SlideShare ist ein Scribd-Unternehmen logo
1 von 32
CONSERVATION LAW
 1
X
A  2
x
A
    V
A
A
t
V
G
x
x 








 2
1
 
G
x
V
A
t










c
x
m
x
x ,
, 

 

x
m
x




 
 ,
x
c
x V


,

 
 
G
c
x
m
x
V
A
t











 ,
,
   
G
x
m
x
V
V
A
V
A
t













 ,      
G
x
m
x
x
V
AV
V
A
V
A
V
t

















 ,
   
G
x
x
V
AV
V
x
A
V
A
V
t


































  G
t

 






.
      G
m V
V
t

 












.
.
.
      G
V
V
t

 













.
.
.
3-D PROPERTY
CONSERVATION EQUATION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
Property
Accumulation
Rate
=
Inlet Property
Rate -
Outlet Property
Rate +
Property
Generation
Rate
HEAT TRANSPORT
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
General heat transport phenomena is expressed as equation of change. Equation
of change concerning conduction and convection heat transport is called Energy
Equation basically as microscopic energy conservation equation.
      G
m V
V
t

 












.
.
.
=CpT, m
 T
k
q 



    
     G
T
V
CpT
CpT
CpT
V
t
CpT 
















.
.
. 




 
CpT



 G
G T

 

Cp
k

  = thermal diffusivity
HEAT TRANSPORT
       
v
v
p
q
v
U
t
U











:
.
.
ˆ
.
ˆ



     
v
v
T
p
T
q
T
v
t
T
v
C
V































:
.
.
.
ˆ
ˆ


      Dt
Dp
v
q
v
H
t
H










:
.
ˆ
.
ˆ



   
v
Dt
Dp
T
q
T
v
t
T
p
C
p
























:
ln
ln
.
.
ˆ 


OTHER FORMS OF ENERGY EQUATION
Expressed in 𝑈
:
Expressed in 𝐶𝑣 and T
Expressed in 𝐻
Expressed in 𝐶𝑝 and T
  V
V 


 
 : V
 Tabel $B.7
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
V
T
k
Dt
DT
p
C 


 
 2
ˆ
HEAT TRANSPORT
2B
x
y
z
L
W
EXAMPLE -2
Determine temprature
distribution in a viscous liquid
flowing downward in steady
state and laminar between two
vertical paralell plate. The two
plates are maintained at
constant temprature of 𝑇0.
Assume constant  and k.
Solution:
First, we draw sketsc of flow
system,
Assumptions:
1.Steady state,
2.Laminar flow,
3.Vx=Vy=0, VZ is not function of y
4. Newtonian Fluid,
5.Constant , , k
6.
𝜕𝑇
𝜕𝑦
=
𝜕𝑇
𝜕𝑧
= 0
7. No slip at wall
8. End effect is neglected
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
HEAT TRANSPORT
0












z
V
y
V
x
V
t
z
y
x 



0



z
Vz

0



z
Vz
z
z
z
z
z
z
z
y
x
x
z
g
z
V
y
V
x
V
z
P
z
V
V
y
V
V
x
V
V
t
V


 








































2
2
2
2
2
2
z
z
g
dx
V
d
z
P

 




 2
2
0
L
dx
V
d L
z 0
2
2




 z
g
P z




1
0
K
x
L
dx
dV L
z






0
0 


dx
dV
x z
x
L
dx
dV L
z

0




2
2
0
2
K
x
L
V L
z 





0


 z
V
B
x
2
0
2
2
B
L
K L






SOLUTION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
K1=0
HEAT TRANSPORT


















2
2
1
2 B
x
L
B
Vz
 















2
max
, 1
B
x
Vz
L
B
Vz

2
2
max
,



2
max
.
2
B
x
V
dx
dV
z
z







































2
2
2
2
2
2
z
T
y
T
x
T
k
z
T
V
y
T
V
x
T
V
t
T
C z
y
x
P





















































































2
2
2
2
2
2
2
y
V
z
V
x
V
z
V
x
V
y
V
z
V
y
V
x
V z
y
z
x
y
x
z
y
x


0
2
2
2








dx
dV
dx
T
d
k z
 0
4
. 4
2
2
max
,
2
2








B
x
V
dx
T
d
k z

3
3
4
2
max
,
3
4
K
x
kB
V
dx
dT z




4
3
4
4
2
max
,
3
K
x
K
x
kB
V
T z





ENERGY EQUATION
SOLUTION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
From table A-5
HEAT TRANSPORT
4
3
4
4
2
max
,
3
K
x
K
x
kB
V
T z





0
0 


dx
dT
x
4
4
4
2
max
,
3
K
x
kB
V
T z




0
T
T
B
x 


B.C-1:
B.C.-2:
0
3 
K
k
V
T
K z
3
2
max
,
0
4




















4
2
max
,
0 1
3 B
x
k
V
T
T z

 



















4
2
4
0 1
12 B
x
k
L
B
T
T

SOLUTION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
HEAT TRANSPORT
Example 3
Inlet air at T1
Cooler
A system consist of two porous concentric spherical walls with radius R1 and R2.
Outer surfase of inner wall is maintained at temprature T1 and inner surface of
outer wall is maintained at tempratrure T2. Dry air at temprature T1 is blown
radially from inner wall to outer wall. Develop an expression for heat removal
rate needed from inner wall as a function of air mass flow rate. Assume steady
state laminar flow and low gas rate.
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
HEAT TRANSPORT
Solution:
Assumption:
0
.
1 
 
 V
V )
(r
f
Vr 
2. T=T(r)
)
(
.
3 r



  0
1 2
2

r
V
r
dr
d
r
 
r
V
r 
2

4
r
w

constant
Continuity Equation:
  














 r
r
r V
r
dr
d
r
dr
d
dr
d
dr
dV
V 2
2
1


Equation of Motion
dr
d
dr
r
w
d
r
w
r
r 








2
2
4
4


dr
d
r
wr 



5
2
2
8 
  
 

 



2
2
5
2
2
8
R
r
r
R
r
r
dr
w
d


    












 4
4
2
2
2
2
1
1
32 r
R
w
r
R r


   



















4
2
4
2
2
2
2 1
32 r
R
R
w
R
r r


MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
r
2
r
2
2
2
r
2
2
r
2
2
2
2
2
θ
r
r
θ
r
r
r
ρg
v
θ
sin
r
1
θ
v
sinθ
θ
sinθ
r
1
r
)
v
(r
r
1
μ
r
r
v
v
v
θ
sin
r
v
θ
v
r
v
r
v
v
t
v
ρ



































 
















p
𝜕
𝜕𝑟
1
𝑟2
𝜕
𝜕𝑟
𝑟2𝑣𝑟
HEAT TRANSPORT







dr
dT
r
dr
d
r
k
dr
dT
V
C r
p
2
2
1
ˆ
 






dr
dT
r
dr
d
C
w
k
dr
dT
p
r
2
ˆ
4
𝑢 = 𝑟2
𝑑𝑇
𝑑𝑟
= 𝐾1𝑒−
𝑅0
𝑟
2
0
1
0
2
0
0
2
1
2
R
R
R
R
R
R
r
R
e
e
e
e
T
T
T
T
/
/
/
/








 k
C
w
R P
r 
4
0 /
ˆ

1
2
1
4
R
r
r
q
R
Q


 
1
2
1
4
R
r
dr
dT
k
R

 
 
  
  1
1
4
2
1
1
0
1
2
0




R
R
R
R
T
T
k
R
Q
/
/
exp
  
2
1
1
2
1
0
1
4
R
R
T
T
k
R
Q
/




1
1
0
0






e
Q
Q
Q    
k
R
R
R
C
w
R
R
R
R P
r
1
2
1
1
1
0
4
1
1


/
ˆ
/ 



Energy Equation:
Substitution:
Heat transafer rate to inner wall is
Cooling requirement at inner wall,
If there is no air flow
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
𝑢
𝑟2
=
1
𝑅0
𝑑
𝑑𝑟
𝑢 →
𝑑𝑟
𝑟2
=
1
𝑅0
𝑑𝑢
𝑢
−
𝑅0
𝑟
+ ln 𝐾1 = ln 𝑢 → 𝑢 = 𝐾1𝑒−
𝑅0
𝑟
𝑑𝑇 = 𝐾1
𝑒−
𝑅0
𝑟
𝑟2 𝑑𝑟
𝑠 =
𝑅0
𝑟
→ 𝑑𝑠 = −
𝑅0
𝑟2 𝑑𝑟 𝑑𝑇 = 𝑇 = 𝐾1
𝑒−
𝑅0
𝑟
𝑟2 𝑑𝑟 = −
𝐾1
𝑅0
𝑒−𝑠
𝑑𝑠 =
𝐾1
𝑅0
𝑒−
𝑅0
𝑟 + 𝐾2
𝑢 = 𝑟2
𝑑𝑇
𝑑𝑟
EQUATION OF
CHANGE TABLE
     
0
z
ρv
y
ρv
x
ρv
t
ρ z
y
x












     
0
z
v
ρ
θ
v
ρ
r
1
r
v
r
ρ
r
1
t
ρ z
θ
r












     
0
v
ρ
rsinθ
1
θ
sinθ
v
ρ
rsinθ
1
r
v
r
ρ
r
1
t
ρ θ
r
2
2














Cartesian Coordinate System:
Cylindrical Coordinate System:
Spherical Coordinate System
Table A-1 Continuity Equation
-Table A2Equation of Motion (Equation of Momentum)
x
zx
yx
xx
x
z
x
y
x
z
x
ρg
z
τ
y
τ
x
τ
x
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
y
zy
yy
xy
y
z
y
y
y
z
y
ρg
z
τ
y
τ
x
τ
y
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
z
zz
yz
xz
z
z
z
y
z
z
z
ρg
z
τ
y
τ
x
τ
z
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
Cartesian Coordinate System:
 
r
rz
θθ
rθ
rr
r
z
2
θ
r
θ
r
r
r
ρg
z
τ
r
τ
θ
τ
r
1
r
rτ
r
1
r
z
v
v
r
v
θ
v
r
v
r
v
v
t
v
ρ








































 p
 
θ
zθ
θθ
rθ
2
2
θ
z
θ
r
θ
θ
θ
r
θ
ρg
z
τ
θ
τ
r
1
r
τ
r
r
1
θ
r
1
z
v
v
r
v
v
θ
v
r
v
r
v
v
t
v
ρ







































 p
 
z
zz
θz
rz
z
z
z
θ
z
r
z
ρg
z
τ
θ
τ
r
1
x
rτ
r
1
z
z
v
v
θ
v
r
v
r
v
v
t
v
ρ 



































 p
Cylindrical Coordinate System
-Table A2Equation of Motion (Equation of Momentum)
Spherical Coordinate System
 
r
r
θθ
rθ
rr
2
2
2
2
θ
r
r
θ
r
r
r
ρg
τ
rsinθ
1
r
τ
τ
θ
sinθ
τ
rsinθ
1
r
τ
r
r
1
r
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ































 

















 p
 
θ
rθ
θ
θθ
rθ
2
2
2
θ
r
θ
θ
θ
θ
r
θ
ρg
τ
r
cotθ
r
τ
τ
rsinθ
1
θ
sinθ
τ
rsinθ
1
r
τ
r
r
1
θ
r
1
r
cotθ
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ



















































p
 














ρg
τ
r
cotθ
2
r
τ
τ
rsinθ
1
θ
τ
r
1
r
τ
r
r
1
rsinθ
1
cotθ
r
v
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ
θ
r
θ
r
2
2
θ
r
θ
φ
r
φ












































 p
-Table A2Equation of Motion (Equation of Momentum)
x
2
x
2
x
2
2
x
2
x
z
x
y
x
z
x
ρg
z
v
y
v
x
v
μ
x
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
y
2
y
2
2
y
2
2
y
2
y
z
y
y
y
z
y
ρg
z
v
y
v
x
v
μ
y
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
z
2
z
2
2
z
2
2
z
2
z
z
z
y
z
z
z
ρg
z
v
y
v
x
v
μ
z
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
-Table A2Equation of Motion (Equation of Momentum)
(Incompressible Newtonian Fluid)
Cartesian Coordinate System:
Table A-3 Equation of Motion (Equation of Momentum)
(Incompresiible Newtonian Fluid)
Cylindrical Coordinate:
  r
2
r
2
θ
2
2
r
2
2
r
r
z
2
θ
r
θ
r
r
r
ρg
z
v
θ
v
r
2
θ
v
r
1
rv
r
r
1
r
μ
r
z
v
v
r
v
θ
v
r
v
r
v
v
t
v
ρ


















































 p
  θ
2
θ
2
r
2
2
θ
2
2
θ
θ
z
θ
r
θ
θ
θ
r
θ
ρg
z
v
θ
v
r
2
θ
v
r
1
rv
r
r
1
r
μ
θ
r
1
z
v
v
r
v
v
θ
v
r
v
r
v
v
t
v
ρ
















































 p
x
2
z
2
2
z
2
2
z
z
z
z
θ
z
r
z
ρg
z
v
θ
v
r
1
r
v
r
r
r
1
μ
z
z
v
v
θ
v
r
v
r
v
v
t
v
ρ 











































 p
Table A-3 Equation of Motion ( Equation of Momentum)
(Incompressible Newtonian Fluid)
Spherical Coordinate
r
2
r
2
2
2
r
2
2
r
2
2
2
2
2
θ
r
r
θ
r
r
r
ρg
v
θ
sin
r
1
θ
v
sinθ
θ
sinθ
r
1
r
)
v
(r
r
1
μ
r
r
v
v
v
θ
sin
r
v
θ
v
r
v
r
v
v
t
v
ρ



































 
















p
θ
2
2
r
2
2
θ
2
2
2
θ
2
θ
2
2
2
θ
r
θ
θ
θ
θ
r
θ
ρg
v
θ
sin
r
cosθ
2
θ
v
r
2
v
θ
sin
r
1
θ
sinθ
v
sinθ
1
θ
r
1
r
v
r
r
r
1
μ
θ
r
1
r
cotθ
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ






































































 p
















ρg
v
θ
sin
r
cosθ
2
v
sinθ
r
2
v
θ
sin
r
1
θ
sinθ
v
sinθ
1
θ
r
1
r
v
r
r
r
1
μ
rsinθ
1
cotθ
r
v
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ
θ
2
2
r
2
2
2
2
2
2
2
2
θ
r
θ
r




































































 p
Table A-4 Components of stress tensor for Newtonian Fluid
Koordinat Silinder Koordinat Bola
 










 v
.
κ
x
v
2
μ
τ x
xx
 










 v
.
κ
y
v
2
μ
τ
y
yy
 










 v
z
vz
xx .
2 
















x
v
y
v
μ
τ
τ
y
x
yx
xy














y
v
z
v
μ
τ
τ z
y
zy
yz














z
v
x
v
μ
τ
τ x
z
xz
zx
 










 v
.
κ
r
v
2
μ
τ r
rr
 

















 v
.
κ
r
v
θ
v
r
1
2
μ
τ r
θ
θθ
 










 v
.
κ
z
v
2
μ
τ z
zz
 














θ
v
r
1
r
/r
v
r
μ
τ
τ r
θ
θr
rθ














θ
v
r
1
z
v
μ
τ
τ z
θ
zθ
θz














z
v
r
v
μ
τ
τ r
z
rz
zr
 










 v
.
κ
r
v
2
μ
τ r
rr
 

















 v
.
κ
r
v
θ
v
r
1
2
μ
τ r
θ
θθ
 




















 v
.
κ
r
cotθ
v
r
v
v
rsinθ
1
2
μ
τ θ
r

















θ
v
r
1
r
/r)
(v
r
μ
τ
τ r
θ
θr
rθ


























θ
θ
θ
v
rsinθ
1
sinθ
v
θ
r
sinθ
μ
τ
τ














r
/r)
(v
r
φ
v
rsinθ
1
μ
τ
τ
φ
r
r
r 

3
2
κ 
Cartesian Coordinate System
Cylindrical Coordinate
Spherical Coordinate
 
v
.

z
v
y
v
x
v z
y
x








 
z
v
θ
v
r
1
rv
r
r
1 z
θ
r








   









 v
rsinθ
1
sinθ
v
θ
rsinθ
1
v
r
r
r
1
θ
r
2
2
Cartesian Coordinate System:
Tabel A-5
Fungsi untuk fluida Newton
Coordinate System
Cartesian
Sylindrical
Spherical
v

 2
2
z
x
2
y
z
2
x
y
2
z
2
y
2
x
v
.
3
2
x
v
z
v
z
v
y
v
y
v
x
v
z
v
y
v
x
v
2










































































 2
2
z
r
2
θ
z
2
r
θ
2
z
2
r
θ
2
r
v
.
3
2
r
v
z
v
z
v
θ
v
r
1
θ
v
r
1
r
v
r
r
z
v
r
v
θ
v
r
1
r
v
2














































































 2
2
r
2
θ
2
r
θ
2
θ
r
2
r
θ
2
r
v
.
3
2
r
v
r
r
v
rsi
n θ
1
v
rsi
n θ
1
si
n θ
v
θ
r
si
n θ
θ
v
r
1
r
v
r
r
r
cotθ
v
r
v
v
rsi
n θ
1
r
v
θ
v
r
1
r
v
2









































































































Table A-6
Component of Energy Flux
Cartesian Cylindrical Spherical
z
T
k
q
y
T
k
q
x
T
k
q
z
y
x












z
T
k
q
θ
T
r
1
k
q
r
T
k
q
z
θ
r

























T
rsinθ
1
k
q
θ
T
r
1
k
q
r
T
k
q
φ
θ
r
Tabel A-7
Energy Equation in energy and momentum flux
 










































































































y
v
z
v
τ
x
v
z
v
τ
x
v
y
v
τ
z
v
τ
y
v
τ
x
v
τ
v
.
T
p
T
z
q
y
q
x
q
z
T
v
y
T
v
x
T
v
t
T
ρC
z
y
yz
z
x
xz
y
x
xy
z
zz
y
yy
x
xx
ρ
z
y
x
z
y
x
v
   

















































































































z
v
θ
v
r
1
τ
z
v
r
v
τ
θ
v
r
1
r
v
r
r
τ
z
v
τ
v
θ
v
r
1
τ
r
v
τ
v
.
T
p
T
z
q
θ
q
r
1
rq
r
r
1
z
T
v
θ
T
r
v
r
T
v
t
T
ρC
θ
z
θz
r
z
rz
r
θ
rθ
z
zz
r
θ
θθ
r
rr
ρ
z
θ
r
z
θ
r
v
 
 





















































































































































v
r
cotθ
v
rsinθ
1
θ
v
r
1
τ
r
v
v
rsinθ
1
r
v
τ
r
v
θ
v
r
1
r
v
τ
r
cotθ
v
r
v
v
rsinθ
1
τ
v
θ
v
r
1
τ
r
v
τ
v
.
T
p
T
q
rsinθ
1
θ
sinθ
q
rsinθ
1
q
r
r
r
1
T
rsinθ
v
θ
T
r
v
r
T
v
t
T
ρC
θ
θ
r
r
θ
r
θ
rθ
θ
r
r
θ
θθ
r
rr
ρ
θ
r
2
2
θ
r
v
Cartesian
Cylindrical
Spherical
Tabel A-8
V




































μ
z
T
y
T
x
T
k
z
T
v
y
T
v
x
T
v
t
T
ρC 2
2
2
2
2
2
z
y
x
p
V










































μ
z
T
θ
T
r
1
r
T
r
r
r
1
k
z
T
v
θ
T
r
v
r
T
v
t
T
ρC 2
2
2
2
2
z
θ
r
p
V




















































μ
T
θ
sin
r
1
θ
T
sinθ
θ
sinθ
r
1
r
T
r
r
r
1
k
T
rsinθ
v
θ
T
r
v
r
T
v
t
T
ρ 2
2
2
2
2
2
2
θ
r
p



Energy Equation For Incompressible Newtonian Fluid with constant properties
Spherical
Cylindrical
Cartesian
𝜌𝐶𝑝
V




















































μ
T
θ
sin
r
1
θ
T
sinθ
θ
sinθ
r
1
r
T
r
r
r
1
k
T
rsinθ
v
θ
T
r
v
r
T
v
t
T
ρ 2
2
2
2
2
2
2
θ
r
p



Tabel A-9
Components of molecular Diffusion Flux
Spherical
z
C
D
J
y
C
D
J
x
C
D
J
A
AB
Az
A
AB
Ay
A
AB
Ax












z
C
D
J
θ
C
r
1
D
J
r
C
D
J
A
AB
Az
A
AB
Aθ
A
AB
Ar

























A
AB
Az
A
AB
Aθ
A
AB
Ar
C
rsinθ
1
D
J
θ
C
r
1
D
J
r
C
D
J
Cartesian Cylindrical
Tabel A-10
Continuity Equation of Component A
A
Az
Ay
Ax
A
R
z
N
y
N
x
N
t
C




















  A
Az
Aθ
Ar
A
R
z
N
θ
N
r
1
rN
r
r
1
t
C


















    A
A
Aθ
Ar
2
2
A
R
N
rsinθ
1
sinθ
N
θ
rsinθ
1
N
r
r
r
1
t
C






















Cartesian
Cylindrical
Spherical
TabLE A-11
Continuity equation of component A for constant properties
A
2
A
2
2
A
2
2
A
2
AB
A
z
A
y
A
x
A
R
z
C
y
C
x
C
D
z
C
v
y
C
v
x
C
v
t
C





































A
2
A
2
2
A
2
2
A
AB
A
z
A
θ
A
r
A
R
z
C
θ
C
r
1
r
C
r
r
r
1
D
z
C
v
θ
C
r
1
v
r
C
v
t
C











































A
2
A
2
2
2
A
2
A
2
2
AB
A
A
θ
A
r
A
R
C
θ
sin
r
1
θ
C
sinθ
θ
sinθ
r
1
r
C
r
r
r
1
D
C
rsin θ
1
v
θ
C
r
1
v
r
C
v
t
C
























































Cartesian
Cylindrical
Spherical
P(x,y,z)
y
z
x
y
x
z
CARTESIAN COORDINATE SYSTEM
z
 
z
r
P ,
,

r
CYLINDRICAL COORDINATE SYSTEM
 

,
,
r
P


SPHERICAL COORDINATE SYSTEM
NON NEWTONIAN FLUID
 




















:
2
1
0
0


   2
0
:
2
1


 
0

   2
0
:
2
1


 
0
0 

 




y
Vx
yx 2
0
2

 
yx
0



y
Vx 2
0
2

 
yx
  












1
:
2
1
n
m

 























 

2
0
0
:
2
1
1







BINGHAM PLASTIC
POWER LAW
Model Reiner-Philippof
NON NEWTONIAN FLUID
 




















:
2
1
0
0


   2
0
:
2
1


 
0

   2
0
:
2
1


 
0
0 

 




y
Vx
yx 2
0
2

 
yx
0



y
Vx 2
0
2

 
yx
  












1
:
2
1
n
m

 























 

2
0
0
:
2
1
1







BINGHAM PLASTIC
POWER LAW
Model Reiner-Philippof

Weitere ähnliche Inhalte

Ähnlich wie PR_TMP_IUP_2021_CHAP3.pptx

free Video lecture in india
free Video lecture in indiafree Video lecture in india
free Video lecture in indiaEdhole.com
 
Free video lecture in india
Free video lecture in indiaFree video lecture in india
Free video lecture in indiaCss Founder
 
Open channel flow
Open channel flowOpen channel flow
Open channel flowAdnan Aslam
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueAmro Elfeki
 
Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11Said Benramache
 
The Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle PontryaginThe Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle PontryaginIJERA Editor
 
On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...TELKOMNIKA JOURNAL
 
Gas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptxGas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptxNamLe218588
 
Ch07a Entropy (1).pptx
Ch07a Entropy (1).pptxCh07a Entropy (1).pptx
Ch07a Entropy (1).pptxMercyjiren
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDMXueer Zhang
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfsami717280
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .happycocoman
 

Ähnlich wie PR_TMP_IUP_2021_CHAP3.pptx (20)

free Video lecture in india
free Video lecture in indiafree Video lecture in india
free Video lecture in india
 
Free video lecture in india
Free video lecture in indiaFree video lecture in india
Free video lecture in india
 
Ostwald
OstwaldOstwald
Ostwald
 
Ostwald
OstwaldOstwald
Ostwald
 
Open channel flow
Open channel flowOpen channel flow
Open channel flow
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 
N3 l penelet_final
N3 l penelet_finalN3 l penelet_final
N3 l penelet_final
 
The Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle PontryaginThe Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle Pontryagin
 
On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...
 
Gas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptxGas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptx
 
Ch07a Entropy (1).pptx
Ch07a Entropy (1).pptxCh07a Entropy (1).pptx
Ch07a Entropy (1).pptx
 
Drift flux
Drift fluxDrift flux
Drift flux
 
Simple & Fast Fluids
Simple & Fast FluidsSimple & Fast Fluids
Simple & Fast Fluids
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDM
 
Fl35967977
Fl35967977Fl35967977
Fl35967977
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .
 

Kürzlich hochgeladen

The Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptxThe Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptxNehaChandwani11
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptxPoojaSen20
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnershipsexpandedwebsite
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhleson0603
 
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...Nguyen Thanh Tu Collection
 
The Liver & Gallbladder (Anatomy & Physiology).pptx
The Liver &  Gallbladder (Anatomy & Physiology).pptxThe Liver &  Gallbladder (Anatomy & Physiology).pptx
The Liver & Gallbladder (Anatomy & Physiology).pptxVishal Singh
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...Nguyen Thanh Tu Collection
 
philosophy and it's principles based on the life
philosophy and it's principles based on the lifephilosophy and it's principles based on the life
philosophy and it's principles based on the lifeNitinDeodare
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽中 央社
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文中 央社
 
Chapter 7 Pharmacosy Traditional System of Medicine & Ayurvedic Preparations ...
Chapter 7 Pharmacosy Traditional System of Medicine & Ayurvedic Preparations ...Chapter 7 Pharmacosy Traditional System of Medicine & Ayurvedic Preparations ...
Chapter 7 Pharmacosy Traditional System of Medicine & Ayurvedic Preparations ...Sumit Tiwari
 
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING IIII BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING IIagpharmacy11
 
Benefits and Challenges of OER by Shweta Babel.pptx
Benefits and Challenges of OER by Shweta Babel.pptxBenefits and Challenges of OER by Shweta Babel.pptx
Benefits and Challenges of OER by Shweta Babel.pptxsbabel
 
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Celine George
 
Implanted Devices - VP Shunts: EMGuidewire's Radiology Reading Room
Implanted Devices - VP Shunts: EMGuidewire's Radiology Reading RoomImplanted Devices - VP Shunts: EMGuidewire's Radiology Reading Room
Implanted Devices - VP Shunts: EMGuidewire's Radiology Reading RoomSean M. Fox
 
Book Review of Run For Your Life Powerpoint
Book Review of Run For Your Life PowerpointBook Review of Run For Your Life Powerpoint
Book Review of Run For Your Life Powerpoint23600690
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...Nguyen Thanh Tu Collection
 

Kürzlich hochgeladen (20)

“O BEIJO” EM ARTE .
“O BEIJO” EM ARTE                       .“O BEIJO” EM ARTE                       .
“O BEIJO” EM ARTE .
 
The Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptxThe Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptx
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
 
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
 
The Liver & Gallbladder (Anatomy & Physiology).pptx
The Liver &  Gallbladder (Anatomy & Physiology).pptxThe Liver &  Gallbladder (Anatomy & Physiology).pptx
The Liver & Gallbladder (Anatomy & Physiology).pptx
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 
philosophy and it's principles based on the life
philosophy and it's principles based on the lifephilosophy and it's principles based on the life
philosophy and it's principles based on the life
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
IPL Online Quiz by Pragya; Question Set.
IPL Online Quiz by Pragya; Question Set.IPL Online Quiz by Pragya; Question Set.
IPL Online Quiz by Pragya; Question Set.
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
 
Including Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdfIncluding Mental Health Support in Project Delivery, 14 May.pdf
Including Mental Health Support in Project Delivery, 14 May.pdf
 
Chapter 7 Pharmacosy Traditional System of Medicine & Ayurvedic Preparations ...
Chapter 7 Pharmacosy Traditional System of Medicine & Ayurvedic Preparations ...Chapter 7 Pharmacosy Traditional System of Medicine & Ayurvedic Preparations ...
Chapter 7 Pharmacosy Traditional System of Medicine & Ayurvedic Preparations ...
 
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING IIII BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
II BIOSENSOR PRINCIPLE APPLICATIONS AND WORKING II
 
Benefits and Challenges of OER by Shweta Babel.pptx
Benefits and Challenges of OER by Shweta Babel.pptxBenefits and Challenges of OER by Shweta Babel.pptx
Benefits and Challenges of OER by Shweta Babel.pptx
 
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
 
Implanted Devices - VP Shunts: EMGuidewire's Radiology Reading Room
Implanted Devices - VP Shunts: EMGuidewire's Radiology Reading RoomImplanted Devices - VP Shunts: EMGuidewire's Radiology Reading Room
Implanted Devices - VP Shunts: EMGuidewire's Radiology Reading Room
 
Book Review of Run For Your Life Powerpoint
Book Review of Run For Your Life PowerpointBook Review of Run For Your Life Powerpoint
Book Review of Run For Your Life Powerpoint
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
 

PR_TMP_IUP_2021_CHAP3.pptx

  • 1. CONSERVATION LAW  1 X A  2 x A     V A A t V G x x           2 1   G x V A t           c x m x x , ,      x m x        , x c x V   ,      G c x m x V A t             , ,     G x m x V V A V A t               ,       G x m x x V AV V A V A V t                   ,     G x x V AV V x A V A V t                                     G t          .       G m V V t                . . .       G V V t                 . . . 3-D PROPERTY CONSERVATION EQUATION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) Property Accumulation Rate = Inlet Property Rate - Outlet Property Rate + Property Generation Rate
  • 2. HEAT TRANSPORT MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) General heat transport phenomena is expressed as equation of change. Equation of change concerning conduction and convection heat transport is called Energy Equation basically as microscopic energy conservation equation.       G m V V t                . . . =CpT, m  T k q               G T V CpT CpT CpT V t CpT                  . . .        CpT     G G T     Cp k    = thermal diffusivity
  • 3. HEAT TRANSPORT         v v p q v U t U            : . . ˆ . ˆ          v v T p T q T v t T v C V                                : . . . ˆ ˆ         Dt Dp v q v H t H           : . ˆ . ˆ        v Dt Dp T q T v t T p C p                         : ln ln . . ˆ    OTHER FORMS OF ENERGY EQUATION Expressed in 𝑈 : Expressed in 𝐶𝑣 and T Expressed in 𝐻 Expressed in 𝐶𝑝 and T   V V       : V  Tabel $B.7 MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) V T k Dt DT p C       2 ˆ
  • 4. HEAT TRANSPORT 2B x y z L W EXAMPLE -2 Determine temprature distribution in a viscous liquid flowing downward in steady state and laminar between two vertical paralell plate. The two plates are maintained at constant temprature of 𝑇0. Assume constant  and k. Solution: First, we draw sketsc of flow system, Assumptions: 1.Steady state, 2.Laminar flow, 3.Vx=Vy=0, VZ is not function of y 4. Newtonian Fluid, 5.Constant , , k 6. 𝜕𝑇 𝜕𝑦 = 𝜕𝑇 𝜕𝑧 = 0 7. No slip at wall 8. End effect is neglected MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE)
  • 5. HEAT TRANSPORT 0             z V y V x V t z y x     0    z Vz  0    z Vz z z z z z z z y x x z g z V y V x V z P z V V y V V x V V t V                                             2 2 2 2 2 2 z z g dx V d z P         2 2 0 L dx V d L z 0 2 2      z g P z     1 0 K x L dx dV L z       0 0    dx dV x z x L dx dV L z  0     2 2 0 2 K x L V L z       0    z V B x 2 0 2 2 B L K L       SOLUTION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) K1=0
  • 6. HEAT TRANSPORT                   2 2 1 2 B x L B Vz                  2 max , 1 B x Vz L B Vz  2 2 max ,    2 max . 2 B x V dx dV z z                                        2 2 2 2 2 2 z T y T x T k z T V y T V x T V t T C z y x P                                                                                      2 2 2 2 2 2 2 y V z V x V z V x V y V z V y V x V z y z x y x z y x   0 2 2 2         dx dV dx T d k z  0 4 . 4 2 2 max , 2 2         B x V dx T d k z  3 3 4 2 max , 3 4 K x kB V dx dT z     4 3 4 4 2 max , 3 K x K x kB V T z      ENERGY EQUATION SOLUTION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) From table A-5
  • 7. HEAT TRANSPORT 4 3 4 4 2 max , 3 K x K x kB V T z      0 0    dx dT x 4 4 4 2 max , 3 K x kB V T z     0 T T B x    B.C-1: B.C.-2: 0 3  K k V T K z 3 2 max , 0 4                     4 2 max , 0 1 3 B x k V T T z                       4 2 4 0 1 12 B x k L B T T  SOLUTION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE)
  • 8. HEAT TRANSPORT Example 3 Inlet air at T1 Cooler A system consist of two porous concentric spherical walls with radius R1 and R2. Outer surfase of inner wall is maintained at temprature T1 and inner surface of outer wall is maintained at tempratrure T2. Dry air at temprature T1 is blown radially from inner wall to outer wall. Develop an expression for heat removal rate needed from inner wall as a function of air mass flow rate. Assume steady state laminar flow and low gas rate. MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE)
  • 9. HEAT TRANSPORT Solution: Assumption: 0 . 1     V V ) (r f Vr  2. T=T(r) ) ( . 3 r      0 1 2 2  r V r dr d r   r V r  2  4 r w  constant Continuity Equation:                   r r r V r dr d r dr d dr d dr dV V 2 2 1   Equation of Motion dr d dr r w d r w r r          2 2 4 4   dr d r wr     5 2 2 8             2 2 5 2 2 8 R r r R r r dr w d                     4 4 2 2 2 2 1 1 32 r R w r R r                          4 2 4 2 2 2 2 1 32 r R R w R r r   MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) r 2 r 2 2 2 r 2 2 r 2 2 2 2 2 θ r r θ r r r ρg v θ sin r 1 θ v sinθ θ sinθ r 1 r ) v (r r 1 μ r r v v v θ sin r v θ v r v r v v t v ρ                                                      p 𝜕 𝜕𝑟 1 𝑟2 𝜕 𝜕𝑟 𝑟2𝑣𝑟
  • 10. HEAT TRANSPORT        dr dT r dr d r k dr dT V C r p 2 2 1 ˆ         dr dT r dr d C w k dr dT p r 2 ˆ 4 𝑢 = 𝑟2 𝑑𝑇 𝑑𝑟 = 𝐾1𝑒− 𝑅0 𝑟 2 0 1 0 2 0 0 2 1 2 R R R R R R r R e e e e T T T T / / / /          k C w R P r  4 0 / ˆ  1 2 1 4 R r r q R Q     1 2 1 4 R r dr dT k R           1 1 4 2 1 1 0 1 2 0     R R R R T T k R Q / / exp    2 1 1 2 1 0 1 4 R R T T k R Q /     1 1 0 0       e Q Q Q     k R R R C w R R R R P r 1 2 1 1 1 0 4 1 1   / ˆ /     Energy Equation: Substitution: Heat transafer rate to inner wall is Cooling requirement at inner wall, If there is no air flow MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) 𝑢 𝑟2 = 1 𝑅0 𝑑 𝑑𝑟 𝑢 → 𝑑𝑟 𝑟2 = 1 𝑅0 𝑑𝑢 𝑢 − 𝑅0 𝑟 + ln 𝐾1 = ln 𝑢 → 𝑢 = 𝐾1𝑒− 𝑅0 𝑟 𝑑𝑇 = 𝐾1 𝑒− 𝑅0 𝑟 𝑟2 𝑑𝑟 𝑠 = 𝑅0 𝑟 → 𝑑𝑠 = − 𝑅0 𝑟2 𝑑𝑟 𝑑𝑇 = 𝑇 = 𝐾1 𝑒− 𝑅0 𝑟 𝑟2 𝑑𝑟 = − 𝐾1 𝑅0 𝑒−𝑠 𝑑𝑠 = 𝐾1 𝑅0 𝑒− 𝑅0 𝑟 + 𝐾2 𝑢 = 𝑟2 𝑑𝑇 𝑑𝑟
  • 12.       0 z ρv y ρv x ρv t ρ z y x                   0 z v ρ θ v ρ r 1 r v r ρ r 1 t ρ z θ r                   0 v ρ rsinθ 1 θ sinθ v ρ rsinθ 1 r v r ρ r 1 t ρ θ r 2 2               Cartesian Coordinate System: Cylindrical Coordinate System: Spherical Coordinate System Table A-1 Continuity Equation
  • 13. -Table A2Equation of Motion (Equation of Momentum) x zx yx xx x z x y x z x ρg z τ y τ x τ x z v v y v v x v v t v ρ                                          p y zy yy xy y z y y y z y ρg z τ y τ x τ y z v v y v v x v v t v ρ                                          p z zz yz xz z z z y z z z ρg z τ y τ x τ z z v v y v v x v v t v ρ                                          p Cartesian Coordinate System:
  • 14.   r rz θθ rθ rr r z 2 θ r θ r r r ρg z τ r τ θ τ r 1 r rτ r 1 r z v v r v θ v r v r v v t v ρ                                          p   θ zθ θθ rθ 2 2 θ z θ r θ θ θ r θ ρg z τ θ τ r 1 r τ r r 1 θ r 1 z v v r v v θ v r v r v v t v ρ                                         p   z zz θz rz z z z θ z r z ρg z τ θ τ r 1 x rτ r 1 z z v v θ v r v r v v t v ρ                                      p Cylindrical Coordinate System -Table A2Equation of Motion (Equation of Momentum)
  • 15. Spherical Coordinate System   r r θθ rθ rr 2 2 2 2 θ r r θ r r r ρg τ rsinθ 1 r τ τ θ sinθ τ rsinθ 1 r τ r r 1 r r v v v rsinθ v θ v r v r v v t v ρ                                                    p   θ rθ θ θθ rθ 2 2 2 θ r θ θ θ θ r θ ρg τ r cotθ r τ τ rsinθ 1 θ sinθ τ rsinθ 1 r τ r r 1 θ r 1 r cotθ v r v v v rsinθ v θ v r v r v v t v ρ                                                    p                 ρg τ r cotθ 2 r τ τ rsinθ 1 θ τ r 1 r τ r r 1 rsinθ 1 cotθ r v v r v v v rsinθ v θ v r v r v v t v ρ θ r θ r 2 2 θ r θ φ r φ                                              p -Table A2Equation of Motion (Equation of Momentum)
  • 16. x 2 x 2 x 2 2 x 2 x z x y x z x ρg z v y v x v μ x z v v y v v x v v t v ρ                                          p y 2 y 2 2 y 2 2 y 2 y z y y y z y ρg z v y v x v μ y z v v y v v x v v t v ρ                                          p z 2 z 2 2 z 2 2 z 2 z z z y z z z ρg z v y v x v μ z z v v y v v x v v t v ρ                                          p -Table A2Equation of Motion (Equation of Momentum) (Incompressible Newtonian Fluid) Cartesian Coordinate System:
  • 17. Table A-3 Equation of Motion (Equation of Momentum) (Incompresiible Newtonian Fluid) Cylindrical Coordinate:   r 2 r 2 θ 2 2 r 2 2 r r z 2 θ r θ r r r ρg z v θ v r 2 θ v r 1 rv r r 1 r μ r z v v r v θ v r v r v v t v ρ                                                    p   θ 2 θ 2 r 2 2 θ 2 2 θ θ z θ r θ θ θ r θ ρg z v θ v r 2 θ v r 1 rv r r 1 r μ θ r 1 z v v r v v θ v r v r v v t v ρ                                                  p x 2 z 2 2 z 2 2 z z z z θ z r z ρg z v θ v r 1 r v r r r 1 μ z z v v θ v r v r v v t v ρ                                              p
  • 18. Table A-3 Equation of Motion ( Equation of Momentum) (Incompressible Newtonian Fluid) Spherical Coordinate r 2 r 2 2 2 r 2 2 r 2 2 2 2 2 θ r r θ r r r ρg v θ sin r 1 θ v sinθ θ sinθ r 1 r ) v (r r 1 μ r r v v v θ sin r v θ v r v r v v t v ρ                                                      p θ 2 2 r 2 2 θ 2 2 2 θ 2 θ 2 2 2 θ r θ θ θ θ r θ ρg v θ sin r cosθ 2 θ v r 2 v θ sin r 1 θ sinθ v sinθ 1 θ r 1 r v r r r 1 μ θ r 1 r cotθ v r v v v rsinθ v θ v r v r v v t v ρ                                                                        p                 ρg v θ sin r cosθ 2 v sinθ r 2 v θ sin r 1 θ sinθ v sinθ 1 θ r 1 r v r r r 1 μ rsinθ 1 cotθ r v v r v v v rsinθ v θ v r v r v v t v ρ θ 2 2 r 2 2 2 2 2 2 2 2 θ r θ r                                                                      p
  • 19. Table A-4 Components of stress tensor for Newtonian Fluid Koordinat Silinder Koordinat Bola              v . κ x v 2 μ τ x xx              v . κ y v 2 μ τ y yy              v z vz xx . 2                  x v y v μ τ τ y x yx xy               y v z v μ τ τ z y zy yz               z v x v μ τ τ x z xz zx              v . κ r v 2 μ τ r rr                     v . κ r v θ v r 1 2 μ τ r θ θθ              v . κ z v 2 μ τ z zz                 θ v r 1 r /r v r μ τ τ r θ θr rθ               θ v r 1 z v μ τ τ z θ zθ θz               z v r v μ τ τ r z rz zr              v . κ r v 2 μ τ r rr                     v . κ r v θ v r 1 2 μ τ r θ θθ                        v . κ r cotθ v r v v rsinθ 1 2 μ τ θ r                  θ v r 1 r /r) (v r μ τ τ r θ θr rθ                           θ θ θ v rsinθ 1 sinθ v θ r sinθ μ τ τ               r /r) (v r φ v rsinθ 1 μ τ τ φ r r r   3 2 κ  Cartesian Coordinate System
  • 20. Cylindrical Coordinate Spherical Coordinate   v .  z v y v x v z y x           z v θ v r 1 rv r r 1 z θ r                       v rsinθ 1 sinθ v θ rsinθ 1 v r r r 1 θ r 2 2 Cartesian Coordinate System:
  • 21. Tabel A-5 Fungsi untuk fluida Newton Coordinate System Cartesian Sylindrical Spherical v   2 2 z x 2 y z 2 x y 2 z 2 y 2 x v . 3 2 x v z v z v y v y v x v z v y v x v 2                                                                            2 2 z r 2 θ z 2 r θ 2 z 2 r θ 2 r v . 3 2 r v z v z v θ v r 1 θ v r 1 r v r r z v r v θ v r 1 r v 2                                                                                2 2 r 2 θ 2 r θ 2 θ r 2 r θ 2 r v . 3 2 r v r r v rsi n θ 1 v rsi n θ 1 si n θ v θ r si n θ θ v r 1 r v r r r cotθ v r v v rsi n θ 1 r v θ v r 1 r v 2                                                                                                         
  • 22. Table A-6 Component of Energy Flux Cartesian Cylindrical Spherical z T k q y T k q x T k q z y x             z T k q θ T r 1 k q r T k q z θ r                          T rsinθ 1 k q θ T r 1 k q r T k q φ θ r
  • 23. Tabel A-7 Energy Equation in energy and momentum flux                                                                                                             y v z v τ x v z v τ x v y v τ z v τ y v τ x v τ v . T p T z q y q x q z T v y T v x T v t T ρC z y yz z x xz y x xy z zz y yy x xx ρ z y x z y x v                                                                                                                      z v θ v r 1 τ z v r v τ θ v r 1 r v r r τ z v τ v θ v r 1 τ r v τ v . T p T z q θ q r 1 rq r r 1 z T v θ T r v r T v t T ρC θ z θz r z rz r θ rθ z zz r θ θθ r rr ρ z θ r z θ r v                                                                                                                                                          v r cotθ v rsinθ 1 θ v r 1 τ r v v rsinθ 1 r v τ r v θ v r 1 r v τ r cotθ v r v v rsinθ 1 τ v θ v r 1 τ r v τ v . T p T q rsinθ 1 θ sinθ q rsinθ 1 q r r r 1 T rsinθ v θ T r v r T v t T ρC θ θ r r θ r θ rθ θ r r θ θθ r rr ρ θ r 2 2 θ r v Cartesian Cylindrical Spherical
  • 24. Tabel A-8 V                                     μ z T y T x T k z T v y T v x T v t T ρC 2 2 2 2 2 2 z y x p V                                           μ z T θ T r 1 r T r r r 1 k z T v θ T r v r T v t T ρC 2 2 2 2 2 z θ r p V                                                     μ T θ sin r 1 θ T sinθ θ sinθ r 1 r T r r r 1 k T rsinθ v θ T r v r T v t T ρ 2 2 2 2 2 2 2 θ r p    Energy Equation For Incompressible Newtonian Fluid with constant properties Spherical Cylindrical Cartesian 𝜌𝐶𝑝 V                                                     μ T θ sin r 1 θ T sinθ θ sinθ r 1 r T r r r 1 k T rsinθ v θ T r v r T v t T ρ 2 2 2 2 2 2 2 θ r p   
  • 25. Tabel A-9 Components of molecular Diffusion Flux Spherical z C D J y C D J x C D J A AB Az A AB Ay A AB Ax             z C D J θ C r 1 D J r C D J A AB Az A AB Aθ A AB Ar                          A AB Az A AB Aθ A AB Ar C rsinθ 1 D J θ C r 1 D J r C D J Cartesian Cylindrical
  • 26. Tabel A-10 Continuity Equation of Component A A Az Ay Ax A R z N y N x N t C                       A Az Aθ Ar A R z N θ N r 1 rN r r 1 t C                       A A Aθ Ar 2 2 A R N rsinθ 1 sinθ N θ rsinθ 1 N r r r 1 t C                       Cartesian Cylindrical Spherical
  • 27. TabLE A-11 Continuity equation of component A for constant properties A 2 A 2 2 A 2 2 A 2 AB A z A y A x A R z C y C x C D z C v y C v x C v t C                                      A 2 A 2 2 A 2 2 A AB A z A θ A r A R z C θ C r 1 r C r r r 1 D z C v θ C r 1 v r C v t C                                            A 2 A 2 2 2 A 2 A 2 2 AB A A θ A r A R C θ sin r 1 θ C sinθ θ sinθ r 1 r C r r r 1 D C rsin θ 1 v θ C r 1 v r C v t C                                                         Cartesian Cylindrical Spherical
  • 31. NON NEWTONIAN FLUID                       : 2 1 0 0      2 0 : 2 1     0     2 0 : 2 1     0 0         y Vx yx 2 0 2    yx 0    y Vx 2 0 2    yx                1 : 2 1 n m                              2 0 0 : 2 1 1        BINGHAM PLASTIC POWER LAW Model Reiner-Philippof
  • 32. NON NEWTONIAN FLUID                       : 2 1 0 0      2 0 : 2 1     0     2 0 : 2 1     0 0         y Vx yx 2 0 2    yx 0    y Vx 2 0 2    yx                1 : 2 1 n m                              2 0 0 : 2 1 1        BINGHAM PLASTIC POWER LAW Model Reiner-Philippof