SlideShare ist ein Scribd-Unternehmen logo
1 von 110
1
Diffraction
SOLO HERMELIN
Updated: 16.01.10
4.01.15
http://www.solohermelin.com
2
Table of Content
SOLO Optics - Diffraction
James Gregory Diffraction Grating
History of Diffraction
Francesco Grimaldi
Huygens Principle
Thomas Young Interference
Laplace, Biot, Poisson, Arago, Fresnel - Particle versus Wave Theory
Fresnel – Huygens’ Diffraction Theory
Fraunhofer Diffraction Theory
Fresnel-Kirchhoff Diffraction Theory
Complementary Apertures. Babinet Principle
Rayleigh-Sommerfeld Diffraction Formula
Extensions of Fresnel-Kirchhoff Diffraction Theory
Fresnel and Fraunhofer Diffraction Approximations
3
SOLO Diffraction
Fraunhofer Diffraction and the Fourier Transform
Phase Approximations – Fresnel (Near-Field) Approximation
Phase Approximations – Fraunhofer (Near-Field) Approximation
Fresnel and Fraunhofer Diffraction Approximations
Fraunhofer Diffraction Approximations Examples
Resolution of Optical Systems
Fresnel Diffraction Approximations Examples
Kirchhoff’s Solution of the Scalar Helmholtz Nonhomogeneous Differential Equation
Two Dimensional Fourier Transform (FT)
Appendices
4
SOLO Diffraction
The term Diffraction has been defined by Sommerfield
as any deviation of light rays from rectilinear paths
which cannot be interpreted as reflection or refraction.
Sommerfeld, A., “Optics, Lectures on Theoretical Physics”, vol. IV, Academic Press Inc.,
New York, 1954, Chapter V, “The Theory of Diffraction”, pg. 179,
english translation of
Arnold Johannes
Wilhelm
Sommerfeld
1868 - 1951
Sommerfeld, A. , “Mathematische Theorie der Diffraction”, Math Ann., 1896
Table of Content
5
SOLO Diffraction - History
The Grimaldi’s description of diffraction was published in
1665 , two years after his death: “Physico-Mathesis de lumine,
Coloribus et iride”
Francesco M. Grimaldi, S.J. (1613 – 1663) professor of mathematics and physics at the
Jesuit college in Bolognia discovered the diffraction of light and gave it the name
diffractio, which means “breaking up”.
http://www.faculty.fairfield.edu/jmac/sj/scientists/grimaldi.htm
“When the light is incident on a smooth white surface it will
show an illuminated base IK notable greater than the rays
would make which are transmitted in straight lines through
the two holes. This is proved as often as the experiment is
trayed by observing how great the base IK is in fact and
deducing by calculation how great the base NO ought to be
which is formed by the direct rays. Further it should not be
omitted that the illuminated base IK appears in the middle
suffused with pure light, and either extremity its light is
colored.”
Single Slit
Diffraction
Double Slit
Diffraction
http://en.wikipedia.org/wiki/Francesco_Maria_Grimaldi
Table of Content
6
SOLO
Huygens Principle
Christiaan Huygens
1629-1695
Every point on a primary wavefront serves the source of spherical
secondary wavelets such that the primary wavefront at some later
time is the envelope o these wavelets. Moreover, the wavelets
advance with a speed and frequency equal to that of the primary
wave at each point in space.
“We have still to consider, in studying the
spreading of these waves, that each particle of
matter in which a wave proceeds not only
communicates its motion to the next particle to it,
which is on the straight line drawn from the
luminous point, but it also necessarily gives a motion
to all the other which touch it and which oppose its
motion. The result is that around each particle
there arises a wave of which this particle is a
center.”
Huygens visualized the propagation of light in
terms of mechanical vibration of an elastic
medium (ether).
Diffraction - History
Table of Content
7
SOLO
James Gregory (1638 – 1675) a Scottish mathematician and
astronomer professor at the University of St. Andrews and the
University of Edinburgh discovered the diffraction grating by
passing sunlight through a bird feather and observing the
diffraction produced.
Diffraction - History
http://en.wikipedia.org/wiki/James_Gregory_%28astronomer_and_mathematician%29
http://microscopy.fsu.edu/optics/timeline/people/gregory.html
Table of Content
1661
8
Diffraction - History
SOLO
M.C. Hutley, “Diffraction Gratings”, Academic Press., 1982, p. 3
Diffraction Gratings
1786
The invention of Diffraction Gratings is ascribed to David Rittenhouse who in 1786
had been intriged by the effects produced when viewing a distant light source through
a fine handkerchief.
In order to repeat the phenomenon under controlled
conditions, he made up a square of parallel hairs laid across
two fine screws made by a watchmaker. When he looked
through this at a small opening in the window shutter of a
darkened room, he saw three images of approximately equal
brightness and several others on either side “fainter and
growing more faint, coloured and indistinct, the further they
were from the main line”. He noted that red light was bent
more than blue light and ascribed these effects to
diffraction.
http://experts.about.com/e/d/da/david_rittenhouse.htm
David Rittenhouse
1732 - 1796
9
Optics - History
SOLO
History (continue)
In 1801 Thomas Young uses constructive and destructive interference
of waves to explain the Newton’s rings.
Thomas Young
1773-1829
1801-1803
In 1803 Thomas Young explains the fringes at the edges of shadows
using the wave theory of light. But, the fact that was belived that the
light waves are longitudinal, mad difficult the explanation of double
refraction in certain crystals.
Table of Content
10
SOLO
“Between 1805 and 1815 Laplace, Biot and (in part) Malus created an elaborate
mathematical theory of light, based on the notion that light rays are streams of particles
that interact with the particles of matter by short range forces. By suitably modifying
Newton’s original emission theory of light and applying superior mathematical
methods, they were able to explain most of the known optical phenomena, including
the effect of double refraction which had been the focus of Huyghen’s work.
Diffraction - History
http://microscopy.fsu.edu/optics/timeline/people/gregory.html
http://www.schillerinstitute.org/fid_97-01/993poisson_jbt.html
Pierre-Simon Laplace
(1749-1827)
In 1817, expecting to soon celebrate the final triumph of their neo-Newtonian optics’
Laplace and Biot arranged for the physics prize of the French Academy of Science to
be proposed for the best work on theme of diffraction – the apparent bending of light
rays at the boundaries between different media.”
11
SOLO
Fraunhofer’s solar dark lines
In 1813 Joseph Fraunhofer rediscovered William Hyde Wollaston’s
dark lines in the solar system, which are known as Fraunhofer’s lines.
He began a systematic measurement of the wavelengths of the solar
Spectrum, by mapping 570 lines.
Diffraction - History
http://www.musoptin.com/spektro1.html
1813
Fraunhofer Telescope.
Fraunhofer placed a narrow slit in front of a prism and viewed the spectrum of light
passing through this combination with a small telescope eypiece. By this technique he
was able to investigate the spectrum bit by bit, color by color.
12
POLARIZATION - History
Arago and Fresnel investigated the interference of
polarized rays of light and found in 1816 that two
rays polarized at right angles to each other never
interface.
SOLO
History (continue)
Dominique François
Jean Arago
1786-1853
Augustin Jean
Fresnel
1788-1827
Arago relayed to Thomas Young in London the results
of the experiment he had performed with Fresnel. This
stimulate Young to propose in 1817 that the oscillations
in the optical wave where transverse, or perpendicular
to the direction of propagation, and not longitudinal as
every proponent of wave theory believed. Thomas Young
1773-1829
1816-1817
longitudinal
waves
transversal
waves
13
SOLO
Augustin Jean
Fresnel
1788-1827
In 1818 Fresnel, by using Huygens’ concept of secondary wavelets
and Young’s explanation of interface, developed the diffraction
theory of scalar waves.
1818Diffraction - History
14
SOLO
In 1818 August Fresnel supported by his friend André-Marie Ampère submitted to the
French Academy a thesis in which he explained the diffraction by enriching the Huyghens’
conception of propagation of light by taking in account of the distinct phases within each
wavelength and the interaction (interference) between different phases at each locus of the
propagation process.
Diffraction - History
http://microscopy.fsu.edu/optics/timeline/people/gregory.html http://www.schillerinstitute.org/fid_97-01/993poisson_jbt.html
André-Marie Ampère
(1775-1836)
Dominique François
Jean Arago
1786-1853
Siméon Denis Poisson
1781-1840
Pierre-Simon Laplace
(1749-1827)
Joseph Louis
Guy-Lussac
1778-1850
Judging
Committee
of
French
Academy
1818
15
SOLO
Diffraction - History
http://microscopy.fsu.edu/optics/timeline/people/gregory.html http://www.schillerinstitute.org/fid_97-01/993poisson_jbt.html
Dominique François
Jean Arago
1786-1853
Siméon Denis Poisson an Academy member rise the objection that if the Fresnel
construction is valid a bright spot would have to appear in the middle of the shadow cast by a
spherical or disc-shaped object, when illuminated, and this is absurd.
Soon after the meeting, Dominique Francois Arago, one of the judges for the Academy
competition, did the experiment and there was the bright spot in the middle of the shadow.
Fresnel was awarded the prize in the competition.
Siméon Denis Poisson
1781-1840
Poisson’s or Arago’s Spot
16
SOLO
In 1821 Joseph Fraunhofer build the first diffraction grating,
made up of 260 close parallel wires. Latter he built a diffraction
grating using 10,000 parallel lines per inch.
Diffraction - History
Utzshneider, Fraunhfer, Reichenbach, Mertz
http://www.musoptin.com/fraunhofer.html
1821-1823
In 1823 Fraunhofer published his theory of diffraction.
Table of Content
17
SOLO
Dffraction Grating
Diffraction - History 1835
By 1835 at the latest, the physicist F. M. Schwerd was able
to take exact measurements of the visible spectrum with
the aid of such a diffraction grating, and show that red
light has a longer wavelength than blue light, and that
yellow and blue light lie in the middle of the spectrum.
http://colorsystem.com/projekte/engl/16haye.htm
1835 - Schwerd developed a "wave" theory of the diffraction grating.
http://www.thespectroscopynet.com/Educational/Masson.htm
“Die Beugungserscheinungen aus den Fundamentalgesetzen der Undulationstheorie”
http://www.worldcatlibraries.org/wcpa/ow/3e723a9c5ac2a2b2.html
Friedrich Magnus Schwerd
1792 - 1871
http://193.174.156.247/FMSG/wir_ueber_uns/wer_war_Schwerd.php
18
SOLO
H.A. Rowland at the John Hopkins University greatly improved diffraction gratings,
introducing curved grating.
Diffraction - History 1882
http://thespectroscopynet.com/educational/Kirchhoff.htm
American physicist who invented the concave diffraction
grating, which replaced prisms and plane gratings in many
applications, and revolutionized spectrum analysis—the
resolution of a beam of light into components that differ in
wavelength.
http://www.britannica.com/eb/article-9064251/Henry-Augustus-Rowland
Henry Augustus Rowland
1848 - 1901
http://chem.ch.huji.ac.il/~eugeniik/history/rowland.html
Rowland gratings
Rowland invented the ruling machine that can engrave as many
as 20,000 lines to inch for diffraction gratings
19
SOLO Optics History
Debye-Sears Effect
1932 Nobel Prize in
Chemistry 1936
Peter Josephus Wilhelmus
Debye
1884 – 1966
Diffraction of light by ultrasonic waves.
Francis Weston Sears
1898 - 1975
P. Debye and F. W. Sears, ``On the Scattering of Light by
Supersonic Waves'', Proc. Natl. Acad. Sci. U.S.A. 18, 409
(1932).
Acousto-optic effect, also known in the scientific literature as acousto-
optic interaction or diffraction of light by acoustic waves, was first
predicted by Brillouin in 1921 and experimentally revealed by Lucas,
Biquard and Debye, Sears in 1932.
The basis of the acousto-optic interaction is a more general effect of
photoelasticity consisting in the change of the medium permittivity
under the action of a mechanical strain a. Phenomenologically, this
effect is described as variations of the optical indicatrix coefficients
caused by the strain
http://www.mt-berlin.com/frames_ao/descriptions/ao_effect.htm
20
DiffractionSOLO
Augustin Jean
Fresnel
1788-1827
In 1818 Fresnel, by using Huygens’ concept of secondary wavelets
and Young’s explanation of interface, developed the diffraction
theory of scalar waves.
P
0P
Q 1x
0x
1y
0y
η
ξ
Fr

Sr

ρ
 r

O
'θ
θ
Screen
Image
plane
Source
plane
0O
1O
Sn1
Σ
Σ - Screen Aperture
Sn1 - normal to Screen
F
rPP

=0
SrQP

=0
rQP

=
From a source P0 at a distance from a aperture a spherical wavelet
propagates toward the aperture: ( ) ( )Srktj
S
source
Q e
r
A
tU −
= '
' ω
According to Huygens Principle second wavelets will start at the aperture and will add
at the image point P.
( ) ( ) ( )( )
( ) ( )( )
∫∫ Σ
++−
Σ
+−−
== dre
rr
A
Kdre
r
U
KtU rrktj
S
sourcerkttjQ
P
S 2/2/'
',', πωπω
θθθθ
where: ( )',θθK obliquity or inclination factor ( ) ( )SSS nrnr 11cos&11cos' 11
⋅=⋅= −−
θθ
( )
( )


===
===
0',0
max0',0
πθθ
θθ
K
K Obliquity factor and π/2 phase were introduced by Fresnel to explain
experiences results.
Fresnel Diffraction Formula
Fresnel took in consideration the phase of each wavelet to obtain:
Fresnel – Huygens’ Diffraction Theory
Table of Content
Fresnel –Kirchoff
Diffraction Formula
21
SOLO
Fresnel-Kirchhoff Diffraction Theory
In 1882 Gustav Kirchhoff, using mathematical foundation,
succeeded to show that the amplitude and phases ascribed to the
wavelets by Fresnel, by enhancing the Huyghen’s Principle, were a
consequence of the wave nature of light.
HBED

µε == &
For an Homogeneous, Linear and Isotropic Medium where
are constant scalars, we have
µε,
t
E
t
D
H
t
t
H
t
B
E
ED
HB
∂
∂
=
∂
∂
=×∇
∂
∂
∂
∂
−=
∂
∂
−=×∇×∇
=
=






εµ
µ
ε
µ
Since we have also
tt ∂
∂
×∇=∇×
∂
∂
t
D
H
∂
∂
=×∇


t
B
E
∂
∂
−=×∇


For Source less
Medium
( )
( ) ( )


















=⋅∇=
∇−⋅∇∇=×∇×∇
=
∂
∂
+×∇×∇
0&
0
2
2
2
DED
EEE
t
E
E




ε
µε
02
2
2
=
∂
∂
−∇
t
E
E


µε
Maxwell Equations are ( ) eJ
t
D
HA



+
∂
∂
=×∇
mBGM ρ=⋅∇

)(
( ) mJ
t
B
EF



−
∂
∂
−=×∇
( ) eDGE ρ=⋅∇

James C. Maxwell
(1831-1879)
Gustav Robert Kirchhoff
1824-1887
Diffraction
22
DiffractionSOLO
Fresnel-Kirchhoff Diffraction Theory
0
1
2
2
2
2
=





∂
∂
−∇ U
tv
Scalar Differential Wave Equation
For a monochromatic wave of frequency f ( ω = 2πf ) a solution is:
( ) ( ) ( )[ ] ( ) ( )[ ] ( ){ }tjPjPUPtPUtPU ωφφω expexpRecos, −=+=
Define the phasor ( ) ( ) ( )[ ]PjPUPU φ−= exp
U
v
U
tv 2
2
2
2
2
1 ω
−=
∂
∂
λ
π
π
ω 2
2 ===
v
f
v
k
( ) 022
=+∇ UkPhasor Scalar Differential Wave Equation
This is the Scalar Helmholtz Differential Equation
Hermann von Helmholtz
1821-1894
Boundary Conditions for the Helmholtz Differential Equation:
• Dirichlet (U given on the boundary)
• Neumann (dU/dn given on the boundary)
Johann Peter Gustav
Lejeune Dirichlet
1805-1859
Franz Neumann
1798-1895
εµ
1
0
11 2
2
2
2
2
2
2
2
2
==





∂
∂
−∇=
∂
∂
−∇ vE
tvt
E
v
E



Vector Differential Wave Equation
23
To find the solution of the Scalar Helmholtz Differential Equation we need to use the
following:
• Scalar Green’s Identity
( ) ( )∫∫
→
⋅∇−∇=∇−∇
SV
dSGUUGdVGUUG 22
• Green’s Function
( )
( )
SF
SF
FS
rr
rrkj
rrG 


−
−
=
exp
;
This Green’s Function is a particular solution of the following Helmholtz
Non-homogeneous Differential Equation:
( ) ( ) ( )SFFSFSS rrrrGkrrG

−=+∇ πδ4;; 22
SOLO
Fresnel-Kirchhoff Diffraction Theory
Diffraction
provided that and are
continuous in volume V
UUU 2
,, ∇∇ GGG 2
,, ∇∇
Free-Space Green’s Function

n
i
iSS
1=
=
iS
nS
dV
dSnS
→
1
V
Fr

Sr

F
0r SF rrr

−=
PositionSourcerS

PositionFieldrF

( ) 022
=+∇ Uk Scalar Helmholtz Differential Equation
24
SOLO
• Scalar Green’s Identities
( ) ( )∫∫
→
⋅∇−∇=∇−∇
SV
dSGUUGdVGUUG 22
Let start from the Gauss’ Divergence
Theorem
∫∫
→
⋅=⋅∇
SV
dSAdVA

Karl Friederich Gauss
1777-1855
where is any vector field (function of position and time)
continuous and differentiable in the volume V bounded by the
enclosed surface S. Let define .
A

UGA ∇=

( ) UGUGUGA 2
∇+∇⋅∇=∇⋅∇=⋅∇

Then
( ) ( ) ∫∫∫
→
⋅∇=∇+∇⋅∇=∇⋅∇
S
Gauss
VV
dSUGdVUGUGdVUG 2
( ) ( ) ∫∫∫
→
⋅∇=∇+∇⋅∇=∇⋅∇
S
Gauss
VV
dSGUdVGUUGdVGU 2
Subtracting the second equation from the first we obtain
First Green’s Identity
Second Green’s Identity
We have
GEORGE GREEN
1793-1841
Fresnel-Kirchhoff Diffraction Theory
Diffraction
To find a general solution of the Scalar Helmoltz Differential
Equation we need to use the
If we interchange with we obtainG U
25
Integral Theorem of Helmholtz and Kirchhoff
( ) ( )( ) ( )F
V
sF
V
SS rUdVUrrUGkUGkdVGUUG

πδπ 442222
−=−−+−=∇−∇ ∫∫
Using:
( ) ( ) ( )SFFSFSS rrrrGkrrG

−=+∇ πδ4;; 22

n
i
iSS
1=
=
iS
nS
dV
dSnS
→
1
V
Fr

Sr

F
0r SF rrr

−=
PositionSourcerS

PositionFieldrF

SOLO
Fresnel-Kirchhoff Diffraction Theory
Diffraction
( ) ( ) 0,22
=+∇ SFS rrUk

From the left side of the Second Scalar Green’s Identity we have:
( ) ∫∫ 





∂
∂
−
∂
∂
=⋅∇−∇
→
SS
SS dS
n
G
U
n
U
GdSGUUG
( )
( )
SF
SF
FS
rr
rrkj
rrG 


−
−
=
exp
;Using:
we obtain: ( )
( ) ( )
∫ 















−
−
∂
∂
−
∂
∂
−
−
−=
S SF
SF
SF
SF
F dS
rr
rrkj
n
U
n
U
rr
rrkj
rU 



 expexp
4
1
π
This is the Integral Theorem of Helmholtz and Kirchhoff that enables to calculate
as function of the values of and on the enclosed surface S.nU ∂∂ /UU
Note: This Theorem was developed first by H. von Helmholtz in acoustics.
Hermann von Helmholtz
1821-1894
Gustav Robert Kirchhoff
1824-1887
From the right side of the Second Scalar Green’s
Identity, using we have:dS
n
U
dSnUdSU SSS
∂
∂
=⋅∇=⋅∇
→→
1
Scalar Helmholtz Differential
Equation
26
Sommerfeld Radiation Conditions
SOLO
Fresnel-Kirchhoff Diffraction Theory
Diffraction
( )
∫∫
∫
∞+Σ+






∂
∂
−
∂
∂
−=






∂
∂
−
∂
∂
−=
SS
S
F
dS
n
G
U
n
U
G
dS
n
G
U
n
U
GrU
1
4
1
4
1
π
π

P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
ωd
→
Sn1
→
Sn1
since the condition that the previous integral be finite is:
( ) ( )
R
Rkj
rrG
SFS
exp
; →
∞

Consider the surface of integration ∞+Σ+= SSS 1
1S - on the screen
∞S - hemisphere with radius ∞→R
( ) Gkj
R
Rkj
R
kj
n
G
≅





−=
∂
∂ exp1
∫∫∫ Ω






−
∂
∂
=





∂
∂
−
∂
∂
∞
ωdRUkj
n
U
GdS
n
G
U
n
U
G
S
2
( ) 1
exp
limlim ==
∞→∞→ R
Rkj
RGR
RR
0lim =





−
∂
∂
∞→
Ukj
n
U
R
R
This is Sommerfeld Radiation Conditions
Σ - on the aperture
27
is known as optical disturbance. Being a scalar quantity, it cannot accurately
represent an electromagnetic field. However, the square of this scalar quantity can
be regarded as a measure of the irradiance at a given point.
U
Sommerfeld Radiation Conditions (continue)
SOLO
Fresnel-Kirchhoff Diffraction Theory
Diffraction
( )
∫∫
∫
∞+Σ+






∂
∂
−
∂
∂
−=






∂
∂
−
∂
∂
−=
SS
S
F
dS
n
G
U
n
U
G
dS
n
G
U
n
U
GrU
1
4
1
4
1
π
π

0lim =





−
∂
∂
∞→
Ukj
n
U
R
R
This is Sommerfeld Radiation Conditions
This implies that: 0
4
1
=





∂
∂
−
∂
∂
∫∫
∞S
dS
n
G
U
n
U
G
π
and the Integral of Helmholtz and Kirchhoff becomes:
( ) ∫∫Σ+






∂
∂
−
∂
∂
−=
1
4
1
S
F dS
n
G
U
n
U
GrU
π

P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
ωd→
Sn1
→
Sn1
0P
Q
Arnold Johannes
Wilhelm
Sommerfeld
1868 - 1951
28
The Kirchhoff Boundary Conditions
SOLO
Fresnel-Kirchhoff Diffraction Theory
Diffraction
Kirchhoff assumed the following boundary conditions:
( ) ∫∫Σ






∂
∂
−
∂
∂
−= dS
n
G
U
n
U
GrU F
π4
1
1. The field distribution and its derivative ,
across the aperture , are the same as in the
absence of the screen.
U nU ∂∂ /
Σ
2. On the shadowed part of the screen and0
1
=S
U
0/
1
=∂∂ S
nU
The Integral of Helmholtz and Kirchhoff becomes:
The field at point P is the superposition of the aperture values 0=Σ
U 0/ =∂∂ Σ
nU
Note:
Moreover, mathematically the condition implies0/&0
11
=∂∂= SS
nUU 0/&0 =∂∂= ΣΣ
nUU
However, if the dimensions of the aperture are large relative to the
wavelength λ, the integral agrees well with the experiment.
P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
0P 0,0
1
1
=
∂
∂
=
S
S n
U
U
Σ
Σ ∂
∂
n
U
U ,
Q
→
Sn1
→
Sn1
Sθ
θ
Kirchhoff boundary conditions are not physical since the presence of the screen
changes field values on the aperture and on the screen.
29
Fresnel-Kirchhoff Diffraction Formula
SOLO
Fresnel-Kirchhoff Diffraction Theory
Diffraction
( ) ∫∫Σ






∂
∂
−
∂
∂
−= dS
n
G
U
n
U
GrU F
π4
1
The Integral of Helmholtz and Kirchhoff:
ΣAssume that the aperture is illuminated by a single
spherical wave:
( ) ( )
S
Ssource
S
r
rkjA
rU
exp
=

( ) ( ) ( )
( )






⋅





−=
⋅





∇=⋅∇=
∂
∂
→→
→→
SS
S
Ssource
S
S
S
Ssource
SSSS
S
nr
r
rkjA
r
kj
n
r
rkjA
nrU
n
rU
11
exp1
1
exp
1


( )
( )
SF
SF
FS
rr
rrkj
rrG 


−
−
=
exp
;
( ) ( )
( )
( )






⋅





−−=
⋅








−
−
∇=⋅∇=
∂
∂
→→
→=−→
S
S
SF
SF
S
rrr
SFSS
FS
nr
r
rkj
r
kj
n
rr
rrkj
nrrG
n
rrG SF
11
exp1
1
exp
1,
,



 
P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
0P 0,0
1
1
=
∂
∂
=
S
S
n
U
U
Σ
Σ ∂
∂
n
U
U ,
Q
→
Sn1
→
Sn1
Sθ
θ
30
Fresnel-Kirchhoff Diffraction Formula
SOLO
Fresnel-Kirchhoff Diffraction Theory
Diffraction
( ) ∫∫Σ






∂
∂
−
∂
∂
−= dS
n
G
U
n
U
GrU F
π4
1
The Integral of Helmholtz and Kirchhoff:
ΣAssume that the aperture is illuminated by a single
spherical wave, and:
Srr,<<λ
( ) ( )






⋅≅
∂
∂ →→
SS
S
SsourceS
nr
r
rkjA
j
n
rU
11
exp2
λ
π

( ) ( )
r
rkj
rrG FS
exp
; =

( ) ( )






⋅−≅
∂
∂ →→
S
FS
nr
r
rkj
j
n
rrG
11
exp2,
λ
π

Srr
k
1
,
12
>>=
λ
π
( ) ( )( )
∫∫Σ
→→→→


















⋅−





⋅−





 +
= dS
nrnr
rr
rrkjA
jrU
SSS
s
ssource
F
2
1111
exp
λ

( ) ( )
S
Ssource
S
r
rkjA
rU
exp
=

P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
0P 0,0
1
1
=
∂
∂
=
S
S
n
U
U
Σ
Σ ∂
∂
n
U
U ,
Q
→
Sn1
→
Sn1
Sθ
θ
31
Fresnel-Kirchhoff Diffraction Formula
SOLO
Fresnel-Kirchhoff Diffraction Theory
Diffraction
( ) ( )( )
( )
( )∫∫
∫∫
Σ
Σ
→→→→


















++
=


















⋅−





⋅−





 +
=
dSK
rr
rrkj
A
dS
nrnr
rr
rrkjA
jrU
S
s
s
source
SSS
s
ssource
F
θθ
π
λ
λ
,
2
exp
2
1111
exp
( ) 





⋅−=





⋅−=
+
=






⋅−





⋅−
=
→→→→
→→→→
SSSS
S
SSS
S nrnr
nrnr
K 11cos&11cos
2
coscos
2
1111
, θθ
θθ
θθ
1. Obliquity or Inclination Factor:
( ) ( ) 0,0&10,0 ====== πθθθθ SS KK
2. Additional phase π/2
3. The amplitude is scaled by the factor 1/λ (not found in Fresnel derivation)
P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
0P 0,0
1
1
=
∂
∂
=
S
S
n
U
U
Σ
Σ ∂
∂
n
U
U ,
Q
→
Sn1
→
Sn1
Sθ
θ
We recovered Fresnel Diffraction Formula with:
32
Reciprocity Theorem of Helmholtz
SOLO
Fresnel-Kirchhoff Diffraction Theory
Diffraction
( ) ( )( )
( )
( )∫∫
∫∫
Σ
Σ
→→→→


















++
=


















⋅−





⋅−





 +
=
dSK
rr
rrkj
A
dS
nrnr
rr
rrkjA
jrU
S
s
s
source
SSS
s
ssource
F
θθ
π
λ
λ
,
2
exp
2
1111
exp
We can see that the Fresnel-Kirchhoff Diffraction Formula is symmetrical with respect
to r and rS, i.e. point source and observation point. Therefore we can interchange them
and obtain the same relation. This result is called Reciprocity Theorem of Helmholtz.
P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
0P 0,0
1
1
=
∂
∂
=
S
S
n
U
U
Σ
Σ ∂
∂
n
U
U ,
Q
→
Sn1
→
Sn1
Sθ
θ
Hermann von Helmholtz
1821-1894
Note:
This is similar to Lorentz’s Reciprocity Theorem in Electromagnetism.
33
Huygens-Fresnel Principle
SOLO
Fresnel-Kirchhoff Diffraction Theory
Diffraction
( )
( )
( )∫∫Σ


















++
= dSK
rr
rrkj
A
rU S
s
s
source
F θθ
π
λ
,
2
exp

The Fresnel Diffraction Formula can be rewritten as:
( ) ( ) ( )
∫∫Σ
= dS
r
rkj
QVrU F
exp
where:
( ) ( )
s
s
S
source
r
rkj
K
A
QV






+
=
2
exp
,
π
θθ
λ
The interpretation of this formula is that each point
of a wavefront can be considered as the center of a
secondary spherical wave, and those secondary spherical
waves interfere to result in the total field, is known as the
Huygens-Fresnel Principle.
P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
0P 0,0
1
1
=
∂
∂
=
S
S
n
U
U
Σ
Σ ∂
∂
n
U
U ,
Q
→
Sn1
→
Sn1
Sθ
θ
Table of Content
34
SOLO Diffraction
Consider a diffracting aperture Σ. Suppose that the aperture
is divided into two portions Σ 1 and Σ 2 such that Σ = Σ1 + Σ2.
The two aperture Σ1 and Σ2 are said to be complementary.
Complementary Apertures. Babinet Principle
From the Fresnel Diffraction Formula:
( ) ( ) ( )
( ) ( ) ( ) ( )
∫∫∫∫
∫∫
ΣΣ
Σ
+=
=
21
dS
r
rkj
QVdS
r
rkj
QV
dS
r
rkj
QVrU F
expexp
exp
P
Fr

1S
r

1r

2
Σ
1S
Screen
Apertures
0P
1
Q→
Sn1
2S
r

2
r
1
Σ
2
Q
We can see that the result is the added effect of all complimentary
apertures. This is known as Babinet Principle.
Table of Content
The result can be very helpful when Σ is a very complicated
aperture, that can be decomposed in a few simple apertures.
35
SOLO Diffraction
The Kirchhoff Diffraction Formula is an approximation since for zero field and
normal derivative on any finite surface the field is zero everywhere. This was pointed
out by Poincare in 1892 and by Sommerfeld in 1894.
The first rigorous solution of a diffraction problem was given by Sommerfeld in
1896 for a two-dimensional case of a planar wave incident on an infinitesimally thin,
perfectly conducting half plane. This solution is not given here.
Arnold Johannes
Wilhelm
Sommerfeld
1868 - 1951
Jules Henri Poincaré
1854-1912
Sommerfeld, A. : “Mathematische Theorie der Diffraction”,
Math. Ann., 47:317, 1896 translated in english as
“Optics, Lectures on Theoretical Physics”, vol. IV,
Academic Press Inc., New York, 1954
Rayleigh-Sommerfeld Diffraction Formula
36
SOLO
Rayleigh-Sommerfeld Diffraction Formula
Diffraction
Let start from the Helmholtz and Kirchhoff Integral:
P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
0P
0,0
1
1
=
∂
∂
=
S
S n
U
U
Σ
Σ
∂
∂
n
U
U ,
Q
→
Sn1
→
Sn1
Sθ
θ
0'PFr'

→→






⋅−= SSSSS nnrrr 112'

( ) ∫∫+Σ






∂
∂
−
∂
∂
−=
1
4
1
S
F dS
n
G
U
n
U
GrU
π

Suppose that the Scalar Green Function is generated not only by P0 located at ,
but also by a point P’0 located symmetric relative to the screen at
→→






⋅−= SSSSS nnrrr 112'

Sr

G
( )
( ) ( )
SF
SF
SF
SF
SF
rr
rrkj
rr
rrkj
rrG
'
'expexp
,_ 




−
−
−
−
−
=
( )
( ) ( )
SF
SF
SF
SF
SF
rr
rrkj
rr
rrkj
rrG
'
'expexp
, 




−
−
+
−
−
=+
or:
We have 11 ,,
' SSFSSF rrrr ΣΣ
−=−

( ) ( )
→
Σ
→
Σ
⋅−−=⋅− SSSFSSSF nrrnrr 1'1 11 ,,

0
1,
=
Σ− S
G ( ) 011
exp1
2
11
,,
_
≠











⋅





−−=
∂
∂
Σ
→→
Σ S
S
S
nr
r
rkj
r
kj
n
G
0
1,
=
∂
∂
Σ
+
S
n
G( ) 0
exp
2
1
1
,
,
≠



=
Σ
Σ+
S
S r
rkj
G
37
SOLO
Rayleigh-Sommerfeld Diffraction Formula
Diffraction
1. Start from the Helmholtz and Kirchhoff Integral:
P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
0P
0,0
1
1
=
∂
∂
=
S
S n
U
U
Σ
Σ ∂
∂
n
U
U ,
Q
→
Sn1
→
Sn1
Sθ
θ
0'PFr'

→→






⋅−= SSSSS nnrrr 112'

( ) ∫∫+Σ






∂
∂
−
∂
∂
−=
1
4
1
S
F dS
n
G
U
n
U
GrU
π

( )
( ) ( )
SF
SF
SF
SF
SF
rr
rrkj
rr
rrkj
rrG
'
'expexp
,_ 




−
−
−
−
−
=Choose
0
1,
=
Σ− S
G ( ) 011
exp1
2
11
,,
_
≠











⋅





−−=
∂
∂
Σ
→→
Σ S
S
S
nr
r
rkj
r
kj
n
G
On the shadowed part of the screen and0
1
=S
U 0/
1
≠∂∂ S
nU
( ) ( ) ( )
∫∫∫∫
Σ
→→=
>>Σ





 ⋅−≅








∂
∂
= dSnr
r
rkj
rU
j
dS
n
G
UrU SS
k
r
kj
F 11
exp
4
1 /2
1
_ 
λπ
λπ
This is Rayleigh-Sommerfeld Diffraction Formula of the first kind
SF rrr

−=
Arnold Johannes
Wilhelm
Sommerfeld
1868 - 1951
( ) ( )
S
Ssource
S
r
rkjA
UrU
exp
== Σ

John William
Strutt
Lord Rayleigh
(1842-1919)
( ) ( ) ( )
∫∫Σ
→→






⋅−= dSnr
r
rkj
r
rkjAj
rU S
S
Ssource
F 11
expexp
λ

we obtain:
38
SOLO
Rayleigh-Sommerfeld Diffraction Formula
Diffraction
2. Start from the Helmholtz and Kirchhoff Integral:
P
Fr

Sr

r

Σ
1S
∞S
R
Screen
Aperture
0P
0,0
1
1
=
∂
∂
=
S
S n
U
U
Σ
Σ ∂
∂
n
U
U ,
Q
→
Sn1
→
Sn1
Sθ
θ
0'PFr'

→→






⋅−= SSSSS nnrrr 112'

( ) ∫∫+Σ






∂
∂
−
∂
∂
−=
1
4
1
S
F dS
n
G
U
n
U
GrU
π

( )
( ) ( )
SF
SF
SF
SF
SF
rr
rrkj
rr
rrkj
rrG
'
'expexp
, 




−
−
+
−
−
=+
Choose
On the shadowed part of the screen and0
1
≠S
U 0/
1
=∂∂ S
nU
SF rrr

−=0
1,
=
∂
∂
Σ
+
S
n
G( ) 0
exp
2
1
1
,
,
≠





=
Σ
Σ+
S
S r
rkj
G
( ) ( )
∫∫∫∫ ΣΣ
+
∂
∂
−=





∂
∂
−= dS
n
U
r
rkj
dS
n
U
GrU F
exp
2
1
4
1
ππ

( ) ( )
S
Ssource
S
r
rkjA
UrU
exp
== Σ
 ( ) ( )






⋅≅
∂
∂ →→
SS
S
SsourceS
nr
r
rkjA
j
n
rU
11
exp2
λ
π

( ) ( ) ( )
∫∫Σ
→→






⋅−= dSnr
r
rkj
r
rkjAj
rU SS
S
Ssource
F 11
expexp
λ

For
we obtain:
Table of Content
This is Rayleigh-Sommerfeld Diffraction Formula of the second kind
39
P
0P
Q 1x
0x
1y
0y
η
ξ
Sr'

Sr

ρ
 r

O
Sθ θ
Screen
Image
plane
Source
plane
0O
1O
Sn1
Σ
Σ - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn θcos11 =⋅
θcos11 =⋅ rnS
z
Sn1
'r
 Fr

F
rPP

=0
S
rQP

=0
rQP

=
SrOP '0

=
'1 rOO

=
SOLO Diffraction
( ) ( ) ( )
∫∫Σ
+
= dS
r
rkj
r
rkjAj
rU S
S
Ssource
F
2
coscosexpexp θθ
λ

Start with Fresnel-Kirchhoff (or Rayleigh-Sommerfeld) Diffraction Formula
1. If the inclination factor is nearly constant over the aperture ( ) constKK S ==θθ ,
Extensions of Fresnel-Kirchhoff Diffraction Theory
( ) ( ) ( )
∫∫Σ
≈ dS
r
rkj
r
rkjAKj
rU
S
Ssource
F
expexp
λ

( ) ( ) ( )
∫∫Σ
= dS
r
rkj
rU
Kj
rU SF
exp
λ
2. Replace the incident point source wavefront
with a general waveform
( )
S
S
r
rkjexp
( )Sinc rU

3. Characterize the aperture by a
transfer function τ to model amplitude
or phase changes due to optic system
( ) ( ) ( ) ( )
∫∫Σ
= dS
r
rkj
rrU
j
rU SSF
exp
τ
λ Table of Content
40
SOLO Diffraction
Phase Approximations – Fresnel (Near-Field) Approximation
Fresnel Approximation or Near Field Approximation
can be used when aperture dimensions are
comparable to distance to source rS or image r.
( ) ( ) ( )
∫∫Σ
+
= dS
r
rkj
r
rkjAj
rU S
S
Ssource
F
2
coscosexpexp θθ
λ

Start with Fresnel-Kirchhoff Diffraction Formula
If the inclination factor is nearly constant over the aperture
( ) constKK S ==θθ ,
( ) ( ) ( ) ( ) ( )
∫∫∫∫ ΣΣ
== dS
r
rkj
rU
Kj
dS
r
rkj
r
rkjAKj
rU S
S
Ssource
F
expexpexp 
λλ
P
Q 1x
1y
η
ξ
ρ
 r

O
θ
Screen
Image
plane
1O
Sn1
Σ
1r

z
Sn1
'r

rQP

=
'1 rOO

=
P
0P
Q 1x
0x
1y
0y
η
ξ
Sr'

Sr

ρ
 r

O
Sθ θ
Screen
Image
plane
Source
plane
0O
1O
Sn1
Σ
Σ - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn θcos11 =⋅
θcos11 =⋅ rnS
z
Sn1
'r
 Fr

( ) ( ) ( )
1
''2
'
'
1''2'
'
2
2
1
2
1
2
11
2/1
2
2
1
2/1
11
0
1
2
1
<<
−
+
−
+≈







 −
+=








−⋅−+−⋅+=
−+=
++=+
r
r
k
r
r
r
r
r
rrrrrrr
rrr
x
x
ρρ
ρ
ρρρ
ρ









( ) ( )















 −
≈
'2
exp
'
'expexp
2
1
r
r
kj
r
rkj
r
rkj ρ
 ( ) ( ) ( )
2
max
2
1
2
1
'
'2
exp
'
'exp
rrk
dS
r
r
kjrU
r
rkjKj
rU SF
<<−







 −
≈ ∫∫Σ
ρ
ρ
λ



Augustin Jean Fresnel
1788-1827
41
SOLO Diffraction
Phase Approximations – Fraunhofer (Near-Field) Approximation
Fraunhofer Approximation or Far Field Approximation
can be used when aperture dimensions are very small
comparable to distance to source rS or image r.
( ) ( ) ( )
∫∫Σ
+
= dS
r
rkj
r
rkjAj
rU S
S
Ssource
F
2
coscosexpexp θθ
λ

Start with Fresnel-Kirchhoff Diffraction Formula
If the inclination factor is nearly constant over the aperture
( ) constKK S ==θθ ,
( ) ( ) ( ) ( ) ( )
∫∫∫∫ ΣΣ
=≈ dS
r
rkj
rU
Kj
dS
r
rkj
r
rkjAKj
rU S
S
Ssource
F
expexpexp 
λλ
P
Q 1x
1y
η
ξ
ρ
 r

O
θ
Screen
Image
plane
1O
Sn1
Σ
1r

z
Sn1
'r

rQP

=
'1 rOO

=
P
0P
Q 1x
0x
1y
0y
η
ξ
Sr'

Sr

ρ
 r

O
Sθ θ
Screen
Image
plane
Source
plane
0O
1O
Sn1
Σ
Σ - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn θcos11 =⋅
θcos11 =⋅ rnS
z
Sn1
'r
 Fr

( ) ( )





 ⋅
−≈
'
exp
'
'expexp 1
r
r
kj
r
rkj
r
rkj ρ
 ( ) ( ) ( )
( ) 2
max
22
1
1
'
2
'
exp
'
'exp
rr
k
dS
r
r
kjrU
r
rkjKj
rU SF
<<+





 ⋅
−≈ ∫∫Σ
ρ
ρ
λ


( ) ( ) ( )
1
'2'
'
'2'
'
'
2
1''2'
'
2
22
11
2
22
11
2
11
2/1
2
2
1
2
1
2/1
11
0
1
2
1
<<
+⋅
−≈+
+
+
⋅
−≈





 +⋅−
+=








−⋅−+−⋅+=
−+=
++=+
r
rk
r
r
r
r
r
r
r
r
r
rr
rrrrrrr
rrr
x
x
ρρρρ
ρρ
ρρρ
ρ









Table of Content
42
0P
Q
0x
0y
η
Sr'

Sr

ρ

O
Sθ
ScreenSource
plane
0O
Σ
Sn10r

S
rQP

=0
SrOP '0

=
SOLO Diffraction
Fresnel and Fraunhofer Diffraction Approximations
Fresnel Approximations at the Source
[ ]
( ) 








+
⋅
−+⋅+≈














+⋅+=
+⋅+=
+=
+−+=+
S
S
SS
S
S
xx
x
SS
S
S
SSS
SS
r
r
rr
r
r
rr
r
r
rrr
rr
'2
'1
'2'
'
'
''
'
21'
'2'
'
2
282
11
2/12
2
2/122
2
ρρ
ρ
ρ
ρ
ρρ
ρ
( ) ( ) ( ) ( )







 ⋅−
⋅=
S
S
S
S
S
S
S
r
r
kjrkj
r
rkj
r
rkj
'2
'1
exp'1exp
'
'expexp
2
2
ρρ
ρ


( )
S
S
r
rkj
'
'exp
( )ρ

⋅Srkj '1exp
( )







 ⋅−
S
S
r
r
kj
'2
'1
exp
2
2
ρρ

Spherical wave centered at P0.
Lowest order approximation to the phase of
a spherical wavefront
Planar wave propagating in directionSr'1
P
0P
Q 1x
0x
1y
0y
η
ξ
Sr'

Sr

ρ
 r

O
Sθ θ
Screen
Image
plane
Source
plane
0O
1O
Sn1
Σ
Σ - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn θcos11 =⋅
θcos11 =⋅ rnS
z
Sn1
'r
 Fr

43
SOLO Diffraction
Fresnel and Fraunhofer Diffraction Approximations
P
Q 1x
1y
η
ξ
ρ
 r

O
θ
Screen
Image
plane
1O
Sn1
Σ
1r

z
Sn1
'r

rQP

=
'1 rOO

=
( ) ( ) ( )








+
⋅
−
+
+≈





 +⋅−
+=








−⋅−+−⋅+=
−+=
++=+
''2
'
'
2
1'
'2'
'
1
22
1
2
11
2/1
2
2
1
2
1
2/1
11
0
1
2
1
r
r
r
r
r
r
rr
r
rrrrrr
rrr
x
x
ρρ
ρρ
ρρρ
ρ
( ) ( )













 ⋅
−






























≈
'
exp
'2
exp
'2
exp
'
'expexp 1
22
1
r
r
kj
r
kj
r
r
kj
r
rkj
r
rkj ρρ

Fresnel Approximations at the Image plane
P
0P
Q 1x
0x
1y
0y
η
ξ
Sr'

Sr

ρ
 r

O
Sθ θ
Screen
Image
plane
Source
plane
0O
1O
Sn1
Σ
Σ - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn θcos11 =⋅
θcos11 =⋅ rnS
z
Sn1
'r
 Fr

( )
'
'exp
r
rkj
( )ρ

⋅− '1exp rkj
( )







 ⋅−
'2
'1
exp
2
2
r
r
kj
ρρ

Spherical wave centered at O.
Lowest order approximation to the phase of
a spherical wavefront
Planar wave propagating in direction'1r
44
SOLO Diffraction
Fresnel and Fraunhofer Diffraction Approximations (1st
way)
( ) ( ) ( )
( )
∫∫Σ
+
= dS
r
rkj
r
rkjAj
rU
SK
S
S
Ssource
F
  

θθ
θθ
λ
,
2
coscosexpexp
Fresnel Approximation
( ) ( )[ ] [ ] ( )[ ] ( ) ( )
∫∫Σ






















−⋅−−
+
⋅−
⋅−⋅
+
≈ dS
r
rrr
r
r
kjrrkjrrkj
rr
rrkjKAj
rU
S
S
S
S
Ssource
F
'2
'1
'2
'1
exp'1'1exp'1exp
''
''exp
2
1
2
1
2
2
1
ρρρρ
ρ
λ


Fraunhofer Approximation

( ) ( )
1
'2
'1
'2
'12
2
1
2
1
2
2
<<
−⋅−−
+
⋅−
S
S
k
r
rrr
r
r ρρρρ
λ
π

or S
MAX
rr ','
2
<<
λ
ρ
( ) ( )[ ] [ ] ( )[ ]∫∫Σ
⋅−⋅
+
≈ dSrrkjrrkj
rr
rrkjKAj
rU S
S
Ssource
F ρ
λ

'1'1exp'1exp
''
''exp
1
If
( ) ( )
1
'2
'1
'2
'1
exp
2
1
2
1
2
2
≈



















 −⋅−−
+
⋅−
S
S
r
rrr
r
r
kj
ρρρρ

we obtain
Augustin Jean Fresnel
1788-1827
( ) constKK S =≈θθ ,
Start with
'1'1 rrq S
−=

P
0P
Q 1x
0x
1y
0y
η
ξ
Sr'

Sr

ρ
 r

O
Sθ θ
Screen
Image
plane
Source
plane
0O
1O
Sn1
Σ
Σ - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn θcos11 =⋅
θcos11 =⋅ rnS
z
Sn1
'r
 Fr

F
rPP

=0
SrQP

=0
rQP

=
S
rOP '0

=
'1
rOO

=
45
SOLO Diffraction
Fresnel and Fraunhofer Diffraction Approximations (2nd
way)
Fresnel Approximation
( ) ( ) ( ) ( ) ( ) ( )
∫∫Σ





 −⋅−
= dS
r
rr
kjrrU
r
rkjj
rU SSF
'2
exp
'
'exp 11
ρρ
τ
λ


Fraunhofer Approximation

( ) '1
'2
2 max
2
1
22
1
2
r
r
r
r
k
<<
+
⇒<<
+
λ
ρρ
λ
πIf
we obtain
Augustin Jean Fresnel
1788-1827
Start with ( ) ( ) ( ) ( )
∫∫Σ
= dS
r
rkj
rrU
j
rU SSF
exp
τ
λ
- aperture optical transfer function( )Sr

τ
- disturbance at the aperture( )SrU

( ) ( ) ( ) ( )∫∫Σ











 ⋅
−= dS
r
r
kjrrU
r
rkjj
rU SSF
'
exp
'
'exp 1 ρ
τ
λ


( ) ( )











 ⋅
−















 +
≈
'
exp
'2
exp
'
'expexp 1
2
1
2
r
r
kj
r
r
kj
r
rkj
r
rkj ρρ

P
Q 1x
1y
η
ξ
ρ
 r

O
θ
Screen
Image
plane
1O
Sn1
Σ
1r

z
Sn1
'r

rQP

=
'1
rOO

=
ρ

−+= 1
' rrr ( ) ( ) ( ) ( ) ( ) ( ) ( )





 −⋅−
+≅




 −⋅−
+=








−⋅−+−⋅+= 2
11
2/1
2
11
2/1
11
0
1
2
'2
1'
'
1''2'
r
rr
r
r
rr
rrrrrrr
ρρρρ
ρρρ




( ) ( ) ( ) ( )∫∫Σ











 ⋅
−




 +
= dS
r
r
kj
r
r
kjrrU
r
rkjj
rU SSF
'
exp
'2
exp
'
'exp 1
2
1
2
ρρ
τ
λ


( ) ( ) ( ) 





+
+
+
⋅
−≈




 +⋅−
+=








−⋅−+−⋅+=
++=+
'2'
'
'
2
1''2'
22
11
2
112/1
2
2
1
2
1
2/1
11
0
1
2
r
r
r
r
r
r
rr
rrrrrrr
x
x
ρρρρ
ρρρ
46
SOLO Diffraction
Fresnel and Fraunhofer Diffraction Approximations
Augustin Jean Fresnel
1788-1827
1x
1yη
ξ
max
ρ=D
Screen
1O
1r

z
λ
2
D
R <
Fresnel Region Fraunhofer Region
λ
2
D
R >
R
Σ
O

( ) '1
'2
2 max
2
1
22
1
2
r
r
r
r
k
<<
+
⇒<<
+
λ
ρρ
λ
π
Fraunhofer Approximation
If
Table of Content
47
SOLO Diffraction
Fraunhofer Diffraction and the Fourier Transform
( ) ( ) ( ) ( )∫∫Σ











 ⋅
−= dS
r
r
kjrrU
r
rkjj
rU SSF
'
exp
'
'exp 1 ρ
τ
λ


( )ηξ
λ
πρ
11
1
'
2
'
yx
rr
r
k +=




 ⋅

( ) ( ) ( ) ( ) ( )∫∫Σ






+−= ηξηξ
λ
π
τ
λ
ddyx
r
jrrU
r
rkjj
rU SSF 11
'
2
exp
'
'exp 
The integral is the two dimensional Fourier Transform
of the field within the aperture ( ) ( )SS rrU

τ
( )
( )
( ) ( )[ ] { }Σ
Σ
=+−= ∫∫ fFTddkkjfkkF yxyx ηξηξηξ
π
exp,
2
1
:, 2
( ) ( ) ( ) ( ) ( ){ }SSF rrUFT
r
rkjj
rU

τπ
λ
2
2
'
'exp
=Therefore
P
0P
Q 1x
0x
1y
0y
η
ξ
Sr'

Sr

ρ
 r

O
Sθ θ
Screen
Image
plane
Source
plane
0O
1O
Sn1
Σ
Σ - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn θcos11 =⋅
θcos11 =⋅ rnS
z
Sn1
'r
 Fr

F
rPP

=0
SrQP

=0
rQP

=
SrOP '0

=
'1 rOO

=
Two Dimensional
Fourier Transform
Table of Content
48
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Rectangular Aperture
P
Q 1x
1y
η
ξ
ρ
 r

O
θ
Screen
Image
plane
1O
Sn1Σ
1r

z
Sn1
'r
1ξ
2ξ
1η
2η
( ) ( ) ( ) ( )
( ) ( )∫∫
∫∫
−−
=
Σ






⋅−





⋅−=





 ⋅
−




 ⋅
−





=
1
1
1
1
11
0
2
11
2
10
'
2
exp
'
2
exp
'2
'exp
'
exp
'
exp
'2
exp
'
'exp
η
η
ξ
ξ
λ
π
ηη
λ
π
ξξ
λ
π
π
ηξ
ηξ
λ
dy
r
jdx
r
j
r
rkjUkj
dd
r
y
kj
r
x
kj
r
r
kj
r
rkjUj
rU
k
F

( ) ( )


 ≤≤≤≤
=
elsevere
U
rrU SS
0
& 21110 ηηηξξξ
τ

For a Rectangular Aperture
Therefore
( ) ( ) ( ) ( )∫∫Σ











 ⋅
−





= dS
r
r
kjrrU
r
r
kj
r
rkjj
rU SSF
'
exp
'2
exp
'
'exp 1
2
1 ρ
τ
λ








⋅






⋅
=






−






⋅+−





⋅−
=





⋅−∫−
11
11
1
1
1111
1
'
2
'
2
sin
2
'
2
'
2
exp
'
2
exp
'
2
exp
1
1
ξ
λ
π
ξ
λ
π
ξ
λ
π
ξ
λ
π
ξ
λ
π
ξξ
λ
π
ξ
ξ
x
r
x
r
x
r
j
x
r
jx
r
j
dx
r
j






⋅






⋅
=






−






⋅+−





⋅−
=





⋅−∫−
11
11
1
1
1111
1
'
2
'
2
sin
2
'
2
'
2
exp
'
2
exp
'
2
exp
1
1
η
λ
π
η
λ
π
η
λ
π
η
λ
π
η
λ
π
ξη
λ
π
ξ
ξ
y
r
y
r
y
r
j
y
r
jy
r
j
dy
r
j
( ) ( )







⋅






⋅






⋅






⋅
=
11
11
11
11
4/
11
0
'
2
'
2
sin
'
2
'
2
sin
'
'exp2
η
λ
π
η
λ
π
ξ
λ
π
ξ
λ
π
ηξπ
y
r
y
r
x
r
x
r
r
rkjUkj
rU
A
F

49
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Rectangular Aperture (continue – 1)
Since U stands for scalar field intensity
(E or H), the irradiance I is given by
where < > is the time average and * is
the complex conjugate.
( ) ( )






⋅






⋅






⋅






⋅
=
11
11
11
11
0
'
2
'
2
sin
'
2
'
2
sin
'
'exp8
η
λ
π
η
λ
π
ξ
λ
π
ξ
λ
π
π
y
r
y
r
x
r
x
r
Ar
rkjUkj
rU F

( ) ( ) ( ) >⋅< ∗
FFF rUrUrI

~
Therefore
( ) ( ) 2
11
11
2
2
11
11
2
'
2
'
2
sin
'
2
'
2
sin
0






⋅






⋅






⋅






⋅
=
η
λ
π
η
λ
π
ξ
λ
π
ξ
λ
π
y
r
y
r
x
r
x
r
IrI F

I (0) is the irradiance at O1 (x1 = y1 = 0).
Hecht pg.466
50
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Single Slit Aperture
Let substitute in the
rectangular aperture ξ1 → 0
where < > is the time average and * is
the complex conjugate.
( ) ( )






⋅






⋅






⋅






⋅
=
11
11
11
11
0
'
2
'
2
sin
'
2
'
2
sin
'
'exp8
η
λ
π
η
λ
π
ξ
λ
π
ξ
λ
π
π
y
r
y
r
x
r
x
r
Ar
rkjUkj
rU F

( ) ( ) ( ) >⋅< ∗
FFF rUrUrI

~
Therefore
( ) ( ) 2
11
11
2
'
2
'
2
sin
0






⋅






⋅
=
η
λ
π
η
λ
π
y
r
y
r
IrI F

I (0) is the irradiance at O1 (x1 = y1 = 0).
to obtain the single (vertical) slit diffraction
( ) ( )






⋅






⋅
=
11
11
0
'
2
'
2
sin
'
'exp2
η
λ
π
η
λ
π
π
y
r
y
r
Ar
rkjUkj
rU FSLITSINGLE

Since U stands for scalar field intensity
(E or H), the irradiance I is given by
Hecht, pg. 453
Hecht, pg. 456
51
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Single Slit Aperture (continue)
( ) ( ) 2
11
11
2
'
2
'
2
sin
0






⋅






⋅
=
η
λ
π
η
λ
π
y
r
y
r
IrI F

I (0) is the irradiance at O1 (x1 = y1 = 0).
Hecht, pg. 456
Hecht 455
Define: 11
'
2
: η
λ
π
β ⋅= y
r
( ) ( ) 2
2
sin
0
β
β
β II =
The extremum of I (β) is obtained from:
( ) ( ) ( ) 0
sincossin2
0 3
=
−
=
β
ββββ
β
β
I
d
Id
The results are given by:
minimum,3,2,0sin πππββ ±±±=⇒=
maximumββ =tan
The solutions can be obtained
graphically as shown in the figure and
are: ,4707.3,4590.2,4303.1 πππβ ±±±=
52
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Double Slit Aperture
( ) ( ) ( )
( )
( )
( )
( )
( )













 ⋅
−+




 ⋅
−





= ∫∫
+
−
+−
−−
ξ
ξ
ξ
ξ
λ
d
r
x
kjd
r
x
kj
r
r
kj
r
rkjUj
rU
ba
ba
ba
ba
F
2/
2/
1
2/
2/
1
2
10
'
exp
'
exp
'2
exp
'
'exp
P
Q
1x
1y
η
ξ
ρ
 r

O
θ
Screen
Image
plane
1O
Sn1Σ
1r

z
Sn1
'r

1η
b
b
a( ) ( ) ( ) ( )∫∫Σ











 ⋅
−





= dS
r
r
kjrrU
r
r
kj
r
rkjj
rU SSF
'
exp
'2
exp
'
'exp 1
2
1 ρ
τ
λ


( )
( ) ( ) ( )






⋅






⋅






⋅
=






−






−−⋅−−





+−⋅−
=





⋅−∫
+−
−−
ax
r
j
bx
r
bx
r
b
x
r
j
bax
r
jbax
r
j
dx
r
j
ba
ba
1
1
1
1
112/
2/
1
'
exp
'
'
sin
1
'
2
'
exp
'
exp
'
2
exp
λ
π
λ
π
λ
π
λ
π
λ
π
λ
π
ξξ
λ
π
( )
( ) ( ) ( )






⋅−






⋅






⋅
=






−






−⋅−−





+⋅−
=





⋅−∫
+
−
ax
r
j
bx
r
bx
r
b
x
r
j
bax
r
jbax
r
j
dx
r
j
ba
ba
1
1
1
1
112/
2/
1
'
exp
'
'
sin
1
'
2
'
exp
'
exp
'
2
exp
λ
π
λ
π
λ
π
λ
π
λ
π
λ
π
ξξ
λ
π
( ) ( )






⋅






⋅






⋅






−= ax
r
bx
r
bx
r
br
r
kj
r
rkjUj
rU F 1
1
12
10
'
cos
'
'
sin
2
'2
exp
'
'exp
λ
π
λ
π
λ
π
λ

( ) ( ) 





⋅






⋅






⋅
= ax
r
bx
r
bx
r
IrI F 1
2
2
1
1
2
'
cos
'
'
sin
0
λ
π
λ
π
λ
π

( ) ( ) ( ) >⋅< ∗
FFF rUrUrI

~
( ) ( )
( ) ( ) ( ) ( )


 +≤≤−+−≤≤−−
=
elsevere
babababaU
rrU SS
0
2/2/&2/2/0 ξξ
τ

53
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Double Slit Aperture (continue -= 1)
Hecht p.458
( ) ( ) ( ) γ
β
β
λ
π
λ
π
λ
π
2
2
2
12
2
1
12
cos
sin
0
'
cos
'
'
sin
0 I
a
r
x
b
r
x
b
r
x
IrI F =





⋅






⋅






⋅
=

P
Q
1x
1y
η
ξ
ρ
 r

O
θ
Screen
Image
plane
1O
Sn1Σ
1r

z
Sn1
'r

1η
b
b
a
The factor (sin β/ β)2
that
was previously found as the
distribution function for a
single slit is here the envelope
for the interference fringes
given by the term cos2
γ.
Bright fringes occur for
γ = 0,±π ,±2π,…
The angular separation
between fringes is Δγ = π.
54
Hecht 459
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Double Slit Aperture (continue – 2)
55
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Multiple Slit Aperture
P
1y
r

Image
plane
1O
1r

Q
η
ξ
ρ

O
θ
Screen
Σ
Sn1
'r

b
b
a
a
b
b
a
b
a
The Aperture consists of a large number N of identical
parallel slits of width b and separation a.
( ) ( ) ( )
∑ ∫
−
=
+
− 












 ⋅
−





=
1
0
2/
2/
1
2
10
'
exp
'2
exp
'
'exp N
k
bak
bak
F d
r
x
kj
r
r
kj
r
rkjUj
rU ξ
ξ
λ

( ) ( ) ( ) ( )∫∫Σ











 ⋅
−





= dS
r
r
kjrrU
r
r
kj
r
rkjj
rU SSF
'
exp
'2
exp
'
'exp 1
2
1 ρ
τ
λ








⋅−






⋅






⋅
=






−












−⋅−−











+⋅−
=





⋅−∫
+
−
akx
r
j
bx
r
bx
r
b
x
r
j
b
kax
r
j
b
kax
r
j
dx
r
j
bka
bka
1
1
1
1
112/
2/
1
'
2
exp
'
'
sin
1
'
2
2'
2
exp
2'
2
exp
'
2
exp
λ
π
λ
π
λ
π
λ
π
λ
π
λ
π
ξξ
λ
π
( ) ( )
( ) ( )






⋅






⋅






⋅






⋅






=






⋅−−






⋅−−






⋅






⋅






=




















⋅−






⋅






⋅






= ∑
−
=
ax
r
aNx
r
bx
r
bx
r
br
r
kj
r
rkjUj
ax
r
j
aNx
r
j
bx
r
bx
r
br
r
kj
r
rkjUj
akx
r
j
bx
r
bx
r
br
r
kj
r
rkjUj
rU
N
k
F
1
1
1
12
10
1
1
1
12
10
1
0
1
1
12
10
'
sin
'
sin
'
'
sin
1
'2
exp
'
'exp
'
2
exp1
'
2
exp1
'
'
sin
1
'2
exp
'
'exp
'
2
exp
'
'
sin
1
'2
exp
'
'exp
λ
π
λ
π
λ
π
λ
π
λ
λ
π
λ
π
λ
π
λ
π
λ
λ
π
λ
π
λ
π
λ

( ) ( )


 −=+≤≤+
=
elsevere
NkbkabkaU
rrU SS
0
1,,1,02/2/0  ξ
τ
56
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Multiple Slit Aperture (continue – 1)
P
1y
r

Image
plane
1O
1r

Q
η
ξ
ρ

O
θ
Screen
Σ
Sn1
'r

b
b
a
a
b
b
a
b
a
The Aperture consists of a large number N of identical
parallel slits of width b and separation a.
( ) ( )






⋅






⋅






⋅






⋅






=
ax
r
aNx
r
bx
r
bx
r
br
r
kj
r
rkjUj
rU F
1
1
1
12
10
'
sin
'
sin
'
'
sin
1
'2
exp
'
'exp
λ
π
λ
π
λ
π
λ
π
λ

( ) ( ) ( )
α
α
β
β
λ
π
λ
π
λ
π
λ
π
22
2
2
2
1
22
1
2
2
1
1
2
sin
sinsin
0
'
sin
'
sin
'
'
sin
0
N
N
I
ax
r
N
aNx
r
bx
r
bx
r
IrI F =






⋅






⋅






⋅






⋅
=

( ) ( ) ( ) >⋅< ∗
FFF rUrUrI

~
57
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Multiple Slit Aperture (continue – 2)
Hecht p.462
Hecht p.463
( ) ( ) ( )
α
α
β
β
λ
π
λ
π
λ
π
λ
π
22
2
2
2
1
22
1
2
2
1
1
2
sin
sinsin
0
'
sin
'
sin
'
'
sin
0
N
N
I
ax
r
N
aNx
r
bx
r
bx
r
IrI F =






⋅






⋅






⋅






⋅
=

58
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Multiple Slit Aperture (continue – 2)
( ) ( ) ( )
α
α
β
β
λ
π
λ
π
λ
π
λ
π
22
2
2
2
1
22
1
2
2
1
1
2
sin
sinsin
0
'
sin
'
sin
'
'
sin
0
N
N
I
ax
r
N
aNx
r
bx
r
bx
r
IrI F =






⋅






⋅






⋅






⋅
=

Sears p.222
Hecht p. 462
Sears p.236
Interference Irradiation
for 1, 2, 3 and 4 slits as
function of observation
angle.
Diffraction Pattern for
1, 2, 3, 4 and 5 slits.
59
SOLO Resolution of Optical Systems
According to Huygens-Fresnel Principle, a differential area dS, within an optical
Aperture, may be envisioned as being covered with coherent secondary point sources.
φρφρ sincos == yz
Φ=Φ= sincos qYqZ
Differential area dS, coordinates
Image , coordinates
φρρ dddS =
( )
dSe
r
E
dE rktiA −






= ω
The spherical wave that
propagates from dS to Image is
where
( ) ( )[ ] ( )[ ] ( )[ ]22/122/1222
/1/21 RZzYyRRZzYyRzZyYXr +−≈+−≈−+−+= [ ] 2/1222
ZYXR ++=
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )RkaqJkaqRe
R
E
ddee
R
E
dSee
R
E
dEE RktiA
a
RkpqiRktiA
Aperture
RzZyYkiRktiA
Aperture
// 1
0
2
0
cos// −
= =
Φ−−+−






=





=





== ∫ ∫∫∫∫
ω
ρ
π
φ
φωω
φρρ
The spherical wave at Image, for a Circular Aperture, is
60
SOLO Resolution of Optical Systems
( )
( ) ( )RkaqJkaqRe
R
E
E RktiA
// 1
−






= ω
where
( ) ( )
∫
+
−
=
π
π
2
0
cos
2
dve
i
uJ vuvmi
m
m
Bessel Functions (of the first kind)
E. Hecht, “Optics”
The spherical wave at Image, for a Circular Aperture, is
61
SOLO Resolution of Optical Systems
Irradiance ∗
=
∗
==×== EEHEHESI
EH
µ
εµ
ε
2
1
2
1
2
1
( ) ( )
( )
( ) ( )
( )
2
1
2
1
2
22
/
/2
0
/
/22
2
1






=





== ∗
Rkaq
RkaqJ
I
Rkaq
RkaqJ
R
aE
EEI A π
µ
ε
µ
ε
D
nnn
λ
θθ 44.22 ==
E. Hecht, “Optics”
Circular Aperture
( )
Daaak
RkaquuJ n
Rq
λλ
λ
π
θ
θ
22.1
2
22.1
2
83.383.3
sin83.3/0
sin/
1 ====⇒==⇒=
=
62
SOLO Resolution of Optical Systems
Distribution of Energy in the Diffraction Pattern
at the Focus of a Perfect Circular Lens
E. Hecht, “Optics”
Ring f/(λf#) Peak Energy in ring
Illumination (%)
Central max 0 1 83.9
1st
dark ring 1.22 0
1st
bright ring 1.64 0.017 7.1
2nd
dark 2.24 0
2nd
bright 2.66 0.0041 2.8
3rd
dark 3.24 0
3rd
bright 3.70 0.0016 1.5
4th
dark 4.24 0
4th
bright 4.74 0.00078 1.0
5th
dark 5.24 0
63
SOLO Diffraction
Fraunhofer Diffraction Approximations Examples
Circular Aperture
Hecht p.469
64
SOLO Resolution of Optical Systems
Airy Rings
In 1835, Sir George Biddell Airy, developed the formula for diffraction pattern,
of an image of a point source in an aberration-free optical system, using the wave
theory.
E. Hecht, “Optics”
65
SOLO Resolution of Optical Systems
E. Hecht, “Optics”
66
Rayleigh’s Criterion (1902)
The images are said to be just resolved when the
center of one Airy Disk falls on the first minimum
of the Airy pattern of the other image.
The minimum resolvable angular separation or
angular limit is:
D
nnn
λ
θθ 44.22 ==
Sparrow’s Criterion
At the Rayleigh’s limit there is a central minimum
Or saddle point between adjacent peaks.
Decreasing the distance between the two point
sources cause the central dip to grow shallower and
ultimately to disappear. The angular separation
corresponding to that configuration is the Sparrow’s
Limit.
SOLO Resolution of Optical Systems
67
Resolution – Diffraction Limit
Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley
SOLO Resolution of Optical Systems
68
Diffraction Grating
SOLO Resolution of Optical Systems
Hecht 478
69
Diffraction Grating
SOLO Resolution of Optical Systems
Hecht 480
70
Diffraction Grating
SOLO Resolution of Optical Systems
Hecht 479a Hecht 479b
Hecht 485
Table of Content
71
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Rectangular Aperture
( ) ( ) ( ) ( ) ( ) ( )
∫∫Σ





 −⋅−
= dS
r
rr
kjrrU
r
rkjj
rU SSF
'2
exp
'
'exp 11 ρρ
τ
λ


define
Augustin Jean Fresnel
1788-1827
P
Q 1x
1y
η
ξ
ρ
 r

O
θ
Screen
Image
plane
1O
Sn1Σ
1r

z
Sn1
'r
1ξ
2ξ
1η
2η
( ) ( ) ( ) ( )
( ) ( ) ( )
∫∫
∫∫





 −





 −
=





 −





 −
=
=
Σ
2
1
2
1
'
2
2
exp
'
2
2
exp
'2
'exp
'2
exp
'2
exp
'
'exp
2
1
2
10
2
2
1
2
10
η
η
ξ
ξ
λ
π
η
λ
ηπ
ξ
λ
ξπ
π
ηξ
ηξ
λ
d
r
y
jd
r
x
j
r
rkjUkj
dd
r
y
kj
r
x
kj
r
rkjUj
rU
k
F

( ) ( )


 ≤≤≤≤
=
elsevere
U
rrU SS
0
& 21110 ηηηξξξ
τ

For a Rectangular Aperture
( ) ξ
λ
α
λ
ξ
α d
r
d
r
x
'
2
'
2
:
2
12
=
−
=
( )
∫∫ 





=




 − 2
1
2
1
2
2
1
2
exp
2
'
'
2
2
exp
α
α
ξ
ξ
αα
πλ
ξ
λ
ξπ
dj
r
d
r
x
j
( ) ( )212111
'
2
&
'
2
ξ
λ
αξ
λ
α −=−= x
r
x
r
Therefore
( ) η
λ
β
λ
η
β d
r
d
r
y
'
2
'
2
:
2
12
=
−
=
( ) ( )212111
'
2
&
'
2
η
λ
βη
λ
β −=−= y
r
y
r
( )
∫∫ 





=




 − 2
1
2
1
2
2
1
2
exp
2
'
'
2
2
exp
β
β
η
η
ββ
πλ
η
λ
ηπ
dj
r
d
r
y
j
72
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Rectangular Aperture (continue – 1)
Augustin Jean Fresnel
1788-1827
P
Q 1x
1y
η
ξ
ρ
 r

O
θ
Screen
Image
plane
1O
Sn1Σ
1r

z
Sn1
'r
1ξ
2ξ
1η
2η
( ) ( ) ( ) ( )
( )
∫∫
∫∫












=





 −





 −
=
2
1
2
1
2
1
2
1
220
2
1
2
10
2
exp
2
exp
2
'exp
'
2
2
exp
'
2
2
exp
'
'exp
β
β
α
α
η
η
ξ
ξ
ββ
π
αα
π
η
λ
ηπ
ξ
λ
ξπ
λ
djdj
rkjUj
d
r
y
jd
r
x
j
r
rkjUj
rU F

Define Fresnel Integrals
( )
( ) ∫
∫






=






=
α
α
αα
π
α
αα
π
α
0
2
0
2
2
sin:
2
cos:
dS
dC
( ) ( )αααα
πα
SjCdj +=





∫0
2
2
exp
( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 2
1
2
1
2
'exp0 β
β
α
α ββαα SjCSjC
rkjUj
rU F ++=

Using the Fresnel Integrals we can write
( ) ( ) 5.0±=∞±=∞± SC
73
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Rectangular Aperture (continue – 2)
Augustin Jean Fresnel
1788-1827
Hecht p.499
74
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
P
Q 1x
1y
η
ξ
ρ
 r

O
θ
Screen
Image
plane
1O
Sn1Σ
1r

z
Sn1
'r
1ξ
2ξ
1η
2η
Rectangular Aperture (continue – 3)
75
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Cornu Spiral
Fresnel Integrals are defined as
( ) ( ) ∫∫ 





=





=
uu
duuuSduuuC
0
2
0
2
2
sin:&
2
cos:
ππ
( ) ( )uSjuCduuj
u
+=





∫0
2
2
exp
π
( ) ( ) 5.0±=∞±=∞± SC
Marie Alfred Cornu professor at the École Polytechnique in Paris
established a graphical approach, for calculating intensities in
Fresnel diffraction integrals.
The Cornu Spiral is defined as the
plot of S (u) versus C (u)
duuSd
duuCd






=






=
2
2
2
sin
2
cos
π
π
( ) ( ) duSdCd =+
22
Therefore u may be thought as measuring arc
length along the spiral.
“Méthode nouvelle pour la discussion des problèmes de diffraction dans le cas
d’une onde cylindrique”, J.Phys.3 (1874), 5-15,44-52
76
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Cornu Spiral (continue – 1)
( ) ( ) ∫∫ 





=





=
uu
duuuSduuuC
0
2
0
2
2
sin:&
2
cos:
ππ
( ) ( )uSjuCduuj
u
+=





∫0
2
2
exp
π
( ) ( ) 5.0±=∞±=∞± SC
The Cornu Spiral is defined as the plot of S (u) versus C (u)
duuSdduuCd 





=





= 22
2
sin&
2
cos
ππ
( ) ( ) duSdCd =+
22






=












= 2
2
2
2
tan
2
cos
2
sin
u
u
u
Cd
Sd π
π
π
Therefore every point on the curve makes the angle
with the real ( C ) axis.
2
2
u
π
The radius of curvature of Cornu Spiral is
The tangent vector of Cornu Spiral is
SuCuT 1
2
sin1
2
cos 22






+





=
ππ
( ) ( ) u
SuCuu
udTdSdCdTd πππ
π
ρ
1
1
2
cos1
2
sin
1
/
1
/
1
22
22
=












+





−
==
+
= 
showing that the curve spirals toward the limit points.
∫ 





2
1
2
2
cos
u
u
duu
π
∫ 





2
1
2
2
sin
u
u
duu
π
∫ 





2
1
2
2
exp
u
u
duuj
π
Table of Content
77
ELECTROMAGNETICSSOLO
KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION
• GREEN’s FUNCTION
Define the Green’s Function as a particular solution of the following Helmholtz
Non-homogeneous Differential Equation:
( ) ( ) ( )SFFSFSS rrrrG
v
rrG

−−=+∇ πδ
ω
4;; 2
2
2
where δ (x) is the Dirac function
( )
( )









=
=∞
≠
=
∫
∞
∞−
1
0
00
dxx
x
x
x
δ
δ
Let use the Fourier Transformation to write
( ) ( ) ( ) ( )
( )[ ] ( )[ ] ( )[ ]
( )
( ) ( ) ( )[ ]{ }
( )
( )[ ]∫
∫ ∫ ∫
∫∫∫
−⋅−=
−+−+−−=








−−







−−







−−=
−−−=−
∞
∞−
∞
∞−
∞
∞−
∞
∞−
∞
∞−
∞
∞−
3
3
3
exp
2
1
exp
2
1
exp
2
1
exp
2
1
exp
2
1
dkrrkj
dkdkdkzzkyykxxkj
dkzzjkdkyyjkdkxxjk
zzyyxxrr
SF
zyxSFzSFySFx
zSFzySFyxSFx
SFSFSFSF


π
π
πππ
δδδδ
zyx
zyx
dkdkdkdk
zkykxkk
=
++=
→→→
3
111

where
Paul Dirac
1902-1984
Joseph Fourier
1768-1830
78
ELECTROMAGNETICSSOLO
KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION
• GREEN’s FUNCTION (continue – 1)
Let use the Fourier Transformation to write
( ) ( ) ( )[ ]∫ −⋅−= SFFS rrkjkgdkrrG

exp,; 3
ω
Hence
( ) ( )[ ] ( )
( )[ ]∫∫ −⋅−−=−⋅−





+∇ SFSFS rrkjdkrrkjkgdk
v

exp
2
4
exp, 3
3
3
2
2
2
π
π
ω
ω
or
( ) ( )[ ] ( )[ ]{ } ( )
( )[ ]∫∫ −⋅−−=−⋅−+−⋅∇ SFSFSFS rrkjdkrrkjkrrkjkgdk

exp
2
4
expexp, 3
3
223
π
π
ω

n
i
iSS
1=
=
iS
nS
dV
dSn
→
1
V
Fr

Sr

F
0r SF rrr

−=
PositionSourcerS

PositionFieldrF

79
ELECTROMAGNETICSSOLO
KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION
• GREEN’s FUNCTION (continue – 2)
Let compute:
( )[ ] ( ) ( ) ( )[ ]{ }( )
( ) ( ) ( )[ ]{ }
( ) ( ) ( )[ ]{ }
( )[ ] ( ) ( ) ( )[ ] ( )[ ]SFSFSFS
SFzSFySFxSzyx
SFzSFySFxzyxS
SFzSFySFxSSSFS
rrkjkrrkjkjkjrrkjkj
zzkyykxxkjzjkyjkxjk
zzkyykxxkjzjkyjkxjk
zzkyykxxkjrrkj


−⋅−−=−⋅−−⋅−=−⋅−∇⋅−=
−+−+−−∇⋅





−−−=






−+−+−−





−−−⋅∇=
−+−+−−∇⋅∇=−⋅−∇
→→→
→→→
expexpexp
exp111
exp111
expexp
2
2
Therefore: ( ) ( )[ ] ( )
( )[ ]∫∫ −⋅−−=−⋅−





+− SFSF rrkjdkrrkj
v
kkgdk

exp
2
4
exp, 3
32
2
23
π
πω
ω
Because this is true for all k and ω, we obtain
( )












−
=
2
2
2
2
1
2
1
,
v
k
kg
ωπ
ω

80
ELECTROMAGNETICSSOLO
KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION
• GREEN’s FUNCTION (continue – 3)
( ) ( ) ( )[ ] ( )[ ]∫∫ −⋅−












−
=−⋅−= SFSFFS rrkj
v
k
d
dkrrkjkgdkrrG

exp
2
1
exp,;
2
2
2
3
2
3
ω
ω
π
ω
We can see that the integral in k has to singular points for
v
k
ω
±=
To find the integral let change ω by ω + jδ where δ is a small negative number
( ) [ ]
( )∫












+
−
⋅−
=
2
2
2
3
2
exp
2
1
;
v
j
k
rkj
dkrrG FS
δωπ


where .SF rrr

−=
81
ELECTROMAGNETICSSOLO
KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION
• GREEN’s FUNCTION (continue – 4)
In the plane ω we close the integration path by the semi-circle with
and the singular points on the upper side, for τ > 0 (for t > t’)
( )
( )
( )[ ]∫ ∫
∞
∞−
⋅−












+
−
= rkj
v
j
k
d
dktrtrG FS

ωτ
δω
ω
π
exp
4
1
',;,
2
2
2
3
3
∞→r
( ) ( ) ( )'00exp ttdjf
UPC
>>=∫ τωωτω
( ) ( ) ( )'00exp ttdjf
DOWNC
<<=−∫ τωωτω
( ) ( )
( ) ( )
( ) ( )







<−
>−
=−
∫
∫
∫
∞≤≤∞−
+
∞≤≤∞−
+∞
∞− 0exp
0exp
exp
τωωτω
τωωτω
ωωτω
ω
ω
DOWN
UP
C
C
djf
djf
djf
δjvk −− δjvk −
ωRe
ωIm
82
ELECTROMAGNETICSSOLO
KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION
• GREEN’s FUNCTION (continue – 5)
( )
( )[ ] ( )
( )[ ] ( )[ ]
( )[ ] ( )[ ]∫∫∫ 







−+−++
⋅−
=⋅−












+
−
=⋅−












+
−
=
∞
∞− CC
jvkjvk
rkjv
drkj
v
j
k
d
rkj
v
j
k
d
I
δωδω
ωτ
ωωτ
δω
ω
ωτ
δω
ω

 exp
expexp
2
2
2
2
2
2
2
Let use the Cauchy Integral for a complex function f (z) continuous on a
closed path C, in the complex z plane: ( ) ( ) ( )0
0
2lim2
0
zfjzfjdz
zz
zf
zz
C
ππ ==
− →∫
We have:
( )[ ]
( )[ ]
( )[ ]
( )[ ]
( ) ( ) ( ) ( ) ( )
k
kvrkj
v
vk
jkv
vk
jkv
rkjvj
jvk
rkjv
j
jvk
rkjv
jI
vkvk
τ
π
ττ
π
δω
ωτ
π
δω
ωτ
π
δωδω
sinexp
2
2
exp
2
exp
exp2
exp
2lim
exp
2lim
2
2
0,
2
0,



⋅−
=





+
−
−
⋅−−=
++
⋅−−
+
−+−
⋅−−
=
→→→−→
Therefore, we can write:
( ) ( )[ ] ( ) ( )
∫∫ ∫
⋅−
−=












−
⋅−
=
k
vkrkj
dk
v
v
k
rkj
ddktrtrG FS
τ
πω
ωτ
ω
π
sinexp
2
exp
4
1
',;, 3
2
2
2
2
3
3


83
ELECTROMAGNETICSSOLO
KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION
• GREEN’s FUNCTION (continue – 6)
Let use spherical coordinates relative to vector:
( ) ( )
∫
−
⋅−
=
2
2
2
3
2
exp
2
1
;
v
k
rkj
dkrrG FS
ωπ







=
=
=





=
=
=
rr
r
r
kk
kk
kk
z
y
x
z
y
x
0
0
cos
sinsin
cossin
θ
ϕθ
ϕθ
ϕθ dk sin
θdk
dk
( )( ) ϕθθ dddkkdk sin23
=
θ
ϕ
r
x
y
z
84
ELECTROMAGNETICSSOLO
KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION
• GREEN’s FUNCTION (continue – 7)
( )kvd
v
r
jkv
v
r
jkv
v
r
jkv
v
r
jkv
r ∫
∞
∞−












−−+











+−−











+−











−
=
4
expexpexpexp
1
ττττ
π
r
v
rr
tt
v
rr
tt SFSF







 −
+−−






 −
−−
=

'' δδ
r
v
r
v
r
dx
v
r
jx
v
r
jx
r






+−





−
=


















+−











−= ∫
∞
∞−
τδτδ
ττ
π
expexp
2
11
( ) ( )kvd
v
r
jkv
v
r
jkv
r
v
kvd
v
r
jkv
v
r
jkv
r ∫∫
∞
∞−
∞
∞−












+−−











−−
+












+−











−
=
4
expexp
4
expexp
1
ττ
π
ττ
π
( ) ( ) ( ) ( )
∫
∞
∞−





 −−





 −−
= dk
j
jvkjvk
j
jkrjkr
r
v
2
expexp
2
expexp ττ
π
( ) ( )∫∫
∞
∞−
∞
−
−=
−
−= dkkr
v
k
k
r
dkkr
v
k
k
r
sin
1
sin
2
2
2
2
2
0
2
2
2
2
ωπωπ
( ) ( ) ( )
∫∫
∞∞ =
=





 −−
−
−=
−
−
−
=
0
2
2
2
2
0 0
2
2
2
2
2
expexp2cosexp1
dk
j
jkrjkr
v
k
k
r
dk
jkr
jkr
v
k
k
ωπ
θ
ωπ
πθ
θ
( )
∫∫ ∫
∞
−
−
=
0 0
2
0
2
2
2
2
2
sin
cosexp
2
1
π π
θϕθ
ω
θ
π
dkddk
v
k
jkr
( ) ( )
∫
−
−
=
2
2
2
3
2
cosexp
2
1
;
v
k
jkr
dkrrG FS
ω
θ
π

( )
∫∫
∞
−
−
=
0 0
2
2
2
2
sin
cosexp1
π
θθ
ω
θ
π
dkdk
v
k
jkr
85
ELECTROMAGNETICSSOLO
KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION
• GREEN’s FUNCTION (continue – 8)
We can see that represents a progressive wave
and represents a regressive wave:







 −
+−=






 −
−−
v
rr
tt
v
rr
tt
SFSF

'' δδ







 −
−−=






 −
+−
v
rr
tt
v
rr
tt
SFSF

'' δδ
Hence ( )
SF
SFSF
FS
rr
v
rr
tt
v
rr
tt
trtrG 


−







 −
+−−






 −
−−
=
''
',;,
δδ
We shall consider only the progressive wave and use:
( )
SF
SF
FS
rr
v
rr
tt
trtrG 


−







 −
+−
=
'
',;,
δ
Retarded Green Function
The other solution is:
( )
SF
SF
FS
rr
v
rr
tt
trtrG 


−







 −
−−
=
'
',;,
δ
Advanced Green Function

n
i
iSS
1=
=
iS
nS
dV
dSn
→
1
V
Fr

Sr

F
0r SF rrr

−=
PositionSourcerS

PositionFieldrF

Table of Content
86
SOLO
( ) ( ) ( )[ ] { }gFTydxdyfxfjyxgffG yxyx =+−= ∫∫Σ
π2exp,:,
The two dimensional Fourier Transform F of the function f (x, y)
The Inverse Fourier Transform is
( ) ( ) ( )[ ] { }GFTfdfdyfxfjyxgyxg
F
yxyx
1
2exp,, −
=+= ∫∫ π
( )
( )
( ) ( )[ ] { }Σ
Σ
=+−= ∫∫ fFTddkkjfkkF yxyx ηξηξηξ
π
exp,
2
1
:, 2
Two Dimensional
Fourier Transform
Two Dimensional Fourier Transform (FT)
Fraunhofer Diffraction and the Fourier Transform
In Fraunhofer Diffraction we arrived two dimensional
Fourier Transform of the field within the aperture
P
0P
Q 1x
0x
1y
0y
η
ξ
Sr'

Sr

ρ
 r

O
Sθ θ
Screen
Image
plane
Source
plane
0O
1O
Sn1
Σ
Σ - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn θcos11 =⋅
θcos11 =⋅ rnS
z
Sn1
'r
 Fr

F
rPP

=0
SrQP

=0
rQP

=
SrOP '0

=
'1 rOO

=
Using kx = 2 π fx and ky = 2 π fy we obtain:
Diffractions
87
SOLO
( ) ( ){ } ( ){ } ( ){ }yxhFTyxgFTyxhyxgFT ,,,, βαβα +=+
1. Linearity Theorem
Two Dimensional Fourier Transform (FT)
Fourier Transform Theorems
( ){ } ( )yx ffGyxgFT ,, =
2. Similarity Theorem
( ){ } 





=
b
f
a
f
G
ba
ybxagFT
yx
,
1
,If then
( ){ } ( )yx ffGyxgFT ,, =
3. Shift Theorem
( ){ } ( ) ( )[ ]bfafjffGbyaxgFT yxyx +−=−− π2exp,,
If
then
Diffractions
88
SOLO
Two Dimensional Fourier Transform (FT)
Fourier Transform Theorems (continue – 1)
( ){ } ( )yx ffGyxgFT ,, =
4. Parseval’s Theorem
( ) ( )∫∫∫∫ = yxyx fdfdffGydxdyxg
22
,,
If
then
( ){ } ( )yx ffGyxgFT ,, =
5. Convolution Theorem
( ) ( ){ } ( ) ( )yxyx ffHffGddyxhgFT ,,,, =−−∫∫ ηξηξηξ
If
then
( ){ } ( )yx ffHyxhFT ,, =and
( ){ } ( )yx ffGyxgFT ,, =
6. Autocorrelation Theorem
( ) ( ){ } ( )2*
,,, yx ffGddyxggFT =−−∫∫ ηξηξηξ
If
then
similarly ( ){ } ( ) ( )∫∫ −−= ηξηξηξηξ ddffGGgFT yx ,,, *2
Diffractions
89
SOLO
Two Dimensional Fourier Transform (FT)
Fourier Transform Theorems (continue – 2)
( ){ } ( ){ } ( )yxgyxgFTFTyxgFTFT ,,, 11
== −−
7. Fourier Integral Theorem
Diffractions
90
SOLO
Two Dimensional Fourier Transform (FT)
Fourier Transform for a Circular Symmetric Optical Aperture
To exploit the circular symmetry of g (g (r,θ) = g (r) ) let
make the following transformation
( )
( ) φρφ
φρρ
θθ
θ
sin/tan
cos
sin/tan
cos
1
22
1
22
==
=+=
==
=+=
−
−
yxy
xyx
fff
fff
ryxy
rxyxr
{ } ( ) ( )[ ] ( ) ( )[ ]
( ) ( )
( ) ( )[ ]∫ ∫
∫ ∫∫∫
−−=
+−=+−=
=
=
Σ
a
o
rgrg
a
o
drdrydxd
yx
drjrdrrg
drjrgrdrydxdyfxfjyxggFT
πθ
πθ
θφθρπ
θθφθφρπθπ
2
0
,
2
0
cos2exp
sinsincoscos2exp,2exp,
Use Bessel Function Identity ( ) ( )[ ]∫ −−=
π
θφθ
2
0
0 cosexp dajaJ
( ) ( ){ } ( ) ( )∫==
a
o
rdrrgrJrgFTG ρπρ 2: 00
to obtain
J0 is a Bessel Function of the first kind, order zero.
Diffractions
91
SOLO
Two Dimensional Fourier Transform (FT)
Fourier Transform for a Circular Symmetric Optical Aperture
For a Circular Pupil of radius a we have
( )



>
≤
=
ar
ar
rg
0
1
Use Bessel Function Identity
J1 is a Bessel Function of the first kind, order one.
( ) ( ){ } ( )∫==
a
o
rdrrJrgFTG ρπρ 2: 00
( ) ( )xJxdJ
x
o
10 =∫ ςςς
( ) ( ){ }
( )
( ) ( )
( )
( ) ( )ρπ
ρπ
ςςς
ρπ
ρπρπρπ
ρπ
ρ
ρπ
aJ
a
dJ
rdrrJrgFTG
a
o
a
o
2
22
1
222
2
1
:
1
2
02
020
==
==
∫
∫
Bessel Functions of the first kind
Diffractions
92
SOLO
E. Hecht, “Optics”
Circular Aperture
Two Dimensional Fourier Transform (FT)
Fourier Transform for a Circular Symmetric Optical Aperture
( ) ( ){ } ( )
( )ρπ
ρπ
ρ
a
aJ
argFTG
2
2
: 12
0 ==
Table of Content
Diffractions
93
SOLO
References
Diffractions
2. Goodman, J.,W., “Introduction to Fourier Optics”, McGraw-Hill, 1968
1. Sommerfeld, A., “Optics, Lectures on Theoretical Physics”, vol. IV,
Academic Press Inc., New York, 1954, Chapter V, “The Theory of Diffraction”,
7. M. Born, E. Wolf, “Principle of Optics – Electromagnetic Theory of Propagation,
Interference and Diffraction of Light”, 6th
Ed., Pergamon Press, 1980,
5. F.A. Jenkins, H.E. White, “Fundamentals of Optics”, 4th
Ed., McGraw-Hill, 1976
8. M.V.Klein, T.E. Furtak, “Optics”, 2nd
Ed., John Wiley & Sons, 1986
6. E. Hecht, A. Zajac, “Optics”, Addison-Wesley, 1979
3. Elmore, W.C., Heald, M., A., “Physics of Waves”, Dover Publications, 1969,
4. Fowles, G., R., “Introduction to Modern Optics”, Dover Publications, 1968, 1975,
Ch. 5, Diffraction
9. J. Meyer-Arendt, “Introduction to Classical & Modern Optics”, 3th Ed.,
Prentince Hall, 1989
94
SOLO
References
[1] M. Born, E. Wolf, “Principle of Optics – Electromagnetic Theory of Propagation,
Interference and Diffraction of Light”, 6th
Ed., Pergamon Press, 1980,
[2] C.C. Davis, “Laser and Electro-Optics”, Cambridge University Press, 1996,
OPTICS
95
SOLO
References
[3] E.Hecht, A. Zajac, “Optics ”, 3th
Ed., Addison Wesley Publishing Company, 1997,
[4] M.V. Klein, T.E. Furtak, “Optics ”, 2nd
Ed., John Wiley & Sons, 1986
Table of Content
OPTICS
January 4, 2015 96
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA
97
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Circular Aperture
Hecht p.491
Hecht p.492
98
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Circular Obstacles
99
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Fresnel Zone Plate
100
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Fresnel Diffraction by a Slit
Hecht p.504 a
Fresnel Diffraction
Hecht p.504 b
101
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Semi-Infinite Opaque Screen
Hecht p.506 a
Hecht p.506
102
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Semi-Infinite Opaque Screen
Hecht p.506 a
Hecht p.507
103
SOLO Diffraction
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Diffraction by a Narrow Obstacle
104
Optics - DiffractionSOLO
Elmore p.409
105
Optics - DiffractionSOLO
Hecht p.487 a
Hecht p.487 b
Hecht p.489
Hecht p.490 a
Hecht p.490 b
106
Optics - DiffractionSOLO
Hecht p.500
107
Optics - DiffractionSOLO
Jenkins p.320 Jenkins p.323
Jenkins p.343
Klein Furata p.362
108
Optics - DiffractionSOLO
Reynolds 19
Reynolds 20 a
Reynolds 20 b
109
Optics - DiffractionSOLO
Reynolds 62 a
Reynolds 62 b
Reynolds 62 c
110
Optics - DiffractionSOLO
Reynolds 63 a
Reynolds 63 b

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

HE NE LASER PRESENTATION
HE NE LASER PRESENTATIONHE NE LASER PRESENTATION
HE NE LASER PRESENTATION
 
Biophotonics
BiophotonicsBiophotonics
Biophotonics
 
Interferometers history
Interferometers historyInterferometers history
Interferometers history
 
9.3 interference
9.3 interference9.3 interference
9.3 interference
 
Polarization
PolarizationPolarization
Polarization
 
Laser and optical fibers
Laser and optical fibersLaser and optical fibers
Laser and optical fibers
 
Radiation detection and measurement
Radiation detection and measurement Radiation detection and measurement
Radiation detection and measurement
 
Foundation of geometrical optics
Foundation of geometrical opticsFoundation of geometrical optics
Foundation of geometrical optics
 
Cyclotron (1)
Cyclotron (1)Cyclotron (1)
Cyclotron (1)
 
Fraunhoffer diffraction
Fraunhoffer diffractionFraunhoffer diffraction
Fraunhoffer diffraction
 
Ph 101-2
Ph 101-2Ph 101-2
Ph 101-2
 
NEWTON RINGS
NEWTON RINGSNEWTON RINGS
NEWTON RINGS
 
Ion beam for material analysis(IBA)-RBS-CHANNELING
Ion beam for material analysis(IBA)-RBS-CHANNELINGIon beam for material analysis(IBA)-RBS-CHANNELING
Ion beam for material analysis(IBA)-RBS-CHANNELING
 
Photonic Crystals
Photonic CrystalsPhotonic Crystals
Photonic Crystals
 
Laser presentation 11
Laser presentation 11Laser presentation 11
Laser presentation 11
 
LASER
LASERLASER
LASER
 
Laser Basics
Laser BasicsLaser Basics
Laser Basics
 
Laser,Optical Fibres and Ultrasonics
Laser,Optical Fibres and UltrasonicsLaser,Optical Fibres and Ultrasonics
Laser,Optical Fibres and Ultrasonics
 
Laser ppt.
Laser ppt.Laser ppt.
Laser ppt.
 
NEWTON RINGS Mohit sharma ppt
NEWTON RINGS Mohit sharma pptNEWTON RINGS Mohit sharma ppt
NEWTON RINGS Mohit sharma ppt
 

Andere mochten auch

Andere mochten auch (14)

Color theory
Color theoryColor theory
Color theory
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iii
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
1 tracking systems1
1 tracking systems11 tracking systems1
1 tracking systems1
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part ii
 
Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 

Ähnlich wie Diffraction

Theories About Light
Theories About LightTheories About Light
Theories About Light
deathful
 
chapter1deo3243jun14-170324112349.pdf
chapter1deo3243jun14-170324112349.pdfchapter1deo3243jun14-170324112349.pdf
chapter1deo3243jun14-170324112349.pdf
MarioPelicano4
 
chapter1deo3243jun14-170324112349.pptx
chapter1deo3243jun14-170324112349.pptxchapter1deo3243jun14-170324112349.pptx
chapter1deo3243jun14-170324112349.pptx
Francis de Castro
 
Balladares j eugenios-hidalgog-galarzab-rendija
Balladares j eugenios-hidalgog-galarzab-rendijaBalladares j eugenios-hidalgog-galarzab-rendija
Balladares j eugenios-hidalgog-galarzab-rendija
David CuLcay
 
Light - The Electromagnetic Spectrum
Light - The Electromagnetic SpectrumLight - The Electromagnetic Spectrum
Light - The Electromagnetic Spectrum
Victor Andrei Bodiut
 
1) What is the Aether Why scientists in the 19th century believed i.pdf
1) What is the Aether Why scientists in the 19th century believed i.pdf1) What is the Aether Why scientists in the 19th century believed i.pdf
1) What is the Aether Why scientists in the 19th century believed i.pdf
arracollection
 
LECTURE 13. LIGHTHubble space telescope observations have tak.docx
LECTURE 13.  LIGHTHubble space telescope observations have tak.docxLECTURE 13.  LIGHTHubble space telescope observations have tak.docx
LECTURE 13. LIGHTHubble space telescope observations have tak.docx
washingtonrosy
 
Issac newton new 1
Issac newton new 1Issac newton new 1
Issac newton new 1
Vivek Thilak
 

Ähnlich wie Diffraction (20)

Nature-of-Light.pptx
Nature-of-Light.pptxNature-of-Light.pptx
Nature-of-Light.pptx
 
2010_historyofoptics.ppt
2010_historyofoptics.ppt2010_historyofoptics.ppt
2010_historyofoptics.ppt
 
Atomic_spectra.ppt.ppt
Atomic_spectra.ppt.pptAtomic_spectra.ppt.ppt
Atomic_spectra.ppt.ppt
 
Module No. 43
Module No. 43Module No. 43
Module No. 43
 
Theories About Light
Theories About LightTheories About Light
Theories About Light
 
Discovery of IR
Discovery of IRDiscovery of IR
Discovery of IR
 
Huygen’s principle, Superposition & Interference of waves, and Young’s experi...
Huygen’s principle, Superposition & Interference of waves, and Young’s experi...Huygen’s principle, Superposition & Interference of waves, and Young’s experi...
Huygen’s principle, Superposition & Interference of waves, and Young’s experi...
 
chapter1deo3243jun14-170324112349.pdf
chapter1deo3243jun14-170324112349.pdfchapter1deo3243jun14-170324112349.pdf
chapter1deo3243jun14-170324112349.pdf
 
Chapter 7 - Wave optics.pptx
Chapter 7 - Wave optics.pptxChapter 7 - Wave optics.pptx
Chapter 7 - Wave optics.pptx
 
Introduction to light
Introduction to lightIntroduction to light
Introduction to light
 
CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics
 
chapter1deo3243jun14-170324112349.pptx
chapter1deo3243jun14-170324112349.pptxchapter1deo3243jun14-170324112349.pptx
chapter1deo3243jun14-170324112349.pptx
 
Balladares j eugenios-hidalgog-galarzab-rendija
Balladares j eugenios-hidalgog-galarzab-rendijaBalladares j eugenios-hidalgog-galarzab-rendija
Balladares j eugenios-hidalgog-galarzab-rendija
 
Light - The Electromagnetic Spectrum
Light - The Electromagnetic SpectrumLight - The Electromagnetic Spectrum
Light - The Electromagnetic Spectrum
 
1) What is the Aether Why scientists in the 19th century believed i.pdf
1) What is the Aether Why scientists in the 19th century believed i.pdf1) What is the Aether Why scientists in the 19th century believed i.pdf
1) What is the Aether Why scientists in the 19th century believed i.pdf
 
LECTURE 13. LIGHTHubble space telescope observations have tak.docx
LECTURE 13.  LIGHTHubble space telescope observations have tak.docxLECTURE 13.  LIGHTHubble space telescope observations have tak.docx
LECTURE 13. LIGHTHubble space telescope observations have tak.docx
 
Sir Issac Newton
Sir Issac NewtonSir Issac Newton
Sir Issac Newton
 
Light
LightLight
Light
 
Issac newton new 1
Issac newton new 1Issac newton new 1
Issac newton new 1
 
The nature of light lec 2019
The nature of light  lec  2019The nature of light  lec  2019
The nature of light lec 2019
 

Mehr von Solo Hermelin

Mehr von Solo Hermelin (20)

Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 

Kürzlich hochgeladen

Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
RohitNehra6
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
ssuser79fe74
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Sérgio Sacani
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
Lokesh Kothari
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
Sérgio Sacani
 

Kürzlich hochgeladen (20)

Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 

Diffraction

  • 2. 2 Table of Content SOLO Optics - Diffraction James Gregory Diffraction Grating History of Diffraction Francesco Grimaldi Huygens Principle Thomas Young Interference Laplace, Biot, Poisson, Arago, Fresnel - Particle versus Wave Theory Fresnel – Huygens’ Diffraction Theory Fraunhofer Diffraction Theory Fresnel-Kirchhoff Diffraction Theory Complementary Apertures. Babinet Principle Rayleigh-Sommerfeld Diffraction Formula Extensions of Fresnel-Kirchhoff Diffraction Theory Fresnel and Fraunhofer Diffraction Approximations
  • 3. 3 SOLO Diffraction Fraunhofer Diffraction and the Fourier Transform Phase Approximations – Fresnel (Near-Field) Approximation Phase Approximations – Fraunhofer (Near-Field) Approximation Fresnel and Fraunhofer Diffraction Approximations Fraunhofer Diffraction Approximations Examples Resolution of Optical Systems Fresnel Diffraction Approximations Examples Kirchhoff’s Solution of the Scalar Helmholtz Nonhomogeneous Differential Equation Two Dimensional Fourier Transform (FT) Appendices
  • 4. 4 SOLO Diffraction The term Diffraction has been defined by Sommerfield as any deviation of light rays from rectilinear paths which cannot be interpreted as reflection or refraction. Sommerfeld, A., “Optics, Lectures on Theoretical Physics”, vol. IV, Academic Press Inc., New York, 1954, Chapter V, “The Theory of Diffraction”, pg. 179, english translation of Arnold Johannes Wilhelm Sommerfeld 1868 - 1951 Sommerfeld, A. , “Mathematische Theorie der Diffraction”, Math Ann., 1896 Table of Content
  • 5. 5 SOLO Diffraction - History The Grimaldi’s description of diffraction was published in 1665 , two years after his death: “Physico-Mathesis de lumine, Coloribus et iride” Francesco M. Grimaldi, S.J. (1613 – 1663) professor of mathematics and physics at the Jesuit college in Bolognia discovered the diffraction of light and gave it the name diffractio, which means “breaking up”. http://www.faculty.fairfield.edu/jmac/sj/scientists/grimaldi.htm “When the light is incident on a smooth white surface it will show an illuminated base IK notable greater than the rays would make which are transmitted in straight lines through the two holes. This is proved as often as the experiment is trayed by observing how great the base IK is in fact and deducing by calculation how great the base NO ought to be which is formed by the direct rays. Further it should not be omitted that the illuminated base IK appears in the middle suffused with pure light, and either extremity its light is colored.” Single Slit Diffraction Double Slit Diffraction http://en.wikipedia.org/wiki/Francesco_Maria_Grimaldi Table of Content
  • 6. 6 SOLO Huygens Principle Christiaan Huygens 1629-1695 Every point on a primary wavefront serves the source of spherical secondary wavelets such that the primary wavefront at some later time is the envelope o these wavelets. Moreover, the wavelets advance with a speed and frequency equal to that of the primary wave at each point in space. “We have still to consider, in studying the spreading of these waves, that each particle of matter in which a wave proceeds not only communicates its motion to the next particle to it, which is on the straight line drawn from the luminous point, but it also necessarily gives a motion to all the other which touch it and which oppose its motion. The result is that around each particle there arises a wave of which this particle is a center.” Huygens visualized the propagation of light in terms of mechanical vibration of an elastic medium (ether). Diffraction - History Table of Content
  • 7. 7 SOLO James Gregory (1638 – 1675) a Scottish mathematician and astronomer professor at the University of St. Andrews and the University of Edinburgh discovered the diffraction grating by passing sunlight through a bird feather and observing the diffraction produced. Diffraction - History http://en.wikipedia.org/wiki/James_Gregory_%28astronomer_and_mathematician%29 http://microscopy.fsu.edu/optics/timeline/people/gregory.html Table of Content 1661
  • 8. 8 Diffraction - History SOLO M.C. Hutley, “Diffraction Gratings”, Academic Press., 1982, p. 3 Diffraction Gratings 1786 The invention of Diffraction Gratings is ascribed to David Rittenhouse who in 1786 had been intriged by the effects produced when viewing a distant light source through a fine handkerchief. In order to repeat the phenomenon under controlled conditions, he made up a square of parallel hairs laid across two fine screws made by a watchmaker. When he looked through this at a small opening in the window shutter of a darkened room, he saw three images of approximately equal brightness and several others on either side “fainter and growing more faint, coloured and indistinct, the further they were from the main line”. He noted that red light was bent more than blue light and ascribed these effects to diffraction. http://experts.about.com/e/d/da/david_rittenhouse.htm David Rittenhouse 1732 - 1796
  • 9. 9 Optics - History SOLO History (continue) In 1801 Thomas Young uses constructive and destructive interference of waves to explain the Newton’s rings. Thomas Young 1773-1829 1801-1803 In 1803 Thomas Young explains the fringes at the edges of shadows using the wave theory of light. But, the fact that was belived that the light waves are longitudinal, mad difficult the explanation of double refraction in certain crystals. Table of Content
  • 10. 10 SOLO “Between 1805 and 1815 Laplace, Biot and (in part) Malus created an elaborate mathematical theory of light, based on the notion that light rays are streams of particles that interact with the particles of matter by short range forces. By suitably modifying Newton’s original emission theory of light and applying superior mathematical methods, they were able to explain most of the known optical phenomena, including the effect of double refraction which had been the focus of Huyghen’s work. Diffraction - History http://microscopy.fsu.edu/optics/timeline/people/gregory.html http://www.schillerinstitute.org/fid_97-01/993poisson_jbt.html Pierre-Simon Laplace (1749-1827) In 1817, expecting to soon celebrate the final triumph of their neo-Newtonian optics’ Laplace and Biot arranged for the physics prize of the French Academy of Science to be proposed for the best work on theme of diffraction – the apparent bending of light rays at the boundaries between different media.”
  • 11. 11 SOLO Fraunhofer’s solar dark lines In 1813 Joseph Fraunhofer rediscovered William Hyde Wollaston’s dark lines in the solar system, which are known as Fraunhofer’s lines. He began a systematic measurement of the wavelengths of the solar Spectrum, by mapping 570 lines. Diffraction - History http://www.musoptin.com/spektro1.html 1813 Fraunhofer Telescope. Fraunhofer placed a narrow slit in front of a prism and viewed the spectrum of light passing through this combination with a small telescope eypiece. By this technique he was able to investigate the spectrum bit by bit, color by color.
  • 12. 12 POLARIZATION - History Arago and Fresnel investigated the interference of polarized rays of light and found in 1816 that two rays polarized at right angles to each other never interface. SOLO History (continue) Dominique François Jean Arago 1786-1853 Augustin Jean Fresnel 1788-1827 Arago relayed to Thomas Young in London the results of the experiment he had performed with Fresnel. This stimulate Young to propose in 1817 that the oscillations in the optical wave where transverse, or perpendicular to the direction of propagation, and not longitudinal as every proponent of wave theory believed. Thomas Young 1773-1829 1816-1817 longitudinal waves transversal waves
  • 13. 13 SOLO Augustin Jean Fresnel 1788-1827 In 1818 Fresnel, by using Huygens’ concept of secondary wavelets and Young’s explanation of interface, developed the diffraction theory of scalar waves. 1818Diffraction - History
  • 14. 14 SOLO In 1818 August Fresnel supported by his friend André-Marie Ampère submitted to the French Academy a thesis in which he explained the diffraction by enriching the Huyghens’ conception of propagation of light by taking in account of the distinct phases within each wavelength and the interaction (interference) between different phases at each locus of the propagation process. Diffraction - History http://microscopy.fsu.edu/optics/timeline/people/gregory.html http://www.schillerinstitute.org/fid_97-01/993poisson_jbt.html André-Marie Ampère (1775-1836) Dominique François Jean Arago 1786-1853 Siméon Denis Poisson 1781-1840 Pierre-Simon Laplace (1749-1827) Joseph Louis Guy-Lussac 1778-1850 Judging Committee of French Academy 1818
  • 15. 15 SOLO Diffraction - History http://microscopy.fsu.edu/optics/timeline/people/gregory.html http://www.schillerinstitute.org/fid_97-01/993poisson_jbt.html Dominique François Jean Arago 1786-1853 Siméon Denis Poisson an Academy member rise the objection that if the Fresnel construction is valid a bright spot would have to appear in the middle of the shadow cast by a spherical or disc-shaped object, when illuminated, and this is absurd. Soon after the meeting, Dominique Francois Arago, one of the judges for the Academy competition, did the experiment and there was the bright spot in the middle of the shadow. Fresnel was awarded the prize in the competition. Siméon Denis Poisson 1781-1840 Poisson’s or Arago’s Spot
  • 16. 16 SOLO In 1821 Joseph Fraunhofer build the first diffraction grating, made up of 260 close parallel wires. Latter he built a diffraction grating using 10,000 parallel lines per inch. Diffraction - History Utzshneider, Fraunhfer, Reichenbach, Mertz http://www.musoptin.com/fraunhofer.html 1821-1823 In 1823 Fraunhofer published his theory of diffraction. Table of Content
  • 17. 17 SOLO Dffraction Grating Diffraction - History 1835 By 1835 at the latest, the physicist F. M. Schwerd was able to take exact measurements of the visible spectrum with the aid of such a diffraction grating, and show that red light has a longer wavelength than blue light, and that yellow and blue light lie in the middle of the spectrum. http://colorsystem.com/projekte/engl/16haye.htm 1835 - Schwerd developed a "wave" theory of the diffraction grating. http://www.thespectroscopynet.com/Educational/Masson.htm “Die Beugungserscheinungen aus den Fundamentalgesetzen der Undulationstheorie” http://www.worldcatlibraries.org/wcpa/ow/3e723a9c5ac2a2b2.html Friedrich Magnus Schwerd 1792 - 1871 http://193.174.156.247/FMSG/wir_ueber_uns/wer_war_Schwerd.php
  • 18. 18 SOLO H.A. Rowland at the John Hopkins University greatly improved diffraction gratings, introducing curved grating. Diffraction - History 1882 http://thespectroscopynet.com/educational/Kirchhoff.htm American physicist who invented the concave diffraction grating, which replaced prisms and plane gratings in many applications, and revolutionized spectrum analysis—the resolution of a beam of light into components that differ in wavelength. http://www.britannica.com/eb/article-9064251/Henry-Augustus-Rowland Henry Augustus Rowland 1848 - 1901 http://chem.ch.huji.ac.il/~eugeniik/history/rowland.html Rowland gratings Rowland invented the ruling machine that can engrave as many as 20,000 lines to inch for diffraction gratings
  • 19. 19 SOLO Optics History Debye-Sears Effect 1932 Nobel Prize in Chemistry 1936 Peter Josephus Wilhelmus Debye 1884 – 1966 Diffraction of light by ultrasonic waves. Francis Weston Sears 1898 - 1975 P. Debye and F. W. Sears, ``On the Scattering of Light by Supersonic Waves'', Proc. Natl. Acad. Sci. U.S.A. 18, 409 (1932). Acousto-optic effect, also known in the scientific literature as acousto- optic interaction or diffraction of light by acoustic waves, was first predicted by Brillouin in 1921 and experimentally revealed by Lucas, Biquard and Debye, Sears in 1932. The basis of the acousto-optic interaction is a more general effect of photoelasticity consisting in the change of the medium permittivity under the action of a mechanical strain a. Phenomenologically, this effect is described as variations of the optical indicatrix coefficients caused by the strain http://www.mt-berlin.com/frames_ao/descriptions/ao_effect.htm
  • 20. 20 DiffractionSOLO Augustin Jean Fresnel 1788-1827 In 1818 Fresnel, by using Huygens’ concept of secondary wavelets and Young’s explanation of interface, developed the diffraction theory of scalar waves. P 0P Q 1x 0x 1y 0y η ξ Fr  Sr  ρ  r  O 'θ θ Screen Image plane Source plane 0O 1O Sn1 Σ Σ - Screen Aperture Sn1 - normal to Screen F rPP  =0 SrQP  =0 rQP  = From a source P0 at a distance from a aperture a spherical wavelet propagates toward the aperture: ( ) ( )Srktj S source Q e r A tU − = ' ' ω According to Huygens Principle second wavelets will start at the aperture and will add at the image point P. ( ) ( ) ( )( ) ( ) ( )( ) ∫∫ Σ ++− Σ +−− == dre rr A Kdre r U KtU rrktj S sourcerkttjQ P S 2/2/' ',', πωπω θθθθ where: ( )',θθK obliquity or inclination factor ( ) ( )SSS nrnr 11cos&11cos' 11 ⋅=⋅= −− θθ ( ) ( )   === === 0',0 max0',0 πθθ θθ K K Obliquity factor and π/2 phase were introduced by Fresnel to explain experiences results. Fresnel Diffraction Formula Fresnel took in consideration the phase of each wavelet to obtain: Fresnel – Huygens’ Diffraction Theory Table of Content Fresnel –Kirchoff Diffraction Formula
  • 21. 21 SOLO Fresnel-Kirchhoff Diffraction Theory In 1882 Gustav Kirchhoff, using mathematical foundation, succeeded to show that the amplitude and phases ascribed to the wavelets by Fresnel, by enhancing the Huyghen’s Principle, were a consequence of the wave nature of light. HBED  µε == & For an Homogeneous, Linear and Isotropic Medium where are constant scalars, we have µε, t E t D H t t H t B E ED HB ∂ ∂ = ∂ ∂ =×∇ ∂ ∂ ∂ ∂ −= ∂ ∂ −=×∇×∇ = =       εµ µ ε µ Since we have also tt ∂ ∂ ×∇=∇× ∂ ∂ t D H ∂ ∂ =×∇   t B E ∂ ∂ −=×∇   For Source less Medium ( ) ( ) ( )                   =⋅∇= ∇−⋅∇∇=×∇×∇ = ∂ ∂ +×∇×∇ 0& 0 2 2 2 DED EEE t E E     ε µε 02 2 2 = ∂ ∂ −∇ t E E   µε Maxwell Equations are ( ) eJ t D HA    + ∂ ∂ =×∇ mBGM ρ=⋅∇  )( ( ) mJ t B EF    − ∂ ∂ −=×∇ ( ) eDGE ρ=⋅∇  James C. Maxwell (1831-1879) Gustav Robert Kirchhoff 1824-1887 Diffraction
  • 22. 22 DiffractionSOLO Fresnel-Kirchhoff Diffraction Theory 0 1 2 2 2 2 =      ∂ ∂ −∇ U tv Scalar Differential Wave Equation For a monochromatic wave of frequency f ( ω = 2πf ) a solution is: ( ) ( ) ( )[ ] ( ) ( )[ ] ( ){ }tjPjPUPtPUtPU ωφφω expexpRecos, −=+= Define the phasor ( ) ( ) ( )[ ]PjPUPU φ−= exp U v U tv 2 2 2 2 2 1 ω −= ∂ ∂ λ π π ω 2 2 === v f v k ( ) 022 =+∇ UkPhasor Scalar Differential Wave Equation This is the Scalar Helmholtz Differential Equation Hermann von Helmholtz 1821-1894 Boundary Conditions for the Helmholtz Differential Equation: • Dirichlet (U given on the boundary) • Neumann (dU/dn given on the boundary) Johann Peter Gustav Lejeune Dirichlet 1805-1859 Franz Neumann 1798-1895 εµ 1 0 11 2 2 2 2 2 2 2 2 2 ==      ∂ ∂ −∇= ∂ ∂ −∇ vE tvt E v E    Vector Differential Wave Equation
  • 23. 23 To find the solution of the Scalar Helmholtz Differential Equation we need to use the following: • Scalar Green’s Identity ( ) ( )∫∫ → ⋅∇−∇=∇−∇ SV dSGUUGdVGUUG 22 • Green’s Function ( ) ( ) SF SF FS rr rrkj rrG    − − = exp ; This Green’s Function is a particular solution of the following Helmholtz Non-homogeneous Differential Equation: ( ) ( ) ( )SFFSFSS rrrrGkrrG  −=+∇ πδ4;; 22 SOLO Fresnel-Kirchhoff Diffraction Theory Diffraction provided that and are continuous in volume V UUU 2 ,, ∇∇ GGG 2 ,, ∇∇ Free-Space Green’s Function  n i iSS 1= = iS nS dV dSnS → 1 V Fr  Sr  F 0r SF rrr  −= PositionSourcerS  PositionFieldrF  ( ) 022 =+∇ Uk Scalar Helmholtz Differential Equation
  • 24. 24 SOLO • Scalar Green’s Identities ( ) ( )∫∫ → ⋅∇−∇=∇−∇ SV dSGUUGdVGUUG 22 Let start from the Gauss’ Divergence Theorem ∫∫ → ⋅=⋅∇ SV dSAdVA  Karl Friederich Gauss 1777-1855 where is any vector field (function of position and time) continuous and differentiable in the volume V bounded by the enclosed surface S. Let define . A  UGA ∇=  ( ) UGUGUGA 2 ∇+∇⋅∇=∇⋅∇=⋅∇  Then ( ) ( ) ∫∫∫ → ⋅∇=∇+∇⋅∇=∇⋅∇ S Gauss VV dSUGdVUGUGdVUG 2 ( ) ( ) ∫∫∫ → ⋅∇=∇+∇⋅∇=∇⋅∇ S Gauss VV dSGUdVGUUGdVGU 2 Subtracting the second equation from the first we obtain First Green’s Identity Second Green’s Identity We have GEORGE GREEN 1793-1841 Fresnel-Kirchhoff Diffraction Theory Diffraction To find a general solution of the Scalar Helmoltz Differential Equation we need to use the If we interchange with we obtainG U
  • 25. 25 Integral Theorem of Helmholtz and Kirchhoff ( ) ( )( ) ( )F V sF V SS rUdVUrrUGkUGkdVGUUG  πδπ 442222 −=−−+−=∇−∇ ∫∫ Using: ( ) ( ) ( )SFFSFSS rrrrGkrrG  −=+∇ πδ4;; 22  n i iSS 1= = iS nS dV dSnS → 1 V Fr  Sr  F 0r SF rrr  −= PositionSourcerS  PositionFieldrF  SOLO Fresnel-Kirchhoff Diffraction Theory Diffraction ( ) ( ) 0,22 =+∇ SFS rrUk  From the left side of the Second Scalar Green’s Identity we have: ( ) ∫∫       ∂ ∂ − ∂ ∂ =⋅∇−∇ → SS SS dS n G U n U GdSGUUG ( ) ( ) SF SF FS rr rrkj rrG    − − = exp ;Using: we obtain: ( ) ( ) ( ) ∫                 − − ∂ ∂ − ∂ ∂ − − −= S SF SF SF SF F dS rr rrkj n U n U rr rrkj rU      expexp 4 1 π This is the Integral Theorem of Helmholtz and Kirchhoff that enables to calculate as function of the values of and on the enclosed surface S.nU ∂∂ /UU Note: This Theorem was developed first by H. von Helmholtz in acoustics. Hermann von Helmholtz 1821-1894 Gustav Robert Kirchhoff 1824-1887 From the right side of the Second Scalar Green’s Identity, using we have:dS n U dSnUdSU SSS ∂ ∂ =⋅∇=⋅∇ →→ 1 Scalar Helmholtz Differential Equation
  • 26. 26 Sommerfeld Radiation Conditions SOLO Fresnel-Kirchhoff Diffraction Theory Diffraction ( ) ∫∫ ∫ ∞+Σ+       ∂ ∂ − ∂ ∂ −=       ∂ ∂ − ∂ ∂ −= SS S F dS n G U n U G dS n G U n U GrU 1 4 1 4 1 π π  P Fr  Sr  r  Σ 1S ∞S R Screen Aperture ωd → Sn1 → Sn1 since the condition that the previous integral be finite is: ( ) ( ) R Rkj rrG SFS exp ; → ∞  Consider the surface of integration ∞+Σ+= SSS 1 1S - on the screen ∞S - hemisphere with radius ∞→R ( ) Gkj R Rkj R kj n G ≅      −= ∂ ∂ exp1 ∫∫∫ Ω       − ∂ ∂ =      ∂ ∂ − ∂ ∂ ∞ ωdRUkj n U GdS n G U n U G S 2 ( ) 1 exp limlim == ∞→∞→ R Rkj RGR RR 0lim =      − ∂ ∂ ∞→ Ukj n U R R This is Sommerfeld Radiation Conditions Σ - on the aperture
  • 27. 27 is known as optical disturbance. Being a scalar quantity, it cannot accurately represent an electromagnetic field. However, the square of this scalar quantity can be regarded as a measure of the irradiance at a given point. U Sommerfeld Radiation Conditions (continue) SOLO Fresnel-Kirchhoff Diffraction Theory Diffraction ( ) ∫∫ ∫ ∞+Σ+       ∂ ∂ − ∂ ∂ −=       ∂ ∂ − ∂ ∂ −= SS S F dS n G U n U G dS n G U n U GrU 1 4 1 4 1 π π  0lim =      − ∂ ∂ ∞→ Ukj n U R R This is Sommerfeld Radiation Conditions This implies that: 0 4 1 =      ∂ ∂ − ∂ ∂ ∫∫ ∞S dS n G U n U G π and the Integral of Helmholtz and Kirchhoff becomes: ( ) ∫∫Σ+       ∂ ∂ − ∂ ∂ −= 1 4 1 S F dS n G U n U GrU π  P Fr  Sr  r  Σ 1S ∞S R Screen Aperture ωd→ Sn1 → Sn1 0P Q Arnold Johannes Wilhelm Sommerfeld 1868 - 1951
  • 28. 28 The Kirchhoff Boundary Conditions SOLO Fresnel-Kirchhoff Diffraction Theory Diffraction Kirchhoff assumed the following boundary conditions: ( ) ∫∫Σ       ∂ ∂ − ∂ ∂ −= dS n G U n U GrU F π4 1 1. The field distribution and its derivative , across the aperture , are the same as in the absence of the screen. U nU ∂∂ / Σ 2. On the shadowed part of the screen and0 1 =S U 0/ 1 =∂∂ S nU The Integral of Helmholtz and Kirchhoff becomes: The field at point P is the superposition of the aperture values 0=Σ U 0/ =∂∂ Σ nU Note: Moreover, mathematically the condition implies0/&0 11 =∂∂= SS nUU 0/&0 =∂∂= ΣΣ nUU However, if the dimensions of the aperture are large relative to the wavelength λ, the integral agrees well with the experiment. P Fr  Sr  r  Σ 1S ∞S R Screen Aperture 0P 0,0 1 1 = ∂ ∂ = S S n U U Σ Σ ∂ ∂ n U U , Q → Sn1 → Sn1 Sθ θ Kirchhoff boundary conditions are not physical since the presence of the screen changes field values on the aperture and on the screen.
  • 29. 29 Fresnel-Kirchhoff Diffraction Formula SOLO Fresnel-Kirchhoff Diffraction Theory Diffraction ( ) ∫∫Σ       ∂ ∂ − ∂ ∂ −= dS n G U n U GrU F π4 1 The Integral of Helmholtz and Kirchhoff: ΣAssume that the aperture is illuminated by a single spherical wave: ( ) ( ) S Ssource S r rkjA rU exp =  ( ) ( ) ( ) ( )       ⋅      −= ⋅      ∇=⋅∇= ∂ ∂ →→ →→ SS S Ssource S S S Ssource SSSS S nr r rkjA r kj n r rkjA nrU n rU 11 exp1 1 exp 1   ( ) ( ) SF SF FS rr rrkj rrG    − − = exp ; ( ) ( ) ( ) ( )       ⋅      −−= ⋅         − − ∇=⋅∇= ∂ ∂ →→ →=−→ S S SF SF S rrr SFSS FS nr r rkj r kj n rr rrkj nrrG n rrG SF 11 exp1 1 exp 1, ,      P Fr  Sr  r  Σ 1S ∞S R Screen Aperture 0P 0,0 1 1 = ∂ ∂ = S S n U U Σ Σ ∂ ∂ n U U , Q → Sn1 → Sn1 Sθ θ
  • 30. 30 Fresnel-Kirchhoff Diffraction Formula SOLO Fresnel-Kirchhoff Diffraction Theory Diffraction ( ) ∫∫Σ       ∂ ∂ − ∂ ∂ −= dS n G U n U GrU F π4 1 The Integral of Helmholtz and Kirchhoff: ΣAssume that the aperture is illuminated by a single spherical wave, and: Srr,<<λ ( ) ( )       ⋅≅ ∂ ∂ →→ SS S SsourceS nr r rkjA j n rU 11 exp2 λ π  ( ) ( ) r rkj rrG FS exp ; =  ( ) ( )       ⋅−≅ ∂ ∂ →→ S FS nr r rkj j n rrG 11 exp2, λ π  Srr k 1 , 12 >>= λ π ( ) ( )( ) ∫∫Σ →→→→                   ⋅−      ⋅−       + = dS nrnr rr rrkjA jrU SSS s ssource F 2 1111 exp λ  ( ) ( ) S Ssource S r rkjA rU exp =  P Fr  Sr  r  Σ 1S ∞S R Screen Aperture 0P 0,0 1 1 = ∂ ∂ = S S n U U Σ Σ ∂ ∂ n U U , Q → Sn1 → Sn1 Sθ θ
  • 31. 31 Fresnel-Kirchhoff Diffraction Formula SOLO Fresnel-Kirchhoff Diffraction Theory Diffraction ( ) ( )( ) ( ) ( )∫∫ ∫∫ Σ Σ →→→→                   ++ =                   ⋅−      ⋅−       + = dSK rr rrkj A dS nrnr rr rrkjA jrU S s s source SSS s ssource F θθ π λ λ , 2 exp 2 1111 exp ( )       ⋅−=      ⋅−= + =       ⋅−      ⋅− = →→→→ →→→→ SSSS S SSS S nrnr nrnr K 11cos&11cos 2 coscos 2 1111 , θθ θθ θθ 1. Obliquity or Inclination Factor: ( ) ( ) 0,0&10,0 ====== πθθθθ SS KK 2. Additional phase π/2 3. The amplitude is scaled by the factor 1/λ (not found in Fresnel derivation) P Fr  Sr  r  Σ 1S ∞S R Screen Aperture 0P 0,0 1 1 = ∂ ∂ = S S n U U Σ Σ ∂ ∂ n U U , Q → Sn1 → Sn1 Sθ θ We recovered Fresnel Diffraction Formula with:
  • 32. 32 Reciprocity Theorem of Helmholtz SOLO Fresnel-Kirchhoff Diffraction Theory Diffraction ( ) ( )( ) ( ) ( )∫∫ ∫∫ Σ Σ →→→→                   ++ =                   ⋅−      ⋅−       + = dSK rr rrkj A dS nrnr rr rrkjA jrU S s s source SSS s ssource F θθ π λ λ , 2 exp 2 1111 exp We can see that the Fresnel-Kirchhoff Diffraction Formula is symmetrical with respect to r and rS, i.e. point source and observation point. Therefore we can interchange them and obtain the same relation. This result is called Reciprocity Theorem of Helmholtz. P Fr  Sr  r  Σ 1S ∞S R Screen Aperture 0P 0,0 1 1 = ∂ ∂ = S S n U U Σ Σ ∂ ∂ n U U , Q → Sn1 → Sn1 Sθ θ Hermann von Helmholtz 1821-1894 Note: This is similar to Lorentz’s Reciprocity Theorem in Electromagnetism.
  • 33. 33 Huygens-Fresnel Principle SOLO Fresnel-Kirchhoff Diffraction Theory Diffraction ( ) ( ) ( )∫∫Σ                   ++ = dSK rr rrkj A rU S s s source F θθ π λ , 2 exp  The Fresnel Diffraction Formula can be rewritten as: ( ) ( ) ( ) ∫∫Σ = dS r rkj QVrU F exp where: ( ) ( ) s s S source r rkj K A QV       + = 2 exp , π θθ λ The interpretation of this formula is that each point of a wavefront can be considered as the center of a secondary spherical wave, and those secondary spherical waves interfere to result in the total field, is known as the Huygens-Fresnel Principle. P Fr  Sr  r  Σ 1S ∞S R Screen Aperture 0P 0,0 1 1 = ∂ ∂ = S S n U U Σ Σ ∂ ∂ n U U , Q → Sn1 → Sn1 Sθ θ Table of Content
  • 34. 34 SOLO Diffraction Consider a diffracting aperture Σ. Suppose that the aperture is divided into two portions Σ 1 and Σ 2 such that Σ = Σ1 + Σ2. The two aperture Σ1 and Σ2 are said to be complementary. Complementary Apertures. Babinet Principle From the Fresnel Diffraction Formula: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫∫∫ ∫∫ ΣΣ Σ += = 21 dS r rkj QVdS r rkj QV dS r rkj QVrU F expexp exp P Fr  1S r  1r  2 Σ 1S Screen Apertures 0P 1 Q→ Sn1 2S r  2 r 1 Σ 2 Q We can see that the result is the added effect of all complimentary apertures. This is known as Babinet Principle. Table of Content The result can be very helpful when Σ is a very complicated aperture, that can be decomposed in a few simple apertures.
  • 35. 35 SOLO Diffraction The Kirchhoff Diffraction Formula is an approximation since for zero field and normal derivative on any finite surface the field is zero everywhere. This was pointed out by Poincare in 1892 and by Sommerfeld in 1894. The first rigorous solution of a diffraction problem was given by Sommerfeld in 1896 for a two-dimensional case of a planar wave incident on an infinitesimally thin, perfectly conducting half plane. This solution is not given here. Arnold Johannes Wilhelm Sommerfeld 1868 - 1951 Jules Henri Poincaré 1854-1912 Sommerfeld, A. : “Mathematische Theorie der Diffraction”, Math. Ann., 47:317, 1896 translated in english as “Optics, Lectures on Theoretical Physics”, vol. IV, Academic Press Inc., New York, 1954 Rayleigh-Sommerfeld Diffraction Formula
  • 36. 36 SOLO Rayleigh-Sommerfeld Diffraction Formula Diffraction Let start from the Helmholtz and Kirchhoff Integral: P Fr  Sr  r  Σ 1S ∞S R Screen Aperture 0P 0,0 1 1 = ∂ ∂ = S S n U U Σ Σ ∂ ∂ n U U , Q → Sn1 → Sn1 Sθ θ 0'PFr'  →→       ⋅−= SSSSS nnrrr 112'  ( ) ∫∫+Σ       ∂ ∂ − ∂ ∂ −= 1 4 1 S F dS n G U n U GrU π  Suppose that the Scalar Green Function is generated not only by P0 located at , but also by a point P’0 located symmetric relative to the screen at →→       ⋅−= SSSSS nnrrr 112'  Sr  G ( ) ( ) ( ) SF SF SF SF SF rr rrkj rr rrkj rrG ' 'expexp ,_      − − − − − = ( ) ( ) ( ) SF SF SF SF SF rr rrkj rr rrkj rrG ' 'expexp ,      − − + − − =+ or: We have 11 ,, ' SSFSSF rrrr ΣΣ −=−  ( ) ( ) → Σ → Σ ⋅−−=⋅− SSSFSSSF nrrnrr 1'1 11 ,,  0 1, = Σ− S G ( ) 011 exp1 2 11 ,, _ ≠            ⋅      −−= ∂ ∂ Σ →→ Σ S S S nr r rkj r kj n G 0 1, = ∂ ∂ Σ + S n G( ) 0 exp 2 1 1 , , ≠    = Σ Σ+ S S r rkj G
  • 37. 37 SOLO Rayleigh-Sommerfeld Diffraction Formula Diffraction 1. Start from the Helmholtz and Kirchhoff Integral: P Fr  Sr  r  Σ 1S ∞S R Screen Aperture 0P 0,0 1 1 = ∂ ∂ = S S n U U Σ Σ ∂ ∂ n U U , Q → Sn1 → Sn1 Sθ θ 0'PFr'  →→       ⋅−= SSSSS nnrrr 112'  ( ) ∫∫+Σ       ∂ ∂ − ∂ ∂ −= 1 4 1 S F dS n G U n U GrU π  ( ) ( ) ( ) SF SF SF SF SF rr rrkj rr rrkj rrG ' 'expexp ,_      − − − − − =Choose 0 1, = Σ− S G ( ) 011 exp1 2 11 ,, _ ≠            ⋅      −−= ∂ ∂ Σ →→ Σ S S S nr r rkj r kj n G On the shadowed part of the screen and0 1 =S U 0/ 1 ≠∂∂ S nU ( ) ( ) ( ) ∫∫∫∫ Σ →→= >>Σ       ⋅−≅         ∂ ∂ = dSnr r rkj rU j dS n G UrU SS k r kj F 11 exp 4 1 /2 1 _  λπ λπ This is Rayleigh-Sommerfeld Diffraction Formula of the first kind SF rrr  −= Arnold Johannes Wilhelm Sommerfeld 1868 - 1951 ( ) ( ) S Ssource S r rkjA UrU exp == Σ  John William Strutt Lord Rayleigh (1842-1919) ( ) ( ) ( ) ∫∫Σ →→       ⋅−= dSnr r rkj r rkjAj rU S S Ssource F 11 expexp λ  we obtain:
  • 38. 38 SOLO Rayleigh-Sommerfeld Diffraction Formula Diffraction 2. Start from the Helmholtz and Kirchhoff Integral: P Fr  Sr  r  Σ 1S ∞S R Screen Aperture 0P 0,0 1 1 = ∂ ∂ = S S n U U Σ Σ ∂ ∂ n U U , Q → Sn1 → Sn1 Sθ θ 0'PFr'  →→       ⋅−= SSSSS nnrrr 112'  ( ) ∫∫+Σ       ∂ ∂ − ∂ ∂ −= 1 4 1 S F dS n G U n U GrU π  ( ) ( ) ( ) SF SF SF SF SF rr rrkj rr rrkj rrG ' 'expexp ,      − − + − − =+ Choose On the shadowed part of the screen and0 1 ≠S U 0/ 1 =∂∂ S nU SF rrr  −=0 1, = ∂ ∂ Σ + S n G( ) 0 exp 2 1 1 , , ≠      = Σ Σ+ S S r rkj G ( ) ( ) ∫∫∫∫ ΣΣ + ∂ ∂ −=      ∂ ∂ −= dS n U r rkj dS n U GrU F exp 2 1 4 1 ππ  ( ) ( ) S Ssource S r rkjA UrU exp == Σ  ( ) ( )       ⋅≅ ∂ ∂ →→ SS S SsourceS nr r rkjA j n rU 11 exp2 λ π  ( ) ( ) ( ) ∫∫Σ →→       ⋅−= dSnr r rkj r rkjAj rU SS S Ssource F 11 expexp λ  For we obtain: Table of Content This is Rayleigh-Sommerfeld Diffraction Formula of the second kind
  • 39. 39 P 0P Q 1x 0x 1y 0y η ξ Sr'  Sr  ρ  r  O Sθ θ Screen Image plane Source plane 0O 1O Sn1 Σ Σ - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn θcos11 =⋅ θcos11 =⋅ rnS z Sn1 'r  Fr  F rPP  =0 S rQP  =0 rQP  = SrOP '0  = '1 rOO  = SOLO Diffraction ( ) ( ) ( ) ∫∫Σ + = dS r rkj r rkjAj rU S S Ssource F 2 coscosexpexp θθ λ  Start with Fresnel-Kirchhoff (or Rayleigh-Sommerfeld) Diffraction Formula 1. If the inclination factor is nearly constant over the aperture ( ) constKK S ==θθ , Extensions of Fresnel-Kirchhoff Diffraction Theory ( ) ( ) ( ) ∫∫Σ ≈ dS r rkj r rkjAKj rU S Ssource F expexp λ  ( ) ( ) ( ) ∫∫Σ = dS r rkj rU Kj rU SF exp λ 2. Replace the incident point source wavefront with a general waveform ( ) S S r rkjexp ( )Sinc rU  3. Characterize the aperture by a transfer function τ to model amplitude or phase changes due to optic system ( ) ( ) ( ) ( ) ∫∫Σ = dS r rkj rrU j rU SSF exp τ λ Table of Content
  • 40. 40 SOLO Diffraction Phase Approximations – Fresnel (Near-Field) Approximation Fresnel Approximation or Near Field Approximation can be used when aperture dimensions are comparable to distance to source rS or image r. ( ) ( ) ( ) ∫∫Σ + = dS r rkj r rkjAj rU S S Ssource F 2 coscosexpexp θθ λ  Start with Fresnel-Kirchhoff Diffraction Formula If the inclination factor is nearly constant over the aperture ( ) constKK S ==θθ , ( ) ( ) ( ) ( ) ( ) ∫∫∫∫ ΣΣ == dS r rkj rU Kj dS r rkj r rkjAKj rU S S Ssource F expexpexp  λλ P Q 1x 1y η ξ ρ  r  O θ Screen Image plane 1O Sn1 Σ 1r  z Sn1 'r  rQP  = '1 rOO  = P 0P Q 1x 0x 1y 0y η ξ Sr'  Sr  ρ  r  O Sθ θ Screen Image plane Source plane 0O 1O Sn1 Σ Σ - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn θcos11 =⋅ θcos11 =⋅ rnS z Sn1 'r  Fr  ( ) ( ) ( ) 1 ''2 ' ' 1''2' ' 2 2 1 2 1 2 11 2/1 2 2 1 2/1 11 0 1 2 1 << − + − +≈         − +=         −⋅−+−⋅+= −+= ++=+ r r k r r r r r rrrrrrr rrr x x ρρ ρ ρρρ ρ          ( ) ( )                 − ≈ '2 exp ' 'expexp 2 1 r r kj r rkj r rkj ρ  ( ) ( ) ( ) 2 max 2 1 2 1 ' '2 exp ' 'exp rrk dS r r kjrU r rkjKj rU SF <<−         − ≈ ∫∫Σ ρ ρ λ    Augustin Jean Fresnel 1788-1827
  • 41. 41 SOLO Diffraction Phase Approximations – Fraunhofer (Near-Field) Approximation Fraunhofer Approximation or Far Field Approximation can be used when aperture dimensions are very small comparable to distance to source rS or image r. ( ) ( ) ( ) ∫∫Σ + = dS r rkj r rkjAj rU S S Ssource F 2 coscosexpexp θθ λ  Start with Fresnel-Kirchhoff Diffraction Formula If the inclination factor is nearly constant over the aperture ( ) constKK S ==θθ , ( ) ( ) ( ) ( ) ( ) ∫∫∫∫ ΣΣ =≈ dS r rkj rU Kj dS r rkj r rkjAKj rU S S Ssource F expexpexp  λλ P Q 1x 1y η ξ ρ  r  O θ Screen Image plane 1O Sn1 Σ 1r  z Sn1 'r  rQP  = '1 rOO  = P 0P Q 1x 0x 1y 0y η ξ Sr'  Sr  ρ  r  O Sθ θ Screen Image plane Source plane 0O 1O Sn1 Σ Σ - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn θcos11 =⋅ θcos11 =⋅ rnS z Sn1 'r  Fr  ( ) ( )       ⋅ −≈ ' exp ' 'expexp 1 r r kj r rkj r rkj ρ  ( ) ( ) ( ) ( ) 2 max 22 1 1 ' 2 ' exp ' 'exp rr k dS r r kjrU r rkjKj rU SF <<+       ⋅ −≈ ∫∫Σ ρ ρ λ   ( ) ( ) ( ) 1 '2' ' '2' ' ' 2 1''2' ' 2 22 11 2 22 11 2 11 2/1 2 2 1 2 1 2/1 11 0 1 2 1 << +⋅ −≈+ + + ⋅ −≈       +⋅− +=         −⋅−+−⋅+= −+= ++=+ r rk r r r r r r r r r rr rrrrrrr rrr x x ρρρρ ρρ ρρρ ρ          Table of Content
  • 42. 42 0P Q 0x 0y η Sr'  Sr  ρ  O Sθ ScreenSource plane 0O Σ Sn10r  S rQP  =0 SrOP '0  = SOLO Diffraction Fresnel and Fraunhofer Diffraction Approximations Fresnel Approximations at the Source [ ] ( )          + ⋅ −+⋅+≈               +⋅+= +⋅+= += +−+=+ S S SS S S xx x SS S S SSS SS r r rr r r rr r r rrr rr '2 '1 '2' ' ' '' ' 21' '2' ' 2 282 11 2/12 2 2/122 2 ρρ ρ ρ ρ ρρ ρ ( ) ( ) ( ) ( )         ⋅− ⋅= S S S S S S S r r kjrkj r rkj r rkj '2 '1 exp'1exp ' 'expexp 2 2 ρρ ρ   ( ) S S r rkj ' 'exp ( )ρ  ⋅Srkj '1exp ( )         ⋅− S S r r kj '2 '1 exp 2 2 ρρ  Spherical wave centered at P0. Lowest order approximation to the phase of a spherical wavefront Planar wave propagating in directionSr'1 P 0P Q 1x 0x 1y 0y η ξ Sr'  Sr  ρ  r  O Sθ θ Screen Image plane Source plane 0O 1O Sn1 Σ Σ - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn θcos11 =⋅ θcos11 =⋅ rnS z Sn1 'r  Fr 
  • 43. 43 SOLO Diffraction Fresnel and Fraunhofer Diffraction Approximations P Q 1x 1y η ξ ρ  r  O θ Screen Image plane 1O Sn1 Σ 1r  z Sn1 'r  rQP  = '1 rOO  = ( ) ( ) ( )         + ⋅ − + +≈       +⋅− +=         −⋅−+−⋅+= −+= ++=+ ''2 ' ' 2 1' '2' ' 1 22 1 2 11 2/1 2 2 1 2 1 2/1 11 0 1 2 1 r r r r r r rr r rrrrrr rrr x x ρρ ρρ ρρρ ρ ( ) ( )               ⋅ −                               ≈ ' exp '2 exp '2 exp ' 'expexp 1 22 1 r r kj r kj r r kj r rkj r rkj ρρ  Fresnel Approximations at the Image plane P 0P Q 1x 0x 1y 0y η ξ Sr'  Sr  ρ  r  O Sθ θ Screen Image plane Source plane 0O 1O Sn1 Σ Σ - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn θcos11 =⋅ θcos11 =⋅ rnS z Sn1 'r  Fr  ( ) ' 'exp r rkj ( )ρ  ⋅− '1exp rkj ( )         ⋅− '2 '1 exp 2 2 r r kj ρρ  Spherical wave centered at O. Lowest order approximation to the phase of a spherical wavefront Planar wave propagating in direction'1r
  • 44. 44 SOLO Diffraction Fresnel and Fraunhofer Diffraction Approximations (1st way) ( ) ( ) ( ) ( ) ∫∫Σ + = dS r rkj r rkjAj rU SK S S Ssource F     θθ θθ λ , 2 coscosexpexp Fresnel Approximation ( ) ( )[ ] [ ] ( )[ ] ( ) ( ) ∫∫Σ                       −⋅−− + ⋅− ⋅−⋅ + ≈ dS r rrr r r kjrrkjrrkj rr rrkjKAj rU S S S S Ssource F '2 '1 '2 '1 exp'1'1exp'1exp '' ''exp 2 1 2 1 2 2 1 ρρρρ ρ λ   Fraunhofer Approximation  ( ) ( ) 1 '2 '1 '2 '12 2 1 2 1 2 2 << −⋅−− + ⋅− S S k r rrr r r ρρρρ λ π  or S MAX rr ',' 2 << λ ρ ( ) ( )[ ] [ ] ( )[ ]∫∫Σ ⋅−⋅ + ≈ dSrrkjrrkj rr rrkjKAj rU S S Ssource F ρ λ  '1'1exp'1exp '' ''exp 1 If ( ) ( ) 1 '2 '1 '2 '1 exp 2 1 2 1 2 2 ≈                     −⋅−− + ⋅− S S r rrr r r kj ρρρρ  we obtain Augustin Jean Fresnel 1788-1827 ( ) constKK S =≈θθ , Start with '1'1 rrq S −=  P 0P Q 1x 0x 1y 0y η ξ Sr'  Sr  ρ  r  O Sθ θ Screen Image plane Source plane 0O 1O Sn1 Σ Σ - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn θcos11 =⋅ θcos11 =⋅ rnS z Sn1 'r  Fr  F rPP  =0 SrQP  =0 rQP  = S rOP '0  = '1 rOO  =
  • 45. 45 SOLO Diffraction Fresnel and Fraunhofer Diffraction Approximations (2nd way) Fresnel Approximation ( ) ( ) ( ) ( ) ( ) ( ) ∫∫Σ       −⋅− = dS r rr kjrrU r rkjj rU SSF '2 exp ' 'exp 11 ρρ τ λ   Fraunhofer Approximation  ( ) '1 '2 2 max 2 1 22 1 2 r r r r k << + ⇒<< + λ ρρ λ πIf we obtain Augustin Jean Fresnel 1788-1827 Start with ( ) ( ) ( ) ( ) ∫∫Σ = dS r rkj rrU j rU SSF exp τ λ - aperture optical transfer function( )Sr  τ - disturbance at the aperture( )SrU  ( ) ( ) ( ) ( )∫∫Σ             ⋅ −= dS r r kjrrU r rkjj rU SSF ' exp ' 'exp 1 ρ τ λ   ( ) ( )             ⋅ −                 + ≈ ' exp '2 exp ' 'expexp 1 2 1 2 r r kj r r kj r rkj r rkj ρρ  P Q 1x 1y η ξ ρ  r  O θ Screen Image plane 1O Sn1 Σ 1r  z Sn1 'r  rQP  = '1 rOO  = ρ  −+= 1 ' rrr ( ) ( ) ( ) ( ) ( ) ( ) ( )       −⋅− +≅      −⋅− +=         −⋅−+−⋅+= 2 11 2/1 2 11 2/1 11 0 1 2 '2 1' ' 1''2' r rr r r rr rrrrrrr ρρρρ ρρρ     ( ) ( ) ( ) ( )∫∫Σ             ⋅ −      + = dS r r kj r r kjrrU r rkjj rU SSF ' exp '2 exp ' 'exp 1 2 1 2 ρρ τ λ   ( ) ( ) ( )       + + + ⋅ −≈      +⋅− +=         −⋅−+−⋅+= ++=+ '2' ' ' 2 1''2' 22 11 2 112/1 2 2 1 2 1 2/1 11 0 1 2 r r r r r r rr rrrrrrr x x ρρρρ ρρρ
  • 46. 46 SOLO Diffraction Fresnel and Fraunhofer Diffraction Approximations Augustin Jean Fresnel 1788-1827 1x 1yη ξ max ρ=D Screen 1O 1r  z λ 2 D R < Fresnel Region Fraunhofer Region λ 2 D R > R Σ O  ( ) '1 '2 2 max 2 1 22 1 2 r r r r k << + ⇒<< + λ ρρ λ π Fraunhofer Approximation If Table of Content
  • 47. 47 SOLO Diffraction Fraunhofer Diffraction and the Fourier Transform ( ) ( ) ( ) ( )∫∫Σ             ⋅ −= dS r r kjrrU r rkjj rU SSF ' exp ' 'exp 1 ρ τ λ   ( )ηξ λ πρ 11 1 ' 2 ' yx rr r k +=      ⋅  ( ) ( ) ( ) ( ) ( )∫∫Σ       +−= ηξηξ λ π τ λ ddyx r jrrU r rkjj rU SSF 11 ' 2 exp ' 'exp  The integral is the two dimensional Fourier Transform of the field within the aperture ( ) ( )SS rrU  τ ( ) ( ) ( ) ( )[ ] { }Σ Σ =+−= ∫∫ fFTddkkjfkkF yxyx ηξηξηξ π exp, 2 1 :, 2 ( ) ( ) ( ) ( ) ( ){ }SSF rrUFT r rkjj rU  τπ λ 2 2 ' 'exp =Therefore P 0P Q 1x 0x 1y 0y η ξ Sr'  Sr  ρ  r  O Sθ θ Screen Image plane Source plane 0O 1O Sn1 Σ Σ - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn θcos11 =⋅ θcos11 =⋅ rnS z Sn1 'r  Fr  F rPP  =0 SrQP  =0 rQP  = SrOP '0  = '1 rOO  = Two Dimensional Fourier Transform Table of Content
  • 48. 48 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Rectangular Aperture P Q 1x 1y η ξ ρ  r  O θ Screen Image plane 1O Sn1Σ 1r  z Sn1 'r 1ξ 2ξ 1η 2η ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫∫ −− = Σ       ⋅−      ⋅−=       ⋅ −      ⋅ −      = 1 1 1 1 11 0 2 11 2 10 ' 2 exp ' 2 exp '2 'exp ' exp ' exp '2 exp ' 'exp η η ξ ξ λ π ηη λ π ξξ λ π π ηξ ηξ λ dy r jdx r j r rkjUkj dd r y kj r x kj r r kj r rkjUj rU k F  ( ) ( )    ≤≤≤≤ = elsevere U rrU SS 0 & 21110 ηηηξξξ τ  For a Rectangular Aperture Therefore ( ) ( ) ( ) ( )∫∫Σ             ⋅ −      = dS r r kjrrU r r kj r rkjj rU SSF ' exp '2 exp ' 'exp 1 2 1 ρ τ λ         ⋅       ⋅ =       −       ⋅+−      ⋅− =      ⋅−∫− 11 11 1 1 1111 1 ' 2 ' 2 sin 2 ' 2 ' 2 exp ' 2 exp ' 2 exp 1 1 ξ λ π ξ λ π ξ λ π ξ λ π ξ λ π ξξ λ π ξ ξ x r x r x r j x r jx r j dx r j       ⋅       ⋅ =       −       ⋅+−      ⋅− =      ⋅−∫− 11 11 1 1 1111 1 ' 2 ' 2 sin 2 ' 2 ' 2 exp ' 2 exp ' 2 exp 1 1 η λ π η λ π η λ π η λ π η λ π ξη λ π ξ ξ y r y r y r j y r jy r j dy r j ( ) ( )        ⋅       ⋅       ⋅       ⋅ = 11 11 11 11 4/ 11 0 ' 2 ' 2 sin ' 2 ' 2 sin ' 'exp2 η λ π η λ π ξ λ π ξ λ π ηξπ y r y r x r x r r rkjUkj rU A F 
  • 49. 49 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Rectangular Aperture (continue – 1) Since U stands for scalar field intensity (E or H), the irradiance I is given by where < > is the time average and * is the complex conjugate. ( ) ( )       ⋅       ⋅       ⋅       ⋅ = 11 11 11 11 0 ' 2 ' 2 sin ' 2 ' 2 sin ' 'exp8 η λ π η λ π ξ λ π ξ λ π π y r y r x r x r Ar rkjUkj rU F  ( ) ( ) ( ) >⋅< ∗ FFF rUrUrI  ~ Therefore ( ) ( ) 2 11 11 2 2 11 11 2 ' 2 ' 2 sin ' 2 ' 2 sin 0       ⋅       ⋅       ⋅       ⋅ = η λ π η λ π ξ λ π ξ λ π y r y r x r x r IrI F  I (0) is the irradiance at O1 (x1 = y1 = 0). Hecht pg.466
  • 50. 50 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Single Slit Aperture Let substitute in the rectangular aperture ξ1 → 0 where < > is the time average and * is the complex conjugate. ( ) ( )       ⋅       ⋅       ⋅       ⋅ = 11 11 11 11 0 ' 2 ' 2 sin ' 2 ' 2 sin ' 'exp8 η λ π η λ π ξ λ π ξ λ π π y r y r x r x r Ar rkjUkj rU F  ( ) ( ) ( ) >⋅< ∗ FFF rUrUrI  ~ Therefore ( ) ( ) 2 11 11 2 ' 2 ' 2 sin 0       ⋅       ⋅ = η λ π η λ π y r y r IrI F  I (0) is the irradiance at O1 (x1 = y1 = 0). to obtain the single (vertical) slit diffraction ( ) ( )       ⋅       ⋅ = 11 11 0 ' 2 ' 2 sin ' 'exp2 η λ π η λ π π y r y r Ar rkjUkj rU FSLITSINGLE  Since U stands for scalar field intensity (E or H), the irradiance I is given by Hecht, pg. 453 Hecht, pg. 456
  • 51. 51 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Single Slit Aperture (continue) ( ) ( ) 2 11 11 2 ' 2 ' 2 sin 0       ⋅       ⋅ = η λ π η λ π y r y r IrI F  I (0) is the irradiance at O1 (x1 = y1 = 0). Hecht, pg. 456 Hecht 455 Define: 11 ' 2 : η λ π β ⋅= y r ( ) ( ) 2 2 sin 0 β β β II = The extremum of I (β) is obtained from: ( ) ( ) ( ) 0 sincossin2 0 3 = − = β ββββ β β I d Id The results are given by: minimum,3,2,0sin πππββ ±±±=⇒= maximumββ =tan The solutions can be obtained graphically as shown in the figure and are: ,4707.3,4590.2,4303.1 πππβ ±±±=
  • 52. 52 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Double Slit Aperture ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )               ⋅ −+      ⋅ −      = ∫∫ + − +− −− ξ ξ ξ ξ λ d r x kjd r x kj r r kj r rkjUj rU ba ba ba ba F 2/ 2/ 1 2/ 2/ 1 2 10 ' exp ' exp '2 exp ' 'exp P Q 1x 1y η ξ ρ  r  O θ Screen Image plane 1O Sn1Σ 1r  z Sn1 'r  1η b b a( ) ( ) ( ) ( )∫∫Σ             ⋅ −      = dS r r kjrrU r r kj r rkjj rU SSF ' exp '2 exp ' 'exp 1 2 1 ρ τ λ   ( ) ( ) ( ) ( )       ⋅       ⋅       ⋅ =       −       −−⋅−−      +−⋅− =      ⋅−∫ +− −− ax r j bx r bx r b x r j bax r jbax r j dx r j ba ba 1 1 1 1 112/ 2/ 1 ' exp ' ' sin 1 ' 2 ' exp ' exp ' 2 exp λ π λ π λ π λ π λ π λ π ξξ λ π ( ) ( ) ( ) ( )       ⋅−       ⋅       ⋅ =       −       −⋅−−      +⋅− =      ⋅−∫ + − ax r j bx r bx r b x r j bax r jbax r j dx r j ba ba 1 1 1 1 112/ 2/ 1 ' exp ' ' sin 1 ' 2 ' exp ' exp ' 2 exp λ π λ π λ π λ π λ π λ π ξξ λ π ( ) ( )       ⋅       ⋅       ⋅       −= ax r bx r bx r br r kj r rkjUj rU F 1 1 12 10 ' cos ' ' sin 2 '2 exp ' 'exp λ π λ π λ π λ  ( ) ( )       ⋅       ⋅       ⋅ = ax r bx r bx r IrI F 1 2 2 1 1 2 ' cos ' ' sin 0 λ π λ π λ π  ( ) ( ) ( ) >⋅< ∗ FFF rUrUrI  ~ ( ) ( ) ( ) ( ) ( ) ( )    +≤≤−+−≤≤−− = elsevere babababaU rrU SS 0 2/2/&2/2/0 ξξ τ 
  • 53. 53 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Double Slit Aperture (continue -= 1) Hecht p.458 ( ) ( ) ( ) γ β β λ π λ π λ π 2 2 2 12 2 1 12 cos sin 0 ' cos ' ' sin 0 I a r x b r x b r x IrI F =      ⋅       ⋅       ⋅ =  P Q 1x 1y η ξ ρ  r  O θ Screen Image plane 1O Sn1Σ 1r  z Sn1 'r  1η b b a The factor (sin β/ β)2 that was previously found as the distribution function for a single slit is here the envelope for the interference fringes given by the term cos2 γ. Bright fringes occur for γ = 0,±π ,±2π,… The angular separation between fringes is Δγ = π.
  • 54. 54 Hecht 459 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Double Slit Aperture (continue – 2)
  • 55. 55 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Multiple Slit Aperture P 1y r  Image plane 1O 1r  Q η ξ ρ  O θ Screen Σ Sn1 'r  b b a a b b a b a The Aperture consists of a large number N of identical parallel slits of width b and separation a. ( ) ( ) ( ) ∑ ∫ − = + −               ⋅ −      = 1 0 2/ 2/ 1 2 10 ' exp '2 exp ' 'exp N k bak bak F d r x kj r r kj r rkjUj rU ξ ξ λ  ( ) ( ) ( ) ( )∫∫Σ             ⋅ −      = dS r r kjrrU r r kj r rkjj rU SSF ' exp '2 exp ' 'exp 1 2 1 ρ τ λ         ⋅−       ⋅       ⋅ =       −             −⋅−−            +⋅− =      ⋅−∫ + − akx r j bx r bx r b x r j b kax r j b kax r j dx r j bka bka 1 1 1 1 112/ 2/ 1 ' 2 exp ' ' sin 1 ' 2 2' 2 exp 2' 2 exp ' 2 exp λ π λ π λ π λ π λ π λ π ξξ λ π ( ) ( ) ( ) ( )       ⋅       ⋅       ⋅       ⋅       =       ⋅−−       ⋅−−       ⋅       ⋅       =                     ⋅−       ⋅       ⋅       = ∑ − = ax r aNx r bx r bx r br r kj r rkjUj ax r j aNx r j bx r bx r br r kj r rkjUj akx r j bx r bx r br r kj r rkjUj rU N k F 1 1 1 12 10 1 1 1 12 10 1 0 1 1 12 10 ' sin ' sin ' ' sin 1 '2 exp ' 'exp ' 2 exp1 ' 2 exp1 ' ' sin 1 '2 exp ' 'exp ' 2 exp ' ' sin 1 '2 exp ' 'exp λ π λ π λ π λ π λ λ π λ π λ π λ π λ λ π λ π λ π λ  ( ) ( )    −=+≤≤+ = elsevere NkbkabkaU rrU SS 0 1,,1,02/2/0  ξ τ
  • 56. 56 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Multiple Slit Aperture (continue – 1) P 1y r  Image plane 1O 1r  Q η ξ ρ  O θ Screen Σ Sn1 'r  b b a a b b a b a The Aperture consists of a large number N of identical parallel slits of width b and separation a. ( ) ( )       ⋅       ⋅       ⋅       ⋅       = ax r aNx r bx r bx r br r kj r rkjUj rU F 1 1 1 12 10 ' sin ' sin ' ' sin 1 '2 exp ' 'exp λ π λ π λ π λ π λ  ( ) ( ) ( ) α α β β λ π λ π λ π λ π 22 2 2 2 1 22 1 2 2 1 1 2 sin sinsin 0 ' sin ' sin ' ' sin 0 N N I ax r N aNx r bx r bx r IrI F =       ⋅       ⋅       ⋅       ⋅ =  ( ) ( ) ( ) >⋅< ∗ FFF rUrUrI  ~
  • 57. 57 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Multiple Slit Aperture (continue – 2) Hecht p.462 Hecht p.463 ( ) ( ) ( ) α α β β λ π λ π λ π λ π 22 2 2 2 1 22 1 2 2 1 1 2 sin sinsin 0 ' sin ' sin ' ' sin 0 N N I ax r N aNx r bx r bx r IrI F =       ⋅       ⋅       ⋅       ⋅ = 
  • 58. 58 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Multiple Slit Aperture (continue – 2) ( ) ( ) ( ) α α β β λ π λ π λ π λ π 22 2 2 2 1 22 1 2 2 1 1 2 sin sinsin 0 ' sin ' sin ' ' sin 0 N N I ax r N aNx r bx r bx r IrI F =       ⋅       ⋅       ⋅       ⋅ =  Sears p.222 Hecht p. 462 Sears p.236 Interference Irradiation for 1, 2, 3 and 4 slits as function of observation angle. Diffraction Pattern for 1, 2, 3, 4 and 5 slits.
  • 59. 59 SOLO Resolution of Optical Systems According to Huygens-Fresnel Principle, a differential area dS, within an optical Aperture, may be envisioned as being covered with coherent secondary point sources. φρφρ sincos == yz Φ=Φ= sincos qYqZ Differential area dS, coordinates Image , coordinates φρρ dddS = ( ) dSe r E dE rktiA −       = ω The spherical wave that propagates from dS to Image is where ( ) ( )[ ] ( )[ ] ( )[ ]22/122/1222 /1/21 RZzYyRRZzYyRzZyYXr +−≈+−≈−+−+= [ ] 2/1222 ZYXR ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )RkaqJkaqRe R E ddee R E dSee R E dEE RktiA a RkpqiRktiA Aperture RzZyYkiRktiA Aperture // 1 0 2 0 cos// − = = Φ−−+−       =      =      == ∫ ∫∫∫∫ ω ρ π φ φωω φρρ The spherical wave at Image, for a Circular Aperture, is
  • 60. 60 SOLO Resolution of Optical Systems ( ) ( ) ( )RkaqJkaqRe R E E RktiA // 1 −       = ω where ( ) ( ) ∫ + − = π π 2 0 cos 2 dve i uJ vuvmi m m Bessel Functions (of the first kind) E. Hecht, “Optics” The spherical wave at Image, for a Circular Aperture, is
  • 61. 61 SOLO Resolution of Optical Systems Irradiance ∗ = ∗ ==×== EEHEHESI EH µ εµ ε 2 1 2 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 1 2 22 / /2 0 / /22 2 1       =      == ∗ Rkaq RkaqJ I Rkaq RkaqJ R aE EEI A π µ ε µ ε D nnn λ θθ 44.22 == E. Hecht, “Optics” Circular Aperture ( ) Daaak RkaquuJ n Rq λλ λ π θ θ 22.1 2 22.1 2 83.383.3 sin83.3/0 sin/ 1 ====⇒==⇒= =
  • 62. 62 SOLO Resolution of Optical Systems Distribution of Energy in the Diffraction Pattern at the Focus of a Perfect Circular Lens E. Hecht, “Optics” Ring f/(λf#) Peak Energy in ring Illumination (%) Central max 0 1 83.9 1st dark ring 1.22 0 1st bright ring 1.64 0.017 7.1 2nd dark 2.24 0 2nd bright 2.66 0.0041 2.8 3rd dark 3.24 0 3rd bright 3.70 0.0016 1.5 4th dark 4.24 0 4th bright 4.74 0.00078 1.0 5th dark 5.24 0
  • 63. 63 SOLO Diffraction Fraunhofer Diffraction Approximations Examples Circular Aperture Hecht p.469
  • 64. 64 SOLO Resolution of Optical Systems Airy Rings In 1835, Sir George Biddell Airy, developed the formula for diffraction pattern, of an image of a point source in an aberration-free optical system, using the wave theory. E. Hecht, “Optics”
  • 65. 65 SOLO Resolution of Optical Systems E. Hecht, “Optics”
  • 66. 66 Rayleigh’s Criterion (1902) The images are said to be just resolved when the center of one Airy Disk falls on the first minimum of the Airy pattern of the other image. The minimum resolvable angular separation or angular limit is: D nnn λ θθ 44.22 == Sparrow’s Criterion At the Rayleigh’s limit there is a central minimum Or saddle point between adjacent peaks. Decreasing the distance between the two point sources cause the central dip to grow shallower and ultimately to disappear. The angular separation corresponding to that configuration is the Sparrow’s Limit. SOLO Resolution of Optical Systems
  • 67. 67 Resolution – Diffraction Limit Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley SOLO Resolution of Optical Systems
  • 68. 68 Diffraction Grating SOLO Resolution of Optical Systems Hecht 478
  • 69. 69 Diffraction Grating SOLO Resolution of Optical Systems Hecht 480
  • 70. 70 Diffraction Grating SOLO Resolution of Optical Systems Hecht 479a Hecht 479b Hecht 485 Table of Content
  • 71. 71 SOLO Diffraction Fresnel Diffraction Approximations Examples Rectangular Aperture ( ) ( ) ( ) ( ) ( ) ( ) ∫∫Σ       −⋅− = dS r rr kjrrU r rkjj rU SSF '2 exp ' 'exp 11 ρρ τ λ   define Augustin Jean Fresnel 1788-1827 P Q 1x 1y η ξ ρ  r  O θ Screen Image plane 1O Sn1Σ 1r  z Sn1 'r 1ξ 2ξ 1η 2η ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫∫ ∫∫       −       − =       −       − = = Σ 2 1 2 1 ' 2 2 exp ' 2 2 exp '2 'exp '2 exp '2 exp ' 'exp 2 1 2 10 2 2 1 2 10 η η ξ ξ λ π η λ ηπ ξ λ ξπ π ηξ ηξ λ d r y jd r x j r rkjUkj dd r y kj r x kj r rkjUj rU k F  ( ) ( )    ≤≤≤≤ = elsevere U rrU SS 0 & 21110 ηηηξξξ τ  For a Rectangular Aperture ( ) ξ λ α λ ξ α d r d r x ' 2 ' 2 : 2 12 = − = ( ) ∫∫       =      − 2 1 2 1 2 2 1 2 exp 2 ' ' 2 2 exp α α ξ ξ αα πλ ξ λ ξπ dj r d r x j ( ) ( )212111 ' 2 & ' 2 ξ λ αξ λ α −=−= x r x r Therefore ( ) η λ β λ η β d r d r y ' 2 ' 2 : 2 12 = − = ( ) ( )212111 ' 2 & ' 2 η λ βη λ β −=−= y r y r ( ) ∫∫       =      − 2 1 2 1 2 2 1 2 exp 2 ' ' 2 2 exp β β η η ββ πλ η λ ηπ dj r d r y j
  • 72. 72 SOLO Diffraction Fresnel Diffraction Approximations Examples Rectangular Aperture (continue – 1) Augustin Jean Fresnel 1788-1827 P Q 1x 1y η ξ ρ  r  O θ Screen Image plane 1O Sn1Σ 1r  z Sn1 'r 1ξ 2ξ 1η 2η ( ) ( ) ( ) ( ) ( ) ∫∫ ∫∫             =       −       − = 2 1 2 1 2 1 2 1 220 2 1 2 10 2 exp 2 exp 2 'exp ' 2 2 exp ' 2 2 exp ' 'exp β β α α η η ξ ξ ββ π αα π η λ ηπ ξ λ ξπ λ djdj rkjUj d r y jd r x j r rkjUj rU F  Define Fresnel Integrals ( ) ( ) ∫ ∫       =       = α α αα π α αα π α 0 2 0 2 2 sin: 2 cos: dS dC ( ) ( )αααα πα SjCdj +=      ∫0 2 2 exp ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 2 1 2 1 2 'exp0 β β α α ββαα SjCSjC rkjUj rU F ++=  Using the Fresnel Integrals we can write ( ) ( ) 5.0±=∞±=∞± SC
  • 73. 73 SOLO Diffraction Fresnel Diffraction Approximations Examples Rectangular Aperture (continue – 2) Augustin Jean Fresnel 1788-1827 Hecht p.499
  • 74. 74 SOLO Diffraction Fresnel Diffraction Approximations Examples Augustin Jean Fresnel 1788-1827 P Q 1x 1y η ξ ρ  r  O θ Screen Image plane 1O Sn1Σ 1r  z Sn1 'r 1ξ 2ξ 1η 2η Rectangular Aperture (continue – 3)
  • 75. 75 SOLO Diffraction Fresnel Diffraction Approximations Examples Cornu Spiral Fresnel Integrals are defined as ( ) ( ) ∫∫       =      = uu duuuSduuuC 0 2 0 2 2 sin:& 2 cos: ππ ( ) ( )uSjuCduuj u +=      ∫0 2 2 exp π ( ) ( ) 5.0±=∞±=∞± SC Marie Alfred Cornu professor at the École Polytechnique in Paris established a graphical approach, for calculating intensities in Fresnel diffraction integrals. The Cornu Spiral is defined as the plot of S (u) versus C (u) duuSd duuCd       =       = 2 2 2 sin 2 cos π π ( ) ( ) duSdCd =+ 22 Therefore u may be thought as measuring arc length along the spiral. “Méthode nouvelle pour la discussion des problèmes de diffraction dans le cas d’une onde cylindrique”, J.Phys.3 (1874), 5-15,44-52
  • 76. 76 SOLO Diffraction Fresnel Diffraction Approximations Examples Cornu Spiral (continue – 1) ( ) ( ) ∫∫       =      = uu duuuSduuuC 0 2 0 2 2 sin:& 2 cos: ππ ( ) ( )uSjuCduuj u +=      ∫0 2 2 exp π ( ) ( ) 5.0±=∞±=∞± SC The Cornu Spiral is defined as the plot of S (u) versus C (u) duuSdduuCd       =      = 22 2 sin& 2 cos ππ ( ) ( ) duSdCd =+ 22       =             = 2 2 2 2 tan 2 cos 2 sin u u u Cd Sd π π π Therefore every point on the curve makes the angle with the real ( C ) axis. 2 2 u π The radius of curvature of Cornu Spiral is The tangent vector of Cornu Spiral is SuCuT 1 2 sin1 2 cos 22       +      = ππ ( ) ( ) u SuCuu udTdSdCdTd πππ π ρ 1 1 2 cos1 2 sin 1 / 1 / 1 22 22 =             +      − == + =  showing that the curve spirals toward the limit points. ∫       2 1 2 2 cos u u duu π ∫       2 1 2 2 sin u u duu π ∫       2 1 2 2 exp u u duuj π Table of Content
  • 77. 77 ELECTROMAGNETICSSOLO KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION • GREEN’s FUNCTION Define the Green’s Function as a particular solution of the following Helmholtz Non-homogeneous Differential Equation: ( ) ( ) ( )SFFSFSS rrrrG v rrG  −−=+∇ πδ ω 4;; 2 2 2 where δ (x) is the Dirac function ( ) ( )          = =∞ ≠ = ∫ ∞ ∞− 1 0 00 dxx x x x δ δ Let use the Fourier Transformation to write ( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ] ( ) ( ) ( ) ( )[ ]{ } ( ) ( )[ ]∫ ∫ ∫ ∫ ∫∫∫ −⋅−= −+−+−−=         −−        −−        −−= −−−=− ∞ ∞− ∞ ∞− ∞ ∞− ∞ ∞− ∞ ∞− ∞ ∞− 3 3 3 exp 2 1 exp 2 1 exp 2 1 exp 2 1 exp 2 1 dkrrkj dkdkdkzzkyykxxkj dkzzjkdkyyjkdkxxjk zzyyxxrr SF zyxSFzSFySFx zSFzySFyxSFx SFSFSFSF   π π πππ δδδδ zyx zyx dkdkdkdk zkykxkk = ++= →→→ 3 111  where Paul Dirac 1902-1984 Joseph Fourier 1768-1830
  • 78. 78 ELECTROMAGNETICSSOLO KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION • GREEN’s FUNCTION (continue – 1) Let use the Fourier Transformation to write ( ) ( ) ( )[ ]∫ −⋅−= SFFS rrkjkgdkrrG  exp,; 3 ω Hence ( ) ( )[ ] ( ) ( )[ ]∫∫ −⋅−−=−⋅−      +∇ SFSFS rrkjdkrrkjkgdk v  exp 2 4 exp, 3 3 3 2 2 2 π π ω ω or ( ) ( )[ ] ( )[ ]{ } ( ) ( )[ ]∫∫ −⋅−−=−⋅−+−⋅∇ SFSFSFS rrkjdkrrkjkrrkjkgdk  exp 2 4 expexp, 3 3 223 π π ω  n i iSS 1= = iS nS dV dSn → 1 V Fr  Sr  F 0r SF rrr  −= PositionSourcerS  PositionFieldrF 
  • 79. 79 ELECTROMAGNETICSSOLO KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION • GREEN’s FUNCTION (continue – 2) Let compute: ( )[ ] ( ) ( ) ( )[ ]{ }( ) ( ) ( ) ( )[ ]{ } ( ) ( ) ( )[ ]{ } ( )[ ] ( ) ( ) ( )[ ] ( )[ ]SFSFSFS SFzSFySFxSzyx SFzSFySFxzyxS SFzSFySFxSSSFS rrkjkrrkjkjkjrrkjkj zzkyykxxkjzjkyjkxjk zzkyykxxkjzjkyjkxjk zzkyykxxkjrrkj   −⋅−−=−⋅−−⋅−=−⋅−∇⋅−= −+−+−−∇⋅      −−−=       −+−+−−      −−−⋅∇= −+−+−−∇⋅∇=−⋅−∇ →→→ →→→ expexpexp exp111 exp111 expexp 2 2 Therefore: ( ) ( )[ ] ( ) ( )[ ]∫∫ −⋅−−=−⋅−      +− SFSF rrkjdkrrkj v kkgdk  exp 2 4 exp, 3 32 2 23 π πω ω Because this is true for all k and ω, we obtain ( )             − = 2 2 2 2 1 2 1 , v k kg ωπ ω 
  • 80. 80 ELECTROMAGNETICSSOLO KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION • GREEN’s FUNCTION (continue – 3) ( ) ( ) ( )[ ] ( )[ ]∫∫ −⋅−             − =−⋅−= SFSFFS rrkj v k d dkrrkjkgdkrrG  exp 2 1 exp,; 2 2 2 3 2 3 ω ω π ω We can see that the integral in k has to singular points for v k ω ±= To find the integral let change ω by ω + jδ where δ is a small negative number ( ) [ ] ( )∫             + − ⋅− = 2 2 2 3 2 exp 2 1 ; v j k rkj dkrrG FS δωπ   where .SF rrr  −=
  • 81. 81 ELECTROMAGNETICSSOLO KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION • GREEN’s FUNCTION (continue – 4) In the plane ω we close the integration path by the semi-circle with and the singular points on the upper side, for τ > 0 (for t > t’) ( ) ( ) ( )[ ]∫ ∫ ∞ ∞− ⋅−             + − = rkj v j k d dktrtrG FS  ωτ δω ω π exp 4 1 ',;, 2 2 2 3 3 ∞→r ( ) ( ) ( )'00exp ttdjf UPC >>=∫ τωωτω ( ) ( ) ( )'00exp ttdjf DOWNC <<=−∫ τωωτω ( ) ( ) ( ) ( ) ( ) ( )        <− >− =− ∫ ∫ ∫ ∞≤≤∞− + ∞≤≤∞− +∞ ∞− 0exp 0exp exp τωωτω τωωτω ωωτω ω ω DOWN UP C C djf djf djf δjvk −− δjvk − ωRe ωIm
  • 82. 82 ELECTROMAGNETICSSOLO KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION • GREEN’s FUNCTION (continue – 5) ( ) ( )[ ] ( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ]∫∫∫         −+−++ ⋅− =⋅−             + − =⋅−             + − = ∞ ∞− CC jvkjvk rkjv drkj v j k d rkj v j k d I δωδω ωτ ωωτ δω ω ωτ δω ω   exp expexp 2 2 2 2 2 2 2 Let use the Cauchy Integral for a complex function f (z) continuous on a closed path C, in the complex z plane: ( ) ( ) ( )0 0 2lim2 0 zfjzfjdz zz zf zz C ππ == − →∫ We have: ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( ) ( ) ( ) ( ) ( ) k kvrkj v vk jkv vk jkv rkjvj jvk rkjv j jvk rkjv jI vkvk τ π ττ π δω ωτ π δω ωτ π δωδω sinexp 2 2 exp 2 exp exp2 exp 2lim exp 2lim 2 2 0, 2 0,    ⋅− =      + − − ⋅−−= ++ ⋅−− + −+− ⋅−− = →→→−→ Therefore, we can write: ( ) ( )[ ] ( ) ( ) ∫∫ ∫ ⋅− −=             − ⋅− = k vkrkj dk v v k rkj ddktrtrG FS τ πω ωτ ω π sinexp 2 exp 4 1 ',;, 3 2 2 2 2 3 3  
  • 83. 83 ELECTROMAGNETICSSOLO KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION • GREEN’s FUNCTION (continue – 6) Let use spherical coordinates relative to vector: ( ) ( ) ∫ − ⋅− = 2 2 2 3 2 exp 2 1 ; v k rkj dkrrG FS ωπ        = = =      = = = rr r r kk kk kk z y x z y x 0 0 cos sinsin cossin θ ϕθ ϕθ ϕθ dk sin θdk dk ( )( ) ϕθθ dddkkdk sin23 = θ ϕ r x y z
  • 84. 84 ELECTROMAGNETICSSOLO KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION • GREEN’s FUNCTION (continue – 7) ( )kvd v r jkv v r jkv v r jkv v r jkv r ∫ ∞ ∞−             −−+            +−−            +−            − = 4 expexpexpexp 1 ττττ π r v rr tt v rr tt SFSF         − +−−        − −− =  '' δδ r v r v r dx v r jx v r jx r       +−      − =                   +−            −= ∫ ∞ ∞− τδτδ ττ π expexp 2 11 ( ) ( )kvd v r jkv v r jkv r v kvd v r jkv v r jkv r ∫∫ ∞ ∞− ∞ ∞−             +−−            −− +             +−            − = 4 expexp 4 expexp 1 ττ π ττ π ( ) ( ) ( ) ( ) ∫ ∞ ∞−       −−       −− = dk j jvkjvk j jkrjkr r v 2 expexp 2 expexp ττ π ( ) ( )∫∫ ∞ ∞− ∞ − −= − −= dkkr v k k r dkkr v k k r sin 1 sin 2 2 2 2 2 0 2 2 2 2 ωπωπ ( ) ( ) ( ) ∫∫ ∞∞ = =       −− − −= − − − = 0 2 2 2 2 0 0 2 2 2 2 2 expexp2cosexp1 dk j jkrjkr v k k r dk jkr jkr v k k ωπ θ ωπ πθ θ ( ) ∫∫ ∫ ∞ − − = 0 0 2 0 2 2 2 2 2 sin cosexp 2 1 π π θϕθ ω θ π dkddk v k jkr ( ) ( ) ∫ − − = 2 2 2 3 2 cosexp 2 1 ; v k jkr dkrrG FS ω θ π  ( ) ∫∫ ∞ − − = 0 0 2 2 2 2 sin cosexp1 π θθ ω θ π dkdk v k jkr
  • 85. 85 ELECTROMAGNETICSSOLO KIRCHHOFF’s SOLUTION OF THE SCALAR HELMHOLTZ NONHOMOGENEOUS DIFFERENTIAL EQUATION • GREEN’s FUNCTION (continue – 8) We can see that represents a progressive wave and represents a regressive wave:         − +−=        − −− v rr tt v rr tt SFSF  '' δδ         − −−=        − +− v rr tt v rr tt SFSF  '' δδ Hence ( ) SF SFSF FS rr v rr tt v rr tt trtrG    −         − +−−        − −− = '' ',;, δδ We shall consider only the progressive wave and use: ( ) SF SF FS rr v rr tt trtrG    −         − +− = ' ',;, δ Retarded Green Function The other solution is: ( ) SF SF FS rr v rr tt trtrG    −         − −− = ' ',;, δ Advanced Green Function  n i iSS 1= = iS nS dV dSn → 1 V Fr  Sr  F 0r SF rrr  −= PositionSourcerS  PositionFieldrF  Table of Content
  • 86. 86 SOLO ( ) ( ) ( )[ ] { }gFTydxdyfxfjyxgffG yxyx =+−= ∫∫Σ π2exp,:, The two dimensional Fourier Transform F of the function f (x, y) The Inverse Fourier Transform is ( ) ( ) ( )[ ] { }GFTfdfdyfxfjyxgyxg F yxyx 1 2exp,, − =+= ∫∫ π ( ) ( ) ( ) ( )[ ] { }Σ Σ =+−= ∫∫ fFTddkkjfkkF yxyx ηξηξηξ π exp, 2 1 :, 2 Two Dimensional Fourier Transform Two Dimensional Fourier Transform (FT) Fraunhofer Diffraction and the Fourier Transform In Fraunhofer Diffraction we arrived two dimensional Fourier Transform of the field within the aperture P 0P Q 1x 0x 1y 0y η ξ Sr'  Sr  ρ  r  O Sθ θ Screen Image plane Source plane 0O 1O Sn1 Σ Σ - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn θcos11 =⋅ θcos11 =⋅ rnS z Sn1 'r  Fr  F rPP  =0 SrQP  =0 rQP  = SrOP '0  = '1 rOO  = Using kx = 2 π fx and ky = 2 π fy we obtain: Diffractions
  • 87. 87 SOLO ( ) ( ){ } ( ){ } ( ){ }yxhFTyxgFTyxhyxgFT ,,,, βαβα +=+ 1. Linearity Theorem Two Dimensional Fourier Transform (FT) Fourier Transform Theorems ( ){ } ( )yx ffGyxgFT ,, = 2. Similarity Theorem ( ){ }       = b f a f G ba ybxagFT yx , 1 ,If then ( ){ } ( )yx ffGyxgFT ,, = 3. Shift Theorem ( ){ } ( ) ( )[ ]bfafjffGbyaxgFT yxyx +−=−− π2exp,, If then Diffractions
  • 88. 88 SOLO Two Dimensional Fourier Transform (FT) Fourier Transform Theorems (continue – 1) ( ){ } ( )yx ffGyxgFT ,, = 4. Parseval’s Theorem ( ) ( )∫∫∫∫ = yxyx fdfdffGydxdyxg 22 ,, If then ( ){ } ( )yx ffGyxgFT ,, = 5. Convolution Theorem ( ) ( ){ } ( ) ( )yxyx ffHffGddyxhgFT ,,,, =−−∫∫ ηξηξηξ If then ( ){ } ( )yx ffHyxhFT ,, =and ( ){ } ( )yx ffGyxgFT ,, = 6. Autocorrelation Theorem ( ) ( ){ } ( )2* ,,, yx ffGddyxggFT =−−∫∫ ηξηξηξ If then similarly ( ){ } ( ) ( )∫∫ −−= ηξηξηξηξ ddffGGgFT yx ,,, *2 Diffractions
  • 89. 89 SOLO Two Dimensional Fourier Transform (FT) Fourier Transform Theorems (continue – 2) ( ){ } ( ){ } ( )yxgyxgFTFTyxgFTFT ,,, 11 == −− 7. Fourier Integral Theorem Diffractions
  • 90. 90 SOLO Two Dimensional Fourier Transform (FT) Fourier Transform for a Circular Symmetric Optical Aperture To exploit the circular symmetry of g (g (r,θ) = g (r) ) let make the following transformation ( ) ( ) φρφ φρρ θθ θ sin/tan cos sin/tan cos 1 22 1 22 == =+= == =+= − − yxy xyx fff fff ryxy rxyxr { } ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]∫ ∫ ∫ ∫∫∫ −−= +−=+−= = = Σ a o rgrg a o drdrydxd yx drjrdrrg drjrgrdrydxdyfxfjyxggFT πθ πθ θφθρπ θθφθφρπθπ 2 0 , 2 0 cos2exp sinsincoscos2exp,2exp, Use Bessel Function Identity ( ) ( )[ ]∫ −−= π θφθ 2 0 0 cosexp dajaJ ( ) ( ){ } ( ) ( )∫== a o rdrrgrJrgFTG ρπρ 2: 00 to obtain J0 is a Bessel Function of the first kind, order zero. Diffractions
  • 91. 91 SOLO Two Dimensional Fourier Transform (FT) Fourier Transform for a Circular Symmetric Optical Aperture For a Circular Pupil of radius a we have ( )    > ≤ = ar ar rg 0 1 Use Bessel Function Identity J1 is a Bessel Function of the first kind, order one. ( ) ( ){ } ( )∫== a o rdrrJrgFTG ρπρ 2: 00 ( ) ( )xJxdJ x o 10 =∫ ςςς ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( )ρπ ρπ ςςς ρπ ρπρπρπ ρπ ρ ρπ aJ a dJ rdrrJrgFTG a o a o 2 22 1 222 2 1 : 1 2 02 020 == == ∫ ∫ Bessel Functions of the first kind Diffractions
  • 92. 92 SOLO E. Hecht, “Optics” Circular Aperture Two Dimensional Fourier Transform (FT) Fourier Transform for a Circular Symmetric Optical Aperture ( ) ( ){ } ( ) ( )ρπ ρπ ρ a aJ argFTG 2 2 : 12 0 == Table of Content Diffractions
  • 93. 93 SOLO References Diffractions 2. Goodman, J.,W., “Introduction to Fourier Optics”, McGraw-Hill, 1968 1. Sommerfeld, A., “Optics, Lectures on Theoretical Physics”, vol. IV, Academic Press Inc., New York, 1954, Chapter V, “The Theory of Diffraction”, 7. M. Born, E. Wolf, “Principle of Optics – Electromagnetic Theory of Propagation, Interference and Diffraction of Light”, 6th Ed., Pergamon Press, 1980, 5. F.A. Jenkins, H.E. White, “Fundamentals of Optics”, 4th Ed., McGraw-Hill, 1976 8. M.V.Klein, T.E. Furtak, “Optics”, 2nd Ed., John Wiley & Sons, 1986 6. E. Hecht, A. Zajac, “Optics”, Addison-Wesley, 1979 3. Elmore, W.C., Heald, M., A., “Physics of Waves”, Dover Publications, 1969, 4. Fowles, G., R., “Introduction to Modern Optics”, Dover Publications, 1968, 1975, Ch. 5, Diffraction 9. J. Meyer-Arendt, “Introduction to Classical & Modern Optics”, 3th Ed., Prentince Hall, 1989
  • 94. 94 SOLO References [1] M. Born, E. Wolf, “Principle of Optics – Electromagnetic Theory of Propagation, Interference and Diffraction of Light”, 6th Ed., Pergamon Press, 1980, [2] C.C. Davis, “Laser and Electro-Optics”, Cambridge University Press, 1996, OPTICS
  • 95. 95 SOLO References [3] E.Hecht, A. Zajac, “Optics ”, 3th Ed., Addison Wesley Publishing Company, 1997, [4] M.V. Klein, T.E. Furtak, “Optics ”, 2nd Ed., John Wiley & Sons, 1986 Table of Content OPTICS
  • 96. January 4, 2015 96 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA
  • 97. 97 SOLO Diffraction Fresnel Diffraction Approximations Examples Augustin Jean Fresnel 1788-1827 Circular Aperture Hecht p.491 Hecht p.492
  • 98. 98 SOLO Diffraction Fresnel Diffraction Approximations Examples Augustin Jean Fresnel 1788-1827 Circular Obstacles
  • 99. 99 SOLO Diffraction Fresnel Diffraction Approximations Examples Augustin Jean Fresnel 1788-1827 Fresnel Zone Plate
  • 100. 100 SOLO Diffraction Fresnel Diffraction Approximations Examples Augustin Jean Fresnel 1788-1827 Fresnel Diffraction by a Slit Hecht p.504 a Fresnel Diffraction Hecht p.504 b
  • 101. 101 SOLO Diffraction Fresnel Diffraction Approximations Examples Augustin Jean Fresnel 1788-1827 Semi-Infinite Opaque Screen Hecht p.506 a Hecht p.506
  • 102. 102 SOLO Diffraction Fresnel Diffraction Approximations Examples Augustin Jean Fresnel 1788-1827 Semi-Infinite Opaque Screen Hecht p.506 a Hecht p.507
  • 103. 103 SOLO Diffraction Fresnel Diffraction Approximations Examples Augustin Jean Fresnel 1788-1827 Diffraction by a Narrow Obstacle
  • 105. 105 Optics - DiffractionSOLO Hecht p.487 a Hecht p.487 b Hecht p.489 Hecht p.490 a Hecht p.490 b
  • 107. 107 Optics - DiffractionSOLO Jenkins p.320 Jenkins p.323 Jenkins p.343 Klein Furata p.362
  • 108. 108 Optics - DiffractionSOLO Reynolds 19 Reynolds 20 a Reynolds 20 b
  • 109. 109 Optics - DiffractionSOLO Reynolds 62 a Reynolds 62 b Reynolds 62 c

Hinweis der Redaktion

  1. Goodman, J.W., “Introduction to Fourier Optics”, McGraw-Hill, 1968, pg. 30
  2. M.C Hutley, “Diffraction Gratings”, Academic Press, 1982, pg.5 http://micro.magnet.fsu.edu/optics/timeline/1867-1899.html
  3. http://www.mt-berlin.com/frames_ao/descriptions/ao_effect.htm
  4. http://en.wikipedia.org/wiki/Divergence_theorem Divergence Theorem was discovered by Joseph Louis Lagrange in 1762, rediscovered by Carl Friedrich Gauss in 1813, by George Green in 1825, by Mikhail Vasilievich Ostrogadsky, who also gave the first proof of the Theorem, in 1831.
  5. Kirchhoff, G., “Zur Theorie der Lichtstrahlen”, Wiedemann Ann., (2) 18:663 (1883)
  6. Hecht, “Optics”, § 10.2.4, “The Rectangular Aperture”, pp. 464 - 467
  7. Hecht, “Optics”, § 10.2.4, “The Rectangular Aperture”, pp. 464 - 467
  8. Hecht, “Optics”, § 10.2.4, “The Single Slit”, pp. 452 - 457
  9. Hecht, “Optics”, § 10.2.4, “The Rectangular Aperture”, pp. 464 - 467
  10. Hecht, “Optics”, § 10.2.2, “The Double Slit”, pp. 457 – 460 Fowles, “Introduction to Modern Optics”, 1975, “The Double Slit”, pp.120 – 122 Elmore, Heald, “Physics of Waves”, § The Double Slit”, pp. 365 - 368
  11. Hecht, “Optics”, § 10.2.2, “The Double Slit”, pp. 457 – 460 Fowles, “Introduction to Modern Optics”, 1975, “The Double Slit”, pp.120 – 122 Elmore, Heald, “Physics of Waves”, § The Double Slit”, pp. 365 - 368
  12. Hecht, “Optics”, pp. 467 - 471
  13. Reynolds, DeVelis, Parrent, Thompson, “Physical Optics Notebook: Tutorials in Fourier Optics”, SPIE Optical Engineering Press, pg.102
  14. Elmore, Held, “Physics of Waves”, § 10.8, 10.9, 10.10, pp. 375 – 391 Hecht, “Optics”,§ 10.2.8 “The Diffraction Grating”, pp. 476 – 485
  15. Hecht, “Optics”,§ 10.2.8 “The Diffraction Grating”, pp. 476 - 485
  16. Hecht, “Optics”,§ 10.2.8 “The Diffraction Grating”, pp. 476 - 485
  17. J.C. Wyne, “Optics 513”
  18. Reference in J. Meyer-Arendt, “Introduction to Classical &amp; Modern Optics”, 3th Ed.,Prentince Hall, 1989, pg. 258
  19. Reference in J. Meyer-Arendt, “Introduction to Classical &amp; Modern Optics”, 3th Ed.,Prentince Hall, 1989, pg. 258
  20. J.W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, 1968
  21. J.W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, 1968
  22. J.W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, 1968
  23. J.W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, 1968
  24. J.W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, 1968
  25. J.W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, 1968
  26. Hecht, “Optics”, pp. 490-494
  27. Hecht, “Optics”, pp. 494-495
  28. Hecht, “Optics”, pp. 494-495
  29. Hecht, “Optics”,§ 10.3.8, “Fresnel Diffraction by a Slit”, pp. 503-505
  30. Hecht, “Optics”,§ 10.3.9, “The Semi-Infinite Opaque Screen”, pp. 506-507
  31. Hecht, “Optics”,§ 10.3.9, “The Semi-Infinite Opaque Screen”, pp. 506-507
  32. Hecht, “Optics”,§ 10.3.10, “Diffraction by a Narrow Obstacle”, pp. 507-508