x > 0.
q.e.d.
Gamma Function
Return to Table of Content
7
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof :
Gamma Function
0& >+= xyixz
( ) ( )zzz Γ=+Γ 1
( )  ( ) ( ) ( )zztdetztdtzeettdetz
t
t
tz
t
t ud
z
v
t
v
t
u
z
dtedvtu
partsby
t
t
tz
tz
Γ=+=−−−==+Γ ∫∫∫
∞=
=
−−
∞=
=
−−
∞
−
==∞=
=
−
−
0
1
0
1
0
,
nintegratio
0
01

Properties of Gamma Function : 1
Note that for the evaluation of Gamma Function for a Positive Real Number
we need to know only the value of Γ (x) for 0 < x < 1
( ) ( ) ( ) ( ) ( )xxxnxnxnx Γ+−+−+=+Γ 121 
( ) ( )
( ) ( ) ( )121 −+−++
+Γ
=Γ
nxnxxx
nx
x

For x < 0 with –n < x < -n+1 or 0 < x+n < 1, we define
We can see that for x = 0 or a negative integer the
denominator of the right side is zero, and so Γ (x) is
undefined (goes to infinity)
Gamma Function
( ) ,2,1,0!1 ==+Γ nnn
8
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof :
Gamma Function
( ) ( )
( )!1
1
Residue
1
1 −
−
=Γ
−
+−→ n
z
n
nz
Residues of Gamma Function at x = 0,-1, -2,---,-n,..:
( ) ( )
( ) ( ) ( )121 −+−++
+Γ
=Γ
nxnxxx
nx
x

q.e.d.
( ) ( ) ( )
( ) ( ) ( )
( )

( )( ) ( )
( )
( )!1
1
121
1
121
1limResidue
1
1
11
−
−
=
−+−+−
Γ
=
−+−++
+Γ
−+=Γ
−
+−→+−→
nnn
nxnxxx
nx
nxx
n
nxnx


Gamma Function
9
SOLO
Gamma Function Γ (x) and its Inverse 1/Γ (x)
Gamma Function
10
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Absolute value |Γ (z)|
Real value ReΓ (z)
Imaginary value ImΓ (z)
Gamma Function
11
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Absolute value |Γ (z)|
Gamma Function
12
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
( ) ( )zzz Γ=+Γ 1
Let compute
( ) 11
0
0
=−==Γ
∞−
∞=
=
−
∫
t
t
t
t
etde
Therefore for any n positive integer:
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )!1122112111 −=Γ−−=−Γ−−=−Γ−=Γ nnnnnnnnn 
Properties of Gamma Function : 1
2
q.e.d.
Gamma Function
13
SOLO Primes
Second definition identical to First
( )[ ] ( ) ( ) ( ) ( ) ( )bayxallyfxfyxf ,,1,011 ∈∈−+≤−+ λλλλλ
Convex Function :
A Function f (x) is called Convex in an interval (a,b) if for every x,y (a,b) we haveϵ
A Function f (x), defined for x > 0, is called Convex, if the corresponding function
( ) ( ) ( )
y
xfyxf
y
−+
=φ
defined for all y > -x, y ≠ 0, is monotonic Increasing throughout the range of
definition.
If 0 < x1 < x < x2, are given by choosing y1 = x1 – x < 0, y2 = x2 – x > 0, we express
the condition of convexity as
( ) ( ) ( ) ( ) ( ) ( )
xx
xfxf
y
xx
xfxf
y
−
−
=≤
−
−
=
2
2
2
1
1
1 φφ
( ) ( )[ ] ( ) ( ) ( )[ ] ( )xxxfxfxxxfxf −−≥−− 1221
( ) ( ) ( )
( )
( ) ( )
( )
λλ −
−
−
+
−
−
≤
1
12
1
2
12
2
1
xx
xx
xf
xx
xx
xfxf
One other equivalent definition:
14
SOLO Primes
( )[ ] ( ) ( ) ( ) ( )1,0ln1ln1ln ∈−+≤−+ λλλλλ yfxfyxf
Logarithmic Convex Function :
A Function f (x)>0 is called logarithmic-convex or simply log-convex if ln (f (x) )
is convex or
This is equivalent to ( )[ ] ( ) ( )( )λλ
λλ
−
≤−+
1
ln1ln yfxfyxf
Since the logarithm is a momotonic increasing function we obtain
( )[ ] ( ) ( )( )
( ) yxyfxfyxf <∈≤−+
−
,1,01
1
λλλ
λλ
15
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof :
Gamma Function
0& >+= xyixz
( )[ ] ( ) ( ) ( ) ( )1,0ln1ln1ln ∈Γ−+Γ≤−+Γ λλλλλ baba
Properties of Gamma Function :
3
Gamma is a
Log Convex
Function
( )[ ] ( )
( ) ( )
( ) ( ) λλ
λλ
λλλλ
λλ
−
−∞
−−
∞
−−
∞
−−−−−
∞
−−−+
ΓΓ=















≤
==−+Γ
∫∫
∫∫
1
1
0
1
0
1
0
111
0
11
1
badtetdtet
dtetetdtetba
tbta
InequalityHolder
tbtatba
q.e.d.
Return to Table of Content
16
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof :
Gamma Function
Other Gamma Function Definitions:
( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limGauss’ Formula
Since the Gamma Function is monotonically increasing the logarithm of Gamma
Function is also monotonic increasing and for 0 < x < 1 and any n > 2 we have
( ) ( )
( ) nnx
nnx
−+
Γ−+Γ lnln
( )[ ] ( )[ ]
( )
( )
( ) ( )[ ] [ ] ( )[ ]
( )
    






−





−
−
−−
≤
−−+Γ
≤
−
−−−
!1
!
ln
!2
!1
ln
1
!1ln!ln!1lnln
1
!1ln!2ln
n
n
n
n
nn
x
nnxnn
( )
( )
( ) n
x
n
nx
n ln
!1
ln
1ln ≤
−
+Γ
≤−
( ) ( )
( )
1
1
ln1ln −=←
≤
−+−
Γ−+−Γ x
nn
nn ( ) ( )
( ) nn
nnx
−+
Γ−+Γ
≤
→=
1
ln1ln1
Carl Friedrich Gauss
(1777 – 1855)
17
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof (continue - 1) :
Gamma Function
Other Gamma Function Definitions:
Since the Gamma Function is monotonically increasing the logarithm of Gamma
Function is also monotonic increasing and for 0 < x < 1 and any n > 2 we have
( )
( )
( ) n
x
n
nx
n ln
!1
ln
1ln ≤
−
+Γ
≤− ( ) ( )
( )
xx
n
n
nx
n ln
!1
ln1ln ≤
−
+Γ
≤−
10 << x
( ) ( ) ( ) ( )!1!11 −≤+Γ≤−− nnnxnn xx
Use ( ) ( ) ( ) ( ) ( )xxxnxnxnx Γ+−+−+=+Γ
>
  

0
121
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( ) xxnxnx
nn
x
xxnxnx
nn xx
121
!1
121
!11
+−+−+
−
≤Γ≤
+−+−+
−−

( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limGauss’ Formula
Euler 1729
Gauss 1811
18
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Proof (continue - 2) :
Gamma Function
Other Gamma Function Definitions:
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( ) xxnxnx
nn
x
xxnxnx
nn xx
121
!1
121
!11
+−+−+
−
≤Γ≤
+−+−+
−−

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) xxnxnx
nn
x
xxnxnx
nn
xx
11
!1
11
!
+−++
+
≤Γ≤
+−++ 
Take the limit n → ∞
( ) ( ) ( )
( )
( ) ( ) ( ) xxnxnx
nn
n
x
xxnxnx
nn x
n
x
n
x
n 11
!
lim
1
1lim
11
!
lim
1
+−++






+≤Γ≤
+−++ ∞→∞→∞→ 


( )
( ) ( ) ( )
( )1,0
11
!
lim ∈
+−++
=Γ
∞→
x
xxnxnx
nn
x
x
n 
Substitute n+1 for n
( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limGauss’ Formula
19
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Let substitute x + 1 for x
Gamma Function
Other Gamma Function Definitions:
( )
( ) ( ) ( )
( )
( )1,0
11
!
lim ∈
+−++
=Γ
Γ
∞→
x
xxnxnx
nn
x
x
x
n
n
  

q.e.d
( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limGauss’ Formula
Proof (continue - 3) :
( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( )
( ) ( )1,0
11
!
lim
1
lim
11
!
lim1
1
1
∈Γ=
+−++++
=
++++
=+Γ
Γ
∞→∞→
+
∞→
xxx
xxnxnx
nn
nx
n
x
xnxnx
nn
x
x
x
nn
x
n
  

  

The right side is defined for 0 < x <1. The left side extend the definition for
(1 , 2). Therefore the result is true for all x , but 0 and negative integers.
Return to Table of Content
20
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Definitios:
Start from Gauss Formula ( ) ( )xx n
n
Γ=Γ
∞→
lim
q.e.d
( )
constantMascheroni-Euler57721566.0ln
1
2
1
1lim
11
≈





−+++=
+
=Γ
∞→
∞
=
−
∏
n
n
k
x
e
x
e
x
n
k
k
x
x
γ
γ
Weierstrass’ Formula
Proof :
( )
( ) ( ) ( )






+





−
+





+
=






+





−
+





+
=
+−++
=Γ






−−−−
n
x
n
xx
x
eee
e
x
x
n
x
n
x
n
xxnxnx
nn
x
n
xxx
n
nx
xx
n
1
1
1
1
1
1
1
1
11
11
!
:
21
1
2
1
1ln





( ) ( ) ∏∏
∞
=
−
=






−−−−
∞→∞→
+
=
+
=Γ=Γ
11
1
2
1
1ln
11
1
limlim
k
k
x
xn
k
k
x
n
nx
n
n
n
k
x
e
x
e
k
x
e
x
exx
γ
Karl Theodor Wilhelm
Weierstrass
(1815 – 11897)
Gamma Function
Return to Table of Content
21
SOLO Primes
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Some Special Values of Gamma Function:
q.e.d
( ) π
π
====Γ ∫∫
∞=
=
−
=
=
∞=
=
−
2
222/1
0
2
0
2
2 t
t
u
ut
duudt
t
t
t
udetd
t
e
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) πn
n
nnnnn
2
12531
2/12/112/32/12/12/12/1
−⋅⋅
=Γ+−−=−Γ−=+Γ


( ) ( )
( )
( )
( )( ) ( )
( )
( )
π
12531
21
2/12/32/1
2/1
2/1
2/3
2/1
−⋅⋅
−
=
−+−+−
Γ
=
+−
+−Γ
=+−Γ
nnnn
n
n
nn

( ) π=Γ 2/1
( ) ( ) πn
n
n
2
12531
2/1
−⋅⋅
=+Γ

( ) ( )
( )
π
12531
21
2/1
−⋅⋅
−
=+−Γ
n
n
nn

Proof:
Return to Table of Content
22
SOLO
Harald August Bohr
( 1887 – 1951)
Proof:
Choose n > 2, and 0 < x < 1 and let 11 +≤+<<− nxnnn
By logarithmic convexity of f (x), we get
( ) ( )
( )
( ) ( )
( )
( ) ( )
( ) nn
nfnf
nxn
nfxnf
nn
nfnf
−+
−+
≤
−+
−+
≤
−−
−−
1
ln1lnlnln
1
ln1ln
( ) ( ) ( ) ( ) ( )
1
!1ln!ln!1lnln
1
!1ln!2ln −−
≤
−−+
≤
−
−−− nn
x
nxnfnn
By the second property ( ) ( ) ( ) ( ) ( ) !1,!1,!21 nnfnnfnnf =+−=−=−
( ) ( )( ) ( ) ( )xfxxxnxnxnf 121 +−+−+=+ 
( ) ( )
( )
xx
n
n
xnf
n ln
!1
ln1ln ≤
−
+
≤−
Emil Artin
(1898 – 1962)
Hamburg University
Johannes Mollerup
(1872 – 1937)
Gamma Function
Bohr-Mollerup-Artin Theorem:
The theorem characterizes the Gamma Function, defined for x > 0 by
as the only function f (x) on the interval x > 0 that simultaneously has
the three properties
• f (1) = 1
• f (1+x) = x f (x) for x > 0
• f is logarithmically convex
or Gauss Formula( ) ∫
∞=
=
−−
=Γ
t
t
tz
tdetz
0
1
( )
( ) ( )nxxx
nn
z
x
n ++
=Γ
∞→ 1
!
lim
23
SOLO
Bohr-Mollerup-Artin Theorem:
Harald August Bohr
( 1887 – 1951)
The theorem characterizes the Gamma Function, defined for x > 0 by
as the only function f (x) on the interval x > 0 that simultaneously has
the three properties
• f (1) = 1
• f (1+x) = x f (x) for x > 0
• f is logarithmically convex
Proof (continue-1):
By the second property ( ) ( )( ) ( ) ( )xfxxxnxnxnf 121 +−+−+=+ 
( ) ( )( ) ( ) ( )
( )
xx
n
n
xfxxxnxn
n ln
!1
121
ln1ln ≤
−
+−+−+
≤−

We found
Since lan is a monotonic increasing function, we have
( ) ( )
( ) ( )( )
( ) ( )
( ) ( )( )121
!1
121
!11
−+−++
−
≤≤
−+−++
−−
xnxnxx
nn
xf
xnxnxx
nn xx

( ) ( )( )
( )
( ) ( )( )
( )
x
xxx
n
n
xnxnxx
nn
xf
xnxnxx
nn 1
11
!
11
! +
+−++
≤≤
+−++ 
n
n
↓
−1
( ) ∫
∞=
=
−−
=Γ
t
t
tz
tdetz
0
1
( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limor Gauss Formula
Emil Artin
(1898 – 1962)
Hamburg University
Johannes Mollerup
(1872 – 1937)
Gamma Function
24
SOLO
Bohr-Mollerup-Artin Theorem:
q.e.d.
Harald August Bohr
( 1887 – 1951)
The theorem characterizes the Gamma Function, defined for x > 0 by
as the only function f (x) on the interval x > 0 that simultaneously has
the three properties
• f (1) = 1
• f (1+x) = x f (x) for x > 0
• f is logarithmically convex
Johannes Mollerup
(1872 – 1937)
Proof (continue - 2):
( ) ( )( )
( )
( ) ( )( )
xxx
nxnxnxx
nn
xf
xnxnxx
nn






+
+−++
≤≤
+−++
1
1
11
!
11
!

( ) ∫
∞=
=
−−
=Γ
t
t
tz
tdetz
0
1
( )
( ) ( )nxxx
nn
x
x
n ++
=Γ
∞→ 1
!
limor Gauss Formula
By taking n → ∞ we obtain
( ) ( )( )
( )
( )
( ) ( )( )
( )
  

  

1
1
1lim
11
!
lim
11
!
lim
x
n
x
x
n
x
x
n nxnxnxx
nn
xf
xnxnxx
nn






+
+−++
≤≤
+−++ ∞→
Γ
∞→
Γ
∞→
But this is possible only if
( ) ( )xxf Γ=
Emil Artin
(1898 – 1962)
Hamburg University
Gamma Function
25
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function Gamma integral is defined, and
converges uniformly for x > 0.
Differentiation of Gamma Function:
q.e.d
( ) ( )
( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( )
( ) ( )
( )
0,2
!11'
ln
0
1'''
ln
constantMascheroni-Euler57721566.0
111'
ln
1
1
1
1
22
2
2
2
1
>≥
+
−−
=
Γ
Γ
=Γ
>
+
=
Γ
Γ−ΓΓ
=Γ
≈





+
−+−−=
Γ
Γ
=Γ
∑
∑
∑
∞
=
−
−
∞
=
∞
=
xn
kx
n
x
x
xd
d
x
xd
d
kxx
xxx
x
xd
d
kxkxx
x
x
xd
d
k
n
n
n
n
n
n
k
k
γγ
Proof :
Start from Weierstrass Formula ( ) ∏
∞
=
−
+
=Γ
1
1k
k
x
x
k
x
e
x
e
x
γ
( ) ∑∑
∞
=
∞
=






+−+−−=Γ
11
1lnlnln
kk k
x
k
x
xxx γ ( ) ∑∑
∞
=
∞
=
+
−+−−=Γ
11
1
1
11
ln
kk
k
x
k
kx
x
xd
d
γ
( )
( ) ( )
0
111111
ln
0
2
1
22
1
2
2
>
+
=
+
+=











+
−+−−=Γ ∑∑∑
∞
=
∞
=
∞
= kkk kxkxxkxkxxd
d
x
xd
d
γ
( ) ( )
( )
( ) ( )
( )∑
∞
=
−
−
+
−−
=
Γ
Γ
=Γ
0
1
1
!11'
ln
k
n
n
n
n
n
n
kx
n
x
x
xd
d
x
xd
d
Gamma Function
We can see that ( ) ( )
( )
γγ −=





+
−+−−=
Γ
Γ
==Γ
+
−
=
∞→
∑
  
1
1
1
1 1
11
lim
1
1
1
1'
1ln
n
n
k
n kk
x
xd
d
Return to Table of Content
26
SOLO
( ) ( )∫
=
=
−−
−=
1
0
11
1,
s
s
zy
sdsszyBBeta Function
Beta Function is related to Gamma Function:
( ) ∫∫
∞=
=
−−
=
=∞=
=
−−
==Γ
u
u
uy
duudt
utt
t
ty
udeutdety
0
12
2
0
1 2
2
2
( ) ( ) ( )
( )zy
zy
zyB
+Γ
ΓΓ
=,
Proof:
In the same way:
( ) ∫
∞=
=
−−
=Γ
v
v
vz
vdevz
0
12 2
2
( ) ( ) ( )
∫ ∫
∞=
=
∞=
=
+−−−
=ΓΓ
u
u
v
v
vuuzy
vdudevuzy
0 0
1212 22
4
Use polar coordinates:
ϕϕ
ϕϕ
ϕϕ
ϕ
ϕ
ϕ
ϕ
ϕ
drdrdrd
r
r
drd
vrv
uru
vdud
rv
ru
=
−
=
∂∂∂∂
∂∂∂∂
=



=
=
cossin
sincos
//
//
sin
cos
( ) ( ) ( )
( ) ( )
( )
( )
( ) ( ) 



















=
=ΓΓ
∫∫
∫ ∫
=
=
−−
+Γ
∞=
=
−−+
∞=
=
=
=
−−−−+
2/
0
1212
0
12
0
2/
0
121212
sincos22
sincos4
2
2
πϕ
ϕ
πϕ
ϕ
ϕϕϕ
ϕϕϕ
drder
drderzy
zy
zy
r
r
rzy
r
r
rzyzy
  
Euler’s First Integral
Gamma Function
27
SOLO
( ) ( )∫
=
=
−−
−=
1
0
11
1,
s
s
zy
sdsszyBBeta Function Euler’s First Integral
Beta Function is related to Gamma Function: ( ) ( ) ( )
( )zy
zy
zyB
+Γ
ΓΓ
=,
Proof (continue):
( ) ( ) ( ) ( ) ( ) 







+Γ=ΓΓ ∫
=
=
−−
2/
0
1212
sincos2
πϕ
ϕ
ϕϕϕ dzyzy zy
Change variables in the integral using ϕϕϕϕ dsds cossin2sin2
==
( ) ( ) ( ) ( )zyBsdssd
s
s
yzzy
,1sincos2
1
0
11
2/
0
1212
=−= ∫∫
=
=
−−
=
=
−−
πϕ
ϕ
ϕϕϕ
( ) ( ) ( ) ( )zyBzyzy ,+Γ=ΓΓTherefore q.e.d.
Use z→y and y → 1 - z
( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ∫∫
∫
∞=
=
−∞=
=
−
−
−+
=
+
=
=
=
−−
+
=
+






+
−
+
=
−=−Γ=−ΓΓ
u
u
zu
u
z
z
zu
u
s
u
ud
sd
s
s
zz
ud
u
u
u
ud
u
u
u
u
dssszzBzz
0
1
0
21
11
1
1
0
1
111
1
1
11,11
2
q.e.d.
Gamma Function
Return to Table of Content
28
SOLO
Proof
( ) ( ) ( ) ( )
( ) ( )
( ) ( )yzBzyzyBzyyz
yzBzyB
,,
,,
+Γ=+Γ=ΓΓ
=
Use y → 1 - z
( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ∫∫
∫
∞=
=
−∞=
=
−
−
−+
=
+
=
=
=
−−
+
=
+






+
−
+
=
−=−Γ=−ΓΓ
u
u
zu
u
z
z
zu
u
s
u
ud
sd
s
s
zz
ud
u
u
u
ud
u
u
u
u
dssszzBzz
0
1
0
21
11
1
1
0
1
111
1
1
11,11
2
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties: ( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
Gamma Function
29
SOLO
Proof (continue - 1)
( ) ( ) ∫
∞=
=
−
+
=−ΓΓ
u
u
x
ud
u
u
xx
0
1
1
1
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties:
Replace the path from 0 to ∞ by the Hankel contour Hε
in the Figure, described by four paths, traveled in
counterclockwise direction:
1. going counterclockwise above the real axis, (u = |u|)
2. along the circular path CR,
3. bellow the real axis, (u= |u|e -2πi
)
4. along the circular path Cε.
∫∫∫∫ +
−
+
−
+
+
+
−−
−
−−
εε
π
ε C
yR y
yi
C
yR y
ud
u
u
ud
u
u
eud
u
u
ud
u
u
R
1111
2
Define y = 1 – x, and assume x,y (0,1)ϵ
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
Gamma Function
30
SOLO
Proof (continue - 1)
( ) ( ) ∫
∞=
=
−
+
=−ΓΓ
u
u
x
ud
u
u
xx
0
1
1
1
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties:
This path encloses the pole u=-1 of that has the residue
1+
−
u
u y
yi
eu
y
y
eu
u
u
i
π
π
−
=−=
−
−
==





+ 11
Residue
By the Residue Theorem
For z ≠ 0 we have
( ) yzyzyzyy
zeeez
−−−−−
====
lnlnReln
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
( ) yi
y
eu
y
C
yR y
iy
C
yR y
ei
u
u
ui
u
u
izd
z
z
ud
u
u
ezd
z
z
ud
u
u
i
R
π
ε
π
ε
ππ
π
π
ε
−
−
=−→
−−−
−
−−
=











+
+=






+
=
+
−
+
−
+
+
+
−
∑∫∫∫∫
2
1
1lim2
1
Residue2
1111
1
2
Gamma Function
31
SOLO
Proof (continue - 2)
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties:
yi
C
yR y
iy
C
yR y
eizd
z
z
ud
u
u
ezd
z
z
ud
u
u
R
π
ε
π
ε
π
ε
−
−−
−
−−
=
+
−
+
−
+
+
+ ∫∫∫∫ 2
1111
2
For the second and forth integral we have
( )
0
lnlnReln
≠====
−−−−−
zzeeez
yzyzyzyy
z
z
z
z
z
z
yyy
−
≤
+
≤
+
−−−
111
Hence for small ε we have:
and for large R we have:
0
1
2
1
01 →−−
→
−
≤
+∫
ε
ε
ε
π
ε
y
C
y
zd
z
z
0
1
2
1
1 ∞→−−
→
−
≤
+∫
Ry
C
y
R
R
zd
z
z
R
π
Therefore the integrals on the circular paths are zero for ε→0 and R →∞
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
Gamma Function
32
SOLO
Proof (continue - 3)
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties:
yi
y
iy
y
eiud
u
u
eud
u
u ππ
π −
∞ −
−
∞ −
=
+
−
+ ∫∫ 2
11 0
2
0
We obtain
Multiply both sides by yi
e π+
( ) iud
u
u
ee
y
iyiy
πππ
2
10
=
+
− ∫
∞ −
−
( ) ( )yee
i
ud
u
u
iyiy
y
π
π
π ππ
sin
2
10
=
−
=
+ −
∞ −
∫Rearranging we obtain
Since both sides of this equation are meromorphic (analytic) in x (0,1) we canϵ
extend the result for all analytic parts of z C (complex plane).ϵ
( ) ( )
( )[ ] ( )
( )1,0
sin1sin11
1
0
1
0
1
∈=
−
=
+
=
+
=−ΓΓ ∫∫
∞=
=
−−=∞=
=
−
x
xx
ud
u
u
ud
u
u
xx
u
u
yxyu
u
x
π
π
π
π
Substituting y = 1 – x we obtain
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
Gamma Function
33
SOLO
Onother Proof
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties:
Start with Weierstrass Gamma Formula
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ Euler
Reflection Formula
( ) ∏
∞
=
−
+
=Γ
1 1k
k
x
x
k
x
e
x
e
x
γ
( ) ( ) ∏∏
∞
=
∞
= −
−






−−=
−+
−=
−ΓΓ 1
2
2
2
1
2
1
11
1
kk k
x
k
x
xx
k
x
x
e
k
x
e
k
x
eex
xx
γγ
Use the fact that Γ (-x)=- Γ (1-x)/x to obtain
( ) ( ) ∏
∞
=






−=
−ΓΓ 1
2
2
1
1
1
k k
x
x
xx
Now use the well-known infinite product
( ) ∏
∞
=






−=
1
2
2
1sin
k k
x
xx ππ
q.e.d.
Gamma Function
34
SOLO
Proof
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Other Gamma Function Properties: ( )z
zz
π
π
cos2
1
2
1
=





−Γ





+Γ
Start from
Substitute ½ +z instead of z
( ) ( )
( )z
zz
π
π
sin
1 =−ΓΓ
( )z
z
zz
π
π
π
π
cos
2
1
sin
2
1
2
1
=












+
=





−Γ





+Γ
q.e.d.
Gamma Function
Return to Table of Content
35
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Stirling Approximation Formula:
( ) 121 >>≈+Γ −
xexxx xx
π
( )
( )
( )
( ) ( )
( )( )
∫
∫∫∫
∞=
−=
++−−+
∞=
−=
−−+
∞=
−=
+−
+=
=
∞=
−=
−
=
+=+==+Γ
u
u
uuxxx
u
u
xuxxx
u
u
xxux
uxt
udxtd
t
t
xt
udeex
udueexudxuxetdtex
1
1ln1
1
1
1
1
1
1
111
Proof:
The function f(u) = -u + ln (1 + u) equals zero for u = 0. For other values of u we have
f(u) < 0. This implies that the integrand of the last integral equals 1 at u = 0 and that this
integrand becomes very small for large values of x at other values of u. So for large values of
x we only have to deal with the integrand near u = 0. Note that we have
( ) ( ) ( ) ( ) 0
2
1
2
1
1ln 2222
→Ο+−=Ο+−+−=++−= uforuuuuuuuuuf
This implies that
( )( )
∞→≈ ∫∫
∞=
−∞=
−
∞=
−=
++−
xforduedue
u
u
ux
u
u
uux 2/
1
1ln 2
James Stirling, a contemporary of Euler, also attempted to find a continuous expression for the factorial and came up with what is now known as
Stirling's formula. Although Stirling's formula gives a good estimate of , also for non-integers, it does not provide the exact value. Extensions of his
formula that correct the error were given by Stirling himself and by Jacques Philippe Marie Binet‫ן‬
Gamma Function
36
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Stirling Approximation Formula:
( ) 121 >>≈+Γ −
xexxx xx
π
Proof (continue):
( ) ( )( )
∞→≈=+Γ ∫∫
∞=
−∞=
−−+
∞=
−=
++−−+
xfordueexudeexx
u
u
uxxx
u
u
uuxxx 2/1
1
1ln1 2
1
∞→== −
∞=
−∞=
−−
=
=
∞=
−∞=
−
∫∫ xforxdtexdue
t
t
t
xtu
xtdud
u
u
ux
π
π
22 2/12/1
/2
/2
2/ 22

If we set we have by using the normal integralxtu /2=
therefore:
( ) ∞→≈+Γ −
xexxx xx
π21
q.e.d.
Gamma Function
37
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( ) 0Re2
22
1
12
>Γ=





+ΓΓ −
zzzz z
π Legendre Duplication Formula
1809
Adrien-Marie Legendre
)1752–1833(
Proof:
( ) ( ) ( ) ( )
( ) ( ) ( )2/1,2sin22sin2
2sin22sincos2,
21
2/
0
1221
0
1221
2/
0
1221
2/
0
1212
zBdd
ddzzB
zzzzz
zzzz
⋅=⋅⋅==
⋅==
−−−−−
−−−−
∫∫
∫∫
ππ
ππ
ττττ
ϕϕϕϕϕ
( ) ( )
( )
( ) ( ) ( ) ( )
( )
0Re
2/1
2/1
22/1,2,
2
2121
>
+Γ
Γ⋅Γ
⋅=⋅==
Γ
Γ⋅Γ −−
z
z
z
zBzzB
z
zz zz
We have
therefore
q.e.d( )

( ) 0Re2
22
1
12
2
1
>Γ=





+ΓΓ −






Γ
zzzz z
π
Gamma Function
38
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof:
n
z
1
=
Carl Friedrich Gauss
(1777 – 1855)( )( )
nn
n
nn
n 2/1
2121
−
=




 −
Γ





Γ





Γ
π
 Euler
Multiplication
Formula
Gamma Function
Define the function: ( ) 




 −+
Γ




 +
Γ





Γ=
n
nx
n
x
n
x
nxf x 11
: 
This function has the following properties:
1 ( )
( )xfx
n
x
n
x
n
nx
n
x
n
x
nn
n
nx
n
nx
n
x
n
x
nxf
x
x
⋅=





Γ⋅⋅




 −+
Γ




 +
Γ




 +
Γ⋅=





 +
Γ




 −+
Γ




 +
Γ




 +
Γ=+
↓
+
121
121
1 1



39
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof (continue – 1):
Carl Friedrich Gauss
(1777 – 1855)
Gamma Function
Since (ln nx
)”=(x ln n)”=(ln n)’=0, and each Γ ((x+k)/k) is log convex.
f (x) is log convex.
( ) ( ) 





Γ





Γ⋅





Γ==Γ=
n
n
nn
naaf nn 
21
11
So using Bohr-Mollerup-Artin Theorem we can write: f (x) = an Γ(x)
where an is a constant, to be found, and Γ (1)=1 (the third condition of the Theorem).
2
Therefore
Use Gauss’ Formula for Gamma Function with x=k/n
( ) ( )pnknkk
npp
p
n
k
n
k
n
k
pp
n
k pn
k
p
n
k
p ++
=






+





+
=





Γ
+
∞→∞→ 

1
!
lim
1
!
lim
40
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof (continue – 2):
Carl Friedrich Gauss
(1777 – 1855)
Gamma Function
( ) ( )pnknkk
npp
n
k pn
k
p ++
=





Γ
+
∞→ 
1
!
lim
Since k = 1,2,…,p
( ) ( ) [ ] ( ) ( )[ ] ( ) ( )[ ]
( ) ( )( )!1!
11211
nppnn
pnnpnnnnnpnknkk
p
k
⋅+=⋅+=
⋅+⋅+++⋅⋅=⋅++∏=

( ) ( )
( )
( ) ( )
( )!
!
lim
!
!
lim
21 2
1
1
1
1
pnn
pnp
n
pnn
pnp
n
n
n
nn
na
n
pnn
p
n
n
npnn
p
n
⋅+
=
⋅+
=





Γ





Γ⋅





Γ=
+
+
∞→
++
+
∞→


41
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof (continue – 3):
Carl Friedrich Gauss
(1777 – 1855)
Gamma Function
( ) ( )
( )!
!
lim
2
1
1
pnn
pnp
na
n
pnn
p
n
⋅+
=
+
+
∞→
Use the identity
( )
( ) ( )npp pnpn
pnn
pn
n
pnpn ⋅
⋅
⋅
⋅+
=





⋅
+





⋅
+⋅





⋅
+=
∞→∞→
1
!
!
lim1
2
1
1
1lim1 
to an to get
( ) ( )
( )
( ) ( )
( )
( )
( ) ( )
( )
( ) 2
1
2
1
12
1
1
!
!
lim
!
!
!
!
lim1
!
!
lim −
⋅
∞→
+
+
∞→
+
+
∞→
⋅
=
⋅⋅
⋅+
⋅
⋅+
=⋅
⋅+
= n
pnn
pn
n
pnn
p
n
pnn
p
n
ppn
np
n
pnpn
pnn
pnn
pnp
n
pnn
pnp
na
42
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof (continue – 4):
Carl Friedrich Gauss
(1777 – 1855)
Gamma Function
to an to get
( )
( ) 2
1
!
!
lim −
⋅
∞→
⋅
= n
pnn
p
n
ppn
np
na
∞→≈ −
+
pepp p
p
2
1
2! π ( ) ( ) ( )
∞→⋅≈⋅ ⋅−+⋅
pepnpn pnpn
2
1
2! π
( ) ( )
( ) 2
1
2
1
2
1
2
1
2
1
2
2
2
lim n
pepn
nep
na
n
n
pnpn
pn
n
p
p
p
n
−
−
⋅−+⋅
⋅−
+
∞→
=
⋅








= π
π
π
Use Stirling’s Approximation formula ( ) ∞→≈+Γ −
xexxx xx
π21
43
SOLO
( ) ∫
∞=
=
−
=Γ
t
t
t
z
td
e
t
z
0
1
Gamma Function
Duplication and Multiplication Formula:
( ) ( )( )
( )znn
n
n
z
n
z
n
zz znn
Γ=




 −
+Γ





+Γ





+ΓΓ −− 2/12/1
2
121
π
Gauss
Multiplication
Formula
Proof (continue – 4):
Carl Friedrich Gauss
(1777 – 1855)
Gamma Function
( ) 2
1
2
1
2 na
n
n
−
= π
( ) ( )xa
n
nx
n
x
n
x
nxf n
x
Γ=




 −+
Γ




 +
Γ





Γ=
11
: 
We have
or ( ) ( )xn
n
nx
n
x
n
x xn
Γ=




 −+
Γ




 +
Γ





Γ
+−−
2
1
2
1
2
11
π
Define x = n z to obtain
( ) ( ) ( )znn
n
n
z
n
zz
znn
Γ=




 −
+Γ





+ΓΓ
+−−
2
1
2
1
2
11
π q.e.d
Return to Table of Content
44
SOLO
References
Internet
http://en.wikipedia.org/wiki/
G.B. Arfken, H.J. Weber, “Mathematical Methods for Physicists”, Academic Press,
Fifth Ed., 2001
http://www.frm.utn.edu.ar/analisisdsys/material/function_gamma.pdf
http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf
Gamma Function
M.Abramowitz & I.E. Stegun, ED., “Handbook of Mathematical Functions”,
Dover Publication, 1965,
H.Vic Dannon,”Riemann Zeta Function: The Riemann Hypothesis Origin, the
Factoriztion Error, and the Count of the Primes”, Gauge Institute Journal, Vol.
5, No. 4, November 2009
J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis
University of Copenhagen, June 2007
D. Miličić, “Notes on Riemann Zeta Function”,
http://www.math.utah.edu/~milicic/zeta.pdf
P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010),
http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf
Return to Table of Content
January 6, 2015 45
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA

Weitere ähnliche Inhalte

Was ist angesagt?

Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
Pokkarn Narkhede
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
Nofal Umair
 

Was ist angesagt? (20)

Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functions
 
Fourier integral
Fourier integralFourier integral
Fourier integral
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
taylors theorem
taylors theoremtaylors theorem
taylors theorem
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
application of partial differentiation
application of partial differentiationapplication of partial differentiation
application of partial differentiation
 
Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Engineering mathematics presentation
Engineering mathematics presentationEngineering mathematics presentation
Engineering mathematics presentation
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
 
C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1
 
Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma Functions
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 

Andere mochten auch

Alpha Beta Gamma Quiz Questions
Alpha Beta Gamma Quiz QuestionsAlpha Beta Gamma Quiz Questions
Alpha Beta Gamma Quiz Questions
mrmeredith
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equation
kishor pokar
 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's function
OneirosErebus
 
Ajar v2-14-the-full-monty
Ajar v2-14-the-full-montyAjar v2-14-the-full-monty
Ajar v2-14-the-full-monty
guuled
 
Richard Holbrooke's World: Memories of a Newsweek Special Correspondent - A Q...
Richard Holbrooke's World: Memories of a Newsweek Special Correspondent - A Q...Richard Holbrooke's World: Memories of a Newsweek Special Correspondent - A Q...
Richard Holbrooke's World: Memories of a Newsweek Special Correspondent - A Q...
GLOBAL HEAVYLIFT HOLDINGS
 
Mercator Ocean newsletter 30
Mercator Ocean newsletter 30Mercator Ocean newsletter 30
Mercator Ocean newsletter 30
Mercator Ocean International
 
AtlasCopco_Partner_No_2
AtlasCopco_Partner_No_2AtlasCopco_Partner_No_2
AtlasCopco_Partner_No_2
Ayca Arabaci
 

Andere mochten auch (20)

Special functions
Special functionsSpecial functions
Special functions
 
Funcion gamma
Funcion gammaFuncion gamma
Funcion gamma
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Alpha Beta Gamma Quiz Questions
Alpha Beta Gamma Quiz QuestionsAlpha Beta Gamma Quiz Questions
Alpha Beta Gamma Quiz Questions
 
B.Tech-II_Unit-II
B.Tech-II_Unit-IIB.Tech-II_Unit-II
B.Tech-II_Unit-II
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equation
 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's function
 
Runge kutta
Runge kuttaRunge kutta
Runge kutta
 
As Biologists
As BiologistsAs Biologists
As Biologists
 
Ajar v2-14-the-full-monty
Ajar v2-14-the-full-montyAjar v2-14-the-full-monty
Ajar v2-14-the-full-monty
 
History 121 ancient greece 4
History 121 ancient greece 4History 121 ancient greece 4
History 121 ancient greece 4
 
PAR for Doctors EIS
PAR for Doctors EISPAR for Doctors EIS
PAR for Doctors EIS
 
AMPA2
AMPA2AMPA2
AMPA2
 
FINAL_Report
FINAL_ReportFINAL_Report
FINAL_Report
 
Richard Holbrooke's World: Memories of a Newsweek Special Correspondent - A Q...
Richard Holbrooke's World: Memories of a Newsweek Special Correspondent - A Q...Richard Holbrooke's World: Memories of a Newsweek Special Correspondent - A Q...
Richard Holbrooke's World: Memories of a Newsweek Special Correspondent - A Q...
 
Question 2
Question 2Question 2
Question 2
 
Libro de calculo 3
Libro de calculo 3Libro de calculo 3
Libro de calculo 3
 
Cambodia
Cambodia Cambodia
Cambodia
 
Mercator Ocean newsletter 30
Mercator Ocean newsletter 30Mercator Ocean newsletter 30
Mercator Ocean newsletter 30
 
AtlasCopco_Partner_No_2
AtlasCopco_Partner_No_2AtlasCopco_Partner_No_2
AtlasCopco_Partner_No_2
 

Ähnlich wie Gamma function

Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
joseluisroyo
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
bellidomates
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
Gaurav Vasani
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
Amr Mohamed
 
OrthogonalFunctionsPaper
OrthogonalFunctionsPaperOrthogonalFunctionsPaper
OrthogonalFunctionsPaper
Tyler Otto
 

Ähnlich wie Gamma function (20)

Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Ch05 6
Ch05 6Ch05 6
Ch05 6
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Legendre associé
Legendre associéLegendre associé
Legendre associé
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Krishna
KrishnaKrishna
Krishna
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Matrix calculus
Matrix calculusMatrix calculus
Matrix calculus
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Manual solucoes ex_extras
Manual solucoes ex_extrasManual solucoes ex_extras
Manual solucoes ex_extras
 
Manual solucoes ex_extras
Manual solucoes ex_extrasManual solucoes ex_extras
Manual solucoes ex_extras
 
Manual solucoes ex_extras
Manual solucoes ex_extrasManual solucoes ex_extras
Manual solucoes ex_extras
 
Convexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdfConvexity in the Theory of the Gamma Function.pdf
Convexity in the Theory of the Gamma Function.pdf
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
OrthogonalFunctionsPaper
OrthogonalFunctionsPaperOrthogonalFunctionsPaper
OrthogonalFunctionsPaper
 
NotesLaplace.pdf
NotesLaplace.pdfNotesLaplace.pdf
NotesLaplace.pdf
 

Mehr von Solo Hermelin

Mehr von Solo Hermelin (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 

Kürzlich hochgeladen

The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 

Kürzlich hochgeladen (20)

High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Introduction to Viruses
Introduction to VirusesIntroduction to Viruses
Introduction to Viruses
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 

Gamma function

  • 1. 1 Gamma Function SOLO HERMELIN Updated 28.10.12http://www.solohermelin.com
  • 2. 2 SOLO TABLE OF CONTENT Gamma Function Gamma Function History Gamma Function: Euler’s Second Integral Properties of Gamma Function Other Gamma Function Definitions: Gauss’ Formula Some Special Values of Gamma Function: Bohr-Mollerup-Artin Theorem Other Gamma Function Definitions: Weierstrass’ Formula Differentiation of Gamma Function Beta Function: Euler’s First Integral Euler Reflection Formula Duplication and Multiplication Formula Stirling Approximation Formula References
  • 3. 3 SOLO Gamma Function History The Gamma Function was first introduced by the Swiss mathematician Leonhard Euler (1707 – 1783). His goal was to generalize the factorial to non-integer values. Later, it was studied by Adrien-Marie Legendre (1752-1833), Carl Friedrich Gauss (1777-1855), Christoph Gudermann (1798-1852), Joseph Liouville (1809 – 1882), Karl Weierstrass (1815- 1897), Charles Hermite (1822-1901),…and others Leonhard Euler )1707–1783( ( ) ( ) 0ln 1 0 1 >−=Γ ∫ = = − xtdtz t t x Adrien-Marie Legendre )1752–1833( The problem of extending the factorial to non-integer arguments was apparently first considered by Daniel Bernoulli and Christian Goldbach in the 1720s, and was solved at the end of the same decade by Leonhard Euler. Euler gave two different definitions: the first was not his integral but an infinite product, ∏ ∞ = +       + = 1 1 1 1 ! k n k n k n of which he informed Goldbach in a letter dated October 13, 1729. He wrote to Goldbach again on January 8, 1730, to announce his discovery of the integral representation Gamma Function
  • 4. 4 SOLO Gamma Function History Leonhard Euler )1707–1783( ( ) ( ) 0ln 1 0 1 >−=Γ ∫ = = − xtdtz t t x During the years 1729 and 1730, Euler introduced the following analytic function, By changing of variables we can obtain more known forms ( ) ( ) ( ) 0ln 0 10 1 1 0 1 >=−=−=Γ ∫∫∫ ∞= = −= ∞= −− = −= = = − − − xtd e t tdetuduz t t t xt t tx eu dtedu u u x t t ( ) ( ) ( ) ( ) 022ln 0 12 0 12 2 1 0 1 22 2 2 >=−=−=Γ ∫∫∫ ∞= = −− = ∞= −− = −= = = − − − xtdettdettuduz t t tx t t tx eu dtetdu u u x t t The notation Γ (x) is due to Legendre in 1809, while Gauss used Π (x) = Γ (x+1) Carl Friedrich Gauss (1777 – 1855) Adrien-Marie Legendre )1752–1833( Gamma Function
  • 5. 5 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof: Gamma Function 0& >+= xyixz ∫∫∫ ∞= = −= += −∞= += − += t t t zt t t zt t t z td e t td e t td e t 1 11 0 1 0 1 For the first part: x t xx t x tdttd e t td e t x t t t x t t x et t t yixt t t z t 1 lim 111 0 1 0 1 0 1 11 0 11 0 1 =−==≤= +→ = += = += − >= += −+= += − ∫∫∫ The first integral converges for any x ≥ δ > 0. For the second integral, using integration by parts: ( ) ( ) ( ) ( ) ( )( ) ∫ ∫∫∫∫ ∞= = − ∞= = −− = = ∞= = − ∞= = −− = = ∞= = −∞= = −+∞= = − −−+−−+= −+−=== − − − − t t t x e t t tx edv tu t t t x e t t tx edv tu t t t xt t t yixt t t z td e t xxetx e td e t xettd e t td e t td e t t x t x 1 3 /1 1 2 1 2 /1 1 1 1 1 1 1 1 1 211 1 1 2 1   Euler’s Second Integral Gamma integral is defined, and converges uniformly for x > 0. Gamma Function
  • 6. 6 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof (continue): Gamma Function 0& >+= xyixz For the second integral, using integration by parts: ( ) ( ) ( ) ( ) ( )( ) ∫ ∫∫∫∫ ∞= = − ∞= = −− = = ∞= = − ∞= = −− = = ∞= = −∞= = −+∞= = − −−+−−+= −+−=== − − − − t t t x e t t tx edv tu t t t x e t t tx edv tu t t t xt t t yixt t t z td e t xxetx e td e t xettd e t td e t td e t t x t x 1 3 /1 1 2 1 2 /1 1 1 1 1 1 1 1 1 211 1 1 2 1   After [x] (the integer defined such that x-[x] < 1) such integration the power of t in the integrand becomes x-[x]-1 < 0. and we have: ( )( ) [ ]( ) [ ]( ) ( )( ) [ ]( ) ∞<−−−<−−− ∫∫ ∞= = ∞= = −− t t t t t txx td e xxxxtd et xxxx 11 1 1 21 1 21  Therefore the Gamma integral is defined, and converges uniformly for x > 0. Gamma integral is defined, and converges uniformly for x > 0. q.e.d. Gamma Function Return to Table of Content
  • 7. 7 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof : Gamma Function 0& >+= xyixz ( ) ( )zzz Γ=+Γ 1 ( )  ( ) ( ) ( )zztdetztdtzeettdetz t t tz t t ud z v t v t u z dtedvtu partsby t t tz tz Γ=+=−−−==+Γ ∫∫∫ ∞= = −− ∞= = −− ∞ − ==∞= = − − 0 1 0 1 0 , nintegratio 0 01  Properties of Gamma Function : 1 Note that for the evaluation of Gamma Function for a Positive Real Number we need to know only the value of Γ (x) for 0 < x < 1 ( ) ( ) ( ) ( ) ( )xxxnxnxnx Γ+−+−+=+Γ 121  ( ) ( ) ( ) ( ) ( )121 −+−++ +Γ =Γ nxnxxx nx x  For x < 0 with –n < x < -n+1 or 0 < x+n < 1, we define We can see that for x = 0 or a negative integer the denominator of the right side is zero, and so Γ (x) is undefined (goes to infinity) Gamma Function ( ) ,2,1,0!1 ==+Γ nnn
  • 8. 8 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof : Gamma Function ( ) ( ) ( )!1 1 Residue 1 1 − − =Γ − +−→ n z n nz Residues of Gamma Function at x = 0,-1, -2,---,-n,..: ( ) ( ) ( ) ( ) ( )121 −+−++ +Γ =Γ nxnxxx nx x  q.e.d. ( ) ( ) ( ) ( ) ( ) ( ) ( )  ( )( ) ( ) ( ) ( )!1 1 121 1 121 1limResidue 1 1 11 − − = −+−+− Γ = −+−++ +Γ −+=Γ − +−→+−→ nnn nxnxxx nx nxx n nxnx   Gamma Function
  • 9. 9 SOLO Gamma Function Γ (x) and its Inverse 1/Γ (x) Gamma Function
  • 10. 10 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Absolute value |Γ (z)| Real value ReΓ (z) Imaginary value ImΓ (z) Gamma Function
  • 11. 11 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Absolute value |Γ (z)| Gamma Function
  • 12. 12 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function ( ) ( )zzz Γ=+Γ 1 Let compute ( ) 11 0 0 =−==Γ ∞− ∞= = − ∫ t t t t etde Therefore for any n positive integer: ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )!1122112111 −=Γ−−=−Γ−−=−Γ−=Γ nnnnnnnnn  Properties of Gamma Function : 1 2 q.e.d. Gamma Function
  • 13. 13 SOLO Primes Second definition identical to First ( )[ ] ( ) ( ) ( ) ( ) ( )bayxallyfxfyxf ,,1,011 ∈∈−+≤−+ λλλλλ Convex Function : A Function f (x) is called Convex in an interval (a,b) if for every x,y (a,b) we haveϵ A Function f (x), defined for x > 0, is called Convex, if the corresponding function ( ) ( ) ( ) y xfyxf y −+ =φ defined for all y > -x, y ≠ 0, is monotonic Increasing throughout the range of definition. If 0 < x1 < x < x2, are given by choosing y1 = x1 – x < 0, y2 = x2 – x > 0, we express the condition of convexity as ( ) ( ) ( ) ( ) ( ) ( ) xx xfxf y xx xfxf y − − =≤ − − = 2 2 2 1 1 1 φφ ( ) ( )[ ] ( ) ( ) ( )[ ] ( )xxxfxfxxxfxf −−≥−− 1221 ( ) ( ) ( ) ( ) ( ) ( ) ( ) λλ − − − + − − ≤ 1 12 1 2 12 2 1 xx xx xf xx xx xfxf One other equivalent definition:
  • 14. 14 SOLO Primes ( )[ ] ( ) ( ) ( ) ( )1,0ln1ln1ln ∈−+≤−+ λλλλλ yfxfyxf Logarithmic Convex Function : A Function f (x)>0 is called logarithmic-convex or simply log-convex if ln (f (x) ) is convex or This is equivalent to ( )[ ] ( ) ( )( )λλ λλ − ≤−+ 1 ln1ln yfxfyxf Since the logarithm is a momotonic increasing function we obtain ( )[ ] ( ) ( )( ) ( ) yxyfxfyxf <∈≤−+ − ,1,01 1 λλλ λλ
  • 15. 15 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof : Gamma Function 0& >+= xyixz ( )[ ] ( ) ( ) ( ) ( )1,0ln1ln1ln ∈Γ−+Γ≤−+Γ λλλλλ baba Properties of Gamma Function : 3 Gamma is a Log Convex Function ( )[ ] ( ) ( ) ( ) ( ) ( ) λλ λλ λλλλ λλ − −∞ −− ∞ −− ∞ −−−−− ∞ −−−+ ΓΓ=                ≤ ==−+Γ ∫∫ ∫∫ 1 1 0 1 0 1 0 111 0 11 1 badtetdtet dtetetdtetba tbta InequalityHolder tbtatba q.e.d. Return to Table of Content
  • 16. 16 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof : Gamma Function Other Gamma Function Definitions: ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limGauss’ Formula Since the Gamma Function is monotonically increasing the logarithm of Gamma Function is also monotonic increasing and for 0 < x < 1 and any n > 2 we have ( ) ( ) ( ) nnx nnx −+ Γ−+Γ lnln ( )[ ] ( )[ ] ( ) ( ) ( ) ( )[ ] [ ] ( )[ ] ( )            −      − − −− ≤ −−+Γ ≤ − −−− !1 ! ln !2 !1 ln 1 !1ln!ln!1lnln 1 !1ln!2ln n n n n nn x nnxnn ( ) ( ) ( ) n x n nx n ln !1 ln 1ln ≤ − +Γ ≤− ( ) ( ) ( ) 1 1 ln1ln −=← ≤ −+− Γ−+−Γ x nn nn ( ) ( ) ( ) nn nnx −+ Γ−+Γ ≤ →= 1 ln1ln1 Carl Friedrich Gauss (1777 – 1855)
  • 17. 17 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof (continue - 1) : Gamma Function Other Gamma Function Definitions: Since the Gamma Function is monotonically increasing the logarithm of Gamma Function is also monotonic increasing and for 0 < x < 1 and any n > 2 we have ( ) ( ) ( ) n x n nx n ln !1 ln 1ln ≤ − +Γ ≤− ( ) ( ) ( ) xx n n nx n ln !1 ln1ln ≤ − +Γ ≤− 10 << x ( ) ( ) ( ) ( )!1!11 −≤+Γ≤−− nnnxnn xx Use ( ) ( ) ( ) ( ) ( )xxxnxnxnx Γ+−+−+=+Γ >     0 121 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) xxnxnx nn x xxnxnx nn xx 121 !1 121 !11 +−+−+ − ≤Γ≤ +−+−+ −−  ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limGauss’ Formula Euler 1729 Gauss 1811
  • 18. 18 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Proof (continue - 2) : Gamma Function Other Gamma Function Definitions: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) xxnxnx nn x xxnxnx nn xx 121 !1 121 !11 +−+−+ − ≤Γ≤ +−+−+ −−  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) xxnxnx nn x xxnxnx nn xx 11 !1 11 ! +−++ + ≤Γ≤ +−++  Take the limit n → ∞ ( ) ( ) ( ) ( ) ( ) ( ) ( ) xxnxnx nn n x xxnxnx nn x n x n x n 11 ! lim 1 1lim 11 ! lim 1 +−++       +≤Γ≤ +−++ ∞→∞→∞→    ( ) ( ) ( ) ( ) ( )1,0 11 ! lim ∈ +−++ =Γ ∞→ x xxnxnx nn x x n  Substitute n+1 for n ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limGauss’ Formula
  • 19. 19 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Let substitute x + 1 for x Gamma Function Other Gamma Function Definitions: ( ) ( ) ( ) ( ) ( ) ( )1,0 11 ! lim ∈ +−++ =Γ Γ ∞→ x xxnxnx nn x x x n n     q.e.d ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limGauss’ Formula Proof (continue - 3) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1,0 11 ! lim 1 lim 11 ! lim1 1 1 ∈Γ= +−++++ = ++++ =+Γ Γ ∞→∞→ + ∞→ xxx xxnxnx nn nx n x xnxnx nn x x x nn x n         The right side is defined for 0 < x <1. The left side extend the definition for (1 , 2). Therefore the result is true for all x , but 0 and negative integers. Return to Table of Content
  • 20. 20 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Definitios: Start from Gauss Formula ( ) ( )xx n n Γ=Γ ∞→ lim q.e.d ( ) constantMascheroni-Euler57721566.0ln 1 2 1 1lim 11 ≈      −+++= + =Γ ∞→ ∞ = − ∏ n n k x e x e x n k k x x γ γ Weierstrass’ Formula Proof : ( ) ( ) ( ) ( )       +      − +      + =       +      − +      + = +−++ =Γ       −−−− n x n xx x eee e x x n x n x n xxnxnx nn x n xxx n nx xx n 1 1 1 1 1 1 1 1 11 11 ! : 21 1 2 1 1ln      ( ) ( ) ∏∏ ∞ = − =       −−−− ∞→∞→ + = + =Γ=Γ 11 1 2 1 1ln 11 1 limlim k k x xn k k x n nx n n n k x e x e k x e x exx γ Karl Theodor Wilhelm Weierstrass (1815 – 11897) Gamma Function Return to Table of Content
  • 21. 21 SOLO Primes ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Some Special Values of Gamma Function: q.e.d ( ) π π ====Γ ∫∫ ∞= = − = = ∞= = − 2 222/1 0 2 0 2 2 t t u ut duudt t t t udetd t e ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) πn n nnnnn 2 12531 2/12/112/32/12/12/12/1 −⋅⋅ =Γ+−−=−Γ−=+Γ   ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) π 12531 21 2/12/32/1 2/1 2/1 2/3 2/1 −⋅⋅ − = −+−+− Γ = +− +−Γ =+−Γ nnnn n n nn  ( ) π=Γ 2/1 ( ) ( ) πn n n 2 12531 2/1 −⋅⋅ =+Γ  ( ) ( ) ( ) π 12531 21 2/1 −⋅⋅ − =+−Γ n n nn  Proof: Return to Table of Content
  • 22. 22 SOLO Harald August Bohr ( 1887 – 1951) Proof: Choose n > 2, and 0 < x < 1 and let 11 +≤+<<− nxnnn By logarithmic convexity of f (x), we get ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) nn nfnf nxn nfxnf nn nfnf −+ −+ ≤ −+ −+ ≤ −− −− 1 ln1lnlnln 1 ln1ln ( ) ( ) ( ) ( ) ( ) 1 !1ln!ln!1lnln 1 !1ln!2ln −− ≤ −−+ ≤ − −−− nn x nxnfnn By the second property ( ) ( ) ( ) ( ) ( ) !1,!1,!21 nnfnnfnnf =+−=−=− ( ) ( )( ) ( ) ( )xfxxxnxnxnf 121 +−+−+=+  ( ) ( ) ( ) xx n n xnf n ln !1 ln1ln ≤ − + ≤− Emil Artin (1898 – 1962) Hamburg University Johannes Mollerup (1872 – 1937) Gamma Function Bohr-Mollerup-Artin Theorem: The theorem characterizes the Gamma Function, defined for x > 0 by as the only function f (x) on the interval x > 0 that simultaneously has the three properties • f (1) = 1 • f (1+x) = x f (x) for x > 0 • f is logarithmically convex or Gauss Formula( ) ∫ ∞= = −− =Γ t t tz tdetz 0 1 ( ) ( ) ( )nxxx nn z x n ++ =Γ ∞→ 1 ! lim
  • 23. 23 SOLO Bohr-Mollerup-Artin Theorem: Harald August Bohr ( 1887 – 1951) The theorem characterizes the Gamma Function, defined for x > 0 by as the only function f (x) on the interval x > 0 that simultaneously has the three properties • f (1) = 1 • f (1+x) = x f (x) for x > 0 • f is logarithmically convex Proof (continue-1): By the second property ( ) ( )( ) ( ) ( )xfxxxnxnxnf 121 +−+−+=+  ( ) ( )( ) ( ) ( ) ( ) xx n n xfxxxnxn n ln !1 121 ln1ln ≤ − +−+−+ ≤−  We found Since lan is a monotonic increasing function, we have ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )121 !1 121 !11 −+−++ − ≤≤ −+−++ −− xnxnxx nn xf xnxnxx nn xx  ( ) ( )( ) ( ) ( ) ( )( ) ( ) x xxx n n xnxnxx nn xf xnxnxx nn 1 11 ! 11 ! + +−++ ≤≤ +−++  n n ↓ −1 ( ) ∫ ∞= = −− =Γ t t tz tdetz 0 1 ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limor Gauss Formula Emil Artin (1898 – 1962) Hamburg University Johannes Mollerup (1872 – 1937) Gamma Function
  • 24. 24 SOLO Bohr-Mollerup-Artin Theorem: q.e.d. Harald August Bohr ( 1887 – 1951) The theorem characterizes the Gamma Function, defined for x > 0 by as the only function f (x) on the interval x > 0 that simultaneously has the three properties • f (1) = 1 • f (1+x) = x f (x) for x > 0 • f is logarithmically convex Johannes Mollerup (1872 – 1937) Proof (continue - 2): ( ) ( )( ) ( ) ( ) ( )( ) xxx nxnxnxx nn xf xnxnxx nn       + +−++ ≤≤ +−++ 1 1 11 ! 11 !  ( ) ∫ ∞= = −− =Γ t t tz tdetz 0 1 ( ) ( ) ( )nxxx nn x x n ++ =Γ ∞→ 1 ! limor Gauss Formula By taking n → ∞ we obtain ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )         1 1 1lim 11 ! lim 11 ! lim x n x x n x x n nxnxnxx nn xf xnxnxx nn       + +−++ ≤≤ +−++ ∞→ Γ ∞→ Γ ∞→ But this is possible only if ( ) ( )xxf Γ= Emil Artin (1898 – 1962) Hamburg University Gamma Function
  • 25. 25 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Gamma integral is defined, and converges uniformly for x > 0. Differentiation of Gamma Function: q.e.d ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,2 !11' ln 0 1''' ln constantMascheroni-Euler57721566.0 111' ln 1 1 1 1 22 2 2 2 1 >≥ + −− = Γ Γ =Γ > + = Γ Γ−ΓΓ =Γ ≈      + −+−−= Γ Γ =Γ ∑ ∑ ∑ ∞ = − − ∞ = ∞ = xn kx n x x xd d x xd d kxx xxx x xd d kxkxx x x xd d k n n n n n n k k γγ Proof : Start from Weierstrass Formula ( ) ∏ ∞ = − + =Γ 1 1k k x x k x e x e x γ ( ) ∑∑ ∞ = ∞ =       +−+−−=Γ 11 1lnlnln kk k x k x xxx γ ( ) ∑∑ ∞ = ∞ = + −+−−=Γ 11 1 1 11 ln kk k x k kx x xd d γ ( ) ( ) ( ) 0 111111 ln 0 2 1 22 1 2 2 > + = + +=            + −+−−=Γ ∑∑∑ ∞ = ∞ = ∞ = kkk kxkxxkxkxxd d x xd d γ ( ) ( ) ( ) ( ) ( ) ( )∑ ∞ = − − + −− = Γ Γ =Γ 0 1 1 !11' ln k n n n n n n kx n x x xd d x xd d Gamma Function We can see that ( ) ( ) ( ) γγ −=      + −+−−= Γ Γ ==Γ + − = ∞→ ∑    1 1 1 1 1 11 lim 1 1 1 1' 1ln n n k n kk x xd d Return to Table of Content
  • 26. 26 SOLO ( ) ( )∫ = = −− −= 1 0 11 1, s s zy sdsszyBBeta Function Beta Function is related to Gamma Function: ( ) ∫∫ ∞= = −− = =∞= = −− ==Γ u u uy duudt utt t ty udeutdety 0 12 2 0 1 2 2 2 ( ) ( ) ( ) ( )zy zy zyB +Γ ΓΓ =, Proof: In the same way: ( ) ∫ ∞= = −− =Γ v v vz vdevz 0 12 2 2 ( ) ( ) ( ) ∫ ∫ ∞= = ∞= = +−−− =ΓΓ u u v v vuuzy vdudevuzy 0 0 1212 22 4 Use polar coordinates: ϕϕ ϕϕ ϕϕ ϕ ϕ ϕ ϕ ϕ drdrdrd r r drd vrv uru vdud rv ru = − = ∂∂∂∂ ∂∂∂∂ =    = = cossin sincos // // sin cos ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                     = =ΓΓ ∫∫ ∫ ∫ = = −− +Γ ∞= = −−+ ∞= = = = −−−−+ 2/ 0 1212 0 12 0 2/ 0 121212 sincos22 sincos4 2 2 πϕ ϕ πϕ ϕ ϕϕϕ ϕϕϕ drder drderzy zy zy r r rzy r r rzyzy    Euler’s First Integral Gamma Function
  • 27. 27 SOLO ( ) ( )∫ = = −− −= 1 0 11 1, s s zy sdsszyBBeta Function Euler’s First Integral Beta Function is related to Gamma Function: ( ) ( ) ( ) ( )zy zy zyB +Γ ΓΓ =, Proof (continue): ( ) ( ) ( ) ( ) ( )         +Γ=ΓΓ ∫ = = −− 2/ 0 1212 sincos2 πϕ ϕ ϕϕϕ dzyzy zy Change variables in the integral using ϕϕϕϕ dsds cossin2sin2 == ( ) ( ) ( ) ( )zyBsdssd s s yzzy ,1sincos2 1 0 11 2/ 0 1212 =−= ∫∫ = = −− = = −− πϕ ϕ ϕϕϕ ( ) ( ) ( ) ( )zyBzyzy ,+Γ=ΓΓTherefore q.e.d. Use z→y and y → 1 - z ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫ ∫ ∞= = −∞= = − − −+ = + = = = −− + = +       + − + = −=−Γ=−ΓΓ u u zu u z z zu u s u ud sd s s zz ud u u u ud u u u u dssszzBzz 0 1 0 21 11 1 1 0 1 111 1 1 11,11 2 q.e.d. Gamma Function Return to Table of Content
  • 28. 28 SOLO Proof ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yzBzyzyBzyyz yzBzyB ,, ,, +Γ=+Γ=ΓΓ = Use y → 1 - z ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫ ∫ ∞= = −∞= = − − −+ = + = = = −− + = +       + − + = −=−Γ=−ΓΓ u u zu u z z zu u s u ud sd s s zz ud u u u ud u u u u dssszzBzz 0 1 0 21 11 1 1 0 1 111 1 1 11,11 2 ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula Gamma Function
  • 29. 29 SOLO Proof (continue - 1) ( ) ( ) ∫ ∞= = − + =−ΓΓ u u x ud u u xx 0 1 1 1 ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: Replace the path from 0 to ∞ by the Hankel contour Hε in the Figure, described by four paths, traveled in counterclockwise direction: 1. going counterclockwise above the real axis, (u = |u|) 2. along the circular path CR, 3. bellow the real axis, (u= |u|e -2πi ) 4. along the circular path Cε. ∫∫∫∫ + − + − + + + −− − −− εε π ε C yR y yi C yR y ud u u ud u u eud u u ud u u R 1111 2 Define y = 1 – x, and assume x,y (0,1)ϵ ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula Gamma Function
  • 30. 30 SOLO Proof (continue - 1) ( ) ( ) ∫ ∞= = − + =−ΓΓ u u x ud u u xx 0 1 1 1 ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: This path encloses the pole u=-1 of that has the residue 1+ − u u y yi eu y y eu u u i π π − =−= − − ==      + 11 Residue By the Residue Theorem For z ≠ 0 we have ( ) yzyzyzyy zeeez −−−−− ==== lnlnReln ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula ( ) yi y eu y C yR y iy C yR y ei u u ui u u izd z z ud u u ezd z z ud u u i R π ε π ε ππ π π ε − − =−→ −−− − −− =            + +=       + = + − + − + + + − ∑∫∫∫∫ 2 1 1lim2 1 Residue2 1111 1 2 Gamma Function
  • 31. 31 SOLO Proof (continue - 2) ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: yi C yR y iy C yR y eizd z z ud u u ezd z z ud u u R π ε π ε π ε − −− − −− = + − + − + + + ∫∫∫∫ 2 1111 2 For the second and forth integral we have ( ) 0 lnlnReln ≠==== −−−−− zzeeez yzyzyzyy z z z z z z yyy − ≤ + ≤ + −−− 111 Hence for small ε we have: and for large R we have: 0 1 2 1 01 →−− → − ≤ +∫ ε ε ε π ε y C y zd z z 0 1 2 1 1 ∞→−− → − ≤ +∫ Ry C y R R zd z z R π Therefore the integrals on the circular paths are zero for ε→0 and R →∞ ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula Gamma Function
  • 32. 32 SOLO Proof (continue - 3) ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: yi y iy y eiud u u eud u u ππ π − ∞ − − ∞ − = + − + ∫∫ 2 11 0 2 0 We obtain Multiply both sides by yi e π+ ( ) iud u u ee y iyiy πππ 2 10 = + − ∫ ∞ − − ( ) ( )yee i ud u u iyiy y π π π ππ sin 2 10 = − = + − ∞ − ∫Rearranging we obtain Since both sides of this equation are meromorphic (analytic) in x (0,1) we canϵ extend the result for all analytic parts of z C (complex plane).ϵ ( ) ( ) ( )[ ] ( ) ( )1,0 sin1sin11 1 0 1 0 1 ∈= − = + = + =−ΓΓ ∫∫ ∞= = −−=∞= = − x xx ud u u ud u u xx u u yxyu u x π π π π Substituting y = 1 – x we obtain ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula Gamma Function
  • 33. 33 SOLO Onother Proof ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: Start with Weierstrass Gamma Formula ( ) ( ) ( )z zz π π sin 1 =−ΓΓ Euler Reflection Formula ( ) ∏ ∞ = − + =Γ 1 1k k x x k x e x e x γ ( ) ( ) ∏∏ ∞ = ∞ = − −       −−= −+ −= −ΓΓ 1 2 2 2 1 2 1 11 1 kk k x k x xx k x x e k x e k x eex xx γγ Use the fact that Γ (-x)=- Γ (1-x)/x to obtain ( ) ( ) ∏ ∞ =       −= −ΓΓ 1 2 2 1 1 1 k k x x xx Now use the well-known infinite product ( ) ∏ ∞ =       −= 1 2 2 1sin k k x xx ππ q.e.d. Gamma Function
  • 34. 34 SOLO Proof ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Other Gamma Function Properties: ( )z zz π π cos2 1 2 1 =      −Γ      +Γ Start from Substitute ½ +z instead of z ( ) ( ) ( )z zz π π sin 1 =−ΓΓ ( )z z zz π π π π cos 2 1 sin 2 1 2 1 =             + =      −Γ      +Γ q.e.d. Gamma Function Return to Table of Content
  • 35. 35 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Stirling Approximation Formula: ( ) 121 >>≈+Γ − xexxx xx π ( ) ( ) ( ) ( ) ( ) ( )( ) ∫ ∫∫∫ ∞= −= ++−−+ ∞= −= −−+ ∞= −= +− += = ∞= −= − = +=+==+Γ u u uuxxx u u xuxxx u u xxux uxt udxtd t t xt udeex udueexudxuxetdtex 1 1ln1 1 1 1 1 1 1 111 Proof: The function f(u) = -u + ln (1 + u) equals zero for u = 0. For other values of u we have f(u) < 0. This implies that the integrand of the last integral equals 1 at u = 0 and that this integrand becomes very small for large values of x at other values of u. So for large values of x we only have to deal with the integrand near u = 0. Note that we have ( ) ( ) ( ) ( ) 0 2 1 2 1 1ln 2222 →Ο+−=Ο+−+−=++−= uforuuuuuuuuuf This implies that ( )( ) ∞→≈ ∫∫ ∞= −∞= − ∞= −= ++− xforduedue u u ux u u uux 2/ 1 1ln 2 James Stirling, a contemporary of Euler, also attempted to find a continuous expression for the factorial and came up with what is now known as Stirling's formula. Although Stirling's formula gives a good estimate of , also for non-integers, it does not provide the exact value. Extensions of his formula that correct the error were given by Stirling himself and by Jacques Philippe Marie Binet‫ן‬ Gamma Function
  • 36. 36 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Stirling Approximation Formula: ( ) 121 >>≈+Γ − xexxx xx π Proof (continue): ( ) ( )( ) ∞→≈=+Γ ∫∫ ∞= −∞= −−+ ∞= −= ++−−+ xfordueexudeexx u u uxxx u u uuxxx 2/1 1 1ln1 2 1 ∞→== − ∞= −∞= −− = = ∞= −∞= − ∫∫ xforxdtexdue t t t xtu xtdud u u ux π π 22 2/12/1 /2 /2 2/ 22  If we set we have by using the normal integralxtu /2= therefore: ( ) ∞→≈+Γ − xexxx xx π21 q.e.d. Gamma Function
  • 37. 37 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( ) 0Re2 22 1 12 >Γ=      +ΓΓ − zzzz z π Legendre Duplication Formula 1809 Adrien-Marie Legendre )1752–1833( Proof: ( ) ( ) ( ) ( ) ( ) ( ) ( )2/1,2sin22sin2 2sin22sincos2, 21 2/ 0 1221 0 1221 2/ 0 1221 2/ 0 1212 zBdd ddzzB zzzzz zzzz ⋅=⋅⋅== ⋅== −−−−− −−−− ∫∫ ∫∫ ππ ππ ττττ ϕϕϕϕϕ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0Re 2/1 2/1 22/1,2, 2 2121 > +Γ Γ⋅Γ ⋅=⋅== Γ Γ⋅Γ −− z z z zBzzB z zz zz We have therefore q.e.d( )  ( ) 0Re2 22 1 12 2 1 >Γ=      +ΓΓ −       Γ zzzz z π Gamma Function
  • 38. 38 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof: n z 1 = Carl Friedrich Gauss (1777 – 1855)( )( ) nn n nn n 2/1 2121 − =      − Γ      Γ      Γ π  Euler Multiplication Formula Gamma Function Define the function: ( )       −+ Γ      + Γ      Γ= n nx n x n x nxf x 11 :  This function has the following properties: 1 ( ) ( )xfx n x n x n nx n x n x nn n nx n nx n x n x nxf x x ⋅=      Γ⋅⋅      −+ Γ      + Γ      + Γ⋅=       + Γ      −+ Γ      + Γ      + Γ=+ ↓ + 121 121 1 1   
  • 39. 39 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof (continue – 1): Carl Friedrich Gauss (1777 – 1855) Gamma Function Since (ln nx )”=(x ln n)”=(ln n)’=0, and each Γ ((x+k)/k) is log convex. f (x) is log convex. ( ) ( )       Γ      Γ⋅      Γ==Γ= n n nn naaf nn  21 11 So using Bohr-Mollerup-Artin Theorem we can write: f (x) = an Γ(x) where an is a constant, to be found, and Γ (1)=1 (the third condition of the Theorem). 2 Therefore Use Gauss’ Formula for Gamma Function with x=k/n ( ) ( )pnknkk npp p n k n k n k pp n k pn k p n k p ++ =       +      + =      Γ + ∞→∞→   1 ! lim 1 ! lim
  • 40. 40 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof (continue – 2): Carl Friedrich Gauss (1777 – 1855) Gamma Function ( ) ( )pnknkk npp n k pn k p ++ =      Γ + ∞→  1 ! lim Since k = 1,2,…,p ( ) ( ) [ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )( )!1! 11211 nppnn pnnpnnnnnpnknkk p k ⋅+=⋅+= ⋅+⋅+++⋅⋅=⋅++∏=  ( ) ( ) ( ) ( ) ( ) ( )! ! lim ! ! lim 21 2 1 1 1 1 pnn pnp n pnn pnp n n n nn na n pnn p n n npnn p n ⋅+ = ⋅+ =      Γ      Γ⋅      Γ= + + ∞→ ++ + ∞→  
  • 41. 41 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof (continue – 3): Carl Friedrich Gauss (1777 – 1855) Gamma Function ( ) ( ) ( )! ! lim 2 1 1 pnn pnp na n pnn p n ⋅+ = + + ∞→ Use the identity ( ) ( ) ( )npp pnpn pnn pn n pnpn ⋅ ⋅ ⋅ ⋅+ =      ⋅ +      ⋅ +⋅      ⋅ += ∞→∞→ 1 ! ! lim1 2 1 1 1lim1  to an to get ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 1 12 1 1 ! ! lim ! ! ! ! lim1 ! ! lim − ⋅ ∞→ + + ∞→ + + ∞→ ⋅ = ⋅⋅ ⋅+ ⋅ ⋅+ =⋅ ⋅+ = n pnn pn n pnn p n pnn p n ppn np n pnpn pnn pnn pnp n pnn pnp na
  • 42. 42 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof (continue – 4): Carl Friedrich Gauss (1777 – 1855) Gamma Function to an to get ( ) ( ) 2 1 ! ! lim − ⋅ ∞→ ⋅ = n pnn p n ppn np na ∞→≈ − + pepp p p 2 1 2! π ( ) ( ) ( ) ∞→⋅≈⋅ ⋅−+⋅ pepnpn pnpn 2 1 2! π ( ) ( ) ( ) 2 1 2 1 2 1 2 1 2 1 2 2 2 lim n pepn nep na n n pnpn pn n p p p n − − ⋅−+⋅ ⋅− + ∞→ = ⋅         = π π π Use Stirling’s Approximation formula ( ) ∞→≈+Γ − xexxx xx π21
  • 43. 43 SOLO ( ) ∫ ∞= = − =Γ t t t z td e t z 0 1 Gamma Function Duplication and Multiplication Formula: ( ) ( )( ) ( )znn n n z n z n zz znn Γ=      − +Γ      +Γ      +ΓΓ −− 2/12/1 2 121 π Gauss Multiplication Formula Proof (continue – 4): Carl Friedrich Gauss (1777 – 1855) Gamma Function ( ) 2 1 2 1 2 na n n − = π ( ) ( )xa n nx n x n x nxf n x Γ=      −+ Γ      + Γ      Γ= 11 :  We have or ( ) ( )xn n nx n x n x xn Γ=      −+ Γ      + Γ      Γ +−− 2 1 2 1 2 11 π Define x = n z to obtain ( ) ( ) ( )znn n n z n zz znn Γ=      − +Γ      +ΓΓ +−− 2 1 2 1 2 11 π q.e.d Return to Table of Content
  • 44. 44 SOLO References Internet http://en.wikipedia.org/wiki/ G.B. Arfken, H.J. Weber, “Mathematical Methods for Physicists”, Academic Press, Fifth Ed., 2001 http://www.frm.utn.edu.ar/analisisdsys/material/function_gamma.pdf http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf Gamma Function M.Abramowitz & I.E. Stegun, ED., “Handbook of Mathematical Functions”, Dover Publication, 1965, H.Vic Dannon,”Riemann Zeta Function: The Riemann Hypothesis Origin, the Factoriztion Error, and the Count of the Primes”, Gauge Institute Journal, Vol. 5, No. 4, November 2009 J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007 D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf Return to Table of Content
  • 45. January 6, 2015 45 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA

Hinweis der Redaktion

  1. http://www.frm.utn.edu.ar/analisisdsys/material/function_gamma.pdf
  2. http://www.frm.utn.edu.ar/analisisdsys/material/function_gamma.pdf
  3. H.Vic Dannon,”Riemann Zeta Function: The Riemann Hypothesis Origin, the FaCTORIZATION Error, and the Count of the Primes”, Gauge Institute Journal, Vol. 5, No. 4, November 2009
  4. H.Vic Dannon,”Riemann Zeta Function: The Riemann Hypothesis Origin, the FaCTORIZATION Error, and the Count of the Primes”, Gauge Institute Journal, Vol. 5, No. 4, November 2009
  5. M.Abramowitz &amp; I.E. Stegun, ED., “Handbook of Mathematical Functions”, Dover Publication, 1965, pg.255
  6. http://en.wikipedia.org/wiki/Gamma_function
  7. http://en.wikipedia.org/wiki/Gamma_function
  8. J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007 K. Chandrasekharan, “Lectures on The Riemann Zeta-Function”, Tata Institute of Fundamental Research, Bombay, 1953
  9. J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  10. J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  11. J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  12. J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  13. J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  14. J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  15. J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  16. htt[p://en.wikipedia.org/wiki/Bohr_Mollerup_theorem K. Chandrasekharan, “Lectures on The Riemann Zeta-Function”, Tata Institute of Fundamental Research, Bombay, 1953 http://en.wikipedia.org/wiki/Harald_Bohr http://en.wikipedia.org/wiki/Emil_Artin
  17. htt[p://en.wikipedia.org/wiki/Bohr_Mollerup_theorem K. Chandrasekharan, “Lectures on The Riemann Zeta-Function”, Tata Institute of Fundamental Research, Bombay, 1953 http://en.wikipedia.org/wiki/Harald_Bohr http://en.wikipedia.org/wiki/Emil_Artin
  18. htt[p://en.wikipedia.org/wiki/Bohr_Mollerup_theorem K. Chandrasekharan, “Lectures on The Riemann Zeta-Function”, Tata Institute of Fundamental Research, Bombay, 1953 http://en.wikipedia.org/wiki/Harald_Bohr http://en.wikipedia.org/wiki/Emil_Artin
  19. J. Baltzersen, “Hardy’s Theorem and the prime number theorem”, Thesis University of Copenhagen, June 2007
  20. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf
  21. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf
  22. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf
  23. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  24. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  25. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  26. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  27. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  28. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  29. http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf
  30. http://homepage.tudelft.nl/11r49/documents/wi4006/gammabeta.pdf
  31. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  32. D. Miličić, “Notes on Riemann Zeta Function”, http://www.math.utah.edu/~milicic/zeta.pdf P. Garrett, “Riemann’ Explicit/Exact formula”, (October 2, 2010), http://www.math.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf
  33. http://math.postech.ac.kr/~sungpyo/Calculus1/Appendix.pdf
  34. http://math.postech.ac.kr/~sungpyo/Calculus1/Appendix.pdf
  35. http://math.postech.ac.kr/~sungpyo/Calculus1/Appendix.pdf
  36. http://math.postech.ac.kr/~sungpyo/Calculus1/Appendix.pdf
  37. http://math.postech.ac.kr/~sungpyo/Calculus1/Appendix.pdf