Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
12.1 The Fundamental Counting Principal & Permutations P. 701
The Fundamental Counting Principal <ul><li>If you have 2 events: 1 event can occur m ways and another event can occur n wa...
3 or more events: <ul><li>3 events can occur m, n, & p ways, then the number of ways all three can occur is  m*n*p  </li><...
<ul><li>At a restaurant at Cedar Point, you have the choice of 8 different entrees, 2 different salads, 12 different drink...
Fund. Counting Principal with repetition <ul><li>Ohio Licenses plates have 3 #’s followed by 3 letters. </li></ul><ul><li>...
How many plates are possible if digits and numbers cannot be repeated? <ul><li>There are still 10 choices for the 1 st  di...
Phone numbers <ul><li>How many different 7 digit phone numbers are possible if the 1 st  digit cannot be a 0 or 1? </li></...
Testing <ul><li>A multiple choice test has 10 questions with 4 answers each.  How many ways can you complete the test? </l...
Using Permutations <ul><li>An ordering of n objects is a permutation of the objects . </li></ul>
There are 6 permutations of the letters A, B, &C  <ul><li>ABC </li></ul><ul><li>ACB </li></ul><ul><li>BAC </li></ul><ul><l...
In general, the # of permutations of n objects is: <ul><li>n! = n*(n-1)*(n-2)*   … </li></ul>
12 skiers… <ul><li>How many different ways can 12 skiers in the Olympic finals finish the competition? (if there are no ti...
Factorial with a calculator: <ul><li>Hit math then over, over, over. </li></ul><ul><li>Option 4 </li></ul>
Back to the finals in the Olympic skiing competition. <ul><li>How many different ways can 3 of the skiers finish 1 st , 2 ...
Permutation of  n  objects taken  r  at a time <ul><li>n P r  =  </li></ul>
Back to the last problem with the skiers <ul><li>It can be set up as the number of permutations of 12 objects taken 3 at a...
10 colleges, you want to visit all or some. <ul><li>How many ways can you visit </li></ul><ul><li>6 of them: </li></ul><ul...
How many ways can you visit all 10 of them: <ul><li>10 P 10  =  </li></ul><ul><li>10!/(10-10)! =  </li></ul><ul><li>10!/0!...
So far in our problems, we have used distinct objects. <ul><li>If some of the objects are repeated, then some of the permu...
Permutations with Repetition <ul><li>The number of DISTINGUISHABLE permutations of n objects where one object is repeated ...
Find the number of distinguishable permutations of the letters: <ul><li>OHIO : 4 letters with 0 repeated 2 times </li></ul...
Find the number of distinguishable permutations of the letters: <ul><li>SUMMER :  </li></ul><ul><li>360 </li></ul><ul><li>...
A dog has 8 puppies, 3 male and 5 female.  How many birth orders are possible <ul><li>8!/(3!*5!) =  </li></ul><ul><li>56 <...
Assignment
Nächste SlideShare
Wird geladen in …5
×

12 1 The Fundamental Counting Principal & Permutations

2.296 Aufrufe

Veröffentlicht am

  • Als Erste(r) kommentieren

12 1 The Fundamental Counting Principal & Permutations

  1. 1. 12.1 The Fundamental Counting Principal & Permutations P. 701
  2. 2. The Fundamental Counting Principal <ul><li>If you have 2 events: 1 event can occur m ways and another event can occur n ways, then the number of ways that both can occur is m*n </li></ul><ul><li>Event 1 = 4 types of meats </li></ul><ul><li>Event 2 = 3 types of bread </li></ul><ul><li>How many diff types of sandwiches can you make? </li></ul><ul><li>4*3 = 12 </li></ul>
  3. 3. 3 or more events: <ul><li>3 events can occur m, n, & p ways, then the number of ways all three can occur is m*n*p </li></ul><ul><li>4 meats </li></ul><ul><li>3 cheeses </li></ul><ul><li>3 breads </li></ul><ul><li>How many different sandwiches can you make? </li></ul><ul><li>4*3*3 = 36 sandwiches </li></ul>
  4. 4. <ul><li>At a restaurant at Cedar Point, you have the choice of 8 different entrees, 2 different salads, 12 different drinks, & 6 different deserts. </li></ul><ul><li>How many different dinners (one choice of each) can you choose? </li></ul><ul><li>8*2*12*6= </li></ul><ul><li>1152 different dinners </li></ul>
  5. 5. Fund. Counting Principal with repetition <ul><li>Ohio Licenses plates have 3 #’s followed by 3 letters. </li></ul><ul><li>1. How many different licenses plates are possible if digits and letters can be repeated? </li></ul><ul><li>There are 10 choices for digits and 26 choices for letters. </li></ul><ul><li>10*10*10*26*26*26= </li></ul><ul><li>17,576,000 different plates </li></ul>
  6. 6. How many plates are possible if digits and numbers cannot be repeated? <ul><li>There are still 10 choices for the 1 st digit but only 9 choices for the 2 nd , and 8 for the 3 rd . </li></ul><ul><li>For the letters, there are 26 for the first, but only 25 for the 2 nd and 24 for the 3 rd . </li></ul><ul><li>10*9*8*26*25*24= </li></ul><ul><li>11,232,000 plates </li></ul>
  7. 7. Phone numbers <ul><li>How many different 7 digit phone numbers are possible if the 1 st digit cannot be a 0 or 1? </li></ul><ul><li>8*10*10*10*10*10*10= </li></ul><ul><li>8,000,000 different numbers </li></ul>
  8. 8. Testing <ul><li>A multiple choice test has 10 questions with 4 answers each. How many ways can you complete the test? </li></ul><ul><li>4*4*4*4*4*4*4*4*4*4 = 4 10 = </li></ul><ul><li>1,048,576 </li></ul>
  9. 9. Using Permutations <ul><li>An ordering of n objects is a permutation of the objects . </li></ul>
  10. 10. There are 6 permutations of the letters A, B, &C <ul><li>ABC </li></ul><ul><li>ACB </li></ul><ul><li>BAC </li></ul><ul><li>BCA </li></ul><ul><li>CAB </li></ul><ul><li>CBA </li></ul>You can use the Fund. Counting Principal to determine the number of permutations of n objects. Like this ABC. There are 3 choices for 1 st # 2 choices for 2 nd # 1 choice for 3 rd . 3*2*1 = 6 ways to arrange the letters
  11. 11. In general, the # of permutations of n objects is: <ul><li>n! = n*(n-1)*(n-2)* … </li></ul>
  12. 12. 12 skiers… <ul><li>How many different ways can 12 skiers in the Olympic finals finish the competition? (if there are no ties) </li></ul><ul><li>12! = 12*11*10*9*8*7*6*5*4*3*2*1 = </li></ul><ul><li>479,001,600 different ways </li></ul>
  13. 13. Factorial with a calculator: <ul><li>Hit math then over, over, over. </li></ul><ul><li>Option 4 </li></ul>
  14. 14. Back to the finals in the Olympic skiing competition. <ul><li>How many different ways can 3 of the skiers finish 1 st , 2 nd , & 3 rd (gold, silver, bronze) </li></ul><ul><li>Any of the 12 skiers can finish 1 st , the any of the remaining 11 can finish 2 nd , and any of the remaining 10 can finish 3 rd . </li></ul><ul><li>So the number of ways the skiers can win the medals is </li></ul><ul><li>12*11*10 = 1320 </li></ul>
  15. 15. Permutation of n objects taken r at a time <ul><li>n P r = </li></ul>
  16. 16. Back to the last problem with the skiers <ul><li>It can be set up as the number of permutations of 12 objects taken 3 at a time. </li></ul><ul><li>12 P 3 = 12! = 12! = (12-3)! 9! </li></ul><ul><li>12*11*10*9*8*7*6*5*4*3*2*1 = 9*8*7*6*5*4*3*2*1 </li></ul><ul><li>12*11*10 = 1320 </li></ul>
  17. 17. 10 colleges, you want to visit all or some. <ul><li>How many ways can you visit </li></ul><ul><li>6 of them: </li></ul><ul><li>Permutation of 10 objects taken 6 at a time: </li></ul><ul><li>10 P 6 = 10!/(10-6)! = 10!/4! = </li></ul><ul><li>3,628,800/24 = 151,200 </li></ul>
  18. 18. How many ways can you visit all 10 of them: <ul><li>10 P 10 = </li></ul><ul><li>10!/(10-10)! = </li></ul><ul><li>10!/0!= </li></ul><ul><li>10! = ( 0! By definition = 1) </li></ul><ul><li>3,628,800 </li></ul>
  19. 19. So far in our problems, we have used distinct objects. <ul><li>If some of the objects are repeated, then some of the permutations are not distinguishable. </li></ul><ul><li>There are 6 ways to order the letters M,O,M </li></ul><ul><li>MOM, OMM, MMO </li></ul><ul><li>MOM, OMM, MMO </li></ul><ul><li>Only 3 are distinguishable. 3!/2! = 6/2 = 3 </li></ul>
  20. 20. Permutations with Repetition <ul><li>The number of DISTINGUISHABLE permutations of n objects where one object is repeated q 1 times, another is repeated q 2 times, and so on : </li></ul><ul><li>n! q 1 ! * q 2 ! * … * q k ! </li></ul>
  21. 21. Find the number of distinguishable permutations of the letters: <ul><li>OHIO : 4 letters with 0 repeated 2 times </li></ul><ul><li>4! = 24 = 12 </li></ul><ul><li>2! 2 </li></ul><ul><li>MISSISSIPPI : 11 letters with I repeated 4 times, S repeated 4 times, P repeated 2 times </li></ul><ul><li>11! = 39,916,800 = 34,650 </li></ul><ul><li>4!*4!*2! 24*24*2 </li></ul>
  22. 22. Find the number of distinguishable permutations of the letters: <ul><li>SUMMER : </li></ul><ul><li>360 </li></ul><ul><li>WATERFALL : </li></ul><ul><li>90,720 </li></ul>
  23. 23. A dog has 8 puppies, 3 male and 5 female. How many birth orders are possible <ul><li>8!/(3!*5!) = </li></ul><ul><li>56 </li></ul>
  24. 24. Assignment

×