SlideShare ist ein Scribd-Unternehmen logo
1 von 126
Downloaden Sie, um offline zu lesen
HAL Id: hal-03313812
https://hal.archives-ouvertes.fr/hal-03313812
Submitted on 4 Aug 2021
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
Public Domain
Analyse et Visualisation de structures 2D d’ARN
Fabrice Leclerc
To cite this version:
Fabrice Leclerc. Analyse et Visualisation de structures 2D d’ARN. Master. Paris, France. 2020.
฀hal-03313812฀
Analyse et Visualisation de
structures 2D d’ARN
Fabrice Leclerc, Ph. D., I2BC (Campus d’Orsay)
fabrice.leclerc@universite-paris-saclay.fr
BGA 2020
1
Echelles de taille et complexité
2
• • • • •
RNAfdl
(intersection-free)
VARNA, S2S, etc
longueur, repliements (jonctions), interactions à longue distance
Motifs ARN
3
Représentations 2D
ARN simple brin /ARN double brin
fonction / structure
Jonctions: « 3-way »
4
Une jonction Trois empilements Neuf configurations Pour chaque configuration,
Le meilleur score est notre
un score
prédiction
Empil. Famille Score
1 A 2,12
1 B 0,23
1 C 0,85
2 A 1,5
2 B 0,12
2 C 0,01
3 A 1,3
3 B 0,1
3 C 1,1
Représentations 2D (3D)
Jonctions: « 4-way »
5
Famille H Famille π Famille cH Famille cL Famille cW
Famille cK Famille X Famille ψ Famille cX
Représentations 2D (3D)
Structure modulaire
6
Motifs: structure & fonction
7
8
- boucles terminales
- boucles internes/bulges
- jonctions 3
- jonctions n
ARNr 16S
9
Secondary Structure: small subunit ribosomal RNA
Escherichia coli
November 1999 (cosmetic changes July 2001)
(J01695)
10
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
5’
3’
I
II
III
m
2
m
5
m7
m
2
m
m
4
m5
m2
m
6
2
m6
2
m
3
G
[ ]
Symbols Used In This Diagram:
G A
- Canonical base pair (A-U, G-C)
- G-A base pair
- G-U base pair
G C
G U
U U - Non-canonical base pair
Every 10th nucleotide is marked with a tick mark,
and every 50th nucleotide is numbered.
1.cellular organisms 2.Bacteria 3.Proteobacteria
4.gamma subdivision
5. Enterobacteriaceae and related symbionts
6. Enterobacteriaceae 7. Escherichia
A
A
A
U
U
G
A
A
G A G U U
U G
A
U
C
A
U
G
G
C
U
C
A
G
A
U
U
G
A
A
C
G
C
U
G
G
C
G
G
C
A
G
G
C
C
UA
A
C
A
C A
U
G
C
A
A
G U C
G A
A C G G U
A A
C A G G A A G A A G C
U
U
G
C
U
U
C
U
U
U
G
C
U
G
A
C
G
A
G
U
G
G
C
G
G
A
C
G
G
G
U
G
A
G
U
A
A
U
G
U
C
U
G
G
G
A
A
A
C
U
G
C
C
U
G
A
U
G
G
A G G G G
GA U A
A C U A C U G G
A
A
A
C
G
G
U
A
G
C
U
A
A
U
A
C
C
G
C
A
U
A
A
C
G
U
C
G
C
A
A
G
A
C
C
A
A
A
G
A
G
G
G
G
G
A
C
C
U
U
C
G G G C C U C U U G
C
C
A
U
C
G
G
A
U
G
U
G
C
C
C
A
G
A
U
G
G
G
A
U
U
A
G
C
U
A
G
U
A
G
G
U
G
G
G
G
U
A
A
C
G
G C
U
C
A
C
C
U
A
G
G
C
G
A
C G A
U
C
C
C
U
A
G
C
U
G
G
U
C
U
G
A
G A
GGA U
G A
C
C A GC C
A
C
A
C
U
G
G
A
A
C
U
G
A
G
A
CA C G
G U C C A G
A
C
U
C
C
U
A
C G
G
G
A
G
G C A G
C
A
G
U
G
G
G
G
A
A
U
A
U
U
G
C
A
C
A
A
U
G
G
G
C
G
C
A
A G C C U G A U G C A GC
C
A U
G
C
C
G
C
G
U
G
U
A
U
G
A
A
G
A
A
G
G
C
C
U
U
C
G G G U U
G
U A A
A
G U A C
U
U
U
C
A
G
C
G
G
G
G
A
G
G
A
A
G
G
G
A
G
U
A
A
A
G
U
U
A
A U A
C
C
U
U
U
G
C
U
CA U
U
G
A
C G U
U
A
C
C
C
G
C
A
G
A
A
G
A
AG
C
A
C
C
G
G
C
UA A C
U
C
C
G
ψ
G
C
C
A
G
C
A
G C C
G
C G
G
U
A
A
U
A
C
G
G
A
G
G
G
U
G
C
A
A
G
C
G
U
U
A
A
U
C
G
G
A
A
U
U
A
C
U
G G
G
C
G
U
A
A
A
G
C
G
C
A
C
G
C
A
G
G
C
G
G
U
U
U
G
U
U
A
A
G
U
C
A
G
A
U
G
U
G
A
A
A
U
C
C
C
C
G
G
G
C
U
C
A A C C U G G G A
A C
U G C A U C U G A
U A
C U G G C A A G C
U
U
G
A
G
U
C
U
C
G
U
A
G
A
G
G
G
G
G
G
U
A
G
A
A
U
U
C
C
A
G
G
U
G
U
A
G
C
G
G
U
G
A
A A U G C
G
U
A G
A
G
A U C U G G A G
G A
A U
A
C C
G
G
U G
G C G
A
A
G
G
C
G
G
C
C
C
C
C
U
G
G
A
C
G
A
A
G
A
C
U
G
A
C
G
C
U
C
A
G
G
U
G
C
G
A
A
A
G
C
G
U
G
G
G
G
A G
C
A
A
A
C
A
G
G
A
U
U
A G A
U
A
C
C
C
U
G
G
U
A
G
U
C
C
A
C
G
C C G U
A
A
A
C
G
A
U
G U C G A C U U G
G
A
G
G
U
U
G
U
G
C
C
C U U
G
A
G
G
C
G
U
G
G
C
U
U
C
CG
G
A
G
C
U
A
A
C
G
C
G
U
U
A
A
G
U
C
G
A
C
C
G
C
C
U
G G G
G
A G U A
C
G G C C G
C
A
A
G
G
U
U
A
A
A
A
C
U
C
A
A A
U G A A U U G A C G
G
G G G C C C G
C
A C A A G
C
G
G
U
G
G
A
G
C
A
U
G
U
G
G
U
U
U
A
A
U
U
C
G
A
U
G
C
A
A
C
G C
G
A
A
G
A
A
C C U U
A
C
C
U
G
G
U
C
U
U
G
A
C
A
U
C
C
A
C
G
G
A
A
G
U
U
U
U
C
A
G
A
G
A U G A G A A U G
U
G
C
C
U
U C
G
G
G
A
A
C
C
G
U
GA
G
A
C A
G
G
U
G
C
U
G
C
A U
G
G
C
U
G
U
C
G
U
C
A
G
C
U
C
G
U
G
U
U
G
U
G
A
A
A
U
G
U
U
G
G
G
U
U
A A
G
U
C
C
C
G C
A
A C G A G C
G
C A A
C
C C U U A U C C U U U G U U G C C
A G
C G G U C
C
G
G
C
C
G
G
G
A
A
C
U
C
A
A
A
G
G
A
G
A
C
U
G
C
C
A
G
U
G
A
U
A
A
A
C
U
G
G
A
G
G
A
A
G
G
U
G
G
G
G
A
U
G
A
C
G
U
C
A
A
G
U C
A
U
C
A
U
G
G
C
C
C
U
U
A
C
G
A
C
C
A
G
G
G
C
U
A
C
A
C
A
C
G
U
G
C
U
A
C A A
U G
G
C
G
C
A
U
A
C
A A A G
A
G
A
A G
C
G
A C C
U
C
G C
G
A
G
A
G
C
A
A
G
C
G
G
A
C
C
U
C
A
U
A
A
A
G
U
G
C
G
U
C
G
U
A
G
U
C
C
G
G
A
U
U
G
G
A
G
U
C
U
G
C
A
A
C
U
C
G
A
C
U
C
C
A
U
G
A
A
G
U
C
G
G
A
A
U
C
G
C
U
A
G
U
A
A
U
C
G
U
G
G
A
U
C
A
G
A
A
U
G
C
C
A
C
G
G
U
G
A
A
U
A
C
G
U
U
C
C
C
G
G
G
C
C
U
U
G
U
A
C
A
C
A
C
C
G
C
C
C
G
U
C
A
C
A
C
C
A
U
G
G
G
A
G
U
G
G
G
U
U
G
C
A
A
A
A
G
A
A
G
U
A
G
G
U
A
G
C
U
U
A
A
C
C
U
U C
G
G
G
A
G
G
G
C
G
C
U
U
A
C
C
A
C
U
U
U
G
U
G
A
U
U
C
A
U
G
A
C
U
G
G
G
G
U
G
A
A
G
U
C
GU
A
A
C
A A
G
G
U A A C C G U A G G
G
G
A
A
C
C
U
G
C
G
G
U
U
G
G
A
U
C
A
C
C
U
C
C
U
U
A
ARNr 16S
10
modèles 2D (expérimental: « footprinting », fluorescence, SHAPE,
etc; théoriques: MFold, RNAfold, etc)
représentations 2D à partir de structures 3D d’ARN
annotations des structures avec des informations: structurales,
functionelles, phylogénétiques, etc
G
C
G
A
C
U
C
G
G
G
G
U
G
C
C
C
U
G
C
G
U
G A
A G G C
U
G
A G
A
A
A A C C C G
U A A C C U G AUC U G G
A U
A
A
U
G
C
C
A
G
C
G
A
G
G
G
A
A
G
U
C
G
C
A
C
RNAplot
E
jViz.RNA
11
modèles 2D (expérimental: « footprinting », fluorescence, SHAPE,
etc; théoriques: MFold, RNAfold, etc)
représentations 2D à partir de structures 3D d’ARN
annotations des structures avec des informations: structurales,
functionelles, phylogénétiques, etc
G
C
G
A
C
U
C
G
G
G
G
U
G
C
C
C
U
G
C G
U
G
A
A
G
G
C
U
G
A
G
A
A
A
A
C
C
C
G
U
A
A
C
C
U
G
A
U
C
U
G
G
A
U
A
A
U
G
C
C
A
G
C
G
A
G
G
G
A
A
G
U
C
G
C
A 5’
3’
90
13
85
18
47
23
36
59
80
64
74
31
41
52
69
S2S/Assemble
G
C
G
A
C
U
C
G
G
G
G
U
G
C
C
C
U
G
C
G
U
G
A A
G
G
C
U
G
A G
A
A
A
A
C
C
C
G U
A A C C U G A
U
C
U
G
G
A
U
A
A
U
G
C
C
A
G
C
G
A
G
G
G
A
A
G
U
C
G
C
A
1
10
20
30
40
50
60
70
76
B
VARNA
12
modèles 2D (expérimental: « footprinting », fluorescence, SHAPE,
etc; théoriques: MFold, RNAfold, etc)
représentations 2D à partir de structures 3D d’ARN
annotations des structures avec des informations: structurales,
functionelles, phylogénétiques, etc
1
13
2
7
3
9
49 6
2
76
G
C
G
A
C
U
C
G
G
G
G
U
G
C
C
C
A G G C
A A C C C G A A C C U G A C U G G
C
C
A
G
C
G
A
G
G
G
A
A
G
U
C
G
C
U
G
C
G
U G A
U
G A G
A
A
U
U
A U
A
A
U
G
A
PseudoViewer
Y
G
G
G
G
G
C
Y
R
G
C
U
G
A
G
A R
A
C C C
Y
R R
A
C C U G
A U C Y R G
U
A
U
R
C
Y
R
G
C
G
A
G
G
G
A
R
5'
F R2R
RNA 2D Structure by HT-SHAPE
13
14
15
IUPAC nucleotide code
16
/ U / U / Uracile
/ U
/ U
/ U
/ U
/ U
/ U
/U
17
(Extended) Secondary Structure File Formats
All-atoms 3D models
Interactive Editors Command-line tools Web-based tools
Vector Graphics Editors
Raster Graphics Editors
Stockhlom Vienna/DBN BPSeq Connect RNAML
PDB
RNAML
Annotation
RNAView
MC-Annotate
FR3D
VARNA
xrna
rnaviz
S2S/Assemble
PseudoViewer
Manual
Refinement
+ Annotations
R-chie
RILogo
RNAplot
R2R
VARNA
PseudoViewer
R-chie
RILogo
RNAplot
RNAMovies
Parameterization
Rerun
Adobe R
Illustrator R
Inkscape
Adobe R
Photoshop R
Gimp
Raw Data
RNA-Aware Tools
Post-Processing
Rasterization (Optional)
A
B
C
D
Rougier, JDEV2013
Formats et Outils
18
Tools
(Extended) Secondary Structure File Formats
Vector Graphics Formats Bitmap Graphics Formats
jViz.RNA PseudoViewer RNAMovies RILogo R-chie RNAplot R2R S2S VARNA
Stockhlom Vienna/DBN BPSeq Connect RNAML
PDF EPS/PS SVG PNG JPG GIF
19
C: Stockholm (RFAM)
D: Vienna (RNAfold)
E: Pseudobase
A: FASTA (aligned)
B: CLUSTAL
F: BPSEQ
G: CONNECT (CT, CT2)
Notation « dot-bracket »
20
> Rat Alanine tRNA
GAGGAUUUAGCUUAAUUAAAGCAGUUGAUUUGCAUUUAACAGAUGUAAGAUAUAGUCUUACAGUCCUUA
((((((...((((.....)))).(((((.......)))))...((((((((...)))))))))))))).
G
A
G
G
A
U
U
U
A
G
C
U
U
A
A
U
U A
A A G C
A
G
U
U
G
A
U
U
U
G C
A
U
U
U
A
A
C A
G
A
U G U A A G A U A
U
A
G
U
C
U
U
A
C
A
G
U
C
C
U
U
A
Vienna, DBN
RNAfold
Format Stockholm
21
U STOCKHOLM 1.0
U=GF ID mir-22
U=GF AC RF00653
...
O.latipes.1 CGUUG.CCUCACAGUCGUUCUUCA.CUGGCU.AGCUUUAUGUCCCACG..
Gasterosteus_aculeat.1 GGCUG.ACCUACAGCAGUUCUUCA.CUGGCA.AGCUUUAUGUCCUCAUCU
R.esox.1 AGCUGAGCACA...CAGUUCUUCA.CUGGCA.GCCUUAAGGUUUCUGUAG
...
U=GC SS_cons .<<<<.<<..<<<<<<<<<<<<<<..<<<<..<<<<<<<.<<........
U=GC RF gGccg.acucaCagcaGuuCuuCa.cuGGCA.aGCuuuAuguccuuauaa
O.latipes.1 CCCCACCGUAAAGCU.GC.CAGUUGAAGAGCUGUUGUG..UGUAACC
Gasterosteus_aculeat.1 ACCAGC..UAAAGCU.GC.CAGCUGAAGAACUGUUGUG..GUCGGCA
R.esox.1 ACAGGC..UAAACCU.GC.CAGCUGAAGAACUGCUCUG..GCCAGCU
...
U=GC SS_cons ....>>..>>>>>>>.>>.>>..>>>>>>>>>>>>>>...>>>>>>.
U=GC RF acaaac..UaaaGCu.GC.CaGuuGaaGaaCugcuGug..gucggCu
//
U STOCKHOLM 1.0
U=GF ID mir-22
U=GF AC RF00653
...
O.latipes.1 CGUUG.CCUCACAGUCGUUCUUCA.CUGGCU.AGCUUUAUGUCCCACG..
Gasterosteus_aculeat.1 GGCUG.ACCUACAGCAGUUCUUCA.CUGGCA.AGCUUUAUGUCCUCAUCU
R.esox.1 AGCUGAGCACA...CAGUUCUUCA.CUGGCA.GCCUUAAGGUUUCUGUAG
...
U=GC SS_cons .<<<<.<<..<<<<<<<<<<<<<<..<<<<..<<<<<<<.<<........
U=GC RF gGccg.acucaCagcaGuuCuuCa.cuGGCA.aGCuuuAuguccuuauaa
O.latipes.1 CCCCACCGUAAAGCU.GC.CAGUUGAAGAGCUGUUGUG..UGUAACC
Gasterosteus_aculeat.1 ACCAGC..UAAAGCU.GC.CAGCUGAAGAACUGUUGUG..GUCGGCA
R.esox.1 ACAGGC..UAAACCU.GC.CAGCUGAAGAACUGCUCUG..GCCAGCU
...
U=GC SS_cons ....>>..>>>>>>>.>>.>>..>>>>>>>>>>>>>>...>>>>>>.
U=GC RF acaaac..UaaaGCu.GC.CaGuuGaaGaaCugcuGug..gucggCu
//
Stockholm - Ralee (emacs)
22
# STOCKHOLM 1.0
Pho21_215834-215776_-__ CGGCCCGGTTCCCGCCCTCTCCGGGGAATCGTGAACCGGGGGTTCCGACCGGGCCGACA
Pfu21_163991-163933_-__ GGGCCCGGTTCCCGCCCTCTCCGGGGAATCGTGAACCGGGGGTTCCGACCGGGCCCACA
Pab21_230575-230517_-__ GGGCCCGGCTCCCGCCCTCTCCGGGGAATCGTGAACCGGGGGTTCCGGCCGGGCCTACA
Consensus GGGCCCGGUUCCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGACCGGGCCCACA
#=GC SS_cons <<<<<<<<<<...<<<<...<<<<...........>>>>>>>>...>>>>>>>>>>...
//
# STOCKHOLM 1.0
Pab105_1335797-1335648_-__ CCGCCCGGA-GGCCCGACCGAGGGAGCGTGCCGAGAAAGGCGCGCCATGAACGAGGCGACGTCGCCGGGCGGACAGGGCCCGGTCTCCGGGG
Pho105_592081-592230_+__ CCGCCCGGG-GGCCCGACCGAGGGAGCGTGCCGAGAATGGCGCGCAATGAACGAGGTGACGTCGTCGGGCGGACAGGGCCCGGTCTCCGGGG
Pfu105_942696-942544_-__ CCGCCCGGGCGGCCCGACCGAGGGAGCGTGCCGGCAATGGCGCGCGATGAACGAGGTGACGTCTCCGGGCGGACAGGGCCCGGCCTTCGGGG
Consensus CCGCCCGGG-GGCCCGACCGAGGGAGCGUGCCGAGAAUGGCGCGCAAUGAACGAGGUGACGUCGCCGGGCGGACAGGGCCCGGUCUCCGGGG
#=GC SS_cons <<<<<<<<....<<<......>>>.<<<<<<<......>>>>>>>...<<.<<......>>>>.>>>>>>>>...<<<<<<<<<.<<<<...
Pab105_1335797-1335648_-__ CCGCCTGAGGTTGCCGACAACGGCGGGCAATGAGGGCGGGTGGATAAGCCGGGCCTATA--
CCGCCTGAGGTTGCCGAGAATGGCGTTCAATGAAGGCGGGCGGATAATCCGGGCCTAAA--
Pfu105_942696-942544_-__ CCGCCTGAGGGAGCCGAGAAGGGCAGACGATGAAGGCGGGCGGATAAGCCGGGCCCTCAAA
Consensus CCGCCUGAGGUUGCCGAGAACGGCGGACAAUGAAGGCGGGCGGAUAAGCCGGGCCUAAA--
#=GC SS_cons <<<<<<.....<<<<......>>>>........>>>>>>.>>>>...>>>>>>>>>.....
//
Stockholm
Stockholm - Rfam
23
# STOCKHOLM 1.0
#=GF ID snoR9
#=GF AC RF00065
#=GF DE Small nucleolar RNA snoR9
#=GF AU Bateman A, Daub J
#=GF GA 50.0
#=GF NC 49.8
#=GF TC 68.7
#=GF SE Bateman A
#=GF SS Published; PMID:12032319
#=GF TP Gene; snRNA; snoRNA; CD-box;
#=GF BM cmbuild -F CM SEED; cmcalibrate --mpi -s 1 CM
#=GF BM cmsearch -Z 274931 -E 1000000 --toponly CM SEQDB
#=GF DR SO:0000593 SO:C_D_box_snoRNA
#=GF DR GO:0006396 GO:RNA processing
#=GF DR GO:0005730 GO:nucleolus
#=GF RN [1]
#=GF RM 12032319
#=GF RT Noncoding RNA genes identified in AT-rich hyperthermophiles.
#=GF RA Klein RJ, Misulovin Z, Eddy SR;
#=GF RL Proc Natl Acad Sci U S A 2002;99:7542-7547.
#=GF CC snoRNA R9 is a member of the C/D class of snoRNA which contain
#=GF CC the C (UGAUGA) and D (CUGA) box motifs. R9 was identified in a
#=GF CC computational screen in AT-rich hyperthermophiles [1]. R9 was
#=GF CC found to overlap with the smaller snoRNA R19 which is currently a
#=GF CC member of Pyrococcus C/D box snoRNA family Rfam:RF00095.
#=GF WK http://en.wikipedia.org/wiki/Small_nucleolar_RNA_snoR9
#=GF SQ 5
#=GS Pyrococcus_furiosus AC AE009950.1/163991-163864
#=GS Pyrococcus_abyssi_GE AC AJ248283.1/230575-230449
#=GS Pyrococcus_horikoshi AC BA000001.2/215834-215709
#=GS P.furiosus AC AF468960.1/1-128
#=GS Thermococcus_kodakar AC AP006878.1/47908-47779 Stockholm
Stockholm - Rfam
24
#=GS Pyrococcus_furiosus AC AE009950.1/163991-163864
#=GS Pyrococcus_abyssi_GE AC AJ248283.1/230575-230449
#=GS Pyrococcus_horikoshi AC BA000001.2/215834-215709
#=GS P.furiosus AC AF468960.1/1-128
#=GS Thermococcus_kodakar AC AP006878.1/47908-47779
Pyrococcus_furiosus GGGCCCGGUU.CCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGAC
Pyrococcus_abyssi_GE GGGCCCGGCU.CCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGGC
Pyrococcus_horikoshi CGGCCCGGUU.CCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGAC
P.furiosus GGGCCCGGUU.CCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGAC
Thermococcus_kodakar GGGCCUGGCGUCCCGCCCUCCCCGGGGAAACGUGAACCGGGGCUUCCUGC
#=GC SS_cons <<<<<<<<<........<.<<<<<<<<<.....>>>>>>>>>>.....>>
#=GC RF gGGCCCGGcu.CCCgCCCUCUCCGGGGAAUCGUGAACCGGGGGuUCCggC
Pyrococcus_furiosus CGGGCCCACA..AUGGGAUGAUGACCUUUUGCUUUACUGAACACAUGAUG
Pyrococcus_abyssi_GE CGGGCCUACA..G..UUAUGAUGAACUUUUGCUUUGCUGAUGUGGUGAUG
Pyrococcus_horikoshi CGGGCCGACA..GG.GGAUGAAGAGCUUUUGCUUUGCUGAGCAGAUGAUG
P.furiosus CGGGCCCACA..AUGGGAUGAUGACCUUUUGCUUUACUGAACACAUGAUG
Thermococcus_kodakar CAGGCCUACACCGGGGGAUGAAGAGCUUUUGCUUUGCUGAC..UGUGAUG
#=GC SS_cons >>>>>>>...........................................
#=GC RF CGGGCCcACA..auguuAUGAUGAaCUUUUGCUUUaCUGAagagaUGAUG
Pyrococcus_furiosus ACCACGCCCUUCGCUGAC.CUAAAUAUUUGAC
Pyrococcus_abyssi_GE AGCACGCCCUUCGCUGAUACUCUCUCGUCCAU
Pyrococcus_horikoshi ACCACGCCCUUCGCUGAC.CU.GCUAUUUGAC
P.furiosus ACCACGCCCUUCGCUGAC.CUAAAUAUUUGAC
Thermococcus_kodakar AGCACGCCCUUCACUGACCCCGUAUCAGCUCU
#=GC SS_cons ................................
#=GC RF AgCACGCCCUUCGCUGAu.CUaaaUauUugAu
//
Stockholm
Stockholm - R2R
25
RF00065_seed
G
G
G
C
C
Y
G
G
Y
C
U
C
Y
C
C
G
G
G
G
A
U
G
A
A
C
C
G
G
G
G
R
C
C
R
G
G
C
C
Y
A C A
5 nt
7-8 nt
4 nt
K-Loop
ANA box
67-70 nt
5´
RF00065_seed Pyrococcus_horikoshi
C
G
G
C
C
C
G
G
U
U
C
C
C
G
C C C
U
C
U
C
C
G
G
G
G
A
A
U C G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
A
C
C
G
G
G
C
C
G
A C A
9 bp
50
3´ guide sequence
10
5´ guide sequence
20 40
8 bp
30
K-Loop
ANA box
5´
RF00065_seed Thermococcus_kodakar
G
G
G
C
C
U
G
G
C
G
U
C
C
C
G
C C C
U
C
C
C
C
G
G
G
G
A
A
A C G
U
G
A
A
C
C
G
G
G
G
C
U
U
C
C
U
G
C
C
A
G
G
C
C
U
A C A
9 bp
50
3´ guide sequence
10
5´ guide sequence
20
8 bp , 40
30
K-Loop
ANA box , 60
5´
RF00
RF00065_seed Pyrococcus_abyssi_GE
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C C C
U
C
U
C
C
G
G
G
G
A
A
U C G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U
A C A
9 bp
50
3´ guide sequence
10
5´ guide sequence
20 40
8 bp
30
K-Loop
ANA box
5´
RF00065_seed Pyrococcus_furiosus
G
G
G
C
C
C
G
G
U
U
C
C
C
G
C C C
U
C
U
C
C
G
G
G
G
A
A
U C G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
A
C
C
G
G
G
C
C
C
A C A
9 bp
50
3´ guide sequence
10
5´ guide sequence
20 40
8 bp
30
K-Loop
ANA box
5´
RF00065_seed Pyrococcus_horikoshiRF00065_seed Thermococcus_kodakarRF00065_seed skeleton-with-bp
variable-length region
variable-length loop
connector (zero length)
modular sub-structure
variable-length stem
75%
covarying mutations
base pair annotations
compatible mutations
no mutations observed
connector (zero length)
90%
97% 75%
50%
nucleotide
present
nucleotide
identity
75%
N
N 97%
N 90%
R2R Stockholm
Stockholm - R2R
26
RF00065_seed
G
G
G
C
C
Y
G
G
Y
C
U
C
Y
C
C
G
G
G
G
A
U
G
A
A
C
C
G
G
G
G
R
C
C
R
G
G
C
C
Y
A C A
5 nt
7-8 nt
4 nt
K-Loop
ANA box
67-70 nt
5´
RF00065_seed-ILOOP75
subfam_weight=0.696064
70%
G
Y
U
C
C
C
G
C C C
C G
G
R
C
5 nt
7 nt
RF00065_seed-ILOOP85
subfam_weight=0.303936
30%
G
C
G
U
C
C
C
G
C C C
C G
C
G
C
5 nt
8 nt
RF00065_seed Thermococcus_kodakarRF00065_seed skeleton-with-bp
R2R Stockholm
Pseudo-nœuds (pseudoknots)
Définition: structure 2D
d’acide nucléique contenant
au moins 2 tige-boucle dans
laquelle la moitié de l’une
est intercalée entre les 2
autres moitiés de l’autre
27
Wikipedia
A
A
A
A
A
A
A
A
A
C
C
C C
C
C
C
C
C
C
U
U
U
U
U
U
U
U
U U U U
U
U
G G
G G
G
G
G
G C
C
G
G
C
G
G G
Pseudobase-Pseudoviewer
28
1590 1600 1610 1620 1630
# |123456789|123456789|123456789|123456789|123456
$ 1590 AAAAAACUAAUAGAGGGGGGACUUAGCGCCCCCCAAACCGUAACCCC=1636
% 1590 ::::::::::::::[[[[[[:::::(((]]]]]]::::)))::::::
1
1
5
4
7
G G G G G G
G
C
G
C
C
C
C
C
C
C G U
A
A
A
A
A
A
C
U
A
A
U
A
G
A
A C U
U
A
A
A
A C
A
A
C
C
C
C
subs
PseudoViewer Pseudobase
29
W
Y
G
G
S
Y
S
G
S
M
W
K
G
K
C
a
Y
C
W
c
c
R
C
C
U
C
C
Y
C
G
Y
U
G
G
Y
S
C
S
R
S
C
U
G
G
G
C
A A C A U U C C G
W
A
G
G
R
G
R
a
M
M
R
a
a
Y
G
Y
C
C
a
c
U
C
G
G
U
A
A
U
G
G
C
D
A
A
g
g
g
W
G
R
G
M
C
M
S
W
1
10
20
30
40
50
60
70
80
90
101
Représentations circulaires
VARNA jViz.RNA
Vienna/DBN; Connect
Ribozyme HDV (RF00059)
30
W
Y
G
G
S
Y
S
G
S
M
W
K
G
K
C
a
Y
C
W
c
c
R
C
C
U
C
C
Y
C
G
Y
U
G
G
Y
S
C
S
R
S
C
U
G
G
G
C
A A C A U U C C G
W
A
G
G
R
G
R
a
M
M
R
a
a
Y
G
Y
C
C
a
c
U
C
G
G
U
A
A
U
G
G
C
D
A
A
g
g
g
W
G
R
G
M
C
M
S
W
1
10
20
30
40
50
60
70
80
90
100
101
VARNA R2R
Vienna/DBN; Stockholm
ARNr 16S (T. thermophilus)
31
Secondary Structure: small subunit ribosomal RNA
Thermus thermophilus
(X07998)
1.cellular organisms 2.Bacteria
3.Thermus/Deinococcus group
4.Thermus group 5.Thermus
September 2001
5’
3’
Citation and related information available at http://www.rna.icmb.utexas.edu
N
U
U
G
U
U
G
G
A
G A G U U
U G
A
U
C
C
U
G
G
C
U
C
A
G
G
G
U
G
A
A
C
G
C
U
G
G
C
G
G
C
G
U
G
C
C
UA
A
G
A
CA
U
G
C
A
A
G U C
G U
G C G G G C C G C G G G G U U
U
U
A
C
U
C
C
G
U
G
G
U
C
A
G
C
G
G
C
G
G
A
C
G
G
G
U
G
A
G
U
A
A
C
G
C
G
U
G
G
G
U G
A
C
C
U
A
C
C
C
G
G
A
A
G
AG G G G
G A C A
A C C C G G G G
A
A
A
C
U
C
G
G
G
C
U
A
A
U
C
C
C
C
C
A
U
G
U
G
G
A
C
C
C
G
C
C
C
C
U
U
G
G
G
G
U
G
U
G
U
C
C
A
A
A
G
G
G
C
U
U
U G C C C G
C
U
U
C
C
G
G
A
U
G
G
G
C
C
C
G
C
G
U
C
C
C
A
U
C
A
G
C
U
A
G
U
U
G
G
U
G
G
G
G
U
A
A
U
G
G C
C
C
A
C
C
A
A
G
G
C
G
A
C
G AC
G
G
G
U
A
G
C
C
G
G
U
C
U
G
A
G A
GGA U
G G
C
C GGC C
A
C
A
G
G
G
G
C
A
C
U
G
A
G
A
C A C
G
G G C C C C
A
C
U
C
C
U
A
C G
G
G
A
G
G
C A G
C
A
G
U
U
A
G
G
A
A
U
C
U
U
C
C
G
C
A
A
U
G
G
G
C
G
C
A
A G C C U G
A
C G G A GC
G
A C
G
C
C
G
C
U
U
G
G
A
G
G
A
A
G
A
A
G
C
C
C
U
U
C
G G G G U
G
U A A
A
C U C C
U
G
A
A
C
C
C
G
G
G
A
C
G
A
A
A
C
C
C
C
C
G
A
C G A
G
G
GG A C
U
G
A
C GG
U
A
C
C
G
G
G
G
U
A
A
U
A
G
C
G
C
C
G
G
C
C
A A
C
U
C
C
G
U
G
C
C
A
G
C
A
G C C
G
C G
G
U
A
A
U
A
C
G
G
A
G
G
G
C
G
C
G
A
G
C
G
U
U
A
C
C
C
G
G
A
U
U
C
A
C
U
G G
G
C
G
U
A
A
A
G
G
G
C
G
U
G
U
A
G
G
C
G
G
C
C
U
G
G
G
G
C
G
U
C
C
C
A
U
G
U
G
A
A
A
G
A
C
C
A
C
G
G
C
U
C
A
A C C G U G G GG G A G C G U G G G A
U A
C G C U C A G G C
U
A
G
A
C
G
G
U
G
G
G
A
G
A
G
G
G
U
G
G
U
G
G
A
A
U
U
C
C
C
G
G
A
G
U
A
G
C
G
G
U
G
A
A A U G C
G
C
A G
A
U
A C C G G G A G
G A
A C
G
C C
G
A
U G
G C G
A
A
G
G
C
A
G
C
C
A
C
C
U
G
G
U
C
C
A
C
C
C
G
U
G
A
C
G
C
U
GA
G
G
C
G
C G
A
A
A
G
C
G
U
G
G
G
G
A G
C
A
A
A
C
C
G
G
A
U
U
A G A
U
A
C
C
C
G
G
G
U
A
G
U
C
C
A
C
G
C C C U
A
A
A
C
G
A
U
G C G C G CU A G
G
U
C
U
C
U
G
G
G
U C
U
C
C
U
G
G
G
G
G
C
C G
A
A
G
C
U
A
A
C
G
C
G
U
U
A
A
G
C
G
C
G
C
C
G
C
C
U
G G G
G
A G U A
C
G G C C G
C
A
A
G
G
C
U
G
A
A
A
C
U
C
A
A
A
G G A A U U G A C G
G
G G G C C C G
C
A C A A G
C
G
G
U
G
G
A
G
C
A
U
G
U
G
G
U
U
U
A
A
U
U
C
G
A
A
G
C
A
A
C
G C
G
A
A
G
A
A
C C U U
A
C
C
A
G
G
C
C
U
U
G
A
C
A
U
G
C
U
A
G
G
G
A
A
C
C
C
G
G
G
U
G
A
A
A G C C U G G G G U
G
C
C
C
G
C G
A
G
G
G
A
G
C
C
C
U
A
G
C
A
C A
G
G
U
G
C
U
G
C
A U
G
G
C
C
G
U
C
G
U
C
A
G
C
U
C
G
U
G
C
C
G
U
G
A
G
G
U
G
U
U
G
G
G
U
U
A A
G
U
C
C
C
G C
A
A C G A G C
G
C A A
C
C C C C G C C G U U A G
U U G
C C
A G
C G G U
U
C
G
G
C
C
G
G
G
C
A
C
U
C
U
A
A
C
G
G
G
A
C
U
G
C
C
C
G
C
G
A
A
A
G
C
G
G
G
A
G
G
A
A
G
G
A
G
G
G
G
A
C
G
A
C
G
U
C
U
G
G
UC
A
G
C
A
U
G
G
C
C
C U
U
A
C
G
G
C
C
U
G
G
G
C
G
A
C
A
C
A
C
G
U
G
C
U
A
C A A
U
G
C
C
C
U
A
C
A A A G
C
G
A
U G
C
C
A C C
C
G
G C
A
A
C
G
G
G
G
A
G
C
U
A
A
U
C
G
C
A
A
A
A
A
G
G
U
G
G
G
C
C
C
A
G
U
U
C
G
G
A
U
U
G
G
G
G
U
C
U
G
C
A
A
C
C
C
G
A
C
C
C
C
A
U
G
A
A
G
C
C
G
G
A
A
U
C
G
C
U
A
G
U
A
A
U
C
G
C
G
G
A U
C
A
G
C
C
A
U
G
C
C
G
C
G
G
U
G
A
A
U
A
C
G
U
U
C
C
C
G
G
G
C
C
U
U
G
U
A
C
A
C
A
C
C
G
C
C
C
G
U
C
A
C
G
C
C
A
U
G
G
G
A
G
C
G
G
G
C
U
C
U
A
C
C
C
G
A
A
G
U
C
G
C
C
G
G
G
A
GC
C
U
A C
G
G
G
C
A
G
G
C
G
C
C
G
A
G
G
G
U
A
G
G
G
C
C
C
G
U
G
A
C
U
G
G
G
G
C
G
A
A
G
U
C
G
U
A
A
C
A A
G
G
U A G C U G U A C C G
G
A
A
G
G
U
G
C
G
G
C
U
G
G
A
U
C
A
C
C
U
C
C
U
U
U
N
N
jViz.RNA Vienna/DBN; Connect
32
A C U U G U A U A A C C U C A A U A A U A U G G U U U G A G G G U G U C U A C C A G G A A C C G U A A A A U G G U G A U U A C A A A A U U U G U U U A U G A C A U U U U U U G U A A U C A G G A U U U U U U U U
1 10 20 30 40
50 60
70 80
90 100
104
conformation 1 (ON)
conformation 2 (OFF)
VARNA
Arc
RIBOSWITCH
Structures 2D alternatives
graph
Vienna/DBN
33
mutations, données d’accessibilité
GGaCUCGGCUUGCUGaaGCGCGcACGGCAAGAGGCGAGGGgCGGCgACUGGUGAGuACGCcaaaaAUUUUGACUAGCGgAGGCUAgaAGgAgAgAC
GGACUCGGCUUGCUGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACUGGUGAGUACGCCAAAAAUUUUGACUAGCGGAGGCUAGAAGGAGAGAC
with chemical mapping data
HIV 5' UTR
Aalberts & Jannen, RNA, 2013
base pairing 1
base pairing 2
RNAbows
Probabilité de structures 2D
34
Pseudo-nœuds
U G G C C G G C A U G G U C C C A G C C U C C U C G C U G G C G C C G G C U G G G C A A C A C C A U U G C A C U C C G G U G G U G A A U G G G A C
1 10 20 30 40 50 60 70 73
1
88
G
G
C
C
G
G
C
G
G
U
C
C
C
A
G
C
C
C
C
G
G
C
G
C
C
G
G
C
U
G
G
C
A
U
U
C
C
G
A
G
G
G
G
A U
C
C
C
C
U
C
G
G
A
A
U
G
U
G
G
G
A
C
C
U
A
U
U
U
C
G
C
U
G C
A
A
C C
G
U
G
C
G
A
A
C A
A B C
D
PseudoViewer
jViz.RNA
VARNA
Appariements & nomenclature
35
Stombaugh et al., NAR, 2009
Lentos & Westhof, Curr. Opi. Struct. Biol., 2003
Motifs ARN & fonction(s)
flexibilité
nucléotide(s) non appariés, appariements non canoniques
structures et “formes” 3D
appariemments canoniques/non-canoniques & sillons
interactions: ARN-ARN, ARN-protéine, ARN-
ligand, …
régions simple/double-brin, formes et contacts
36
Bulges: flexibilité & interaction
37
Hermann & Patel, Structure, 2000
Appariements & sillons
38
A helix 〈FL〉 structure
〈JB〉 structure
Leclerc et al., Nat. Struct. Biol., 1994; Leclerc et al., Fold. Des., 1997
appariements non-canoniques et ouverture du grand sillon
appariements NWC
grand sillon
petit sillon
ARN de liaison à la protéine Rev (VIH-1)
Motifs récurrents
39
Djelloul & Denise, RNA, 2008
Motifs ARN 3D & “formes”
40
Watkins & Das, 2019
Motif Kink-turn (K-loop)
41
Klein et al., EMBO J., 2001
42
Secondary Structure: small subunit ribosomal RNA
Escherichia coli
November 1999 (cosmetic changes July 2001)
(J01695)
10
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
5’
3’
I
II
III
m
2
m
5
m7
m
2
m
m
4
m5
m2
m
6
2
m6
2
m
3
G
[ ]
Symbols Used In This Diagram:
G A
- Canonical base pair (A-U, G-C)
- G-A base pair
- G-U base pair
G C
G U
U U - Non-canonical base pair
Every 10th nucleotide is marked with a tick mark,
and every 50th nucleotide is numbered.
1.cellular organisms 2.Bacteria 3.Proteobacteria
4.gamma subdivision
5. Enterobacteriaceae and related symbionts
6. Enterobacteriaceae 7. Escherichia
A
A
A
U
U
G
A
A
G A G U U
U G
A
U
C
A
U
G
G
C
U
C
A
G
A
U
U
G
A
A
C
G
C
U
G
G
C
G
G
C
A
G
G
C
C
UA
A
C
A
C A
U
G
C
A
A
G U C
G A
A C G G U
A A
C A G G A A G A A G C
U
U
G
C
U
U
C
U
U
U
G
C
U
G
A
C
G
A
G
U
G
G
C
G
G
A
C
G
G
G
U
G
A
G
U
A
A
U
G
U
C
U
G
G
G
A
A
A
C
U
G
C
C
U
G
A
U
G
G
A G G G G
GA U A
A C U A C U G G
A
A
A
C
G
G
U
A
G
C
U
A
A
U
A
C
C
G
C
A
U
A
A
C
G
U
C
G
C
A
A
G
A
C
C
A
A
A
G
A
G
G
G
G
G
A
C
C
U
U
C
G G G C C U C U U G
C
C
A
U
C
G
G
A
U
G
U
G
C
C
C
A
G
A
U
G
G
G
A
U
U
A
G
C
U
A
G
U
A
G
G
U
G
G
G
G
U
A
A
C
G
G C
U
C
A
C
C
U
A
G
G
C
G
A
C G A
U
C
C
C
U
A
G
C
U
G
G
U
C
U
G
A
G A
GGA U
G A
C
C A GC C
A
C
A
C
U
G
G
A
A
C
U
G
A
G
A
CA C G
G U C C A G
A
C
U
C
C
U
A
C G
G
G
A
G
G C A G
C
A
G
U
G
G
G
G
A
A
U
A
U
U
G
C
A
C
A
A
U
G
G
G
C
G
C
A
A G C C U G A U G C A GC
C
A U
G
C
C
G
C
G
U
G
U
A
U
G
A
A
G
A
A
G
G
C
C
U
U
C
G G G U U
G
U A A
A
G U A C
U
U
U
C
A
G
C
G
G
G
G
A
G
G
A
A
G
G
G
A
G
U
A
A
A
G
U
U
A
A U A
C
C
U
U
U
G
C
U
CA U
U
G
A
C G U
U
A
C
C
C
G
C
A
G
A
A
G
A
AG
C
A
C
C
G
G
C
UA A C
U
C
C
G
ψ
G
C
C
A
G
C
A
G C C
G
C G
G
U
A
A
U
A
C
G
G
A
G
G
G
U
G
C
A
A
G
C
G
U
U
A
A
U
C
G
G
A
A
U
U
A
C
U
G G
G
C
G
U
A
A
A
G
C
G
C
A
C
G
C
A
G
G
C
G
G
U
U
U
G
U
U
A
A
G
U
C
A
G
A
U
G
U
G
A
A
A
U
C
C
C
C
G
G
G
C
U
C
A A C C U G G G A
A C
U G C A U C U G A
U A
C U G G C A A G C
U
U
G
A
G
U
C
U
C
G
U
A
G
A
G
G
G
G
G
G
U
A
G
A
A
U
U
C
C
A
G
G
U
G
U
A
G
C
G
G
U
G
A
A A U G C
G
U
A G
A
G
A U C U G G A G
G A
A U
A
C C
G
G
U G
G C G
A
A
G
G
C
G
G
C
C
C
C
C
U
G
G
A
C
G
A
A
G
A
C
U
G
A
C
G
C
U
C
A
G
G
U
G
C
G
A
A
A
G
C
G
U
G
G
G
G
A G
C
A
A
A
C
A
G
G
A
U
U
A G A
U
A
C
C
C
U
G
G
U
A
G
U
C
C
A
C
G
C C G U
A
A
A
C
G
A
U
G U C G A C U U G
G
A
G
G
U
U
G
U
G
C
C
C U U
G
A
G
G
C
G
U
G
G
C
U
U
C
CG
G
A
G
C
U
A
A
C
G
C
G
U
U
A
A
G
U
C
G
A
C
C
G
C
C
U
G G G
G
A G U A
C
G G C C G
C
A
A
G
G
U
U
A
A
A
A
C
U
C
A
A A
U G A A U U G A C G
G
G G G C C C G
C
A C A A G
C
G
G
U
G
G
A
G
C
A
U
G
U
G
G
U
U
U
A
A
U
U
C
G
A
U
G
C
A
A
C
G C
G
A
A
G
A
A
C C U U
A
C
C
U
G
G
U
C
U
U
G
A
C
A
U
C
C
A
C
G
G
A
A
G
U
U
U
U
C
A
G
A
G
A U G A G A A U G
U
G
C
C
U
U C
G
G
G
A
A
C
C
G
U
GA
G
A
C A
G
G
U
G
C
U
G
C
A U
G
G
C
U
G
U
C
G
U
C
A
G
C
U
C
G
U
G
U
U
G
U
G
A
A
A
U
G
U
U
G
G
G
U
U
A A
G
U
C
C
C
G C
A
A C G A G C
G
C A A
C
C C U U A U C C U U U G U U G C C
A G
C G G U C
C
G
G
C
C
G
G
G
A
A
C
U
C
A
A
A
G
G
A
G
A
C
U
G
C
C
A
G
U
G
A
U
A
A
A
C
U
G
G
A
G
G
A
A
G
G
U
G
G
G
G
A
U
G
A
C
G
U
C
A
A
G
U C
A
U
C
A
U
G
G
C
C
C
U
U
A
C
G
A
C
C
A
G
G
G
C
U
A
C
A
C
A
C
G
U
G
C
U
A
C A A
U G
G
C
G
C
A
U
A
C
A A A G
A
G
A
A G
C
G
A C C
U
C
G C
G
A
G
A
G
C
A
A
G
C
G
G
A
C
C
U
C
A
U
A
A
A
G
U
G
C
G
U
C
G
U
A
G
U
C
C
G
G
A
U
U
G
G
A
G
U
C
U
G
C
A
A
C
U
C
G
A
C
U
C
C
A
U
G
A
A
G
U
C
G
G
A
A
U
C
G
C
U
A
G
U
A
A
U
C
G
U
G
G
A
U
C
A
G
A
A
U
G
C
C
A
C
G
G
U
G
A
A
U
A
C
G
U
U
C
C
C
G
G
G
C
C
U
U
G
U
A
C
A
C
A
C
C
G
C
C
C
G
U
C
A
C
A
C
C
A
U
G
G
G
A
G
U
G
G
G
U
U
G
C
A
A
A
A
G
A
A
G
U
A
G
G
U
A
G
C
U
U
A
A
C
C
U
U C
G
G
G
A
G
G
G
C
G
C
U
U
A
C
C
A
C
U
U
U
G
U
G
A
U
U
C
A
U
G
A
C
U
G
G
G
G
U
G
A
A
G
U
C
GU
A
A
C
A A
G
G
U A A C C G U A G G
G
G
A
A
C
C
U
G
C
G
G
U
U
G
G
A
U
C
A
C
C
U
C
C
U
U
A
ARNr 16S
Motifs 2D K-turn
43
Lescoute et al., NAR, 2005
Motifs K-turn & interactions
44
Klein et al., EMBO J., 2001
45
Données phylogénétiques
conservation
VARNA*
R2R
* post-processing
Perreault et al., PLoS One, 2011 Leclerc, Molecules, 2010
2D representation 2D representation
(3D)
Stockholm; Vienna/DBN
Le ribozyme à tête de marteau
46
HHR
R2R
Diagrammes Arc
47
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Conservation Covariation One−sided Invalid Unpaired Gap
RFAM: RF00065
R-Chie
covariations, conservation
Stockholm
Structures 2D conservées
48
Stockholm
Alignements
49
CLUSTALW
Stockholm
ARN à boîtes C/D
50
RNAz, RNAalifold
Energy = -23.1 kcal/mol
G
C
A
U
A
U
A
A
G
G
A
G
U
_
A
G
G
C
U
C
A
G
G
A A
G
C
C
G
UCCA
C
U
C
C
U
C
A
C
C
A
U
U
C A
G G U G C
G
G
A
A
G
G
C
U
U
C
A
U C
A
U
C
G
C
C
U
U
A
U
A
U
A
C
U
U
U A U U C U U A U A A G
U
U
U
U
A
U
A
A
A
C
U
A
A
A
C
U
A
A
U
A
A
C
U
U
U
U
A
A
A
C
A
A
U
C
A
U
A
_
_
_
_
G
U
A
A
A
C
U
U
A
A
D box
C’ box
D’ box
C box
Clustal; Vienna/DBN
Diagrammes Arc
51
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Conservation Covariation One−sided Invalid Unpaired Gap
RFAM: RF00065
R-Chie
covariations, conservation
Stockholm
ARN à boîtes C/D
52
Pab C/D sRNA sR1
......(((......((((((.(((((.(((........))).))))).))))))....))).
interORF_Pyro_hori_397 AAAGAAGGCGAUGAUGAAGCCUUCCGCACCUGAAUGAUGAGGAGUGGACGGCUUCCUGAGCCU 63
interORF_Pyro_abys_654 AUAAAUGGCAAUGAUGAAGCCUUCCGCACCUGAACGGUGAGGAGUGGACGGCUUCCUGAGCCU 63
interORF_Pyro_furi_347 AGGUAAGGCGAUGAUGAUGCCUUCCGCACCUGAUUGGUGAGGAGUGGACGGCUUCCUGAGCCU 63
ruler ........10........20........30........40........50........60...
C box D’ box C’ box
5’ 3’
D box
RNAz, RNAalifold
A
A
A
A
A
A G
G
C
G
A
U
G
AU G
A
A
G
C
C
U
U
C
C
G
C
A
C
C
U
G
A
A U G
G
U
G
A
G
G
A
G
U
G
G
A
C
G
G
C
U
U
C
C
U
G
A
G
C
C
U
C box
D box
D’ box
C’ box
Energy = -24.6 kcal/mol
Clustal; Vienna/DBN
ARN à boîtes H/ACA
53
((((((((((...((((...((((...........))))))))...))))))))))...
Pho21_215834-215776_-__ CGGCCCGGUUCCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGACCGGGCCGACA
Pfu21_163991-163933_-__ GGGCCCGGUUCCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGACCGGGCCCACA
Pab21_230575-230517_-__ GGGCCCGGCUCCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGGCCGGGCCUACA
Pab-21 H/ACA sRNA
G
G
G
C
C
C
G
G
U
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U C G
U
G
A
A
C
C
G
G
G
G
G
U U
C
C
G
A
C
C
G
G
G
C
C
C
A
C
A
Energy = -35.1 kcal/mol
stem 1
stem 2
ACA box
internal loop
K-loop
RNAz, RNAalifold
Clustal; Vienna/DBN
ARN à boîtes (H/ACA)n
54
Pab-40
3 motifs
Pab-105
2 motifs
K-turn
Pab-21
1 motif
SSU 891
K-loop
internal loop
ARN à boîtes (H/ACA)2
55
((((((((....(((......))).(((((((......)))))))...((.((......)))).))))))))...(((((((((.((((...((((((.....((((......))))...
Pab105_1335797-1335648_-__ CCGCCCGGA-GGCCCGACCGAGGGAGCGUGCCGAGAAAGGCGCGCCAUGAACGAGGCGACGUCGCCGGGCGGACAGGGCCCGGUCUCCGGGGCCGCCUGAGGUUGCCGACAACGGCGGGC 119
Pho105_592081-592230_+__ CCGCCCGGG-GGCCCGACCGAGGGAGCGUGCCGAGAAUGGCGCGCAAUGAACGAGGUGACGUCGUCGGGCGGACAGGGCCCGGUCUCCGGGGCCGCCUGAGGUUGCCGAGAAUGGCGUUC 119
Pfu105_942696-942544_-__ CCGCCCGGGCGGCCCGACCGAGGGAGCGUGCCGGCAAUGGCGCGCGAUGAACGAGGUGACGUCUCCGGGCGGACAGGGCCCGGCCUUCGGGGCCGCCUGAGGGAGCCGAGAAGGGCAGAC 120
ruler ........10........20........30........40........50........60........70........80........90.......100.......110.......120
.....)))))).))))...)))))))))...
Pab105_1335797-1335648_-__ AAUGAGGGCGGGUGGAUAAGCCGGGCCUAUA 150
Pho105_592081-592230_+__ AAUGAAGGCGGGCGGAUAAUCCGGGCCUAAA 150
Pfu105_942696-942544_-__ GAUGAAGGCGGGCGGAUAAGCCGGGCCCUCA 151
ruler .......130.......140.......150.
Pab-105 H/ACA sRNA
C
C
G
C
C
C
G
G
G
_
G
G
C
C
C
G
A
C
C
G
A G
G
G
A
G
C
G
U
G
C
C
G
A
G
A
A U
G G C G C G C
A
A U
G
A
A
C
G
A
G
G
U G
A
C
G
U
C G
C C G G G C G G
A C A
G G G C C C G G U
C
U C C G
GGG
C C G C C U
G
A G G
U
U G C C
G A
G
A
A
C
G
G
C
G
G
A
C
A
A
U
G
A
A
G
G
C
G
G
G
C
G
G
A
U
A
A
G
C
C
G
G
G
C
C
U
A
A
A
ACA box
AUA box
Energy = -75.8 kcal/mol
terminal loop
terminal loop
internal loop
K-turn
Clustal; Vienna/DBN
ARN à boîtes (H/ACA)3
56
((((((((...((...((((((((...........)))))))).))..))))))))....((((((((....(((((...)))))..((((((((.(((.(((((((....)))))))))
Pab40_382389-382599_+__ GCCCCCGCAAGCGAGGGCCUGGUCGA--UUAGUGAGACCAGGUGCGACGCGGGGGCUACAGCCCGGCCUCAGCGAGGUCCCCUCGGUAGGUGCCUUCCGCGUCACGGAGCGCCGUGACCG 118
Pho40_1597422-1597634_+__ GCCCCCGCAAGCGAGGGCUUGGCCGAGCUUAAUGAGGCCAGGUGCGACGCGGGGGCGACAGCCCGGCCUUAGCGAGGUCCCCUCGGGAGGCGCCUUCCGCGUCACGGAGUGCCGUGACCG 120
Pfu40_1732713-1732926_+__ GCCCCCGCAAGCGAGGGCUUGGCUGAUCUUAAUGAGGCCAGGUGCGACGCGGGGGCAACAGCCCGGCCUCAGCGAGGUCCCCUCGGGAGGUGCCUUCCGCGUCACGGAGUGCCGUGACCG 120
ruler ........10........20........30........40........50........60........70........80........90.......100.......110.......120
))))))..)))))))))))...((((((((((.....((((((((.(((..((......))...)))..))))))))....))))))))))...
Pab40_382389-382599_+__ GGGGUAACCCUGGCCGGGCACAGGCCCGUCUGGGUUAGCCCGCCUGAUCAUGC-CGUUGGCUUAGAUGAAGGCGGGUGUUACGGGCGGGCUACA 211
Pho40_1597422-1597634_+__ GGGGUAACCCUGGCCGGGCACAGGCCCGUCUGGGUUAGCCCGCCCAAUUUUGC-CGAGGGCUUAGAUGAGGGCGGGUGUUACGGGCGGGCCACA 213
Pfu40_1732713-1732926_+__ GGGGUAACCCUGGCCGGGCACAGGCCCACCUGGGUUAGCCCGCCUGAGAAUGCAUACAUGCUACGAUGAGGGCGGGUGUUACGGGUGGGCCACA 214
ruler .......130.......140.......150.......160.......170.......180.......190.......200.......210....
Pab-40 H/ACA sRNA
G
C
C
C
C
C
G
C
A
A
G
C
G
A
G
G
G
C
U
U
G
G
C
C
G
A
_
C
U
U
A
A
U
G A G
G
C
C
A
G
G
U
G C
G
A
C G
C
G
G
G
G
G
C
A
A
C
A
G
C
C
C
G
G
C
C
U
C
A
G
C
G
A
G
G
U
C C
C
C
U
C
G
G G
A
G
G
U
G
C
C
U
U
C
C
G
C
G
U
C
A
C
G
G
A
G U
G
C
C
G
U
G
A
C
C
G
G
G
G
G
U
A
A
C
C
C
U
G
G
C
C
G
G
G
C A
C
A
G G C C C G U C U G
G G U
U
A
G C C C G C C U G
A U A A
U
G C _ C
G
A
A
G
G
C
U
U
A
G
A
U
G
A
G
G
G
C
G
G
G
U
G
U
U
A
C
G
G
G
C
G
G
G
C
C
A
C
A
ACA box2
internal loop
K-loop
ACA box1
ACA box3
internal loop
K-turn
Clustal; Vienna/DBN
Comparaison 2D
57
RNAforester
arbre de proximités
entre structures 2D
Vienna/DBN
Graphes
58
G
C
G
G
A
U
U
U
A
g
C
U
C
A
G
u
u
G
G
G A
G A G C
g
C
C
A
G
A
c
U
g
A
A
g
A
P
c
U
G
G
A G g
U
C
c U G U G
u P
C
G
a
U
C
C
A
C
A
G
A
A
U
U
C
G
C A C C A
1
10
20
30 40
50
60
70
76
Root
GC A C C A
CG
GC
GU
AU
UA
UA
U A gC gA G g U C cG
CG
UA
CG
A G u u G G G A
CG
CG
AU
Gc
AP
c U g A A g A
UA
GC
UA
GC
u P C G a U C
(((((((..((((........))))((((((.......))))))....(((((.......))))))))))))....
tRNA
VARNA
Graphiz
(RNAView)
Empreintes
59
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
0.0 3.0
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
chimiques, enzymatiques
VARNA Vienna/DBN
Données fonctionnelles1
60
A
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
5' 3'
Kloop
Internal Loop
ANA Loop
5' guide sequence 3' guide sequence
3’ guide sequence
5’ guide sequence
Kloop
ACA box
functional
annotation
H/ACA guide RNA
(Archaea)
VARNA
RFAM: RF00065
61
A
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
5' 3'
Kloop
Internal Loop
ANA Loop
5' guide sequence 3' guide sequence
3’ guide sequence
5’ guide sequence
Kloop
ACA box
target sequence
functional
annotation
H/ACA guide RNA
(Archaea)
VARNA
RFAM: RF00065
Données fonctionnelles2
62
A
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
5' 3'
Kloop
Internal Loop
ANA Loop
5' guide sequence 3' guide sequence
L7Ae
Nop10
Cbf5
H/ACA guide RNA
(Archaea)
VARNA
RFAM: RF00065
functional
annotation
Données fonctionnelles3
Modifications d’accessibilité
63
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
VARNA Vienna/DBN
64
Données d’empreintes1
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
B
accessibility
annotation
RNA
accessibility
VARNA
RFAM: RF00065
65
accessibility
annotation
more
accessible
VARNA
RFAM: RF00065 G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
Données d’empreintes2
66
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
accessibility
annotation
less
accessible
VARNA
RFAM: RF00065
Données d’empreintes3
67
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C
C
G
G
G
G
A
A
U
C
G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U A C A
1
10
20
30
40
50
59
accessibility
annotation
VARNA
RFAM: RF00065
Données d’empreintes4
Interactions ARN-ARN
68
GGGC C CGGCUC C CGC C CUCUC CGGGGA AUCGUGA A C CGGGGGUUC CGGC CGGGC CU A C A GGGA AGGA AUUGGCGGGGGGAG
1 10 20 30 40 50 59 10 20 22
5' guide seq K-Loop 3' guide seq ANA Box 5' target seq 3' target seq
1
guide RNA target RNA
C
5' 3'
0.0
2.0
1.0
bits
GGGCCCGGC
UUCCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGG
ACCGGGCCC
G
U
ACA
3' 5'
0.0
2.0
1.0
bits
GGGGGCGGUUAAGGA
1 10 20 30 40 50 59
1
10
15
A
G
G
G
C
C
C
G
G
Y
U
C
C
C
G
C
C
C
U
C
G
G
G
G
A
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
R
C
C
G
G
G
C
C
A C A
guide
3 nt
4 nt
K-Loop
ANA box
5'
A
G
G
A
A
U
U
G
G
C
G
G
G
G
G target
5'
U
C
C
C
G
C
C
C G
G
G
U
U
C
C
G
G
A
A
U
U
G
G
C
G
G
G
G target
guide
5'
B
R2R*
RILogo
VARNA
* post-processing
RFAM: RF00065 Vienna/DBN
Stockholm
Gènes H/ACA
69
7 H/ACA genes
11 H/ACA motifs
Muller et al., NAR, 2008
Pyrococcus
&
Thermococcus
Fonction des H/ACA
70
A C A
5' 3'
N Y
pré-ARNr
5'
3'
A N A N N A
N Y
pré-ARNr 5'
3'
Boîte H Boîte ACA
14-16 pb 14-16 pb
EA 5' EA 3' EA 5' EA 3'
Gènes H/ACA
71
7 H/ACA genes
11 H/ACA motifs
Muller et al., NAR, 2008
Pyrococcus
&
Thermococcus
Repliements H/ACA
72
Muller et al., NAR, 2008
G
G
G
G
G
G
C
C
C
C
C
C
G
G
G
G
C
C
U
U
C
C
C
C
C
C
G
G
C
C
C
C
C
C
U
U
C
C
U
U
C
C
C
C
G
G
G
G
G
G
G
G
A
A
A
A
U
U
C
C
G
G
U
U
G
G
A
A
A
A
C
C
C
C
G
G
G
G
G
G
G
G
G
G
U
U
U
U
C
C
C
C
G
G
G
G
C
C
C
C
G
G
G
G
G
G
C
C
C
C
U
U
A
A
C
C
A
A
b) p = 0.618
a) p = 0.382
H/ACA et leur(s) cible(s)
73
Muller et al., NAR, 2008
U C C C G C C U U C C
C - G
Pab21 a)
G G G G C G G
U U
A A G G
3' 5' 16S rRNA
891
3'
5'
K-turn
6 bps 14 nts
A C A
+
A
C U C C C G C G U U C C
C - G
Pab21 b)
G G G G G C G
G U
U A A G G
3' 5' 16S rRNA
892
3'
5'
U (P.f.,P.h.)
K-turn
5 bps 15 nts
A C A
−
H/ACA: Structure-Fonction
74
Pa21-S891*
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C C C
U
C
U
C
C
G
G
G
G
A
A
U C G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U
A C A
9 bp
50
3' guide sequence
(5 stacked layers)
10
5' guide sequence
(6 stacked layers +1nt)
20 40
10 bp
K-loop
30
ANA box
5'
Pa21-S892
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C C
C
U
C
U
C C
G
G
G
G
A
A
U C G
U
G
A
A
C
C
G
G
G
GG
U
U
C
C
G
G
C
C
G
G
G
C
C
U
A C A
8-9 bp
50
3´ guide sequence
(5 stacked layers +1nt)
10
5´ guide sequence
(6 stacked layers)
40
20
9 bp
K-loop
30
ANA box
5´
10
5
9
9
6
9
+ -
R2R* Toffano-Nioche et al., NAR, 2015
H/ACA « productifs »
75
ANA box
C C C G C C
C G
U U C C
G
G
A
A
U
U
G
G
C
G
G
G
guide
target
5'
Pa21-S891, Ph21-S879, Pf1-S879 Pa21-S891
891
SSU
5'
891,879
SSU
ANA
5'
E = -28.2 kcal/mol
5'
G
G
C
C
C
G
G
Y
U
C
C
C
G
C
C C
C
U
C
C
G
G
G
G
A
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
R
C
C
G
G
G
C
C
A C A
A
A
C
U
U
A
A
A
G
G
A
A
U
U
G
G
C
G
G
G
G
G
A
G
C
A
1 nt
4 nt
K-Loop
ANA box
5'
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C C
U
C
U
C
C
G
G
G
G
A
A
U C G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U
A C A
A
A
C
U
U
A
A
A
G
G
A
A
U
U
G
G
C
G
G
G
G
G
A
G
C
A
50
10
20 40
30
K-Loop
5'
10
5
9
R2R* Toffano-Nioche et al., NAR, 2015
H/ACA « non-productifs »
76
Pa21-S892,Ph21-S880, Pf1-S880 Pa21-S892
E = -24.5 kcal/mol
9
6
9
892
SSU
5'
ANA
5'
892,880
SSU
5'
G
G
G
C
C
C
G
G
Y
U
C
C
C
G
C
C
C
U
C
G
G
G
G
A
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
R
C
C
G
G
G
C
C
A C A
A
C
U
U
A
A
A
G
G
A
A
U
U
G
G
C
G
G
G
G
G
A
G
C
A
C
3 nt
4 nt
K-Loop
ANA box
5'
U C C C G C
C G
G U U C C
G
G
A
A
U
G
G
C
G
G
G
G
guide
target
5'
G
G
G
C
C
C
G
G
C
U
C
C
C
G
C
C
C
U
C
U
C C
G
G
G
G
A
A
U C G
U
G
A
A
C
C
G
G
G
G
G
U
U
C
C
G
G
C
C
G
G
G
C
C
U
A C A
A
C
U
U
A
A
A
G
G
A
A
U
U
G
G
C
G
G
G
G
G
A
G
C
A
C
50
10
40
20
30
K-Loop
ANA box
5'
U
R2R* Toffano-Nioche et al., NAR, 2015
Familles H/ACA
77
Pa_HACA
C
C
C
R
C
Y
G
A
R
U
G
A
R
G
G
Y
G
G
G
Y
A C A
9 bp
0-1 nt
5-6 nt
5-8 nt
0-1 nt
0-1 nt
10 bp
3-21 nt
5'
Pa_HACA-GUIDE65
subfam_weight=0.284006
28%
Y
Y
R
G
R
0-1 nt
5 nt
6 nt
variable-length region
variable-length loop
connector (zero length)
modular sub-structure
variable-length stem
75%
(3 stacke
Pa_HACA-GUIDE55
subfam_weight=0.120714
12%
G
A
A
A
C
C
G
C
G U
U
C
G
C
U
C
C
C
5 nt
5 nt (6-1)
(5 stacked layers)
Pa_HACA-GUIDE56
subfam_weight=0.215373
22%
R
R
Y
C
C
G Y
C
5 nt (6-1)
1nt
5+1 nt
Pa_HACA-GUIDE66
subfam_weight=0.163641
16%
G
U
C
U
C
G
G
UG
Y
A
G
C
1 nt
6 nt
6 nt
Pa_HACA-GUIDE75
subfam_weight=0.106001
11%
G
C
C
C
C
G
C C C
C G
G
U
U
C
C
G
G
C
5 nt
1 nt
6+1 nt
1 nt
Pa_HACA-GUIDE85
subfam_weight=0.110265
11%
G
C
G
C
G
A
G G G
C G
U
G
C
G
A
C
G
C
5 nt
2 nt
6+2 nt
covarying mutations
base pair annotations
compatible mutations
no mutations observed
connector (zero length)
90%
97% 75%
50%
nucleotide
present
nucleotide
identity
75%
N
N 97%
N 90%
R2R
R2R* Toffano-Nioche et al., NAR, 2015
Interactions intra-moléculaires
78
79
g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g
1a 10a 20a 30a 40a 50a 60a 70a 79a 1b
A
g
g
u
u
c
u
u
c
c
c
a
u
c
u
u
u
c
c
c
u
g
a
a
g
a
g
a
c
g
a
a
g
c
a a
g u c
g
a
a a
c
u
c a
g
a
g
u
c
g g a a a g
u c
g g a a
c a
g a c c
u
g g u
u
u
c
g
u
c
1
10
20
30
40
50
60
70
79
HI
HII
HIII
HI HII HIII
VARNA
intra-molecular base-pairs
tertiary or inter-molecular contacts
nucleotide in tertiary contact
cleavage site
Interactions inter-moléculaires
79
H(1)I
H(1)II
H(1)III
H(1)I H(1)II H(1)III
B
Eint
(10ºC) = -9.3 kcal/mol
Eint
(25ºC) = -8.5 kcal/mol
Eint
(45ºC) = -5.8 kcal/mol
Edimer
(10ºC) = -47.1 kcal/mol
Edimer
(25ºC) = -33.6 kcal/mol
Edimer
(45ºC) = -15.7 kcal/mol
g
g
u
u
c
u
u
c
c
c
a
u
c
u
u
u
c
c
c
u
g
a
a
g
a
g
a
c
g
a
a
g
c
a a
g u c
g
a
a a
c
u
c a
g
a
g
u
c
g g a a a g
u c
g g a a
c a
g a c c
u
g
g
u
u u c g
u
c
g g u u
c u u c c
c
a u
c u u u c c
c
u
g
a
a
g a g a
c
g
a
a
g
c
a
a
g
u
c
g
a
a
a
c
u
c
a
g
a
g
u
c
g
g
a
a
a
g
u
c
g
g
a
a
c
a
g
a
c
c
u
g
g
u
u
u
c
g
u
c
1a
10a
20a
30a
40a
50a
60a 70a
79a
10b
20b
30b
40b
50b
60b
70b
79b
1b
g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c
1a 10a 20a 30a 40a 50a 60a 70a 79a 10b 20b 30b 40b 50b 60b 70b 79b
1b
H(2)I
H(2)II
H(2)III
H(2)I H(2)III
VARNA
IntaRNA Leclerc et al., Sci. Rep., 2016
monomer 1 monomer 2
Interactions inter-moléculaires
80
H(1)I
H(1)II
H(1)III
H(1)I H(1)II H(1)III
H(2)I
H(2)II
H(2)III
H(2)I H(2)III
Edimer
(10ºC) = -53.7 kcal/mol
Edimer
(25ºC) = -38.9 kcal/mol
Edimer
(45ºC) = -19.2 kcal/mol
g
g
u
u
c
u
u
c
c
c
a
u
c
u
u
u
c
c
c
u
g
a
a
g
a
g
a
c
g
a
a
g
c
a a
g u c
g
a
a a
c
u
c a
g
a
g
u
c
g g a a a g
u c
g g a a
c a
g a c c
u
g
g
u
u u c g
u
c
g g u u
c u u c c
c
a u
c u u u c c
c
u
g
a a
g
a
g a c
g a
a
g
c
a
a
g
u
c
g
a
a
a
c
u
c
a
g
a
g
u
c
g
g
a
a
a
g
u
c
g
g
a
a
c
a
g
a
c
c
u
g
g
u
u
u
c
g
u
c
1a
10a
20a
30a
40a
50a
60a 70a
79a
10b
20b
30b
40b
50b
60b
70b
79b
1b
C
VARNA
79b
g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c
1a 10a 20a 30a 40a 50a 60a 70a 79a 10b 20b 30b 40b 50b 60b 70b 79b
1b
H(2)II
Leclerc et al., Sci. Rep., 2016
monomer 1 monomer 2
IntaRNA
81
Eint
(10ºC) = -12.0 kcal/mol
Eint
(25ºC) = -9.6 kcal/mol
Eint
(45ºC) = -5.9 kcal/mol
Edimer
(10ºC) = -54.8 kcal/mol
Edimer
(25ºC) = -40.7 kcal/mol
Edimer
(45ºC) = -22.0 kcal/mol
g
g
u
u
c
u
u
c
c
c
a
u
c
u
u
u
c
c
c
u
g
a
a
g
a
g
a
c
g
a
a
g
c
a
a
g
u
c
g
a
a
a
c
u
c
a
g
a
g
u
c
g
g
a
a
a
g
u
c
g
g
a
a
c
a
g
a
c
c
u
g
g
u
u
u
c
g
u c
g g u u
c
u u c c
c a u
c u u u c c
c
u
g a a
g
a
g a c
g
a
a g c
a
a
g u c
g
a
a a
c
u
c a
g
a
g
u
c
g g a a a g
u c
g g a a
c a
g a c c
u
g g u
u
u
c
g
u
c
1a
10a
20a
30a
40a
50a
60a
70a
79a
10b
20b 30b 40b
50b
60b
70b
79b
1b
g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c
1a 10a 20a 30a 40a 50a 60a 70a 79a 10b 20b 30b 40b 50b 60b 70b 79b
1b
monomer 1 monomer 2
HI HII HIII
inter-molecular base-pairs
intra-molecular base-pairs
tertiary contacts
nucleotide in tertiary contact
cleavage site
H(1)I:H(2)I
H(1)II:H(2)II
H(1)III
H(2)III
H(1)I:H(2)I
Leclerc et al., Sci. Rep., 2016
Interactions inter-moléculaires
VARNA
monomer 1 monomer 2
IntaRNA
Conclusions
représentations standardisées et personnalisées (édition,
annotation)
gain de temps pour la génération de représentations multiples
gain de temps pour la mise à jour de structures consensus
outils qualitatif (quantitatif) pour évaluer des modèles structure-
function
82
Outils & Ressources
RFAM (VARNA), Comparative RNA Web Site & Project
(RNA2DMap, CT, BPSEQ), The RNA Mapping Database -
RMDB (RDAT, RNAstructure), ...
packages: Vienna Package (RNAfold, RNAalifold, etc),
Boulder Alignment Editor (VARNA), SAVor (RNAfold,
RNAplot), S2S/Assemble 2D & 3D, Jalview 2D & 3D
(VARNA, Jmol), ...
outils récents: long RNAs: RNAfdl, pairing probabilities
(alternative conformations): RNAbow, RNAllViewer, ...
83
Références
Ponty Y. & Leclerc F., Drawing and editing the Secondary
Structures of RNA(s), Methods in Molecular Biology, 2015.
Aigner K. et al., Chapitre 9. Visualizing RNA sequence and
structure, 2011.
84
Acknowledgments
85
Institute for Integrative Biology of the Cell
(((( ((( ))) )))-)
GCUG UUAGG GGA GUUUUA UCC AGCGU CAG-C
GCCG UUAGG GGA GUUUCA UCC AGCGA UGG-C
GUUG UAGG GGA GUCUCA UCC AGCA CAA-C
GCUG GAGG GAA GC AA UUC AGCA CAG-C
ACUU CAGU GGA GC AA UCC AGCA GAGAU
ACUU CAGU GGA GC AA UCC AGCA GAGAU
GAUG GAGG UUG G AAA CAA UGCA CAU-C
GGGC CAGG GGU G AAA ACC AGCA GCC-A
GGCC UAGG UCG G AAA CGG AGCA GGU-C
GGCC CAGG UCG G AAA CGG AGCA GGU-C
GGCC CAGG UCG G AAA CGG AGCA GGU-C
GGCC CAGG UCG G AAA CGG AGCA GGU-C
GGCC CAGG UCG G AAA CGG AGCA GGU-C
2D
1D
3D
De la séquence au 2D
86
Westhof, 2015
De la structure 2D à 3D
la structure 2D: une
contrainte géométrique
“forte”
appariements non-
canoniques et motifs
pseudonœuds et
interactions tertiaires
…
87
(((( ((( ))) )))-)
GCUG UUAGG GGA GUUUUA UCC AGCGU CAG-C
GCCG UUAGG GGA GUUUCA UCC AGCGA UGG-C
GUUG UAGG GGA GUCUCA UCC AGCA CAA-C
GCUG GAGG GAA GC AA UUC AGCA CAG-C
ACUU CAGU GGA GC AA UCC AGCA GAGAU
ACUU CAGU GGA GC AA UCC AGCA GAGAU
GAUG GAGG UUG G AAA CAA UGCA CAU-C
GGGC CAGG GGU G AAA ACC AGCA GCC-A
GGCC UAGG UCG G AAA CGG AGCA GGU-C
GGCC CAGG UCG G AAA CGG AGCA GGU-C
GGCC CAGG UCG G AAA CGG AGCA GGU-C
GGCC CAGG UCG G AAA CGG AGCA GGU-C
GGCC CAGG UCG G AAA CGG AGCA GGU-C
2D
1D
3D
RNA Puzzles
88
tester les capacités de prédiction de structures 3D
d’ARN
compétition entre modélisateurs ARN
compétition à “l’aveugle”: structures 3D d’ARN
non publiques
RNA Puzzle: T-Box/tRNA
89
• The T-box riboswitch in complex with tRNA
• PDB: 4LCK
• Resolution: 3.20Å
• Avg B = 128 Å2
• tRNA: 75nt
• T-box : 96nt
• Clash score: 2.28
• Some small fragments
solved by NMR
before. tRNA
structure known.
RNA Puzzle: T-Box/tRNA
90


5.96
RNA Puzzle: T-Box/tRNA
91


H1 H2 L1
H3 L2
H4 H4 L3
D-domain 
anticodon stem
H3 H2 H1 T-domain
H1
H2
L1
H3
L2
H4
H4
L3
D-domain

anticodon
stem
H3
H2
H1
T-domain
92
Ponty  Leclerc, Methods in Molecular Biology, 2015
Table 1: Main tools offering a visualization of the RNA secondary structure.
Name
P
l
a
t
f
o
r
m
(
s
)
a
[
B
W
M
L
]
E
a
s
e
o
f
u
s
e
L
a
y
o
u
t
s
I
n
t
e
r
a
c
t
i
v
i
t
y
P
s
e
u
d
o
k
n
o
t
s
E
x
t
.
s
e
c
.
s
t
r
.
b
O
u
t
p
u
t
c
Reference
jViz.RNA •••• ++ Circular
Linear
Graph
+ + • EPS PNG (Wiese et al., 2005)
(Shabash et al., 2012)
PseudoViewer •• ++ Graph ++ EPS SVG
PNG GIF
(Byun and Han, 2009)
RNA2DMap •••• + Graph + + • PDFe (Xu et al., 2011)
RNAMovies •••• ++ Graph + SVG PNG
JPEG GIF
(Kaiser et al., 2007)
R-chie •••• ++ Linear + PDF PNG (Lai et al., 2012)
RNAPLOT •d ••• + Graph PS SVG
GML
(Gruber et al., 2008)
RNAView ••• + Graph + • PS (Yang et al., 2003)
RNAViz ••• + Graph ++ + PDFe (Rijk et al., 2003)
R2R ••• - Graph + PDF SVG (Weinberg and Breaker, 2011)
S2S/Assemble ••• + Linear
Graph
++ + • SVG (Jossinet and Westhof, 2005)
(Jossinet et al., 2010)
VARNA •••• ++ Circular
Linear
Graph
++ + • EPS SVG
PNG JPEG
GIF
(Darty et al., 2009)
xRNA ••• + Graph ++ + EPS –
a Indicates presence (•) or absence ( ) for Browser-based, Windows, Mac and Linux executions,
in this order. b Indicates support (•) or lack of support ( ) for an extended secondary structure.
c Bold output formats indicate vector graphics, allowing for convenient post-processing. d Only
available from the Vienna RNA webserver, available at http://rna.tbi.univie.ac.at/. e Export
accessible through a print option, using a custom printer driver such as Adobe Distiller.
Serveurs WEB généralistes:
ViennaRNA, BiBiServ, Freiburg RNA Tools
93
ViennaRNA Web Services
94
The ViennaRNA Web Services
This server provides programs, web services, and databases, related to our work on RNA secondary structures. For general information and other offerings from our group see the main TBI
web server.
Web Servers
Thermodynamic Structure Prediction
RNAfold server...
...predicts minimum free energy structures and base pair probabilities from single RNA or
DNA sequences.
RNAalifold server...
...predicts consensus secondary structures from an alignment of several related RNA or
DNA sequences. You need to upload an alignment.
RNAeval server...
...provides a detailed thermodynamic description of a sequence/structure pair.
RNAcofold server...
...allows you to predict the secondary structure of a dimer.
RNAup server...
...allows you to predict the accessibility of a target region.
ncRNA Prediction
Structure conservation analysis server...
...will assist you in detecting evolutionarily conserved RNA secondary structures in multiple
sequence alignments.
RNAz server...
...will assist you in detecting thermodynamically stable and evolutionarily conserved RNA
secondary structures in multiple sequence alignments.
Bcheck...
...predicts rnpB genes.
RNAstrand server...
...allows you to predict the reading direction of evolutionarily conserved RNA secondary
structures.
Folding Kinetics
barriers server...
...allows you to get insights into RNA folding kinetics.
Sequence Design
RNAinverse server...
...allows you to design RNA sequences for any desired
target secondary structure.
RNAxs server...
...assists you in siRNA design.
Genome Wide Screening
RNApredator...
...predicts targets of small bacterial RNAs
TSSAR...
...predicts bacterial Transcription Start Sites from dRNA-
seq data.
http://rna.tbi.univie.ac.at
RNAalifold
Freiburg RNA Tools
95
Freiburg RNA Tools
Main Menu
Home
Publications
Frequent Questions
Help
Download
Results
Direct Access
Freiburg RNA Tools
CopraRNA
sRNA Targeting
CRISPRmap
CRISPR Conservation
LocARNA
Alignment  Folding
IntaRNA
RNA-RNA interaction
CARNA
Ensemble Alignment
MARNA
Structure Alignment
ExpaRNA
Exact Matching
INFORNA
Sequence Design
MoDPepInt Server
Domain Interaction
CPSP-Tools
Lattice Proteins
for the HP-model
Welcome
This web server provides online access to a series of tools developed by the Freiburg Bioinformatics Group. To start using it, please select
from the listings below, or use the menu on the left. If you prefer doing a local installation on your machine, please visit our 'Download' section.
If you use our tools for research or education, please cite the corresponding articles from the 'Publications' section.
Version 3.4.0
Freiburg RNA Tools
Freiburg RNA tools provides online access to a series of RNA research tools developed by the Freiburg
Bioinformatics Group for sequence-structure alignments (LocaRNA, CARNA, MARNA), clustering
(ExpaRNA), interaction prediction (IntaRNA, CopraRNA), sequence design (INFORNA), CRISPR repeat
analyses (CRISPRmap), and many more tasks.
CopraRNA
CopraRNA is a tool for sRNA target prediction. It computes whole
genome predictions by combination of whole genome IntaRNA
predictions using homologous sRNA sequences from distinct
organisms.
CRISPRmap
CRISPRmap provides a quick and detailed insight into repeat
conservation and diversity of both bacterial and archaeal systems. It
comprises the largest dataset of CRISPRs to date and enables
comprehensive independent clustering analyses to determine
conserved sequence families, potential structure motifs for
endoribonucleases, and evolutionary relationships.
LocARNA
LocARNA computes multiple alignments of RNAs based on their
sequence and structure similarity. In contrast to, e.g. MARNA, it
considers the whole ensemble of secondary structures for each
RNA. Thus, LocARNA aligns RNAs with unknown structure and
predicts a consensus secondary structure for a set of unaligned
RNAs. Specification of additional constraints or even enforcement of
fixed input structures is possible. LocARNA is best suited to compare
several (up to about 20) structural RNAs, in particular, of low
sequence similarity.
IntaRNA
IntaRNA enables the prediction of RNA-RNA interactions. It has
been designed to predict mRNA target sites for given non-coding
RNAs (ncRNAs) like eukaryotic microRNAs (miRNAs) or bacterial
small RNAs (sRNAs), but it can also be used to predict other types
of RNA-RNA interactions.
CARNA
Carna is a tool for multiple alignment of RNA molecules based on
their full ensembles of structures. Carna computes the alignment
that fits best to all likely structures simultaneously. Hence, Carna is
in particular useful to align RNAs with more than one stable
structure, as for example riboswitches, and is able to align arbitrary
pseudoknots.
http://rna.informatik.uni-freiburg.de:8080
IntaRNA
BiBiServ: Biefeld Univ.
96
RNA Studio
GUUGle GUUGle
A utility for fast exact matching under RNA base
pairing rules
InSilicoDicer Prediction of mature miRNA.
Intrinsic and Extrinsic Prediction of mature
miRNA.
KnotInFrame Prediction of -1 ribosomal
frameshifts
KnotInFrame is a tool for predicting -1 ribosomal
frameshifts with simple recursive pseudoknots as
stimulating structural motif in mRNAs by means
of the tool pknotsRG for the folding of the
pseudoknots.
Locomotif Localization of RNA motifs with
generated thermodynamic Matchers
A graphical programming system for RNA motif
search.
paRNAss Prediction of Alternate RNA Secondary
Structures
paRNAss is a software tool aiming to predict
conformational switching in RNA.
pKiss
pKiss is a tool for secondary structure prediction
including kissing hairpin motifs.
pknotsRG RNA folding and thermodynamic
matching
pknotsRG is a tool for folding RNA secondary
structures, including the class of simple recursive
pseudoknots.
http://bibiserv.techfak.uni-bielefeld.de/bibi/Tools_RNA_Studio.html
ncRNA
97
Now Available!
Results of various analysis on RNA secondary structures in one page!
Rtools
Accurate prediction of RNA secondary structure
Prediction of RNA secondary structure by using homologous sequences
Active Work Flow is available for RNA sequence/structure analysis.
You can download the Knime platform and the Active Work Flow for RNA structure predictions.
Bioinformatics Tools and Databases for
Functional RNA Analysis
ncRNA.org is the portal site for bioinformatics tools and databases spcialized for functional RNAs. The
developments in this cite were partially supported by The Functional RNA Project funded by New Energy and
Industrial Technology Development Organization (NEDO), Japan.
http://www.ncrna.org
CARNAC
98
DNA
YASS
Magnolia
mreps
ProCARs
HTS
SortMeRNA
CRAC
Vidjil
SToRM
RNA
Carnac
RNAfamily
Gardenia
Regliss
CG-seq
RNAspace
Proteins
Path
Protea
ReBLOSUM
TFM
TFM-Explorer
TFM-Scan
TFM-Pvalue
TFM-CUDA
NRP
Norine
RNA tools
The RNA tools offer a series of bioinformatics program
specifically designed for the analysis of structural RNA:
secondary structure inference, alignment, annotation.
unaligned
Carnac
Predicts the consensus secondary structure for a set of homologous,
unaligned RNA sequences. Very fast and accurate.
RNAfamily
Linear visualisation of RNA secondary structures
Gardenia
Comparison and multiple alignment of RNA sequences. The algorithm
takes into account both the primary structure and the secondary
structure to build a good alignment.
Regliss
This tools builds all locally optimal secondary structures of an RNA
sequence, which provide a useful insight into the folding landscape of
the molecule.
CG-seq
It is a software pipeline to identify noncoding RNA genes in genomic
sequences by comparative analysis and multispecies comparison.
RNAspace
Annotation platform for noncoding RNAs
http://bioinfo.lifl.fr/RNA/
Seveurs WEB:
structures 2D conservées
99
RNAalifold (Vienna)
100
[Home|New job|Help]
Welcome to the RNAalifold web server. It will predict a consensus secondary structure of a set of aligned sequences. Current limits
are 3000 nt and 300 sequences for an alignment.
Simply paste or upload your alignment(s) below and click Proceed. Accepted alignment formats are CLUSTAL W and FASTA (will be
detected automatically). To get more information on the meaning of the options click the symbols. You can test the server using
this sample alignment.
Paste your alignment(s) here: [clear]
Show constraint folding
Or upload a file: no file selected
Choose File
RNAalifold version
new RNAalifold with RIBOSUM scoring (Bernhart SH et al. 2008)
new RNAalifold (Bernhart SH et al. 2008)
old RNAalifold (Hofacker IL et al. 2002)
Fold algorithms and basic options
minimum free energy (MFE) and partition function
minimum free energy (MFE) only
output most informative sequence instead of simple consensus
no GU pairs at the end of helices
avoid isolated base pairs
Show advanced options
Output options
interactive RNA secondary structure plot
RNA secondary structure plots with reliability annotation (Partition function folding only)
Mountain plot
Notification via e-mail upon completion of the job (optional): your e-mail
http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi
RNAalifold
RNAfold
101
[Home|New job|Help]
The RNAfold web server will predict secondary structures of single stranded RNA or DNA
sequences. Current limits are 7,500 nt for partition function calculations and 10,000 nt for
minimum free energy only predicitions.
Simply paste or upload your sequence below and click Proceed. To get more information on the
meaning of the options click the symbols. You can test the server using this sample
sequence.
Paste or type your sequence here: [clear]
Show constraint folding
Or upload a file in FASTA format: no file selected
Choose File
Fold algorithms and basic options
minimum free energy (MFE) and partition function
minimum free energy (MFE) only
no GU pairs at the end of helices
avoid isolated base pairs
Show advanced options
Output options
interactive RNA secondary structure plot
RNA secondary structure plots with reliability annotation (Partition function
folding only)
Mountain plot
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
RNAfold
RNAz
102
Standard
Analysis
Genomic
Screen
Help
Institute for Theoretical Chemistry | University of Vienna | rna@tbi.univie.ac.at
Welcome to the RNAz web server. It will help you to detect thermodynamically stable and evolutionarily
conserved RNA secondary structures in multiple sequence alignments.
Simply paste or upload your alignment(s) below and click Proceed. The system will suggest reasonable
default values for all options. To get more information on the meaning of the options click the symbols
or read the help pages. You can test the server using this sample alignment.
If you like to analyze alignments covering whole genomic regions use the Genomic screen modus.
Paste your alignment(s) here: [clear]
Or upload a file:
no file selected
Choose File
Format:
Automatic
undefined
http://rna.tbi.univie.ac.at/cgi-bin/RNAz/RNAz.cgi
RNAz
Banques de données
103
Rfam
104
Hide this
QUICK LINKS
SEQUENCE SEARCH
VIEW AN RFAM FAMILY
VIEW AN RFAM CLAN
KEYWORD SEARCH
TAXONOMY SEARCH
JUMP TO enter any accession or ID
YOU CAN FIND DATA IN RFAM IN VARIOUS WAYS...
Analyze your RNA sequence for Rfam matches
View Rfam family annotation and alignments
View Rfam clan details
Query Rfam by keywords
Fetch families or sequences by NCBI taxonomy
Enter any type of accession or ID to jump to the page for a Rfam family,
sequence or genome
Or view the help pages for more information
Rfam 12.0 (July 2014, 2450 families)
The Rfam database is a collection of RNA families, each represented by multiple sequence alignments,
consensus secondary structures and covariance models (CMs). More...
Recent Rfam blog posts
Rfam 12.0 is out (posted 24 September 2014)
We are pleased to announce the release of Rfam 12.0! This release contains some major changes when
compared with previous releases of Rfam, so please take a minute to read our release notes. Rfam 12.0 is
the first version of Rfam which is based on Infernal 1.1, and as such contains many significant changes.
In […]
H O M E | S E A R C H | B R O W S E |
F T P | B L O G | H E L P
keyword search Go
Go Example
http://rfam.xfam.org
105
0 structures
0 species
12
sequences
Family: snoR9 (RF00065)
Description: Small nucleolar RNA snoR9
enter ID/acc
Jump to...
Summary
Sequences
Alignment
Secondary
structure
Species
Trees
Structures
Motif
matches
Database
references
Curation
Go
Small nucleolar RNA snoR9
Predicted secondary structure and
sequence conservation of snoR9
Identifiers
Symbol snoR9
Rfam RF00065
Other data
RNA type Gene; snRNA; snoRNA;
CD-box
Domain(s) Archaea
GO 0006396 0005730
SO 0000593
Summary
Wikipedia annotation
The Rfam group coordinates the annotation of Rfam families in Wikipedia . This family is described by
a Wikipedia entry entitled Small nucleolar RNA snoR9. You can see the Wikipedia page for this
family here . More...
snoR9 is a non-coding RNA (ncRNA) which functions in the
biogenesis (modification) of other small nuclear RNAs
(snRNAs). It is known as a small nucleolar RNA (snoRNA)
and also often referred to as a 'guide RNA'.
R9 is a member of the C/D box class of snoRNAs which
contain the conserved sequence motifs known as the C box
(UGAUGA) and the D box (CUGA). Most of the members of
the box C/D family function in directing site-specific 2'-O-
methylation of substrate RNAs .[1]
This snoRNA was identified in a computational search for
GC-rich regions in the AT-rich genomes of
hyperthermophiles.[2] This snoRNA is not related to the
plant snoRNA snoR9.
References[edit]
1. ^ Galardi, S.; Fatica, A.; Bachi, A.; Scaloni, A.;
Presutti, C.; Bozzoni, I. (October 2002). Purified Box
C/D snoRNPs Are Able to Reproduce Site-Specific 2'-
O-Methylation of Target RNA in Vitro . Molecular
and Cellular Biology 22 (19): 6663–6668.
doi:10.1128/MCB.22.19.6663-6668.2002 .
PMC 134041 . PMID 12215523 . edit
2. ^ Klein RJ, Misulovin Z, Eddy SR (2002). Noncoding
RNA genes identified in AT-rich hyperthermophiles .
Proc. Natl. Acad. Sci. U.S.A. 99 (11): 7542–7.
doi:10.1073/pnas.112063799 . PMC 124278 .
PMID 12032319 .
External links[edit]
Page for Small nucleolar RNA snoR9 at Rfam
This molecular or cell biology article is a stub. You can help Wikipedia by expanding it .
This page is based on a wikipedia article . The text is available under the Creative Commons
Attribution/Share-Alike License .
Edit Wikipedia article
Rfam entry
RF00065
http://rfam.xfam.org
Pseudobase
106
Intro
About PseudoBase Retrieve by Class Retrieve by Property Submit Pseudoknots
Welcome to PseudoBase
PseudoBase is a collection of RNA pseudoknots that we make
available for retrieval to the scientific community. It is described in detail in
Batenburg et al. (2000).
It started as an initiative of the Institute of Theoretical Biology and the Leiden
Institute of Chemistry of the University of Leiden. For the future we intend to
maintain it and to extend it.
This page is the main introduction from where you can depart to the retrieval
section, to the submit section or to the information section.
Contact: EkevanBatenburg@live.com
Prototyping: Jacky Ng  Jan Oliehoek.
© final design and maintenance: F.H.D.(Eke) van Batenburg, 1998-12-18;...; 11/30/2014 19:30:25.
Retrieve, Submit or more Info?
Please choose whether you want to retrieve a pseudoknot or submit a pseudoknot. If you need more
information, you can choose the About PseudoBase option.
About PseudoBase
Choose this option if you want to contact us, or if you need more information about us and
about the PseudoBase project.
Retrieve pseudoknot by class or by summary
Choose either of these options to retrieve a particular pseudoknot. The by class page
presents all pseudoknots organised by their class. The by summary page presents all
pseudoknots in a table that you can sort to your taste. Sorting criteria are among others: class,
name, organism and length of pseudoknot stems and loops.
Submit a new pseudoknot to PseudoBase
Choose this option for the section where you can submit a pseudoknot.
http://www.ekevanbatenburg.nl/PKBASE/
107
RNAcentral
RNAcentral is a new resource
that provides unified access to
the ncRNA sequence data
supplied by the Expert
Databases. Learn more (/about-us)
(/expert-
database/ena)
ENA provides a
comprehensive record of
the world's nucleotide
sequencing information.
6,989,739 sequences
(example
(/rna/URS00002D0E0C
))
Explore ENA entries (/expert-database/ena)
(/expert-
database/rfam)
Rfam is a database
containing information
about ncRNA families
and other structured
RNA elements.
2,493,782 sequences
(example
(/rna/URS00000478B7
))
Explore Rfam entries (/expert-da
(/expert-
database/refseq)
RefSeq is a
comprehensive,
integrated, non-
redundant, well-
annotated set of
reference sequences.
30,900 sequences
(example
(/rna/URS000075A3E5
))
Explore RefSeq entries (/expert-database/refseq)
(/expert-
database/vega)
Vega is a repository for
high-quality gene
models produced by the
manual annotation of
vertebrate genomes.
Human and mouse data
from Vega are merged
into GENCODE.
28,640 sequences
(example
(/rna/URS00000B15DA
))
Explore Vega entries (/expert-database/vega)
(/expert-
database/gtrnadb)
gtRNAdb contains tRNA
gene predictions on
complete or nearly
complete genomes.
10,625 sequences
(example
(/rna/URS000047C79B
))
Explore gtRNAdb entries (/expert-database/gtrnadb)
(/expert-
database/mirbase)
miRBase is a database
of published miRNA
sequences and
annotations that
provides a centralised
system for assigning
names to miRNA genes.
8,795 sequences
(example
(/rna/URS000075A685
))
Explore miRBase entries (/expert
(/expert-
database/rdp)
RDP provides quality-
controlled, aligned and
annotated rRNA
sequences and a suite of
analysis tools.
4,779 sequences
(example
(/rna/URS000064300F
))
Explore RDP entries (/expert-database/rdp)
(/expert-
database/tmrna-
website)
tmRNA Website
contains predicted
tmRNA sequences from
RefSeq prokaryotic
genomes, plasmids and
phages.
2,857 sequences
(example
(/rna/URS000060F5B3
))
Explore tmRNA Website entries (/expert-database/tmrna-website)
(/expert-
database/srpdb)
SRPDB provides
aligned, annotated and
phylogenetically ordered
sequences related to
structure and function of
SRP.
503 sequences
(example
(/rna/URS00000478B7
))
Explore SRPDB entries (/expert-database/srpdb)
(/expert-
database/lncrnadb)
lncRNAdb is a database
providing comprehensive
annotations of
eukaryotic long non-
coding RNAs (lncRNAs).
62 sequences
(example
(/rna/URS00000478B7
))
Explore lncRNAdb entries (/exper
http://rnacentral.org
Comparative RNA Web Site
108
COMPARATIVE RNA WEB SITE AND PROJECT THE GUTELL LAB
Welcome to the Comparative RNA Web (CRW) Site.
Recent CRW Site Publications
(Complete List »)
2014: (Pub #129) Multiple entries in: Concise Encyclopaedia of Bioinformatics and Computational Biology, 2nd Edition,
Hancock J.M. and Zvelebil M.J. (eds.). Wiley. Hoboken, New Jersey.
2014: (Pub #128) Ten Lessons with Carl Woese about RNA and Comparative Analysis. RNA Biology, in press.
[ PM | pmc | DOI ]
2014: (Pub #127) Introduction to Special Carl Woese Issue in RNA Biology. RNA Biology, 11(3):170-171. [ pm | pmc | DOI ]
2014: (Pub #126) Helix Capping in RNA Structure. PLOS One, 9(4):e93664. [ PM | PMC | DOI ]
2013: (Pub #125) Two Accurate Sequence, Structure, and Phylogenetic Template-Based RNA Alignment Systems. BMC
Systems Biology, 7(S4):S13. [ pm | pmc | DOI ]
2013: (Pub #124) You tell Carl that some of my best friends are Eukaryotes: Carl R. Woese (1928-2012). RNA 19(4):vii-xi.
[ pm | pmc | doi ]
2013: (Pub #123) Specificity between Lactobacilli and Hymenoptera Hosts is the Exception Rather than the Rule. Applied and
Environmental Microbiology, 79:1803-1812. [ PM | pmc | DOI ]
2013: (Pub #122) Comparative Analysis of the Higher-Order Structure of RNA. In: Biophysics of RNA Folding (Biophysics for
the Life Sciences Series). pp. 11-22. Springer, New York, NY. [ pm | pmc | DOI ]
2012: (Pub #121) An Accurate Scalable Template-based Alignment Algorithm. Proceedings of 2012 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM 2012), Philadelphia, PA. October 4-7, 2012. pp. 237-243.
[ PM | PMC | DOI ]
2012: (Pub #120) The Fragmented Mitochondrial Ribosomal RNAs of Plasmodium falciparum. PLoS One, 7(6):e38320.
[ PM | PMC | DOI ]
2012: (Pub #119) Structural Constraints Identified with Covariation Analysis in Ribosomal RNA. PLos One, 7(6):e39383.
[ PM | PMC | DOI ]
2012: (Pub #118) A Comparison of the Crystal Structures of the Eukaryotic and Bacterial SSU Ribosomal RNAs Reveals
Common Structural Features in the Hypervariable Regions. PLos One, 7(5):e38203. [ PM | PMC | DOI ]
2011: (Pub #117) rCAD: A Novel Database Schema for the Comparative Analysis of RNA. 7th IEEE International Conference
on e-Science, Stockholm, Sweden. December 5-8, 2011. pp. 15-22. [ PM | PMC | DOI ]
http://www.rna.icmb.utexas.edu
Serveur d’annotation
d’ARNnc
109
RNAspace
110
W e l c o m e t o R N A s p a c e
Av a i l a b i l i t y
RNAspace is a platform which aims at providing an integrated environment for non-coding
RNA annotation.
The increasing number of ncRNA discovered since 2000 and the lack of user friendly tools for finding and annotating them, have
made necessary to propose to biologists an in silico environment allowing structural and functional annotations of these molecules
with regard to available protein genes annotation environments.
RNAspace makes available a variety of ncRNA gene finders and ncRNA databases as well as user-friendly tools to explore
computed results including comparison, visualization and edition of putative RNAs. RNAspace also allows to export putative RNAs in
various formats.
Partners FAQ Contact
RNAspace is an open source project. It is developed in Python. It is copyrighted with the GNU General
Public License, and is free (in the GNU sense) for all to use, and is in constant development. RNAspace is
hosted at Sourceforge. It is also available as a web server at rnaspace.org.
N e w s June 28, 2013 The site is now running
on a new and more powerful computer
environment provided by the Genotoul Bioinformatics
platform with a reduced list of Infernal models.
RNAspace software v1.2.1 (July 28, 2011) is running
this site.
H o m e 1 . L o a d d a t a 2 . P r e d i c t 3 . E x p l o r e
Comments and remarks: contact@rnaspace.org.
http://www.rnaspace.org
Autres outils:
représentation
111
VARNA
112
Home
Demo
User Manual
Tutorials
Downloads
Java Security Fix
Links
Announcement
VARNA 3.91 released
08/09/2014
Bulging loops, angular
hysteresis...
Support
LIX, Palaiseau LRI, Orsay
Polytechnique,
Palaiseau
IGM,
Orsay
Recent changes in Java security policy might prevent you from running VARNA.
Check out this page for details and ways to solve the problem.
What VARNA is
Description
VARNA is Java lightweight Applet dedicated to drawing the secondary structure of RNA. It is also a Swing
component that can be very easily included in an existing Java code working with RNA secondary structure to provide a
fast and interactive visualization.
Being free of fancy external library dependency and/or network access, the VARNA Applet can be used as a base
for a standalone applet. It looks reasonably good and scales up or down nicely to adapt to the space available on a
web page, thanks to the anti-aliasing drawing primitives of Swing.
Motivation
The initial version was coded after several unfruitful attempts at finding a RNA secondary structure drawing software to
be used inside of a webserver. Indeed, it seemed at the time that most of the webservers dedicated to the secondary
structure of RNA offered rather clumsy renderings (Mostly static, cgi-bin generated, PS or PNG files).
In 2008, I (Yann Ponty) was unable to find a tool that would be at the same time available, easy to install and still
running (SStructView was no longer tolerated by latest Java plugins security policies; RNAMLView's goal was rather to
display a projection of the 3D structure, and RNAMovies was more tailored towards animations...). Therefore, I coded a
basic software from scratch, initially using a radial layout strategy adopted by the software RNAViz, later to be extended
to other classic algorithms such that NAView, a classic Feynman-diagram representation and a linear one, hoping it
would be useful to some... VARNA development team was subsequently joined by Kevin Darty and Alain Denise
(LRI/IGM-Orsay-France) in 2009, leading to a complete redesign of the software.
As of November 2012, VARNA is currently used by RNA scientists and websites such as the NestedAlign web server,
the IRESite database (Example), and the TFold webserver.
Biogeeks also features (featured?) a very nice tutorial showing how to use VARNA as a front end to RNAFold through a
minimal Ruby script.
Credits/License/Disclaimer
If you find VARNA useful to your research, please contribute to its continued development by citing its supporting
manuscript:
VARNA: Interactive drawing and editing of the RNA secondary structure
Kévin Darty, Alain Denise and Yann Ponty
Bioinformatics, pp. 1974-1975, Vol. 25, no. 15, 2009
VARNA: Visualization Applet for RNA
A Java lightweight component and applet for drawing the RNA secondary structure
http://varna.lri.fr
R-Chie
113
R-chie [ɑrči]
A web server and R package for plotting arc diagrams of RNA secondary structures
Home (index.cgi)
Create a Plot (plot.cgi)
FAQ (faq.cgi)
Citation (cite.cgi)
Download (download.cgi)
Rfam Gallery (rfam.cgi)
R-chie allows you to make arc diagrams of RNA secondary structures, allowing for easy comparison and overlap of
two structures, rank and display basepairs in colour and to also visualize corresponding multiple sequence
alignments and co-variation information.
R4RNA is the R package powering R-chie, available for download (download.cgi) and local use for more customized
figures and scripting.
Available types of plots (click to load example input to web form)
Single Structure (plot.cgi?eg=single)
Double Structures (plot.cgi?eg=double)
Overlapping Structures (plot.cgi?eg=overlap)
Single Covariance (plot.cgi?eg=singlecov)
Double Covariance (plot.cgi?eg=doublecov)
Overlapping Covariance (plot.cgi?eg=overlapcov)
(plot.cgi?eg=single)
Visualize complicated basepairing as arcs on a linear sequence, colouring basepairs by value.
e.g. TRANSAT (cite.cgi) basepairs predictions for the Cripavirus internal ribosomal entry site (IRES),
RF00458, coloured by p-value.
http://www.e-rna.org/r-chie/plot.cgi
RILogo
114
RILogo - web server
Submit Help  Download
RILogo creates RNA-RNA interaction logos for two RNAs. The input are either two single
sequences or two multiple sequence alignments with annoation of intra- or intermolecular
base pairing between the two RNAs. RILogo displays sequence conservation by a sequence
logo for each RNA and structure conservation by the mutual information of the secondary
structure base pairings. RILogo supports four different methods for calculating the mutual
information.
See the Help page for input formats and examples. RILogo is free of charge and also
available for download as an open source standalone program.
Submit
Please fill out the submission form and click the Submit button. Input fields marked with a * are required. (Load Example Data)
Multiple Sequence Alignment*
Enter your multiple sequence alignment with structure annotation here. Either use the text area or upload a file.
Supported formats are Stockholm, Clustal or Fasta.
In Clustal and Fasta format, the secondary structure annotation must have the sequence name structure.
The alignment can also contain both interacting RNAs.
In that case, both sequences belonging to one species must be separated by the '' character. [?]
Upload alignment file: no file selected
Choose File
2nd Multiple Sequence Alignment
If the first alignment contains only one RNA, then insert the second alignment here. Either use the text area or upload a file. [?]
Upload alignment file: no file selected
Choose File
Mutual Information measure: TreeMI W+P
RILogo implements four different measures for the mutual information of base pairs.
Please refer to the paper for the exact definitions. [?]
Submit
http://rth.dk/resources/rilogo/submit
RNAfdl
115
Downloads (/projects/sfnet_rnafdl/releases/)
SourceForge.net page (http://sourceforge.net/projects/rnafdl)
RSS (http://sourceforge.jp/projects/sfnet_rnafdl/releases/rss/)
Review this project
RNAfdl
Project Description
Download
Latest Files
RNAfdl-1.08.tar.gz (/projects/sfnet_rnafdl/downloads/RNAfdl-1.08.tar.gz/) (Date: 2014-08-19, Size: 871.0 KB)
RNAfdl-1.07.tar.gz (/projects/sfnet_rnafdl/downloads/RNAfdl-1.07.tar.gz/) (Date: 2014-08-07, Size: 895.8 KB)
RNAfdl-1.06.tar.gz (/projects/sfnet_rnafdl/downloads/RNAfdl-1.06.tar.gz/) (Date: 2014-08-02, Size: 900.7 KB)
RNAfdl-1.05.tar.gz (/projects/sfnet_rnafdl/downloads/RNAfdl-1.05.tar.gz/) (Date: 2014-01-01, Size: 763.7 KB)
RNAfdl-1.04.tar.gz (/projects/sfnet_rnafdl/downloads/RNAfdl-1.04.tar.gz/) (Date: 2013-08-20, Size: 760.7 KB)
Pr
Softwar
Description
# Image list (/projects/sfnet_rnafdl/images/)
(This Description is auto-translated) Try to translate to Japanese (/projects/sfnet_rnafdl/translate/) Show Original Description
Write Howto Install (/projects/sfnet_rnafdl/howto/install)
Write Howto Use (/projects/sfnet_rnafdl/howto/usage)
RNAfdl is a h
ighly flexible
tool for drawi
ng RNA secondary structures. Secondary structures can be
visualized as classical secondary structure plot, circle plot, li
near plot or mountain plot. RNAfdl allows manual editing an
d several drawing styles, as well as a fully automated conjugate gradients minimization approach to draw more complex
structures without user interaction. In addition, RNAfdl allows you to incorporate non-canonical base pairs into drawings.
Download File List (/projects/sfnet_rnafdl/rel
eases/)
$
http://en.sourceforge.jp/projects/sfnet_rnafdl/
Ralee (emacs)
116
What does it look like?
Using RALEE mode in GNU Emacs to edit an alignment of some U1 spliceosomal RNA sequences. The sec-
ondary structure base pairing pattern is annotated as nested pairs of  and  symbols. Bases of the same
colour are part of the same helix. The split-screen view allows editing of base paired regions of the align-
ment even if they are far apart in sequence. For instance, the yellow bases in the top panel pair with the yel-
low bases in the bottom panel.
http://sgjlab.org/ralee/
RnaViz
117
Welcome to the homepage of RnaViz
Documentation Guided tour Binary distributions Source distribution
Latest News
2013 Dec.: an easier binary distribution is available (this includes all dependencies)
What is RnaViz
RnaViz is a user-friendly, portable, GUI program for producing publication-quality secondary structure
drawings of RNA molecules. Drawings can be created starting from DCSE alignment files if they
incorporate structure information or from mfold ct files. The layout of a structure can be changed easily.
Display of special structural elements such as pseudo-knots or unformatted areas is possible. Sequences
can be automatically numbered, and several other types of labels can be used to annotate particular bases
or areas. Although the program does not try to produce an initially non-overlapping drawing, the layout of
a properly positioned structure drawing can be applied to newly created drawing using skeleton files. In
this way a range of similar structures can be drawn with a minimum of effort. Skeletons for several types
of RNA molecule are included with the program.
Some of the features
recognises ct, rnaml and DCSE alignment formats
multiple structures on page
simple but powerfull WYSIWYG editing using different selection modes
skeletons to easily draw many structure using the same layout
allows display of pseudoknots
free choice of fonts, colors, linewidths for any object
graphica objects for annotation (rectangle, oval, lines, text)
linking of graphics, text to certain bases
tag based changing of properties
automatic sequence numbering
zoom
independend scaling of structure drawings
portable
http://rnaviz.sourceforge.net
Autres outils:
prédictions
118
RNA Tools
119
RNA TOOLS: RNAbows, BINDIGO, and PSR
RNAbows present intuitive
visualization of RNA base
pairing probabilities.
BINDIGO is a new, faster
algorithm to calculating
optimal binding of
oligometric RNA to an RNA
target.
PSR is an algorithm for
efficiently discriminating
donor splice sites from
decoy sequences.
Aalberts Homepage
E-mail: aalberts@williams.edu
http://rna.williams.edu
RNAbows
120
We offer three types of RNAbows for visualizing partition function computations.
Base pairs are denoted by
arcs whose thickness and
shade is proportional to their
probability.
After splitting the partition
function, the two dominant
clusters of folds are
compared.
Highlights differences
between the folds of two
sequences of the same
length.
http://rna.williams.edu/rnabows/
RNAmutants
121
RNAmutants
Home
Exploring the effects of mutations on the secondary structure of RNAs
Keywords: thermostability, beneficial and deleterious mutations, thermodynamic
pressure, RNA design, evolution.
More details? Visit the FAQs.
News
Download
Webserver
FAQs
Tutorial
References
Contact
http://rnamutants.csail.mit.edu
Autres outils:
2D  3D
122
Structures 2D  3D
123
http://bioinformatics.org/assemble/
S2S
BGSU RNA bioinformatics
124
BGSU RNA STRUCTURAL BIOINFORMATICS
Bowling Green State University (/) / Research (//www.bgsu.edu/research.html) / BGSU RNA Structural
Bioinformatics
Structural Databases
RNA 3D Hub (http://rna.bgsu.edu/rna3dhub) is a
new resource, which contains:
RNA 3D Motif Atlas
(http://rna.bgsu.edu/rna3dhub/motifs), a
representative collection of RNA 3D motifs.
Non-redundant lists
(http://rna.bgsu.edu/rna3dhub/nrlist) of RNA-
containing 3D structures.
http://www.bgsu.edu/research/rna/
125
Secondary Structure: small subunit ribosomal RNA
Escherichia coli
November 1999 (cosmetic changes July 2001)
(J01695)
10
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
5’
3’
I
II
III
m
2
m
5
m7
m
2
m
m
4
m5
m2
m
6
2
m6
2
m
3
G
[ ]
Symbols Used In This Diagram:
G A
- Canonical base pair (A-U, G-C)
- G-A base pair
- G-U base pair
G C
G U
U U - Non-canonical base pair
Citation and related information available at http://www.rna.icmb.utexas.edu
Every 10th nucleotide is marked with a tick mark,
and every 50th nucleotide is numbered.
Tertiary interactions with strong comparative data are connected by
solid lines.
1.cellular organisms 2.Bacteria 3.Proteobacteria
4.gamma subdivision
5. Enterobacteriaceae and related symbionts
6. Enterobacteriaceae 7. Escherichia
A
A
A
U
U
G
A
A
G A G U U
U G
A
U
C
A
U
G
G
C
U
C
A
G
A
U
U
G
A
A
C
G
C
U
G
G
C
G
G
C
A
G
G
C
C
UA
A
C
A
C A
U
G
C
A
A
G U C
G A
A C G G U
A A
C A G G A A G A A G C
U
U
G
C
U
U
C
U
U
U
G
C
U
G
A
C
G
A
G
U
G
G
C
G
G
A
C
G
G
G
U
G
A
G
U
A
A
U
G
U
C
U
G
G
G
A
A
A
C
U
G
C
C
U
G
A
U
G
G
A G G G G
GA U A
A C U A C U G G
A
A
A
C
G
G
U
A
G
C
U
A
A
U
A
C
C
G
C
A
U
A
A
C
G
U
C
G
C
A
A
G
A
C
C
A
A
A
G
A
G
G
G
G
G
A
C
C
U
U
C
G G G C C U C U U G
C
C
A
U
C
G
G
A
U
G
U
G
C
C
C
A
G
A
U
G
G
G
A
U
U
A
G
C
U
A
G
U
A
G
G
U
G
G
G
G
U
A
A
C
G
G C
U
C
A
C
C
U
A
G
G
C
G
A
C G A
U
C
C
C
U
A
G
C
U
G
G
U
C
U
G
A
G A
GGA U
G A
C
C A GC C
A
C
A
C
U
G
G
A
A
C
U
G
A
G
A
C
A C G
G U C C A G
A
C
U
C
C
U
A
C G
G
G
A
G
G C A G
C
A
G
U
G
G
G
G
A
A
U
A
U
U
G
C
A
C
A
A
U
G
G
G
C
G
C
A
A G C C U G A U G C A GC
C
A U
G
C
C
G
C
G
U
G
U
A
U
G
A
A
G
A
A
G
G
C
C
U
U
C
G G G U U
G
U A A
A
G U A C
U
U
U
C
A
G
C
G
G
G
G
A
G
G
A
A
G
G
G
A
G
U
A
A
A
G
U
U
A
A
U A
C
C
U
U
U
G
C
U
CA U
U
G
A
C G U
U
A
C
C
C
G
C
A
G
A
A
G
A
AG
C
A
C
C
G
G
C
UA A C
U
C
C
G
ψ
G
C
C
A
G
C
A
G C C
G
C G
G
U
A
A
U
A
C
G
G
A
G
G
G
U
G
C
A
A
G
C
G
U
U
A
A
U
C
G
G
A
A
U
U
A
C
U
G G
G
C
G
U
A
A
A
G
C
G
C
A
C
G
C
A
G
G
C
G
G
U
U
U
G
U
U
A
A
G
U
C
A
G
A
U
G
U
G
A
A
A
U
C
C
C
C
G
G
G
C
U
C
A A C C U G G G A
A C
U G C A U C U G A
U A
C U G G C A A G C
U
U
G
A
G
U
C
U
C
G
U
A
G
A
G
G
G
G
G
G
U
A
G
A
A
U
U
C
C
A
G
G
U
G
U
A
G
C
G
G
U
G
A
A A U G C
G
U
A G
A
G
A U C U G G A G
G A
A U
A
C C
G
G
U G
G C G
A
A
G
G
C
G
G
C
C
C
C
C
U
G
G
A
C
G
A
A
G
A
C
U
G
A
C
G
C
U
C
A
G
G
U
G
C
G
A
A
A
G
C
G
U
G
G
G
G
A G
C
A
A
A
C
A
G
G
A
U
U
A G A
U
A
C
C
C
U
G
G
U
A
G
U
C
C
A
C
G
C C G U
A
A
A
C
G
A
U
G U C G A C U U G
G
A
G
G
U
U
G
U
G
C
C
C U U
G
A
G
G
C
G
U
G
G
C
U
U
C
CG
G
A
G
C
U
A
A
C
G
C
G
U
U
A
A
G
U
C
G
A
C
C
G
C
C
U
G G G
G
A G U A
C
G G C C G
C
A
A
G
G
U
U
A
A
A
A
C
U
C
A
A A
U G A A U U G A C G
G
G G G C C C G
C
A C A A G
C
G
G
U
G
G
A
G
C
A
U
G
U
G
G
U
U
U
A
A
U
U
C
G
A
U
G
C
A
A
C
G C
G
A
A
G
A
A
C C U U
A
C
C
U
G
G
U
C
U
U
G
A
C
A
U
C
C
A
C
G
G
A
A
G
U
U
U
U
C
A
G
A
G
A U G A G A A U G
U
G
C
C
U
U C
G
G
G
A
A
C
C
G
U
GA
G
A
C A
G
G
U
G
C
U
G
C
A U
G
G
C
U
G
U
C
G
U
C
A
G
C
U
C
G
U
G
U
U
G
U
G
A
A
A
U
G
U
U
G
G
G
U
U
A A
G
U
C
C
C
G C
A
A C G A G C
G
C A A
C
C C U U A U C C U U U G U U G C C
A G
C G G U
C
C
G
G
C
C
G
G
G
A
A
C
U
C
A
A
A
G
G
A
G
A
C
U
G
C
C
A
G
U
G
A
U
A
A
A
C
U
G
G
A
G
G
A
A
G
G
U
G
G
G
G
A
U
G
A
C
G
U
C
A
A
G
U C
A
U
C
A
U
G
G
C
C
C
U
U
A
C
G
A
C
C
A
G
G
G
C
U
A
C
A
C
A
C
G
U
G
C
U
A
C A A
U G
G
C
G
C
A
U
A
C
A A A G
A
G
A
A G
C
G
A C C
U
C
G C
G
A
G
A
G
C
A
A
G
C
G
G
A
C
C
U
C
A
U
A
A
A
G
U
G
C
G
U
C
G
U
A
G
U
C
C
G
G
A
U
U
G
G
A
G
U
C
U
G
C
A
A
C
U
C
G
A
C
U
C
C
A
U
G
A
A
G
U
C
G
G
A
A
U
C
G
C
U
A
G
U
A
A
U
C
G
U
G
G
A
U
C
A
G
A
A
U
G
C
C
A
C
G
G
U
G
A
A
U
A
C
G
U
U
C
C
C
G
G
G
C
C
U
U
G
U
A
C
A
C
A
C
C
G
C
C
C
G
U
C
A
C
A
C
C
A
U
G
G
G
A
G
U
G
G
G
U
U
G
C
A
A
A
A
G
A
A
G
U
A
G
G
U
A
G
C
U
U
A
A
C
C
U
U C
G
G
G
A
G
G
G
C
G
C
U
U
A
C
C
A
C
U
U
U
G
U
G
A
U
U
C
A
U
G
A
C
U
G
G
G
G
U
GA
A
G
U
C
G
U
A
A
C
A A
G
G
U A A C C G U A G G
G
G
A
A
C
C
U
G
C
G
G
U
U
G
G
A
U
C
A
C
C
U
C
C
U
U
A

Weitere ähnliche Inhalte

Ähnlich wie Analyse Et Visualisation De Structures 2D D ARN

20110114 Next Generation Sequencing Course
20110114 Next Generation Sequencing Course20110114 Next Generation Sequencing Course
20110114 Next Generation Sequencing CoursePierre Lindenbaum
 
BIOL335: RNA bioinformatics
BIOL335: RNA bioinformaticsBIOL335: RNA bioinformatics
BIOL335: RNA bioinformaticsPaul Gardner
 
Cloud Z 의 오픈소스 서비스 소개 및 Serverless로 게임 개발하기
Cloud Z 의 오픈소스 서비스 소개 및 Serverless로 게임 개발하기Cloud Z 의 오픈소스 서비스 소개 및 Serverless로 게임 개발하기
Cloud Z 의 오픈소스 서비스 소개 및 Serverless로 게임 개발하기Jinwoong Kim
 
Traditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
Traditional vs Nontraditional Methods for Network Analytics - Ernesto EstradaTraditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
Traditional vs Nontraditional Methods for Network Analytics - Ernesto EstradaLake Como School of Advanced Studies
 
The Paternal Tree of Humanity
The Paternal Tree of HumanityThe Paternal Tree of Humanity
The Paternal Tree of HumanityFamily Tree DNA
 
Gutell 041.nar.1994.22.03502
Gutell 041.nar.1994.22.03502Gutell 041.nar.1994.22.03502
Gutell 041.nar.1994.22.03502Robin Gutell
 
Elixirでハードウェアが作れちゃう,かも!!? データフロー型ハードウェア設計環境Cockatriceのご紹介
Elixirでハードウェアが作れちゃう,かも!!?データフロー型ハードウェア設計環境Cockatriceのご紹介Elixirでハードウェアが作れちゃう,かも!!?データフロー型ハードウェア設計環境Cockatriceのご紹介
Elixirでハードウェアが作れちゃう,かも!!? データフロー型ハードウェア設計環境Cockatriceのご紹介Hideki Takase
 
Portable and reproducible bioinformatic analysis. Neoantigen discovery.
Portable and reproducible bioinformatic analysis. Neoantigen discovery.Portable and reproducible bioinformatic analysis. Neoantigen discovery.
Portable and reproducible bioinformatic analysis. Neoantigen discovery.Vladimir Kovacevic
 
タイムインターメディア 会社紹介
タイムインターメディア 会社紹介タイムインターメディア 会社紹介
タイムインターメディア 会社紹介Arai Ran
 
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点Ken'ichi Matsui
 
Course on parsing methods for biologists with a focus on ChIP-seq data
Course on parsing methods for biologists with a focus on ChIP-seq dataCourse on parsing methods for biologists with a focus on ChIP-seq data
Course on parsing methods for biologists with a focus on ChIP-seq dataLuca Cozzuto
 
Ranaviruses in snakes, lizards and chelonians
Ranaviruses in snakes, lizards and cheloniansRanaviruses in snakes, lizards and chelonians
Ranaviruses in snakes, lizards and cheloniansmgray11
 
Aminoacidos cod binarios
Aminoacidos cod binariosAminoacidos cod binarios
Aminoacidos cod binariosRama Shakti
 
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)Hirofumi Hayashi
 
SalesforceとHerokuのより良い関係を目指して(たぶん序章)
SalesforceとHerokuのより良い関係を目指して(たぶん序章)SalesforceとHerokuのより良い関係を目指して(たぶん序章)
SalesforceとHerokuのより良い関係を目指して(たぶん序章)Takahiro Yonei
 
Amazon ECS를 통한 Docker 콘테이너의 지속적 배포(CD) 방법
Amazon ECS를 통한 Docker 콘테이너의 지속적 배포(CD) 방법Amazon ECS를 통한 Docker 콘테이너의 지속적 배포(CD) 방법
Amazon ECS를 통한 Docker 콘테이너의 지속적 배포(CD) 방법Amazon Web Services Korea
 
Viroids and the RNA World
Viroids and the RNA WorldViroids and the RNA World
Viroids and the RNA WorldFabrice Leclerc
 

Ähnlich wie Analyse Et Visualisation De Structures 2D D ARN (20)

20110114 Next Generation Sequencing Course
20110114 Next Generation Sequencing Course20110114 Next Generation Sequencing Course
20110114 Next Generation Sequencing Course
 
BIOL335: RNA bioinformatics
BIOL335: RNA bioinformaticsBIOL335: RNA bioinformatics
BIOL335: RNA bioinformatics
 
191010 opie2
191010 opie2191010 opie2
191010 opie2
 
Cloud Z 의 오픈소스 서비스 소개 및 Serverless로 게임 개발하기
Cloud Z 의 오픈소스 서비스 소개 및 Serverless로 게임 개발하기Cloud Z 의 오픈소스 서비스 소개 및 Serverless로 게임 개발하기
Cloud Z 의 오픈소스 서비스 소개 및 Serverless로 게임 개발하기
 
Traditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
Traditional vs Nontraditional Methods for Network Analytics - Ernesto EstradaTraditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
Traditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
 
The Paternal Tree of Humanity
The Paternal Tree of HumanityThe Paternal Tree of Humanity
The Paternal Tree of Humanity
 
Gutell 041.nar.1994.22.03502
Gutell 041.nar.1994.22.03502Gutell 041.nar.1994.22.03502
Gutell 041.nar.1994.22.03502
 
Elixirでハードウェアが作れちゃう,かも!!? データフロー型ハードウェア設計環境Cockatriceのご紹介
Elixirでハードウェアが作れちゃう,かも!!?データフロー型ハードウェア設計環境Cockatriceのご紹介Elixirでハードウェアが作れちゃう,かも!!?データフロー型ハードウェア設計環境Cockatriceのご紹介
Elixirでハードウェアが作れちゃう,かも!!? データフロー型ハードウェア設計環境Cockatriceのご紹介
 
Portable and reproducible bioinformatic analysis. Neoantigen discovery.
Portable and reproducible bioinformatic analysis. Neoantigen discovery.Portable and reproducible bioinformatic analysis. Neoantigen discovery.
Portable and reproducible bioinformatic analysis. Neoantigen discovery.
 
タイムインターメディア 会社紹介
タイムインターメディア 会社紹介タイムインターメディア 会社紹介
タイムインターメディア 会社紹介
 
Advanced NCBI
Advanced NCBI Advanced NCBI
Advanced NCBI
 
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
 
Course on parsing methods for biologists with a focus on ChIP-seq data
Course on parsing methods for biologists with a focus on ChIP-seq dataCourse on parsing methods for biologists with a focus on ChIP-seq data
Course on parsing methods for biologists with a focus on ChIP-seq data
 
Ranaviruses in snakes, lizards and chelonians
Ranaviruses in snakes, lizards and cheloniansRanaviruses in snakes, lizards and chelonians
Ranaviruses in snakes, lizards and chelonians
 
Jonathan Partsch GIS Portfolio
Jonathan Partsch GIS PortfolioJonathan Partsch GIS Portfolio
Jonathan Partsch GIS Portfolio
 
Aminoacidos cod binarios
Aminoacidos cod binariosAminoacidos cod binarios
Aminoacidos cod binarios
 
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
MAGO3Dによる3次元マルチスケールデータの可視化システムの開発(FOSS4G_TOKAI_2018)
 
SalesforceとHerokuのより良い関係を目指して(たぶん序章)
SalesforceとHerokuのより良い関係を目指して(たぶん序章)SalesforceとHerokuのより良い関係を目指して(たぶん序章)
SalesforceとHerokuのより良い関係を目指して(たぶん序章)
 
Amazon ECS를 통한 Docker 콘테이너의 지속적 배포(CD) 방법
Amazon ECS를 통한 Docker 콘테이너의 지속적 배포(CD) 방법Amazon ECS를 통한 Docker 콘테이너의 지속적 배포(CD) 방법
Amazon ECS를 통한 Docker 콘테이너의 지속적 배포(CD) 방법
 
Viroids and the RNA World
Viroids and the RNA WorldViroids and the RNA World
Viroids and the RNA World
 

Mehr von Amanda Summers

Compare And Contrast Essay Examples - Compar
Compare And Contrast Essay Examples - ComparCompare And Contrast Essay Examples - Compar
Compare And Contrast Essay Examples - ComparAmanda Summers
 
Writing A College Essay, Part 2- The Extended Outline C
Writing A College Essay, Part 2- The Extended Outline CWriting A College Essay, Part 2- The Extended Outline C
Writing A College Essay, Part 2- The Extended Outline CAmanda Summers
 
How To Write A Satire Essay To School - My Great Satire E
How To Write A Satire Essay To School - My Great Satire EHow To Write A Satire Essay To School - My Great Satire E
How To Write A Satire Essay To School - My Great Satire EAmanda Summers
 
1 Writing An Introduction For An Essay. Homework Help Sites.
1 Writing An Introduction For An Essay. Homework Help Sites.1 Writing An Introduction For An Essay. Homework Help Sites.
1 Writing An Introduction For An Essay. Homework Help Sites.Amanda Summers
 
6 Best AI Essay Writer Tools To Create 100 Original Content
6 Best AI Essay Writer Tools To Create 100 Original Content6 Best AI Essay Writer Tools To Create 100 Original Content
6 Best AI Essay Writer Tools To Create 100 Original ContentAmanda Summers
 
Ant Writing Paper - Training4Thefuture.X.Fc2.Com
Ant Writing Paper - Training4Thefuture.X.Fc2.ComAnt Writing Paper - Training4Thefuture.X.Fc2.Com
Ant Writing Paper - Training4Thefuture.X.Fc2.ComAmanda Summers
 
027 Sample Paragraph Closing Sentences For Ess
027 Sample Paragraph Closing Sentences For Ess027 Sample Paragraph Closing Sentences For Ess
027 Sample Paragraph Closing Sentences For EssAmanda Summers
 
Why College Is Important Ess. Online assignment writing service.
Why College Is Important Ess. Online assignment writing service.Why College Is Important Ess. Online assignment writing service.
Why College Is Important Ess. Online assignment writing service.Amanda Summers
 
How To Find The Best Essay Writing Service Technogog
How To Find The Best Essay Writing Service TechnogogHow To Find The Best Essay Writing Service Technogog
How To Find The Best Essay Writing Service TechnogogAmanda Summers
 
Poetry Writing Paper - Inhisstepsmo.Web.Fc2.Com
Poetry Writing Paper - Inhisstepsmo.Web.Fc2.ComPoetry Writing Paper - Inhisstepsmo.Web.Fc2.Com
Poetry Writing Paper - Inhisstepsmo.Web.Fc2.ComAmanda Summers
 
Social Issue Essay. Online assignment writing service.
Social Issue Essay. Online assignment writing service.Social Issue Essay. Online assignment writing service.
Social Issue Essay. Online assignment writing service.Amanda Summers
 
Hire Essay Writer - Crunchbase Company Pr
Hire Essay Writer - Crunchbase Company PrHire Essay Writer - Crunchbase Company Pr
Hire Essay Writer - Crunchbase Company PrAmanda Summers
 
PPT - How To Write A Document Based Questi
PPT - How To Write A Document Based QuestiPPT - How To Write A Document Based Questi
PPT - How To Write A Document Based QuestiAmanda Summers
 
Essay Websites Personal Response Essay Format
Essay Websites Personal Response Essay FormatEssay Websites Personal Response Essay Format
Essay Websites Personal Response Essay FormatAmanda Summers
 
How To Type A Conclusion Paragraph. How To Start A
How To Type A Conclusion Paragraph. How To Start AHow To Type A Conclusion Paragraph. How To Start A
How To Type A Conclusion Paragraph. How To Start AAmanda Summers
 
College Essay Writers - Admission Essay Writing S
College Essay Writers - Admission Essay Writing SCollege Essay Writers - Admission Essay Writing S
College Essay Writers - Admission Essay Writing SAmanda Summers
 
Why Writing Can Be So Difficult. Online assignment writing service.
Why Writing Can Be So Difficult. Online assignment writing service.Why Writing Can Be So Difficult. Online assignment writing service.
Why Writing Can Be So Difficult. Online assignment writing service.Amanda Summers
 
3Rd Grade Rocks If I Were A Pirate...Writing Lesson
3Rd Grade Rocks If I Were A Pirate...Writing Lesson3Rd Grade Rocks If I Were A Pirate...Writing Lesson
3Rd Grade Rocks If I Were A Pirate...Writing LessonAmanda Summers
 
Cheating In Schools And Colleges - Free Essay Exa
Cheating In Schools And Colleges - Free Essay ExaCheating In Schools And Colleges - Free Essay Exa
Cheating In Schools And Colleges - Free Essay ExaAmanda Summers
 
Roger Wolfson - What To Practice If You Wish To Be A TV Scriptwriter ...
Roger Wolfson - What To Practice If You Wish To Be A TV Scriptwriter ...Roger Wolfson - What To Practice If You Wish To Be A TV Scriptwriter ...
Roger Wolfson - What To Practice If You Wish To Be A TV Scriptwriter ...Amanda Summers
 

Mehr von Amanda Summers (20)

Compare And Contrast Essay Examples - Compar
Compare And Contrast Essay Examples - ComparCompare And Contrast Essay Examples - Compar
Compare And Contrast Essay Examples - Compar
 
Writing A College Essay, Part 2- The Extended Outline C
Writing A College Essay, Part 2- The Extended Outline CWriting A College Essay, Part 2- The Extended Outline C
Writing A College Essay, Part 2- The Extended Outline C
 
How To Write A Satire Essay To School - My Great Satire E
How To Write A Satire Essay To School - My Great Satire EHow To Write A Satire Essay To School - My Great Satire E
How To Write A Satire Essay To School - My Great Satire E
 
1 Writing An Introduction For An Essay. Homework Help Sites.
1 Writing An Introduction For An Essay. Homework Help Sites.1 Writing An Introduction For An Essay. Homework Help Sites.
1 Writing An Introduction For An Essay. Homework Help Sites.
 
6 Best AI Essay Writer Tools To Create 100 Original Content
6 Best AI Essay Writer Tools To Create 100 Original Content6 Best AI Essay Writer Tools To Create 100 Original Content
6 Best AI Essay Writer Tools To Create 100 Original Content
 
Ant Writing Paper - Training4Thefuture.X.Fc2.Com
Ant Writing Paper - Training4Thefuture.X.Fc2.ComAnt Writing Paper - Training4Thefuture.X.Fc2.Com
Ant Writing Paper - Training4Thefuture.X.Fc2.Com
 
027 Sample Paragraph Closing Sentences For Ess
027 Sample Paragraph Closing Sentences For Ess027 Sample Paragraph Closing Sentences For Ess
027 Sample Paragraph Closing Sentences For Ess
 
Why College Is Important Ess. Online assignment writing service.
Why College Is Important Ess. Online assignment writing service.Why College Is Important Ess. Online assignment writing service.
Why College Is Important Ess. Online assignment writing service.
 
How To Find The Best Essay Writing Service Technogog
How To Find The Best Essay Writing Service TechnogogHow To Find The Best Essay Writing Service Technogog
How To Find The Best Essay Writing Service Technogog
 
Poetry Writing Paper - Inhisstepsmo.Web.Fc2.Com
Poetry Writing Paper - Inhisstepsmo.Web.Fc2.ComPoetry Writing Paper - Inhisstepsmo.Web.Fc2.Com
Poetry Writing Paper - Inhisstepsmo.Web.Fc2.Com
 
Social Issue Essay. Online assignment writing service.
Social Issue Essay. Online assignment writing service.Social Issue Essay. Online assignment writing service.
Social Issue Essay. Online assignment writing service.
 
Hire Essay Writer - Crunchbase Company Pr
Hire Essay Writer - Crunchbase Company PrHire Essay Writer - Crunchbase Company Pr
Hire Essay Writer - Crunchbase Company Pr
 
PPT - How To Write A Document Based Questi
PPT - How To Write A Document Based QuestiPPT - How To Write A Document Based Questi
PPT - How To Write A Document Based Questi
 
Essay Websites Personal Response Essay Format
Essay Websites Personal Response Essay FormatEssay Websites Personal Response Essay Format
Essay Websites Personal Response Essay Format
 
How To Type A Conclusion Paragraph. How To Start A
How To Type A Conclusion Paragraph. How To Start AHow To Type A Conclusion Paragraph. How To Start A
How To Type A Conclusion Paragraph. How To Start A
 
College Essay Writers - Admission Essay Writing S
College Essay Writers - Admission Essay Writing SCollege Essay Writers - Admission Essay Writing S
College Essay Writers - Admission Essay Writing S
 
Why Writing Can Be So Difficult. Online assignment writing service.
Why Writing Can Be So Difficult. Online assignment writing service.Why Writing Can Be So Difficult. Online assignment writing service.
Why Writing Can Be So Difficult. Online assignment writing service.
 
3Rd Grade Rocks If I Were A Pirate...Writing Lesson
3Rd Grade Rocks If I Were A Pirate...Writing Lesson3Rd Grade Rocks If I Were A Pirate...Writing Lesson
3Rd Grade Rocks If I Were A Pirate...Writing Lesson
 
Cheating In Schools And Colleges - Free Essay Exa
Cheating In Schools And Colleges - Free Essay ExaCheating In Schools And Colleges - Free Essay Exa
Cheating In Schools And Colleges - Free Essay Exa
 
Roger Wolfson - What To Practice If You Wish To Be A TV Scriptwriter ...
Roger Wolfson - What To Practice If You Wish To Be A TV Scriptwriter ...Roger Wolfson - What To Practice If You Wish To Be A TV Scriptwriter ...
Roger Wolfson - What To Practice If You Wish To Be A TV Scriptwriter ...
 

Kürzlich hochgeladen

Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 

Kürzlich hochgeladen (20)

Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 

Analyse Et Visualisation De Structures 2D D ARN

  • 1. HAL Id: hal-03313812 https://hal.archives-ouvertes.fr/hal-03313812 Submitted on 4 Aug 2021 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Public Domain Analyse et Visualisation de structures 2D d’ARN Fabrice Leclerc To cite this version: Fabrice Leclerc. Analyse et Visualisation de structures 2D d’ARN. Master. Paris, France. 2020. ฀hal-03313812฀
  • 2. Analyse et Visualisation de structures 2D d’ARN Fabrice Leclerc, Ph. D., I2BC (Campus d’Orsay) fabrice.leclerc@universite-paris-saclay.fr BGA 2020 1
  • 3. Echelles de taille et complexité 2 • • • • • RNAfdl (intersection-free) VARNA, S2S, etc longueur, repliements (jonctions), interactions à longue distance
  • 4. Motifs ARN 3 Représentations 2D ARN simple brin /ARN double brin fonction / structure
  • 5. Jonctions: « 3-way » 4 Une jonction Trois empilements Neuf configurations Pour chaque configuration, Le meilleur score est notre un score prédiction Empil. Famille Score 1 A 2,12 1 B 0,23 1 C 0,85 2 A 1,5 2 B 0,12 2 C 0,01 3 A 1,3 3 B 0,1 3 C 1,1 Représentations 2D (3D)
  • 6. Jonctions: « 4-way » 5 Famille H Famille π Famille cH Famille cL Famille cW Famille cK Famille X Famille ψ Famille cX Représentations 2D (3D)
  • 8. Motifs: structure & fonction 7
  • 9. 8 - boucles terminales - boucles internes/bulges - jonctions 3 - jonctions n ARNr 16S
  • 10. 9 Secondary Structure: small subunit ribosomal RNA Escherichia coli November 1999 (cosmetic changes July 2001) (J01695) 10 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 5’ 3’ I II III m 2 m 5 m7 m 2 m m 4 m5 m2 m 6 2 m6 2 m 3 G [ ] Symbols Used In This Diagram: G A - Canonical base pair (A-U, G-C) - G-A base pair - G-U base pair G C G U U U - Non-canonical base pair Every 10th nucleotide is marked with a tick mark, and every 50th nucleotide is numbered. 1.cellular organisms 2.Bacteria 3.Proteobacteria 4.gamma subdivision 5. Enterobacteriaceae and related symbionts 6. Enterobacteriaceae 7. Escherichia A A A U U G A A G A G U U U G A U C A U G G C U C A G A U U G A A C G C U G G C G G C A G G C C UA A C A C A U G C A A G U C G A A C G G U A A C A G G A A G A A G C U U G C U U C U U U G C U G A C G A G U G G C G G A C G G G U G A G U A A U G U C U G G G A A A C U G C C U G A U G G A G G G G GA U A A C U A C U G G A A A C G G U A G C U A A U A C C G C A U A A C G U C G C A A G A C C A A A G A G G G G G A C C U U C G G G C C U C U U G C C A U C G G A U G U G C C C A G A U G G G A U U A G C U A G U A G G U G G G G U A A C G G C U C A C C U A G G C G A C G A U C C C U A G C U G G U C U G A G A GGA U G A C C A GC C A C A C U G G A A C U G A G A CA C G G U C C A G A C U C C U A C G G G A G G C A G C A G U G G G G A A U A U U G C A C A A U G G G C G C A A G C C U G A U G C A GC C A U G C C G C G U G U A U G A A G A A G G C C U U C G G G U U G U A A A G U A C U U U C A G C G G G G A G G A A G G G A G U A A A G U U A A U A C C U U U G C U CA U U G A C G U U A C C C G C A G A A G A AG C A C C G G C UA A C U C C G ψ G C C A G C A G C C G C G G U A A U A C G G A G G G U G C A A G C G U U A A U C G G A A U U A C U G G G C G U A A A G C G C A C G C A G G C G G U U U G U U A A G U C A G A U G U G A A A U C C C C G G G C U C A A C C U G G G A A C U G C A U C U G A U A C U G G C A A G C U U G A G U C U C G U A G A G G G G G G U A G A A U U C C A G G U G U A G C G G U G A A A U G C G U A G A G A U C U G G A G G A A U A C C G G U G G C G A A G G C G G C C C C C U G G A C G A A G A C U G A C G C U C A G G U G C G A A A G C G U G G G G A G C A A A C A G G A U U A G A U A C C C U G G U A G U C C A C G C C G U A A A C G A U G U C G A C U U G G A G G U U G U G C C C U U G A G G C G U G G C U U C CG G A G C U A A C G C G U U A A G U C G A C C G C C U G G G G A G U A C G G C C G C A A G G U U A A A A C U C A A A U G A A U U G A C G G G G G C C C G C A C A A G C G G U G G A G C A U G U G G U U U A A U U C G A U G C A A C G C G A A G A A C C U U A C C U G G U C U U G A C A U C C A C G G A A G U U U U C A G A G A U G A G A A U G U G C C U U C G G G A A C C G U GA G A C A G G U G C U G C A U G G C U G U C G U C A G C U C G U G U U G U G A A A U G U U G G G U U A A G U C C C G C A A C G A G C G C A A C C C U U A U C C U U U G U U G C C A G C G G U C C G G C C G G G A A C U C A A A G G A G A C U G C C A G U G A U A A A C U G G A G G A A G G U G G G G A U G A C G U C A A G U C A U C A U G G C C C U U A C G A C C A G G G C U A C A C A C G U G C U A C A A U G G C G C A U A C A A A G A G A A G C G A C C U C G C G A G A G C A A G C G G A C C U C A U A A A G U G C G U C G U A G U C C G G A U U G G A G U C U G C A A C U C G A C U C C A U G A A G U C G G A A U C G C U A G U A A U C G U G G A U C A G A A U G C C A C G G U G A A U A C G U U C C C G G G C C U U G U A C A C A C C G C C C G U C A C A C C A U G G G A G U G G G U U G C A A A A G A A G U A G G U A G C U U A A C C U U C G G G A G G G C G C U U A C C A C U U U G U G A U U C A U G A C U G G G G U G A A G U C GU A A C A A G G U A A C C G U A G G G G A A C C U G C G G U U G G A U C A C C U C C U U A ARNr 16S
  • 11. 10 modèles 2D (expérimental: « footprinting », fluorescence, SHAPE, etc; théoriques: MFold, RNAfold, etc) représentations 2D à partir de structures 3D d’ARN annotations des structures avec des informations: structurales, functionelles, phylogénétiques, etc G C G A C U C G G G G U G C C C U G C G U G A A G G C U G A G A A A A C C C G U A A C C U G AUC U G G A U A A U G C C A G C G A G G G A A G U C G C A C RNAplot E jViz.RNA
  • 12. 11 modèles 2D (expérimental: « footprinting », fluorescence, SHAPE, etc; théoriques: MFold, RNAfold, etc) représentations 2D à partir de structures 3D d’ARN annotations des structures avec des informations: structurales, functionelles, phylogénétiques, etc G C G A C U C G G G G U G C C C U G C G U G A A G G C U G A G A A A A C C C G U A A C C U G A U C U G G A U A A U G C C A G C G A G G G A A G U C G C A 5’ 3’ 90 13 85 18 47 23 36 59 80 64 74 31 41 52 69 S2S/Assemble G C G A C U C G G G G U G C C C U G C G U G A A G G C U G A G A A A A C C C G U A A C C U G A U C U G G A U A A U G C C A G C G A G G G A A G U C G C A 1 10 20 30 40 50 60 70 76 B VARNA
  • 13. 12 modèles 2D (expérimental: « footprinting », fluorescence, SHAPE, etc; théoriques: MFold, RNAfold, etc) représentations 2D à partir de structures 3D d’ARN annotations des structures avec des informations: structurales, functionelles, phylogénétiques, etc 1 13 2 7 3 9 49 6 2 76 G C G A C U C G G G G U G C C C A G G C A A C C C G A A C C U G A C U G G C C A G C G A G G G A A G U C G C U G C G U G A U G A G A A U U A U A A U G A PseudoViewer Y G G G G G C Y R G C U G A G A R A C C C Y R R A C C U G A U C Y R G U A U R C Y R G C G A G G G A R 5' F R2R
  • 14. RNA 2D Structure by HT-SHAPE 13
  • 15. 14
  • 16. 15
  • 17. IUPAC nucleotide code 16 / U / U / Uracile / U / U / U / U / U / U /U
  • 18. 17 (Extended) Secondary Structure File Formats All-atoms 3D models Interactive Editors Command-line tools Web-based tools Vector Graphics Editors Raster Graphics Editors Stockhlom Vienna/DBN BPSeq Connect RNAML PDB RNAML Annotation RNAView MC-Annotate FR3D VARNA xrna rnaviz S2S/Assemble PseudoViewer Manual Refinement + Annotations R-chie RILogo RNAplot R2R VARNA PseudoViewer R-chie RILogo RNAplot RNAMovies Parameterization Rerun Adobe R Illustrator R Inkscape Adobe R Photoshop R Gimp Raw Data RNA-Aware Tools Post-Processing Rasterization (Optional) A B C D Rougier, JDEV2013
  • 19. Formats et Outils 18 Tools (Extended) Secondary Structure File Formats Vector Graphics Formats Bitmap Graphics Formats jViz.RNA PseudoViewer RNAMovies RILogo R-chie RNAplot R2R S2S VARNA Stockhlom Vienna/DBN BPSeq Connect RNAML PDF EPS/PS SVG PNG JPG GIF
  • 20. 19 C: Stockholm (RFAM) D: Vienna (RNAfold) E: Pseudobase A: FASTA (aligned) B: CLUSTAL F: BPSEQ G: CONNECT (CT, CT2)
  • 21. Notation « dot-bracket » 20 > Rat Alanine tRNA GAGGAUUUAGCUUAAUUAAAGCAGUUGAUUUGCAUUUAACAGAUGUAAGAUAUAGUCUUACAGUCCUUA ((((((...((((.....)))).(((((.......)))))...((((((((...)))))))))))))). G A G G A U U U A G C U U A A U U A A A G C A G U U G A U U U G C A U U U A A C A G A U G U A A G A U A U A G U C U U A C A G U C C U U A Vienna, DBN RNAfold
  • 22. Format Stockholm 21 U STOCKHOLM 1.0 U=GF ID mir-22 U=GF AC RF00653 ... O.latipes.1 CGUUG.CCUCACAGUCGUUCUUCA.CUGGCU.AGCUUUAUGUCCCACG.. Gasterosteus_aculeat.1 GGCUG.ACCUACAGCAGUUCUUCA.CUGGCA.AGCUUUAUGUCCUCAUCU R.esox.1 AGCUGAGCACA...CAGUUCUUCA.CUGGCA.GCCUUAAGGUUUCUGUAG ... U=GC SS_cons .<<<<.<<..<<<<<<<<<<<<<<..<<<<..<<<<<<<.<<........ U=GC RF gGccg.acucaCagcaGuuCuuCa.cuGGCA.aGCuuuAuguccuuauaa O.latipes.1 CCCCACCGUAAAGCU.GC.CAGUUGAAGAGCUGUUGUG..UGUAACC Gasterosteus_aculeat.1 ACCAGC..UAAAGCU.GC.CAGCUGAAGAACUGUUGUG..GUCGGCA R.esox.1 ACAGGC..UAAACCU.GC.CAGCUGAAGAACUGCUCUG..GCCAGCU ... U=GC SS_cons ....>>..>>>>>>>.>>.>>..>>>>>>>>>>>>>>...>>>>>>. U=GC RF acaaac..UaaaGCu.GC.CaGuuGaaGaaCugcuGug..gucggCu // U STOCKHOLM 1.0 U=GF ID mir-22 U=GF AC RF00653 ... O.latipes.1 CGUUG.CCUCACAGUCGUUCUUCA.CUGGCU.AGCUUUAUGUCCCACG.. Gasterosteus_aculeat.1 GGCUG.ACCUACAGCAGUUCUUCA.CUGGCA.AGCUUUAUGUCCUCAUCU R.esox.1 AGCUGAGCACA...CAGUUCUUCA.CUGGCA.GCCUUAAGGUUUCUGUAG ... U=GC SS_cons .<<<<.<<..<<<<<<<<<<<<<<..<<<<..<<<<<<<.<<........ U=GC RF gGccg.acucaCagcaGuuCuuCa.cuGGCA.aGCuuuAuguccuuauaa O.latipes.1 CCCCACCGUAAAGCU.GC.CAGUUGAAGAGCUGUUGUG..UGUAACC Gasterosteus_aculeat.1 ACCAGC..UAAAGCU.GC.CAGCUGAAGAACUGUUGUG..GUCGGCA R.esox.1 ACAGGC..UAAACCU.GC.CAGCUGAAGAACUGCUCUG..GCCAGCU ... U=GC SS_cons ....>>..>>>>>>>.>>.>>..>>>>>>>>>>>>>>...>>>>>>. U=GC RF acaaac..UaaaGCu.GC.CaGuuGaaGaaCugcuGug..gucggCu //
  • 23. Stockholm - Ralee (emacs) 22 # STOCKHOLM 1.0 Pho21_215834-215776_-__ CGGCCCGGTTCCCGCCCTCTCCGGGGAATCGTGAACCGGGGGTTCCGACCGGGCCGACA Pfu21_163991-163933_-__ GGGCCCGGTTCCCGCCCTCTCCGGGGAATCGTGAACCGGGGGTTCCGACCGGGCCCACA Pab21_230575-230517_-__ GGGCCCGGCTCCCGCCCTCTCCGGGGAATCGTGAACCGGGGGTTCCGGCCGGGCCTACA Consensus GGGCCCGGUUCCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGACCGGGCCCACA #=GC SS_cons <<<<<<<<<<...<<<<...<<<<...........>>>>>>>>...>>>>>>>>>>... // # STOCKHOLM 1.0 Pab105_1335797-1335648_-__ CCGCCCGGA-GGCCCGACCGAGGGAGCGTGCCGAGAAAGGCGCGCCATGAACGAGGCGACGTCGCCGGGCGGACAGGGCCCGGTCTCCGGGG Pho105_592081-592230_+__ CCGCCCGGG-GGCCCGACCGAGGGAGCGTGCCGAGAATGGCGCGCAATGAACGAGGTGACGTCGTCGGGCGGACAGGGCCCGGTCTCCGGGG Pfu105_942696-942544_-__ CCGCCCGGGCGGCCCGACCGAGGGAGCGTGCCGGCAATGGCGCGCGATGAACGAGGTGACGTCTCCGGGCGGACAGGGCCCGGCCTTCGGGG Consensus CCGCCCGGG-GGCCCGACCGAGGGAGCGUGCCGAGAAUGGCGCGCAAUGAACGAGGUGACGUCGCCGGGCGGACAGGGCCCGGUCUCCGGGG #=GC SS_cons <<<<<<<<....<<<......>>>.<<<<<<<......>>>>>>>...<<.<<......>>>>.>>>>>>>>...<<<<<<<<<.<<<<... Pab105_1335797-1335648_-__ CCGCCTGAGGTTGCCGACAACGGCGGGCAATGAGGGCGGGTGGATAAGCCGGGCCTATA-- CCGCCTGAGGTTGCCGAGAATGGCGTTCAATGAAGGCGGGCGGATAATCCGGGCCTAAA-- Pfu105_942696-942544_-__ CCGCCTGAGGGAGCCGAGAAGGGCAGACGATGAAGGCGGGCGGATAAGCCGGGCCCTCAAA Consensus CCGCCUGAGGUUGCCGAGAACGGCGGACAAUGAAGGCGGGCGGAUAAGCCGGGCCUAAA-- #=GC SS_cons <<<<<<.....<<<<......>>>>........>>>>>>.>>>>...>>>>>>>>>..... // Stockholm
  • 24. Stockholm - Rfam 23 # STOCKHOLM 1.0 #=GF ID snoR9 #=GF AC RF00065 #=GF DE Small nucleolar RNA snoR9 #=GF AU Bateman A, Daub J #=GF GA 50.0 #=GF NC 49.8 #=GF TC 68.7 #=GF SE Bateman A #=GF SS Published; PMID:12032319 #=GF TP Gene; snRNA; snoRNA; CD-box; #=GF BM cmbuild -F CM SEED; cmcalibrate --mpi -s 1 CM #=GF BM cmsearch -Z 274931 -E 1000000 --toponly CM SEQDB #=GF DR SO:0000593 SO:C_D_box_snoRNA #=GF DR GO:0006396 GO:RNA processing #=GF DR GO:0005730 GO:nucleolus #=GF RN [1] #=GF RM 12032319 #=GF RT Noncoding RNA genes identified in AT-rich hyperthermophiles. #=GF RA Klein RJ, Misulovin Z, Eddy SR; #=GF RL Proc Natl Acad Sci U S A 2002;99:7542-7547. #=GF CC snoRNA R9 is a member of the C/D class of snoRNA which contain #=GF CC the C (UGAUGA) and D (CUGA) box motifs. R9 was identified in a #=GF CC computational screen in AT-rich hyperthermophiles [1]. R9 was #=GF CC found to overlap with the smaller snoRNA R19 which is currently a #=GF CC member of Pyrococcus C/D box snoRNA family Rfam:RF00095. #=GF WK http://en.wikipedia.org/wiki/Small_nucleolar_RNA_snoR9 #=GF SQ 5 #=GS Pyrococcus_furiosus AC AE009950.1/163991-163864 #=GS Pyrococcus_abyssi_GE AC AJ248283.1/230575-230449 #=GS Pyrococcus_horikoshi AC BA000001.2/215834-215709 #=GS P.furiosus AC AF468960.1/1-128 #=GS Thermococcus_kodakar AC AP006878.1/47908-47779 Stockholm
  • 25. Stockholm - Rfam 24 #=GS Pyrococcus_furiosus AC AE009950.1/163991-163864 #=GS Pyrococcus_abyssi_GE AC AJ248283.1/230575-230449 #=GS Pyrococcus_horikoshi AC BA000001.2/215834-215709 #=GS P.furiosus AC AF468960.1/1-128 #=GS Thermococcus_kodakar AC AP006878.1/47908-47779 Pyrococcus_furiosus GGGCCCGGUU.CCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGAC Pyrococcus_abyssi_GE GGGCCCGGCU.CCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGGC Pyrococcus_horikoshi CGGCCCGGUU.CCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGAC P.furiosus GGGCCCGGUU.CCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGAC Thermococcus_kodakar GGGCCUGGCGUCCCGCCCUCCCCGGGGAAACGUGAACCGGGGCUUCCUGC #=GC SS_cons <<<<<<<<<........<.<<<<<<<<<.....>>>>>>>>>>.....>> #=GC RF gGGCCCGGcu.CCCgCCCUCUCCGGGGAAUCGUGAACCGGGGGuUCCggC Pyrococcus_furiosus CGGGCCCACA..AUGGGAUGAUGACCUUUUGCUUUACUGAACACAUGAUG Pyrococcus_abyssi_GE CGGGCCUACA..G..UUAUGAUGAACUUUUGCUUUGCUGAUGUGGUGAUG Pyrococcus_horikoshi CGGGCCGACA..GG.GGAUGAAGAGCUUUUGCUUUGCUGAGCAGAUGAUG P.furiosus CGGGCCCACA..AUGGGAUGAUGACCUUUUGCUUUACUGAACACAUGAUG Thermococcus_kodakar CAGGCCUACACCGGGGGAUGAAGAGCUUUUGCUUUGCUGAC..UGUGAUG #=GC SS_cons >>>>>>>........................................... #=GC RF CGGGCCcACA..auguuAUGAUGAaCUUUUGCUUUaCUGAagagaUGAUG Pyrococcus_furiosus ACCACGCCCUUCGCUGAC.CUAAAUAUUUGAC Pyrococcus_abyssi_GE AGCACGCCCUUCGCUGAUACUCUCUCGUCCAU Pyrococcus_horikoshi ACCACGCCCUUCGCUGAC.CU.GCUAUUUGAC P.furiosus ACCACGCCCUUCGCUGAC.CUAAAUAUUUGAC Thermococcus_kodakar AGCACGCCCUUCACUGACCCCGUAUCAGCUCU #=GC SS_cons ................................ #=GC RF AgCACGCCCUUCGCUGAu.CUaaaUauUugAu // Stockholm
  • 26. Stockholm - R2R 25 RF00065_seed G G G C C Y G G Y C U C Y C C G G G G A U G A A C C G G G G R C C R G G C C Y A C A 5 nt 7-8 nt 4 nt K-Loop ANA box 67-70 nt 5´ RF00065_seed Pyrococcus_horikoshi C G G C C C G G U U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G A C C G G G C C G A C A 9 bp 50 3´ guide sequence 10 5´ guide sequence 20 40 8 bp 30 K-Loop ANA box 5´ RF00065_seed Thermococcus_kodakar G G G C C U G G C G U C C C G C C C U C C C C G G G G A A A C G U G A A C C G G G G C U U C C U G C C A G G C C U A C A 9 bp 50 3´ guide sequence 10 5´ guide sequence 20 8 bp , 40 30 K-Loop ANA box , 60 5´ RF00 RF00065_seed Pyrococcus_abyssi_GE G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 9 bp 50 3´ guide sequence 10 5´ guide sequence 20 40 8 bp 30 K-Loop ANA box 5´ RF00065_seed Pyrococcus_furiosus G G G C C C G G U U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G A C C G G G C C C A C A 9 bp 50 3´ guide sequence 10 5´ guide sequence 20 40 8 bp 30 K-Loop ANA box 5´ RF00065_seed Pyrococcus_horikoshiRF00065_seed Thermococcus_kodakarRF00065_seed skeleton-with-bp variable-length region variable-length loop connector (zero length) modular sub-structure variable-length stem 75% covarying mutations base pair annotations compatible mutations no mutations observed connector (zero length) 90% 97% 75% 50% nucleotide present nucleotide identity 75% N N 97% N 90% R2R Stockholm
  • 27. Stockholm - R2R 26 RF00065_seed G G G C C Y G G Y C U C Y C C G G G G A U G A A C C G G G G R C C R G G C C Y A C A 5 nt 7-8 nt 4 nt K-Loop ANA box 67-70 nt 5´ RF00065_seed-ILOOP75 subfam_weight=0.696064 70% G Y U C C C G C C C C G G R C 5 nt 7 nt RF00065_seed-ILOOP85 subfam_weight=0.303936 30% G C G U C C C G C C C C G C G C 5 nt 8 nt RF00065_seed Thermococcus_kodakarRF00065_seed skeleton-with-bp R2R Stockholm
  • 28. Pseudo-nœuds (pseudoknots) Définition: structure 2D d’acide nucléique contenant au moins 2 tige-boucle dans laquelle la moitié de l’une est intercalée entre les 2 autres moitiés de l’autre 27 Wikipedia A A A A A A A A A C C C C C C C C C C U U U U U U U U U U U U U U G G G G G G G G C C G G C G G G
  • 29. Pseudobase-Pseudoviewer 28 1590 1600 1610 1620 1630 # |123456789|123456789|123456789|123456789|123456 $ 1590 AAAAAACUAAUAGAGGGGGGACUUAGCGCCCCCCAAACCGUAACCCC=1636 % 1590 ::::::::::::::[[[[[[:::::(((]]]]]]::::))):::::: 1 1 5 4 7 G G G G G G G C G C C C C C C C G U A A A A A A C U A A U A G A A C U U A A A A C A A C C C C subs PseudoViewer Pseudobase
  • 30. 29 W Y G G S Y S G S M W K G K C a Y C W c c R C C U C C Y C G Y U G G Y S C S R S C U G G G C A A C A U U C C G W A G G R G R a M M R a a Y G Y C C a c U C G G U A A U G G C D A A g g g W G R G M C M S W 1 10 20 30 40 50 60 70 80 90 101 Représentations circulaires VARNA jViz.RNA Vienna/DBN; Connect
  • 31. Ribozyme HDV (RF00059) 30 W Y G G S Y S G S M W K G K C a Y C W c c R C C U C C Y C G Y U G G Y S C S R S C U G G G C A A C A U U C C G W A G G R G R a M M R a a Y G Y C C a c U C G G U A A U G G C D A A g g g W G R G M C M S W 1 10 20 30 40 50 60 70 80 90 100 101 VARNA R2R Vienna/DBN; Stockholm
  • 32. ARNr 16S (T. thermophilus) 31 Secondary Structure: small subunit ribosomal RNA Thermus thermophilus (X07998) 1.cellular organisms 2.Bacteria 3.Thermus/Deinococcus group 4.Thermus group 5.Thermus September 2001 5’ 3’ Citation and related information available at http://www.rna.icmb.utexas.edu N U U G U U G G A G A G U U U G A U C C U G G C U C A G G G U G A A C G C U G G C G G C G U G C C UA A G A CA U G C A A G U C G U G C G G G C C G C G G G G U U U U A C U C C G U G G U C A G C G G C G G A C G G G U G A G U A A C G C G U G G G U G A C C U A C C C G G A A G AG G G G G A C A A C C C G G G G A A A C U C G G G C U A A U C C C C C A U G U G G A C C C G C C C C U U G G G G U G U G U C C A A A G G G C U U U G C C C G C U U C C G G A U G G G C C C G C G U C C C A U C A G C U A G U U G G U G G G G U A A U G G C C C A C C A A G G C G A C G AC G G G U A G C C G G U C U G A G A GGA U G G C C GGC C A C A G G G G C A C U G A G A C A C G G G C C C C A C U C C U A C G G G A G G C A G C A G U U A G G A A U C U U C C G C A A U G G G C G C A A G C C U G A C G G A GC G A C G C C G C U U G G A G G A A G A A G C C C U U C G G G G U G U A A A C U C C U G A A C C C G G G A C G A A A C C C C C G A C G A G G GG A C U G A C GG U A C C G G G G U A A U A G C G C C G G C C A A C U C C G U G C C A G C A G C C G C G G U A A U A C G G A G G G C G C G A G C G U U A C C C G G A U U C A C U G G G C G U A A A G G G C G U G U A G G C G G C C U G G G G C G U C C C A U G U G A A A G A C C A C G G C U C A A C C G U G G GG G A G C G U G G G A U A C G C U C A G G C U A G A C G G U G G G A G A G G G U G G U G G A A U U C C C G G A G U A G C G G U G A A A U G C G C A G A U A C C G G G A G G A A C G C C G A U G G C G A A G G C A G C C A C C U G G U C C A C C C G U G A C G C U GA G G C G C G A A A G C G U G G G G A G C A A A C C G G A U U A G A U A C C C G G G U A G U C C A C G C C C U A A A C G A U G C G C G CU A G G U C U C U G G G U C U C C U G G G G G C C G A A G C U A A C G C G U U A A G C G C G C C G C C U G G G G A G U A C G G C C G C A A G G C U G A A A C U C A A A G G A A U U G A C G G G G G C C C G C A C A A G C G G U G G A G C A U G U G G U U U A A U U C G A A G C A A C G C G A A G A A C C U U A C C A G G C C U U G A C A U G C U A G G G A A C C C G G G U G A A A G C C U G G G G U G C C C G C G A G G G A G C C C U A G C A C A G G U G C U G C A U G G C C G U C G U C A G C U C G U G C C G U G A G G U G U U G G G U U A A G U C C C G C A A C G A G C G C A A C C C C C G C C G U U A G U U G C C A G C G G U U C G G C C G G G C A C U C U A A C G G G A C U G C C C G C G A A A G C G G G A G G A A G G A G G G G A C G A C G U C U G G UC A G C A U G G C C C U U A C G G C C U G G G C G A C A C A C G U G C U A C A A U G C C C U A C A A A G C G A U G C C A C C C G G C A A C G G G G A G C U A A U C G C A A A A A G G U G G G C C C A G U U C G G A U U G G G G U C U G C A A C C C G A C C C C A U G A A G C C G G A A U C G C U A G U A A U C G C G G A U C A G C C A U G C C G C G G U G A A U A C G U U C C C G G G C C U U G U A C A C A C C G C C C G U C A C G C C A U G G G A G C G G G C U C U A C C C G A A G U C G C C G G G A GC C U A C G G G C A G G C G C C G A G G G U A G G G C C C G U G A C U G G G G C G A A G U C G U A A C A A G G U A G C U G U A C C G G A A G G U G C G G C U G G A U C A C C U C C U U U N N jViz.RNA Vienna/DBN; Connect
  • 33. 32 A C U U G U A U A A C C U C A A U A A U A U G G U U U G A G G G U G U C U A C C A G G A A C C G U A A A A U G G U G A U U A C A A A A U U U G U U U A U G A C A U U U U U U G U A A U C A G G A U U U U U U U U 1 10 20 30 40 50 60 70 80 90 100 104 conformation 1 (ON) conformation 2 (OFF) VARNA Arc RIBOSWITCH Structures 2D alternatives graph Vienna/DBN
  • 35. 34 Pseudo-nœuds U G G C C G G C A U G G U C C C A G C C U C C U C G C U G G C G C C G G C U G G G C A A C A C C A U U G C A C U C C G G U G G U G A A U G G G A C 1 10 20 30 40 50 60 70 73 1 88 G G C C G G C G G U C C C A G C C C C G G C G C C G G C U G G C A U U C C G A G G G G A U C C C C U C G G A A U G U G G G A C C U A U U U C G C U G C A A C C G U G C G A A C A A B C D PseudoViewer jViz.RNA VARNA
  • 36. Appariements & nomenclature 35 Stombaugh et al., NAR, 2009 Lentos & Westhof, Curr. Opi. Struct. Biol., 2003
  • 37. Motifs ARN & fonction(s) flexibilité nucléotide(s) non appariés, appariements non canoniques structures et “formes” 3D appariemments canoniques/non-canoniques & sillons interactions: ARN-ARN, ARN-protéine, ARN- ligand, … régions simple/double-brin, formes et contacts 36
  • 38. Bulges: flexibilité & interaction 37 Hermann & Patel, Structure, 2000
  • 39. Appariements & sillons 38 A helix 〈FL〉 structure 〈JB〉 structure Leclerc et al., Nat. Struct. Biol., 1994; Leclerc et al., Fold. Des., 1997 appariements non-canoniques et ouverture du grand sillon appariements NWC grand sillon petit sillon ARN de liaison à la protéine Rev (VIH-1)
  • 40. Motifs récurrents 39 Djelloul & Denise, RNA, 2008
  • 41. Motifs ARN 3D & “formes” 40 Watkins & Das, 2019
  • 42. Motif Kink-turn (K-loop) 41 Klein et al., EMBO J., 2001
  • 43. 42 Secondary Structure: small subunit ribosomal RNA Escherichia coli November 1999 (cosmetic changes July 2001) (J01695) 10 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 5’ 3’ I II III m 2 m 5 m7 m 2 m m 4 m5 m2 m 6 2 m6 2 m 3 G [ ] Symbols Used In This Diagram: G A - Canonical base pair (A-U, G-C) - G-A base pair - G-U base pair G C G U U U - Non-canonical base pair Every 10th nucleotide is marked with a tick mark, and every 50th nucleotide is numbered. 1.cellular organisms 2.Bacteria 3.Proteobacteria 4.gamma subdivision 5. Enterobacteriaceae and related symbionts 6. Enterobacteriaceae 7. Escherichia A A A U U G A A G A G U U U G A U C A U G G C U C A G A U U G A A C G C U G G C G G C A G G C C UA A C A C A U G C A A G U C G A A C G G U A A C A G G A A G A A G C U U G C U U C U U U G C U G A C G A G U G G C G G A C G G G U G A G U A A U G U C U G G G A A A C U G C C U G A U G G A G G G G GA U A A C U A C U G G A A A C G G U A G C U A A U A C C G C A U A A C G U C G C A A G A C C A A A G A G G G G G A C C U U C G G G C C U C U U G C C A U C G G A U G U G C C C A G A U G G G A U U A G C U A G U A G G U G G G G U A A C G G C U C A C C U A G G C G A C G A U C C C U A G C U G G U C U G A G A GGA U G A C C A GC C A C A C U G G A A C U G A G A CA C G G U C C A G A C U C C U A C G G G A G G C A G C A G U G G G G A A U A U U G C A C A A U G G G C G C A A G C C U G A U G C A GC C A U G C C G C G U G U A U G A A G A A G G C C U U C G G G U U G U A A A G U A C U U U C A G C G G G G A G G A A G G G A G U A A A G U U A A U A C C U U U G C U CA U U G A C G U U A C C C G C A G A A G A AG C A C C G G C UA A C U C C G ψ G C C A G C A G C C G C G G U A A U A C G G A G G G U G C A A G C G U U A A U C G G A A U U A C U G G G C G U A A A G C G C A C G C A G G C G G U U U G U U A A G U C A G A U G U G A A A U C C C C G G G C U C A A C C U G G G A A C U G C A U C U G A U A C U G G C A A G C U U G A G U C U C G U A G A G G G G G G U A G A A U U C C A G G U G U A G C G G U G A A A U G C G U A G A G A U C U G G A G G A A U A C C G G U G G C G A A G G C G G C C C C C U G G A C G A A G A C U G A C G C U C A G G U G C G A A A G C G U G G G G A G C A A A C A G G A U U A G A U A C C C U G G U A G U C C A C G C C G U A A A C G A U G U C G A C U U G G A G G U U G U G C C C U U G A G G C G U G G C U U C CG G A G C U A A C G C G U U A A G U C G A C C G C C U G G G G A G U A C G G C C G C A A G G U U A A A A C U C A A A U G A A U U G A C G G G G G C C C G C A C A A G C G G U G G A G C A U G U G G U U U A A U U C G A U G C A A C G C G A A G A A C C U U A C C U G G U C U U G A C A U C C A C G G A A G U U U U C A G A G A U G A G A A U G U G C C U U C G G G A A C C G U GA G A C A G G U G C U G C A U G G C U G U C G U C A G C U C G U G U U G U G A A A U G U U G G G U U A A G U C C C G C A A C G A G C G C A A C C C U U A U C C U U U G U U G C C A G C G G U C C G G C C G G G A A C U C A A A G G A G A C U G C C A G U G A U A A A C U G G A G G A A G G U G G G G A U G A C G U C A A G U C A U C A U G G C C C U U A C G A C C A G G G C U A C A C A C G U G C U A C A A U G G C G C A U A C A A A G A G A A G C G A C C U C G C G A G A G C A A G C G G A C C U C A U A A A G U G C G U C G U A G U C C G G A U U G G A G U C U G C A A C U C G A C U C C A U G A A G U C G G A A U C G C U A G U A A U C G U G G A U C A G A A U G C C A C G G U G A A U A C G U U C C C G G G C C U U G U A C A C A C C G C C C G U C A C A C C A U G G G A G U G G G U U G C A A A A G A A G U A G G U A G C U U A A C C U U C G G G A G G G C G C U U A C C A C U U U G U G A U U C A U G A C U G G G G U G A A G U C GU A A C A A G G U A A C C G U A G G G G A A C C U G C G G U U G G A U C A C C U C C U U A ARNr 16S
  • 44. Motifs 2D K-turn 43 Lescoute et al., NAR, 2005
  • 45. Motifs K-turn & interactions 44 Klein et al., EMBO J., 2001
  • 46. 45 Données phylogénétiques conservation VARNA* R2R * post-processing Perreault et al., PLoS One, 2011 Leclerc, Molecules, 2010 2D representation 2D representation (3D) Stockholm; Vienna/DBN
  • 47. Le ribozyme à tête de marteau 46 HHR R2R
  • 48. Diagrammes Arc 47 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Conservation Covariation One−sided Invalid Unpaired Gap RFAM: RF00065 R-Chie covariations, conservation Stockholm
  • 51. ARN à boîtes C/D 50 RNAz, RNAalifold Energy = -23.1 kcal/mol G C A U A U A A G G A G U _ A G G C U C A G G A A G C C G UCCA C U C C U C A C C A U U C A G G U G C G G A A G G C U U C A U C A U C G C C U U A U A U A C U U U A U U C U U A U A A G U U U U A U A A A C U A A A C U A A U A A C U U U U A A A C A A U C A U A _ _ _ _ G U A A A C U U A A D box C’ box D’ box C box Clustal; Vienna/DBN
  • 52. Diagrammes Arc 51 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Conservation Covariation One−sided Invalid Unpaired Gap RFAM: RF00065 R-Chie covariations, conservation Stockholm
  • 53. ARN à boîtes C/D 52 Pab C/D sRNA sR1 ......(((......((((((.(((((.(((........))).))))).))))))....))). interORF_Pyro_hori_397 AAAGAAGGCGAUGAUGAAGCCUUCCGCACCUGAAUGAUGAGGAGUGGACGGCUUCCUGAGCCU 63 interORF_Pyro_abys_654 AUAAAUGGCAAUGAUGAAGCCUUCCGCACCUGAACGGUGAGGAGUGGACGGCUUCCUGAGCCU 63 interORF_Pyro_furi_347 AGGUAAGGCGAUGAUGAUGCCUUCCGCACCUGAUUGGUGAGGAGUGGACGGCUUCCUGAGCCU 63 ruler ........10........20........30........40........50........60... C box D’ box C’ box 5’ 3’ D box RNAz, RNAalifold A A A A A A G G C G A U G AU G A A G C C U U C C G C A C C U G A A U G G U G A G G A G U G G A C G G C U U C C U G A G C C U C box D box D’ box C’ box Energy = -24.6 kcal/mol Clustal; Vienna/DBN
  • 54. ARN à boîtes H/ACA 53 ((((((((((...((((...((((...........))))))))...))))))))))... Pho21_215834-215776_-__ CGGCCCGGUUCCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGACCGGGCCGACA Pfu21_163991-163933_-__ GGGCCCGGUUCCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGACCGGGCCCACA Pab21_230575-230517_-__ GGGCCCGGCUCCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGGCCGGGCCUACA Pab-21 H/ACA sRNA G G G C C C G G U U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G A C C G G G C C C A C A Energy = -35.1 kcal/mol stem 1 stem 2 ACA box internal loop K-loop RNAz, RNAalifold Clustal; Vienna/DBN
  • 55. ARN à boîtes (H/ACA)n 54 Pab-40 3 motifs Pab-105 2 motifs K-turn Pab-21 1 motif SSU 891 K-loop internal loop
  • 56. ARN à boîtes (H/ACA)2 55 ((((((((....(((......))).(((((((......)))))))...((.((......)))).))))))))...(((((((((.((((...((((((.....((((......))))... Pab105_1335797-1335648_-__ CCGCCCGGA-GGCCCGACCGAGGGAGCGUGCCGAGAAAGGCGCGCCAUGAACGAGGCGACGUCGCCGGGCGGACAGGGCCCGGUCUCCGGGGCCGCCUGAGGUUGCCGACAACGGCGGGC 119 Pho105_592081-592230_+__ CCGCCCGGG-GGCCCGACCGAGGGAGCGUGCCGAGAAUGGCGCGCAAUGAACGAGGUGACGUCGUCGGGCGGACAGGGCCCGGUCUCCGGGGCCGCCUGAGGUUGCCGAGAAUGGCGUUC 119 Pfu105_942696-942544_-__ CCGCCCGGGCGGCCCGACCGAGGGAGCGUGCCGGCAAUGGCGCGCGAUGAACGAGGUGACGUCUCCGGGCGGACAGGGCCCGGCCUUCGGGGCCGCCUGAGGGAGCCGAGAAGGGCAGAC 120 ruler ........10........20........30........40........50........60........70........80........90.......100.......110.......120 .....)))))).))))...)))))))))... Pab105_1335797-1335648_-__ AAUGAGGGCGGGUGGAUAAGCCGGGCCUAUA 150 Pho105_592081-592230_+__ AAUGAAGGCGGGCGGAUAAUCCGGGCCUAAA 150 Pfu105_942696-942544_-__ GAUGAAGGCGGGCGGAUAAGCCGGGCCCUCA 151 ruler .......130.......140.......150. Pab-105 H/ACA sRNA C C G C C C G G G _ G G C C C G A C C G A G G G A G C G U G C C G A G A A U G G C G C G C A A U G A A C G A G G U G A C G U C G C C G G G C G G A C A G G G C C C G G U C U C C G GGG C C G C C U G A G G U U G C C G A G A A C G G C G G A C A A U G A A G G C G G G C G G A U A A G C C G G G C C U A A A ACA box AUA box Energy = -75.8 kcal/mol terminal loop terminal loop internal loop K-turn Clustal; Vienna/DBN
  • 57. ARN à boîtes (H/ACA)3 56 ((((((((...((...((((((((...........)))))))).))..))))))))....((((((((....(((((...)))))..((((((((.(((.(((((((....))))))))) Pab40_382389-382599_+__ GCCCCCGCAAGCGAGGGCCUGGUCGA--UUAGUGAGACCAGGUGCGACGCGGGGGCUACAGCCCGGCCUCAGCGAGGUCCCCUCGGUAGGUGCCUUCCGCGUCACGGAGCGCCGUGACCG 118 Pho40_1597422-1597634_+__ GCCCCCGCAAGCGAGGGCUUGGCCGAGCUUAAUGAGGCCAGGUGCGACGCGGGGGCGACAGCCCGGCCUUAGCGAGGUCCCCUCGGGAGGCGCCUUCCGCGUCACGGAGUGCCGUGACCG 120 Pfu40_1732713-1732926_+__ GCCCCCGCAAGCGAGGGCUUGGCUGAUCUUAAUGAGGCCAGGUGCGACGCGGGGGCAACAGCCCGGCCUCAGCGAGGUCCCCUCGGGAGGUGCCUUCCGCGUCACGGAGUGCCGUGACCG 120 ruler ........10........20........30........40........50........60........70........80........90.......100.......110.......120 ))))))..)))))))))))...((((((((((.....((((((((.(((..((......))...)))..))))))))....))))))))))... Pab40_382389-382599_+__ GGGGUAACCCUGGCCGGGCACAGGCCCGUCUGGGUUAGCCCGCCUGAUCAUGC-CGUUGGCUUAGAUGAAGGCGGGUGUUACGGGCGGGCUACA 211 Pho40_1597422-1597634_+__ GGGGUAACCCUGGCCGGGCACAGGCCCGUCUGGGUUAGCCCGCCCAAUUUUGC-CGAGGGCUUAGAUGAGGGCGGGUGUUACGGGCGGGCCACA 213 Pfu40_1732713-1732926_+__ GGGGUAACCCUGGCCGGGCACAGGCCCACCUGGGUUAGCCCGCCUGAGAAUGCAUACAUGCUACGAUGAGGGCGGGUGUUACGGGUGGGCCACA 214 ruler .......130.......140.......150.......160.......170.......180.......190.......200.......210.... Pab-40 H/ACA sRNA G C C C C C G C A A G C G A G G G C U U G G C C G A _ C U U A A U G A G G C C A G G U G C G A C G C G G G G G C A A C A G C C C G G C C U C A G C G A G G U C C C C U C G G G A G G U G C C U U C C G C G U C A C G G A G U G C C G U G A C C G G G G G U A A C C C U G G C C G G G C A C A G G C C C G U C U G G G U U A G C C C G C C U G A U A A U G C _ C G A A G G C U U A G A U G A G G G C G G G U G U U A C G G G C G G G C C A C A ACA box2 internal loop K-loop ACA box1 ACA box3 internal loop K-turn Clustal; Vienna/DBN
  • 58. Comparaison 2D 57 RNAforester arbre de proximités entre structures 2D Vienna/DBN
  • 59. Graphes 58 G C G G A U U U A g C U C A G u u G G G A G A G C g C C A G A c U g A A g A P c U G G A G g U C c U G U G u P C G a U C C A C A G A A U U C G C A C C A 1 10 20 30 40 50 60 70 76 Root GC A C C A CG GC GU AU UA UA U A gC gA G g U C cG CG UA CG A G u u G G G A CG CG AU Gc AP c U g A A g A UA GC UA GC u P C G a U C (((((((..((((........))))((((((.......))))))....(((((.......)))))))))))).... tRNA VARNA Graphiz (RNAView)
  • 60. Empreintes 59 G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 0.0 3.0 G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 chimiques, enzymatiques VARNA Vienna/DBN
  • 61. Données fonctionnelles1 60 A G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 5' 3' Kloop Internal Loop ANA Loop 5' guide sequence 3' guide sequence 3’ guide sequence 5’ guide sequence Kloop ACA box functional annotation H/ACA guide RNA (Archaea) VARNA RFAM: RF00065
  • 62. 61 A G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 5' 3' Kloop Internal Loop ANA Loop 5' guide sequence 3' guide sequence 3’ guide sequence 5’ guide sequence Kloop ACA box target sequence functional annotation H/ACA guide RNA (Archaea) VARNA RFAM: RF00065 Données fonctionnelles2
  • 63. 62 A G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 5' 3' Kloop Internal Loop ANA Loop 5' guide sequence 3' guide sequence L7Ae Nop10 Cbf5 H/ACA guide RNA (Archaea) VARNA RFAM: RF00065 functional annotation Données fonctionnelles3
  • 64. Modifications d’accessibilité 63 G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 VARNA Vienna/DBN
  • 67. 66 G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 accessibility annotation less accessible VARNA RFAM: RF00065 Données d’empreintes3
  • 68. 67 G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 1 10 20 30 40 50 59 accessibility annotation VARNA RFAM: RF00065 Données d’empreintes4
  • 69. Interactions ARN-ARN 68 GGGC C CGGCUC C CGC C CUCUC CGGGGA AUCGUGA A C CGGGGGUUC CGGC CGGGC CU A C A GGGA AGGA AUUGGCGGGGGGAG 1 10 20 30 40 50 59 10 20 22 5' guide seq K-Loop 3' guide seq ANA Box 5' target seq 3' target seq 1 guide RNA target RNA C 5' 3' 0.0 2.0 1.0 bits GGGCCCGGC UUCCCGCCCUCUCCGGGGAAUCGUGAACCGGGGGUUCCGG ACCGGGCCC G U ACA 3' 5' 0.0 2.0 1.0 bits GGGGGCGGUUAAGGA 1 10 20 30 40 50 59 1 10 15 A G G G C C C G G Y U C C C G C C C U C G G G G A U G A A C C G G G G G U U C C G R C C G G G C C A C A guide 3 nt 4 nt K-Loop ANA box 5' A G G A A U U G G C G G G G G target 5' U C C C G C C C G G G U U C C G G A A U U G G C G G G G target guide 5' B R2R* RILogo VARNA * post-processing RFAM: RF00065 Vienna/DBN Stockholm
  • 70. Gènes H/ACA 69 7 H/ACA genes 11 H/ACA motifs Muller et al., NAR, 2008 Pyrococcus & Thermococcus
  • 71. Fonction des H/ACA 70 A C A 5' 3' N Y pré-ARNr 5' 3' A N A N N A N Y pré-ARNr 5' 3' Boîte H Boîte ACA 14-16 pb 14-16 pb EA 5' EA 3' EA 5' EA 3'
  • 72. Gènes H/ACA 71 7 H/ACA genes 11 H/ACA motifs Muller et al., NAR, 2008 Pyrococcus & Thermococcus
  • 73. Repliements H/ACA 72 Muller et al., NAR, 2008 G G G G G G C C C C C C G G G G C C U U C C C C C C G G C C C C C C U U C C U U C C C C G G G G G G G G A A A A U U C C G G U U G G A A A A C C C C G G G G G G G G G G U U U U C C C C G G G G C C C C G G G G G G C C C C U U A A C C A A b) p = 0.618 a) p = 0.382
  • 74. H/ACA et leur(s) cible(s) 73 Muller et al., NAR, 2008 U C C C G C C U U C C C - G Pab21 a) G G G G C G G U U A A G G 3' 5' 16S rRNA 891 3' 5' K-turn 6 bps 14 nts A C A + A C U C C C G C G U U C C C - G Pab21 b) G G G G G C G G U U A A G G 3' 5' 16S rRNA 892 3' 5' U (P.f.,P.h.) K-turn 5 bps 15 nts A C A −
  • 75. H/ACA: Structure-Fonction 74 Pa21-S891* G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A 9 bp 50 3' guide sequence (5 stacked layers) 10 5' guide sequence (6 stacked layers +1nt) 20 40 10 bp K-loop 30 ANA box 5' Pa21-S892 G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G GG U U C C G G C C G G G C C U A C A 8-9 bp 50 3´ guide sequence (5 stacked layers +1nt) 10 5´ guide sequence (6 stacked layers) 40 20 9 bp K-loop 30 ANA box 5´ 10 5 9 9 6 9 + - R2R* Toffano-Nioche et al., NAR, 2015
  • 76. H/ACA « productifs » 75 ANA box C C C G C C C G U U C C G G A A U U G G C G G G guide target 5' Pa21-S891, Ph21-S879, Pf1-S879 Pa21-S891 891 SSU 5' 891,879 SSU ANA 5' E = -28.2 kcal/mol 5' G G C C C G G Y U C C C G C C C C U C C G G G G A U G A A C C G G G G G U U C C G R C C G G G C C A C A A A C U U A A A G G A A U U G G C G G G G G A G C A 1 nt 4 nt K-Loop ANA box 5' G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A A A C U U A A A G G A A U U G G C G G G G G A G C A 50 10 20 40 30 K-Loop 5' 10 5 9 R2R* Toffano-Nioche et al., NAR, 2015
  • 77. H/ACA « non-productifs » 76 Pa21-S892,Ph21-S880, Pf1-S880 Pa21-S892 E = -24.5 kcal/mol 9 6 9 892 SSU 5' ANA 5' 892,880 SSU 5' G G G C C C G G Y U C C C G C C C U C G G G G A U G A A C C G G G G G U U C C G R C C G G G C C A C A A C U U A A A G G A A U U G G C G G G G G A G C A C 3 nt 4 nt K-Loop ANA box 5' U C C C G C C G G U U C C G G A A U G G C G G G G guide target 5' G G G C C C G G C U C C C G C C C U C U C C G G G G A A U C G U G A A C C G G G G G U U C C G G C C G G G C C U A C A A C U U A A A G G A A U U G G C G G G G G A G C A C 50 10 40 20 30 K-Loop ANA box 5' U R2R* Toffano-Nioche et al., NAR, 2015
  • 78. Familles H/ACA 77 Pa_HACA C C C R C Y G A R U G A R G G Y G G G Y A C A 9 bp 0-1 nt 5-6 nt 5-8 nt 0-1 nt 0-1 nt 10 bp 3-21 nt 5' Pa_HACA-GUIDE65 subfam_weight=0.284006 28% Y Y R G R 0-1 nt 5 nt 6 nt variable-length region variable-length loop connector (zero length) modular sub-structure variable-length stem 75% (3 stacke Pa_HACA-GUIDE55 subfam_weight=0.120714 12% G A A A C C G C G U U C G C U C C C 5 nt 5 nt (6-1) (5 stacked layers) Pa_HACA-GUIDE56 subfam_weight=0.215373 22% R R Y C C G Y C 5 nt (6-1) 1nt 5+1 nt Pa_HACA-GUIDE66 subfam_weight=0.163641 16% G U C U C G G UG Y A G C 1 nt 6 nt 6 nt Pa_HACA-GUIDE75 subfam_weight=0.106001 11% G C C C C G C C C C G G U U C C G G C 5 nt 1 nt 6+1 nt 1 nt Pa_HACA-GUIDE85 subfam_weight=0.110265 11% G C G C G A G G G C G U G C G A C G C 5 nt 2 nt 6+2 nt covarying mutations base pair annotations compatible mutations no mutations observed connector (zero length) 90% 97% 75% 50% nucleotide present nucleotide identity 75% N N 97% N 90% R2R R2R* Toffano-Nioche et al., NAR, 2015
  • 79. Interactions intra-moléculaires 78 79 g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g 1a 10a 20a 30a 40a 50a 60a 70a 79a 1b A g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c 1 10 20 30 40 50 60 70 79 HI HII HIII HI HII HIII VARNA intra-molecular base-pairs tertiary or inter-molecular contacts nucleotide in tertiary contact cleavage site
  • 80. Interactions inter-moléculaires 79 H(1)I H(1)II H(1)III H(1)I H(1)II H(1)III B Eint (10ºC) = -9.3 kcal/mol Eint (25ºC) = -8.5 kcal/mol Eint (45ºC) = -5.8 kcal/mol Edimer (10ºC) = -47.1 kcal/mol Edimer (25ºC) = -33.6 kcal/mol Edimer (45ºC) = -15.7 kcal/mol g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c 1a 10a 20a 30a 40a 50a 60a 70a 79a 10b 20b 30b 40b 50b 60b 70b 79b 1b g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c 1a 10a 20a 30a 40a 50a 60a 70a 79a 10b 20b 30b 40b 50b 60b 70b 79b 1b H(2)I H(2)II H(2)III H(2)I H(2)III VARNA IntaRNA Leclerc et al., Sci. Rep., 2016 monomer 1 monomer 2
  • 81. Interactions inter-moléculaires 80 H(1)I H(1)II H(1)III H(1)I H(1)II H(1)III H(2)I H(2)II H(2)III H(2)I H(2)III Edimer (10ºC) = -53.7 kcal/mol Edimer (25ºC) = -38.9 kcal/mol Edimer (45ºC) = -19.2 kcal/mol g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c 1a 10a 20a 30a 40a 50a 60a 70a 79a 10b 20b 30b 40b 50b 60b 70b 79b 1b C VARNA 79b g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c 1a 10a 20a 30a 40a 50a 60a 70a 79a 10b 20b 30b 40b 50b 60b 70b 79b 1b H(2)II Leclerc et al., Sci. Rep., 2016 monomer 1 monomer 2 IntaRNA
  • 82. 81 Eint (10ºC) = -12.0 kcal/mol Eint (25ºC) = -9.6 kcal/mol Eint (45ºC) = -5.9 kcal/mol Edimer (10ºC) = -54.8 kcal/mol Edimer (25ºC) = -40.7 kcal/mol Edimer (45ºC) = -22.0 kcal/mol g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c 1a 10a 20a 30a 40a 50a 60a 70a 79a 10b 20b 30b 40b 50b 60b 70b 79b 1b g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c g g u u c u u c c c a u c u u u c c c u g a a g a g a c g a a g c a a g u c g a a a c u c a g a g u c g g a a a g u c g g a a c a g a c c u g g u u u c g u c 1a 10a 20a 30a 40a 50a 60a 70a 79a 10b 20b 30b 40b 50b 60b 70b 79b 1b monomer 1 monomer 2 HI HII HIII inter-molecular base-pairs intra-molecular base-pairs tertiary contacts nucleotide in tertiary contact cleavage site H(1)I:H(2)I H(1)II:H(2)II H(1)III H(2)III H(1)I:H(2)I Leclerc et al., Sci. Rep., 2016 Interactions inter-moléculaires VARNA monomer 1 monomer 2 IntaRNA
  • 83. Conclusions représentations standardisées et personnalisées (édition, annotation) gain de temps pour la génération de représentations multiples gain de temps pour la mise à jour de structures consensus outils qualitatif (quantitatif) pour évaluer des modèles structure- function 82
  • 84. Outils & Ressources RFAM (VARNA), Comparative RNA Web Site & Project (RNA2DMap, CT, BPSEQ), The RNA Mapping Database - RMDB (RDAT, RNAstructure), ... packages: Vienna Package (RNAfold, RNAalifold, etc), Boulder Alignment Editor (VARNA), SAVor (RNAfold, RNAplot), S2S/Assemble 2D & 3D, Jalview 2D & 3D (VARNA, Jmol), ... outils récents: long RNAs: RNAfdl, pairing probabilities (alternative conformations): RNAbow, RNAllViewer, ... 83
  • 85. Références Ponty Y. & Leclerc F., Drawing and editing the Secondary Structures of RNA(s), Methods in Molecular Biology, 2015. Aigner K. et al., Chapitre 9. Visualizing RNA sequence and structure, 2011. 84
  • 87. (((( ((( ))) )))-) GCUG UUAGG GGA GUUUUA UCC AGCGU CAG-C GCCG UUAGG GGA GUUUCA UCC AGCGA UGG-C GUUG UAGG GGA GUCUCA UCC AGCA CAA-C GCUG GAGG GAA GC AA UUC AGCA CAG-C ACUU CAGU GGA GC AA UCC AGCA GAGAU ACUU CAGU GGA GC AA UCC AGCA GAGAU GAUG GAGG UUG G AAA CAA UGCA CAU-C GGGC CAGG GGU G AAA ACC AGCA GCC-A GGCC UAGG UCG G AAA CGG AGCA GGU-C GGCC CAGG UCG G AAA CGG AGCA GGU-C GGCC CAGG UCG G AAA CGG AGCA GGU-C GGCC CAGG UCG G AAA CGG AGCA GGU-C GGCC CAGG UCG G AAA CGG AGCA GGU-C 2D 1D 3D De la séquence au 2D 86 Westhof, 2015
  • 88. De la structure 2D à 3D la structure 2D: une contrainte géométrique “forte” appariements non- canoniques et motifs pseudonœuds et interactions tertiaires … 87 (((( ((( ))) )))-) GCUG UUAGG GGA GUUUUA UCC AGCGU CAG-C GCCG UUAGG GGA GUUUCA UCC AGCGA UGG-C GUUG UAGG GGA GUCUCA UCC AGCA CAA-C GCUG GAGG GAA GC AA UUC AGCA CAG-C ACUU CAGU GGA GC AA UCC AGCA GAGAU ACUU CAGU GGA GC AA UCC AGCA GAGAU GAUG GAGG UUG G AAA CAA UGCA CAU-C GGGC CAGG GGU G AAA ACC AGCA GCC-A GGCC UAGG UCG G AAA CGG AGCA GGU-C GGCC CAGG UCG G AAA CGG AGCA GGU-C GGCC CAGG UCG G AAA CGG AGCA GGU-C GGCC CAGG UCG G AAA CGG AGCA GGU-C GGCC CAGG UCG G AAA CGG AGCA GGU-C 2D 1D 3D
  • 89. RNA Puzzles 88 tester les capacités de prédiction de structures 3D d’ARN compétition entre modélisateurs ARN compétition à “l’aveugle”: structures 3D d’ARN non publiques
  • 90. RNA Puzzle: T-Box/tRNA 89 • The T-box riboswitch in complex with tRNA • PDB: 4LCK • Resolution: 3.20Å • Avg B = 128 Å2 • tRNA: 75nt • T-box : 96nt • Clash score: 2.28 • Some small fragments solved by NMR before. tRNA structure known.
  • 92. RNA Puzzle: T-Box/tRNA 91 H1 H2 L1 H3 L2 H4 H4 L3 D-domain anticodon stem H3 H2 H1 T-domain H1 H2 L1 H3 L2 H4 H4 L3 D-domain anticodon stem H3 H2 H1 T-domain
  • 93. 92 Ponty Leclerc, Methods in Molecular Biology, 2015 Table 1: Main tools offering a visualization of the RNA secondary structure. Name P l a t f o r m ( s ) a [ B W M L ] E a s e o f u s e L a y o u t s I n t e r a c t i v i t y P s e u d o k n o t s E x t . s e c . s t r . b O u t p u t c Reference jViz.RNA •••• ++ Circular Linear Graph + + • EPS PNG (Wiese et al., 2005) (Shabash et al., 2012) PseudoViewer •• ++ Graph ++ EPS SVG PNG GIF (Byun and Han, 2009) RNA2DMap •••• + Graph + + • PDFe (Xu et al., 2011) RNAMovies •••• ++ Graph + SVG PNG JPEG GIF (Kaiser et al., 2007) R-chie •••• ++ Linear + PDF PNG (Lai et al., 2012) RNAPLOT •d ••• + Graph PS SVG GML (Gruber et al., 2008) RNAView ••• + Graph + • PS (Yang et al., 2003) RNAViz ••• + Graph ++ + PDFe (Rijk et al., 2003) R2R ••• - Graph + PDF SVG (Weinberg and Breaker, 2011) S2S/Assemble ••• + Linear Graph ++ + • SVG (Jossinet and Westhof, 2005) (Jossinet et al., 2010) VARNA •••• ++ Circular Linear Graph ++ + • EPS SVG PNG JPEG GIF (Darty et al., 2009) xRNA ••• + Graph ++ + EPS – a Indicates presence (•) or absence ( ) for Browser-based, Windows, Mac and Linux executions, in this order. b Indicates support (•) or lack of support ( ) for an extended secondary structure. c Bold output formats indicate vector graphics, allowing for convenient post-processing. d Only available from the Vienna RNA webserver, available at http://rna.tbi.univie.ac.at/. e Export accessible through a print option, using a custom printer driver such as Adobe Distiller.
  • 94. Serveurs WEB généralistes: ViennaRNA, BiBiServ, Freiburg RNA Tools 93
  • 95. ViennaRNA Web Services 94 The ViennaRNA Web Services This server provides programs, web services, and databases, related to our work on RNA secondary structures. For general information and other offerings from our group see the main TBI web server. Web Servers Thermodynamic Structure Prediction RNAfold server... ...predicts minimum free energy structures and base pair probabilities from single RNA or DNA sequences. RNAalifold server... ...predicts consensus secondary structures from an alignment of several related RNA or DNA sequences. You need to upload an alignment. RNAeval server... ...provides a detailed thermodynamic description of a sequence/structure pair. RNAcofold server... ...allows you to predict the secondary structure of a dimer. RNAup server... ...allows you to predict the accessibility of a target region. ncRNA Prediction Structure conservation analysis server... ...will assist you in detecting evolutionarily conserved RNA secondary structures in multiple sequence alignments. RNAz server... ...will assist you in detecting thermodynamically stable and evolutionarily conserved RNA secondary structures in multiple sequence alignments. Bcheck... ...predicts rnpB genes. RNAstrand server... ...allows you to predict the reading direction of evolutionarily conserved RNA secondary structures. Folding Kinetics barriers server... ...allows you to get insights into RNA folding kinetics. Sequence Design RNAinverse server... ...allows you to design RNA sequences for any desired target secondary structure. RNAxs server... ...assists you in siRNA design. Genome Wide Screening RNApredator... ...predicts targets of small bacterial RNAs TSSAR... ...predicts bacterial Transcription Start Sites from dRNA- seq data. http://rna.tbi.univie.ac.at RNAalifold
  • 96. Freiburg RNA Tools 95 Freiburg RNA Tools Main Menu Home Publications Frequent Questions Help Download Results Direct Access Freiburg RNA Tools CopraRNA sRNA Targeting CRISPRmap CRISPR Conservation LocARNA Alignment Folding IntaRNA RNA-RNA interaction CARNA Ensemble Alignment MARNA Structure Alignment ExpaRNA Exact Matching INFORNA Sequence Design MoDPepInt Server Domain Interaction CPSP-Tools Lattice Proteins for the HP-model Welcome This web server provides online access to a series of tools developed by the Freiburg Bioinformatics Group. To start using it, please select from the listings below, or use the menu on the left. If you prefer doing a local installation on your machine, please visit our 'Download' section. If you use our tools for research or education, please cite the corresponding articles from the 'Publications' section. Version 3.4.0 Freiburg RNA Tools Freiburg RNA tools provides online access to a series of RNA research tools developed by the Freiburg Bioinformatics Group for sequence-structure alignments (LocaRNA, CARNA, MARNA), clustering (ExpaRNA), interaction prediction (IntaRNA, CopraRNA), sequence design (INFORNA), CRISPR repeat analyses (CRISPRmap), and many more tasks. CopraRNA CopraRNA is a tool for sRNA target prediction. It computes whole genome predictions by combination of whole genome IntaRNA predictions using homologous sRNA sequences from distinct organisms. CRISPRmap CRISPRmap provides a quick and detailed insight into repeat conservation and diversity of both bacterial and archaeal systems. It comprises the largest dataset of CRISPRs to date and enables comprehensive independent clustering analyses to determine conserved sequence families, potential structure motifs for endoribonucleases, and evolutionary relationships. LocARNA LocARNA computes multiple alignments of RNAs based on their sequence and structure similarity. In contrast to, e.g. MARNA, it considers the whole ensemble of secondary structures for each RNA. Thus, LocARNA aligns RNAs with unknown structure and predicts a consensus secondary structure for a set of unaligned RNAs. Specification of additional constraints or even enforcement of fixed input structures is possible. LocARNA is best suited to compare several (up to about 20) structural RNAs, in particular, of low sequence similarity. IntaRNA IntaRNA enables the prediction of RNA-RNA interactions. It has been designed to predict mRNA target sites for given non-coding RNAs (ncRNAs) like eukaryotic microRNAs (miRNAs) or bacterial small RNAs (sRNAs), but it can also be used to predict other types of RNA-RNA interactions. CARNA Carna is a tool for multiple alignment of RNA molecules based on their full ensembles of structures. Carna computes the alignment that fits best to all likely structures simultaneously. Hence, Carna is in particular useful to align RNAs with more than one stable structure, as for example riboswitches, and is able to align arbitrary pseudoknots. http://rna.informatik.uni-freiburg.de:8080 IntaRNA
  • 97. BiBiServ: Biefeld Univ. 96 RNA Studio GUUGle GUUGle A utility for fast exact matching under RNA base pairing rules InSilicoDicer Prediction of mature miRNA. Intrinsic and Extrinsic Prediction of mature miRNA. KnotInFrame Prediction of -1 ribosomal frameshifts KnotInFrame is a tool for predicting -1 ribosomal frameshifts with simple recursive pseudoknots as stimulating structural motif in mRNAs by means of the tool pknotsRG for the folding of the pseudoknots. Locomotif Localization of RNA motifs with generated thermodynamic Matchers A graphical programming system for RNA motif search. paRNAss Prediction of Alternate RNA Secondary Structures paRNAss is a software tool aiming to predict conformational switching in RNA. pKiss pKiss is a tool for secondary structure prediction including kissing hairpin motifs. pknotsRG RNA folding and thermodynamic matching pknotsRG is a tool for folding RNA secondary structures, including the class of simple recursive pseudoknots. http://bibiserv.techfak.uni-bielefeld.de/bibi/Tools_RNA_Studio.html
  • 98. ncRNA 97 Now Available! Results of various analysis on RNA secondary structures in one page! Rtools Accurate prediction of RNA secondary structure Prediction of RNA secondary structure by using homologous sequences Active Work Flow is available for RNA sequence/structure analysis. You can download the Knime platform and the Active Work Flow for RNA structure predictions. Bioinformatics Tools and Databases for Functional RNA Analysis ncRNA.org is the portal site for bioinformatics tools and databases spcialized for functional RNAs. The developments in this cite were partially supported by The Functional RNA Project funded by New Energy and Industrial Technology Development Organization (NEDO), Japan. http://www.ncrna.org
  • 99. CARNAC 98 DNA YASS Magnolia mreps ProCARs HTS SortMeRNA CRAC Vidjil SToRM RNA Carnac RNAfamily Gardenia Regliss CG-seq RNAspace Proteins Path Protea ReBLOSUM TFM TFM-Explorer TFM-Scan TFM-Pvalue TFM-CUDA NRP Norine RNA tools The RNA tools offer a series of bioinformatics program specifically designed for the analysis of structural RNA: secondary structure inference, alignment, annotation. unaligned Carnac Predicts the consensus secondary structure for a set of homologous, unaligned RNA sequences. Very fast and accurate. RNAfamily Linear visualisation of RNA secondary structures Gardenia Comparison and multiple alignment of RNA sequences. The algorithm takes into account both the primary structure and the secondary structure to build a good alignment. Regliss This tools builds all locally optimal secondary structures of an RNA sequence, which provide a useful insight into the folding landscape of the molecule. CG-seq It is a software pipeline to identify noncoding RNA genes in genomic sequences by comparative analysis and multispecies comparison. RNAspace Annotation platform for noncoding RNAs http://bioinfo.lifl.fr/RNA/
  • 100. Seveurs WEB: structures 2D conservées 99
  • 101. RNAalifold (Vienna) 100 [Home|New job|Help] Welcome to the RNAalifold web server. It will predict a consensus secondary structure of a set of aligned sequences. Current limits are 3000 nt and 300 sequences for an alignment. Simply paste or upload your alignment(s) below and click Proceed. Accepted alignment formats are CLUSTAL W and FASTA (will be detected automatically). To get more information on the meaning of the options click the symbols. You can test the server using this sample alignment. Paste your alignment(s) here: [clear] Show constraint folding Or upload a file: no file selected Choose File RNAalifold version new RNAalifold with RIBOSUM scoring (Bernhart SH et al. 2008) new RNAalifold (Bernhart SH et al. 2008) old RNAalifold (Hofacker IL et al. 2002) Fold algorithms and basic options minimum free energy (MFE) and partition function minimum free energy (MFE) only output most informative sequence instead of simple consensus no GU pairs at the end of helices avoid isolated base pairs Show advanced options Output options interactive RNA secondary structure plot RNA secondary structure plots with reliability annotation (Partition function folding only) Mountain plot Notification via e-mail upon completion of the job (optional): your e-mail http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi RNAalifold
  • 102. RNAfold 101 [Home|New job|Help] The RNAfold web server will predict secondary structures of single stranded RNA or DNA sequences. Current limits are 7,500 nt for partition function calculations and 10,000 nt for minimum free energy only predicitions. Simply paste or upload your sequence below and click Proceed. To get more information on the meaning of the options click the symbols. You can test the server using this sample sequence. Paste or type your sequence here: [clear] Show constraint folding Or upload a file in FASTA format: no file selected Choose File Fold algorithms and basic options minimum free energy (MFE) and partition function minimum free energy (MFE) only no GU pairs at the end of helices avoid isolated base pairs Show advanced options Output options interactive RNA secondary structure plot RNA secondary structure plots with reliability annotation (Partition function folding only) Mountain plot http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi RNAfold
  • 103. RNAz 102 Standard Analysis Genomic Screen Help Institute for Theoretical Chemistry | University of Vienna | rna@tbi.univie.ac.at Welcome to the RNAz web server. It will help you to detect thermodynamically stable and evolutionarily conserved RNA secondary structures in multiple sequence alignments. Simply paste or upload your alignment(s) below and click Proceed. The system will suggest reasonable default values for all options. To get more information on the meaning of the options click the symbols or read the help pages. You can test the server using this sample alignment. If you like to analyze alignments covering whole genomic regions use the Genomic screen modus. Paste your alignment(s) here: [clear] Or upload a file: no file selected Choose File Format: Automatic undefined http://rna.tbi.univie.ac.at/cgi-bin/RNAz/RNAz.cgi RNAz
  • 105. Rfam 104 Hide this QUICK LINKS SEQUENCE SEARCH VIEW AN RFAM FAMILY VIEW AN RFAM CLAN KEYWORD SEARCH TAXONOMY SEARCH JUMP TO enter any accession or ID YOU CAN FIND DATA IN RFAM IN VARIOUS WAYS... Analyze your RNA sequence for Rfam matches View Rfam family annotation and alignments View Rfam clan details Query Rfam by keywords Fetch families or sequences by NCBI taxonomy Enter any type of accession or ID to jump to the page for a Rfam family, sequence or genome Or view the help pages for more information Rfam 12.0 (July 2014, 2450 families) The Rfam database is a collection of RNA families, each represented by multiple sequence alignments, consensus secondary structures and covariance models (CMs). More... Recent Rfam blog posts Rfam 12.0 is out (posted 24 September 2014) We are pleased to announce the release of Rfam 12.0! This release contains some major changes when compared with previous releases of Rfam, so please take a minute to read our release notes. Rfam 12.0 is the first version of Rfam which is based on Infernal 1.1, and as such contains many significant changes. In […] H O M E | S E A R C H | B R O W S E | F T P | B L O G | H E L P keyword search Go Go Example http://rfam.xfam.org
  • 106. 105 0 structures 0 species 12 sequences Family: snoR9 (RF00065) Description: Small nucleolar RNA snoR9 enter ID/acc Jump to... Summary Sequences Alignment Secondary structure Species Trees Structures Motif matches Database references Curation Go Small nucleolar RNA snoR9 Predicted secondary structure and sequence conservation of snoR9 Identifiers Symbol snoR9 Rfam RF00065 Other data RNA type Gene; snRNA; snoRNA; CD-box Domain(s) Archaea GO 0006396 0005730 SO 0000593 Summary Wikipedia annotation The Rfam group coordinates the annotation of Rfam families in Wikipedia . This family is described by a Wikipedia entry entitled Small nucleolar RNA snoR9. You can see the Wikipedia page for this family here . More... snoR9 is a non-coding RNA (ncRNA) which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'. R9 is a member of the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2'-O- methylation of substrate RNAs .[1] This snoRNA was identified in a computational search for GC-rich regions in the AT-rich genomes of hyperthermophiles.[2] This snoRNA is not related to the plant snoRNA snoR9. References[edit] 1. ^ Galardi, S.; Fatica, A.; Bachi, A.; Scaloni, A.; Presutti, C.; Bozzoni, I. (October 2002). Purified Box C/D snoRNPs Are Able to Reproduce Site-Specific 2'- O-Methylation of Target RNA in Vitro . Molecular and Cellular Biology 22 (19): 6663–6668. doi:10.1128/MCB.22.19.6663-6668.2002 . PMC 134041 . PMID 12215523 . edit 2. ^ Klein RJ, Misulovin Z, Eddy SR (2002). Noncoding RNA genes identified in AT-rich hyperthermophiles . Proc. Natl. Acad. Sci. U.S.A. 99 (11): 7542–7. doi:10.1073/pnas.112063799 . PMC 124278 . PMID 12032319 . External links[edit] Page for Small nucleolar RNA snoR9 at Rfam This molecular or cell biology article is a stub. You can help Wikipedia by expanding it . This page is based on a wikipedia article . The text is available under the Creative Commons Attribution/Share-Alike License . Edit Wikipedia article Rfam entry RF00065 http://rfam.xfam.org
  • 107. Pseudobase 106 Intro About PseudoBase Retrieve by Class Retrieve by Property Submit Pseudoknots Welcome to PseudoBase PseudoBase is a collection of RNA pseudoknots that we make available for retrieval to the scientific community. It is described in detail in Batenburg et al. (2000). It started as an initiative of the Institute of Theoretical Biology and the Leiden Institute of Chemistry of the University of Leiden. For the future we intend to maintain it and to extend it. This page is the main introduction from where you can depart to the retrieval section, to the submit section or to the information section. Contact: EkevanBatenburg@live.com Prototyping: Jacky Ng Jan Oliehoek. © final design and maintenance: F.H.D.(Eke) van Batenburg, 1998-12-18;...; 11/30/2014 19:30:25. Retrieve, Submit or more Info? Please choose whether you want to retrieve a pseudoknot or submit a pseudoknot. If you need more information, you can choose the About PseudoBase option. About PseudoBase Choose this option if you want to contact us, or if you need more information about us and about the PseudoBase project. Retrieve pseudoknot by class or by summary Choose either of these options to retrieve a particular pseudoknot. The by class page presents all pseudoknots organised by their class. The by summary page presents all pseudoknots in a table that you can sort to your taste. Sorting criteria are among others: class, name, organism and length of pseudoknot stems and loops. Submit a new pseudoknot to PseudoBase Choose this option for the section where you can submit a pseudoknot. http://www.ekevanbatenburg.nl/PKBASE/
  • 108. 107 RNAcentral RNAcentral is a new resource that provides unified access to the ncRNA sequence data supplied by the Expert Databases. Learn more (/about-us) (/expert- database/ena) ENA provides a comprehensive record of the world's nucleotide sequencing information. 6,989,739 sequences (example (/rna/URS00002D0E0C )) Explore ENA entries (/expert-database/ena) (/expert- database/rfam) Rfam is a database containing information about ncRNA families and other structured RNA elements. 2,493,782 sequences (example (/rna/URS00000478B7 )) Explore Rfam entries (/expert-da (/expert- database/refseq) RefSeq is a comprehensive, integrated, non- redundant, well- annotated set of reference sequences. 30,900 sequences (example (/rna/URS000075A3E5 )) Explore RefSeq entries (/expert-database/refseq) (/expert- database/vega) Vega is a repository for high-quality gene models produced by the manual annotation of vertebrate genomes. Human and mouse data from Vega are merged into GENCODE. 28,640 sequences (example (/rna/URS00000B15DA )) Explore Vega entries (/expert-database/vega) (/expert- database/gtrnadb) gtRNAdb contains tRNA gene predictions on complete or nearly complete genomes. 10,625 sequences (example (/rna/URS000047C79B )) Explore gtRNAdb entries (/expert-database/gtrnadb) (/expert- database/mirbase) miRBase is a database of published miRNA sequences and annotations that provides a centralised system for assigning names to miRNA genes. 8,795 sequences (example (/rna/URS000075A685 )) Explore miRBase entries (/expert (/expert- database/rdp) RDP provides quality- controlled, aligned and annotated rRNA sequences and a suite of analysis tools. 4,779 sequences (example (/rna/URS000064300F )) Explore RDP entries (/expert-database/rdp) (/expert- database/tmrna- website) tmRNA Website contains predicted tmRNA sequences from RefSeq prokaryotic genomes, plasmids and phages. 2,857 sequences (example (/rna/URS000060F5B3 )) Explore tmRNA Website entries (/expert-database/tmrna-website) (/expert- database/srpdb) SRPDB provides aligned, annotated and phylogenetically ordered sequences related to structure and function of SRP. 503 sequences (example (/rna/URS00000478B7 )) Explore SRPDB entries (/expert-database/srpdb) (/expert- database/lncrnadb) lncRNAdb is a database providing comprehensive annotations of eukaryotic long non- coding RNAs (lncRNAs). 62 sequences (example (/rna/URS00000478B7 )) Explore lncRNAdb entries (/exper http://rnacentral.org
  • 109. Comparative RNA Web Site 108 COMPARATIVE RNA WEB SITE AND PROJECT THE GUTELL LAB Welcome to the Comparative RNA Web (CRW) Site. Recent CRW Site Publications (Complete List ») 2014: (Pub #129) Multiple entries in: Concise Encyclopaedia of Bioinformatics and Computational Biology, 2nd Edition, Hancock J.M. and Zvelebil M.J. (eds.). Wiley. Hoboken, New Jersey. 2014: (Pub #128) Ten Lessons with Carl Woese about RNA and Comparative Analysis. RNA Biology, in press. [ PM | pmc | DOI ] 2014: (Pub #127) Introduction to Special Carl Woese Issue in RNA Biology. RNA Biology, 11(3):170-171. [ pm | pmc | DOI ] 2014: (Pub #126) Helix Capping in RNA Structure. PLOS One, 9(4):e93664. [ PM | PMC | DOI ] 2013: (Pub #125) Two Accurate Sequence, Structure, and Phylogenetic Template-Based RNA Alignment Systems. BMC Systems Biology, 7(S4):S13. [ pm | pmc | DOI ] 2013: (Pub #124) You tell Carl that some of my best friends are Eukaryotes: Carl R. Woese (1928-2012). RNA 19(4):vii-xi. [ pm | pmc | doi ] 2013: (Pub #123) Specificity between Lactobacilli and Hymenoptera Hosts is the Exception Rather than the Rule. Applied and Environmental Microbiology, 79:1803-1812. [ PM | pmc | DOI ] 2013: (Pub #122) Comparative Analysis of the Higher-Order Structure of RNA. In: Biophysics of RNA Folding (Biophysics for the Life Sciences Series). pp. 11-22. Springer, New York, NY. [ pm | pmc | DOI ] 2012: (Pub #121) An Accurate Scalable Template-based Alignment Algorithm. Proceedings of 2012 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2012), Philadelphia, PA. October 4-7, 2012. pp. 237-243. [ PM | PMC | DOI ] 2012: (Pub #120) The Fragmented Mitochondrial Ribosomal RNAs of Plasmodium falciparum. PLoS One, 7(6):e38320. [ PM | PMC | DOI ] 2012: (Pub #119) Structural Constraints Identified with Covariation Analysis in Ribosomal RNA. PLos One, 7(6):e39383. [ PM | PMC | DOI ] 2012: (Pub #118) A Comparison of the Crystal Structures of the Eukaryotic and Bacterial SSU Ribosomal RNAs Reveals Common Structural Features in the Hypervariable Regions. PLos One, 7(5):e38203. [ PM | PMC | DOI ] 2011: (Pub #117) rCAD: A Novel Database Schema for the Comparative Analysis of RNA. 7th IEEE International Conference on e-Science, Stockholm, Sweden. December 5-8, 2011. pp. 15-22. [ PM | PMC | DOI ] http://www.rna.icmb.utexas.edu
  • 111. RNAspace 110 W e l c o m e t o R N A s p a c e Av a i l a b i l i t y RNAspace is a platform which aims at providing an integrated environment for non-coding RNA annotation. The increasing number of ncRNA discovered since 2000 and the lack of user friendly tools for finding and annotating them, have made necessary to propose to biologists an in silico environment allowing structural and functional annotations of these molecules with regard to available protein genes annotation environments. RNAspace makes available a variety of ncRNA gene finders and ncRNA databases as well as user-friendly tools to explore computed results including comparison, visualization and edition of putative RNAs. RNAspace also allows to export putative RNAs in various formats. Partners FAQ Contact RNAspace is an open source project. It is developed in Python. It is copyrighted with the GNU General Public License, and is free (in the GNU sense) for all to use, and is in constant development. RNAspace is hosted at Sourceforge. It is also available as a web server at rnaspace.org. N e w s June 28, 2013 The site is now running on a new and more powerful computer environment provided by the Genotoul Bioinformatics platform with a reduced list of Infernal models. RNAspace software v1.2.1 (July 28, 2011) is running this site. H o m e 1 . L o a d d a t a 2 . P r e d i c t 3 . E x p l o r e Comments and remarks: contact@rnaspace.org. http://www.rnaspace.org
  • 113. VARNA 112 Home Demo User Manual Tutorials Downloads Java Security Fix Links Announcement VARNA 3.91 released 08/09/2014 Bulging loops, angular hysteresis... Support LIX, Palaiseau LRI, Orsay Polytechnique, Palaiseau IGM, Orsay Recent changes in Java security policy might prevent you from running VARNA. Check out this page for details and ways to solve the problem. What VARNA is Description VARNA is Java lightweight Applet dedicated to drawing the secondary structure of RNA. It is also a Swing component that can be very easily included in an existing Java code working with RNA secondary structure to provide a fast and interactive visualization. Being free of fancy external library dependency and/or network access, the VARNA Applet can be used as a base for a standalone applet. It looks reasonably good and scales up or down nicely to adapt to the space available on a web page, thanks to the anti-aliasing drawing primitives of Swing. Motivation The initial version was coded after several unfruitful attempts at finding a RNA secondary structure drawing software to be used inside of a webserver. Indeed, it seemed at the time that most of the webservers dedicated to the secondary structure of RNA offered rather clumsy renderings (Mostly static, cgi-bin generated, PS or PNG files). In 2008, I (Yann Ponty) was unable to find a tool that would be at the same time available, easy to install and still running (SStructView was no longer tolerated by latest Java plugins security policies; RNAMLView's goal was rather to display a projection of the 3D structure, and RNAMovies was more tailored towards animations...). Therefore, I coded a basic software from scratch, initially using a radial layout strategy adopted by the software RNAViz, later to be extended to other classic algorithms such that NAView, a classic Feynman-diagram representation and a linear one, hoping it would be useful to some... VARNA development team was subsequently joined by Kevin Darty and Alain Denise (LRI/IGM-Orsay-France) in 2009, leading to a complete redesign of the software. As of November 2012, VARNA is currently used by RNA scientists and websites such as the NestedAlign web server, the IRESite database (Example), and the TFold webserver. Biogeeks also features (featured?) a very nice tutorial showing how to use VARNA as a front end to RNAFold through a minimal Ruby script. Credits/License/Disclaimer If you find VARNA useful to your research, please contribute to its continued development by citing its supporting manuscript: VARNA: Interactive drawing and editing of the RNA secondary structure Kévin Darty, Alain Denise and Yann Ponty Bioinformatics, pp. 1974-1975, Vol. 25, no. 15, 2009 VARNA: Visualization Applet for RNA A Java lightweight component and applet for drawing the RNA secondary structure http://varna.lri.fr
  • 114. R-Chie 113 R-chie [ɑrči] A web server and R package for plotting arc diagrams of RNA secondary structures Home (index.cgi) Create a Plot (plot.cgi) FAQ (faq.cgi) Citation (cite.cgi) Download (download.cgi) Rfam Gallery (rfam.cgi) R-chie allows you to make arc diagrams of RNA secondary structures, allowing for easy comparison and overlap of two structures, rank and display basepairs in colour and to also visualize corresponding multiple sequence alignments and co-variation information. R4RNA is the R package powering R-chie, available for download (download.cgi) and local use for more customized figures and scripting. Available types of plots (click to load example input to web form) Single Structure (plot.cgi?eg=single) Double Structures (plot.cgi?eg=double) Overlapping Structures (plot.cgi?eg=overlap) Single Covariance (plot.cgi?eg=singlecov) Double Covariance (plot.cgi?eg=doublecov) Overlapping Covariance (plot.cgi?eg=overlapcov) (plot.cgi?eg=single) Visualize complicated basepairing as arcs on a linear sequence, colouring basepairs by value. e.g. TRANSAT (cite.cgi) basepairs predictions for the Cripavirus internal ribosomal entry site (IRES), RF00458, coloured by p-value. http://www.e-rna.org/r-chie/plot.cgi
  • 115. RILogo 114 RILogo - web server Submit Help Download RILogo creates RNA-RNA interaction logos for two RNAs. The input are either two single sequences or two multiple sequence alignments with annoation of intra- or intermolecular base pairing between the two RNAs. RILogo displays sequence conservation by a sequence logo for each RNA and structure conservation by the mutual information of the secondary structure base pairings. RILogo supports four different methods for calculating the mutual information. See the Help page for input formats and examples. RILogo is free of charge and also available for download as an open source standalone program. Submit Please fill out the submission form and click the Submit button. Input fields marked with a * are required. (Load Example Data) Multiple Sequence Alignment* Enter your multiple sequence alignment with structure annotation here. Either use the text area or upload a file. Supported formats are Stockholm, Clustal or Fasta. In Clustal and Fasta format, the secondary structure annotation must have the sequence name structure. The alignment can also contain both interacting RNAs. In that case, both sequences belonging to one species must be separated by the '' character. [?] Upload alignment file: no file selected Choose File 2nd Multiple Sequence Alignment If the first alignment contains only one RNA, then insert the second alignment here. Either use the text area or upload a file. [?] Upload alignment file: no file selected Choose File Mutual Information measure: TreeMI W+P RILogo implements four different measures for the mutual information of base pairs. Please refer to the paper for the exact definitions. [?] Submit http://rth.dk/resources/rilogo/submit
  • 116. RNAfdl 115 Downloads (/projects/sfnet_rnafdl/releases/) SourceForge.net page (http://sourceforge.net/projects/rnafdl) RSS (http://sourceforge.jp/projects/sfnet_rnafdl/releases/rss/) Review this project RNAfdl Project Description Download Latest Files RNAfdl-1.08.tar.gz (/projects/sfnet_rnafdl/downloads/RNAfdl-1.08.tar.gz/) (Date: 2014-08-19, Size: 871.0 KB) RNAfdl-1.07.tar.gz (/projects/sfnet_rnafdl/downloads/RNAfdl-1.07.tar.gz/) (Date: 2014-08-07, Size: 895.8 KB) RNAfdl-1.06.tar.gz (/projects/sfnet_rnafdl/downloads/RNAfdl-1.06.tar.gz/) (Date: 2014-08-02, Size: 900.7 KB) RNAfdl-1.05.tar.gz (/projects/sfnet_rnafdl/downloads/RNAfdl-1.05.tar.gz/) (Date: 2014-01-01, Size: 763.7 KB) RNAfdl-1.04.tar.gz (/projects/sfnet_rnafdl/downloads/RNAfdl-1.04.tar.gz/) (Date: 2013-08-20, Size: 760.7 KB) Pr Softwar Description # Image list (/projects/sfnet_rnafdl/images/) (This Description is auto-translated) Try to translate to Japanese (/projects/sfnet_rnafdl/translate/) Show Original Description Write Howto Install (/projects/sfnet_rnafdl/howto/install) Write Howto Use (/projects/sfnet_rnafdl/howto/usage) RNAfdl is a h ighly flexible tool for drawi ng RNA secondary structures. Secondary structures can be visualized as classical secondary structure plot, circle plot, li near plot or mountain plot. RNAfdl allows manual editing an d several drawing styles, as well as a fully automated conjugate gradients minimization approach to draw more complex structures without user interaction. In addition, RNAfdl allows you to incorporate non-canonical base pairs into drawings. Download File List (/projects/sfnet_rnafdl/rel eases/) $ http://en.sourceforge.jp/projects/sfnet_rnafdl/
  • 117. Ralee (emacs) 116 What does it look like? Using RALEE mode in GNU Emacs to edit an alignment of some U1 spliceosomal RNA sequences. The sec- ondary structure base pairing pattern is annotated as nested pairs of and symbols. Bases of the same colour are part of the same helix. The split-screen view allows editing of base paired regions of the align- ment even if they are far apart in sequence. For instance, the yellow bases in the top panel pair with the yel- low bases in the bottom panel. http://sgjlab.org/ralee/
  • 118. RnaViz 117 Welcome to the homepage of RnaViz Documentation Guided tour Binary distributions Source distribution Latest News 2013 Dec.: an easier binary distribution is available (this includes all dependencies) What is RnaViz RnaViz is a user-friendly, portable, GUI program for producing publication-quality secondary structure drawings of RNA molecules. Drawings can be created starting from DCSE alignment files if they incorporate structure information or from mfold ct files. The layout of a structure can be changed easily. Display of special structural elements such as pseudo-knots or unformatted areas is possible. Sequences can be automatically numbered, and several other types of labels can be used to annotate particular bases or areas. Although the program does not try to produce an initially non-overlapping drawing, the layout of a properly positioned structure drawing can be applied to newly created drawing using skeleton files. In this way a range of similar structures can be drawn with a minimum of effort. Skeletons for several types of RNA molecule are included with the program. Some of the features recognises ct, rnaml and DCSE alignment formats multiple structures on page simple but powerfull WYSIWYG editing using different selection modes skeletons to easily draw many structure using the same layout allows display of pseudoknots free choice of fonts, colors, linewidths for any object graphica objects for annotation (rectangle, oval, lines, text) linking of graphics, text to certain bases tag based changing of properties automatic sequence numbering zoom independend scaling of structure drawings portable http://rnaviz.sourceforge.net
  • 120. RNA Tools 119 RNA TOOLS: RNAbows, BINDIGO, and PSR RNAbows present intuitive visualization of RNA base pairing probabilities. BINDIGO is a new, faster algorithm to calculating optimal binding of oligometric RNA to an RNA target. PSR is an algorithm for efficiently discriminating donor splice sites from decoy sequences. Aalberts Homepage E-mail: aalberts@williams.edu http://rna.williams.edu
  • 121. RNAbows 120 We offer three types of RNAbows for visualizing partition function computations. Base pairs are denoted by arcs whose thickness and shade is proportional to their probability. After splitting the partition function, the two dominant clusters of folds are compared. Highlights differences between the folds of two sequences of the same length. http://rna.williams.edu/rnabows/
  • 122. RNAmutants 121 RNAmutants Home Exploring the effects of mutations on the secondary structure of RNAs Keywords: thermostability, beneficial and deleterious mutations, thermodynamic pressure, RNA design, evolution. More details? Visit the FAQs. News Download Webserver FAQs Tutorial References Contact http://rnamutants.csail.mit.edu
  • 123. Autres outils: 2D 3D 122
  • 124. Structures 2D 3D 123 http://bioinformatics.org/assemble/ S2S
  • 125. BGSU RNA bioinformatics 124 BGSU RNA STRUCTURAL BIOINFORMATICS Bowling Green State University (/) / Research (//www.bgsu.edu/research.html) / BGSU RNA Structural Bioinformatics Structural Databases RNA 3D Hub (http://rna.bgsu.edu/rna3dhub) is a new resource, which contains: RNA 3D Motif Atlas (http://rna.bgsu.edu/rna3dhub/motifs), a representative collection of RNA 3D motifs. Non-redundant lists (http://rna.bgsu.edu/rna3dhub/nrlist) of RNA- containing 3D structures. http://www.bgsu.edu/research/rna/
  • 126. 125 Secondary Structure: small subunit ribosomal RNA Escherichia coli November 1999 (cosmetic changes July 2001) (J01695) 10 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 5’ 3’ I II III m 2 m 5 m7 m 2 m m 4 m5 m2 m 6 2 m6 2 m 3 G [ ] Symbols Used In This Diagram: G A - Canonical base pair (A-U, G-C) - G-A base pair - G-U base pair G C G U U U - Non-canonical base pair Citation and related information available at http://www.rna.icmb.utexas.edu Every 10th nucleotide is marked with a tick mark, and every 50th nucleotide is numbered. Tertiary interactions with strong comparative data are connected by solid lines. 1.cellular organisms 2.Bacteria 3.Proteobacteria 4.gamma subdivision 5. Enterobacteriaceae and related symbionts 6. Enterobacteriaceae 7. Escherichia A A A U U G A A G A G U U U G A U C A U G G C U C A G A U U G A A C G C U G G C G G C A G G C C UA A C A C A U G C A A G U C G A A C G G U A A C A G G A A G A A G C U U G C U U C U U U G C U G A C G A G U G G C G G A C G G G U G A G U A A U G U C U G G G A A A C U G C C U G A U G G A G G G G GA U A A C U A C U G G A A A C G G U A G C U A A U A C C G C A U A A C G U C G C A A G A C C A A A G A G G G G G A C C U U C G G G C C U C U U G C C A U C G G A U G U G C C C A G A U G G G A U U A G C U A G U A G G U G G G G U A A C G G C U C A C C U A G G C G A C G A U C C C U A G C U G G U C U G A G A GGA U G A C C A GC C A C A C U G G A A C U G A G A C A C G G U C C A G A C U C C U A C G G G A G G C A G C A G U G G G G A A U A U U G C A C A A U G G G C G C A A G C C U G A U G C A GC C A U G C C G C G U G U A U G A A G A A G G C C U U C G G G U U G U A A A G U A C U U U C A G C G G G G A G G A A G G G A G U A A A G U U A A U A C C U U U G C U CA U U G A C G U U A C C C G C A G A A G A AG C A C C G G C UA A C U C C G ψ G C C A G C A G C C G C G G U A A U A C G G A G G G U G C A A G C G U U A A U C G G A A U U A C U G G G C G U A A A G C G C A C G C A G G C G G U U U G U U A A G U C A G A U G U G A A A U C C C C G G G C U C A A C C U G G G A A C U G C A U C U G A U A C U G G C A A G C U U G A G U C U C G U A G A G G G G G G U A G A A U U C C A G G U G U A G C G G U G A A A U G C G U A G A G A U C U G G A G G A A U A C C G G U G G C G A A G G C G G C C C C C U G G A C G A A G A C U G A C G C U C A G G U G C G A A A G C G U G G G G A G C A A A C A G G A U U A G A U A C C C U G G U A G U C C A C G C C G U A A A C G A U G U C G A C U U G G A G G U U G U G C C C U U G A G G C G U G G C U U C CG G A G C U A A C G C G U U A A G U C G A C C G C C U G G G G A G U A C G G C C G C A A G G U U A A A A C U C A A A U G A A U U G A C G G G G G C C C G C A C A A G C G G U G G A G C A U G U G G U U U A A U U C G A U G C A A C G C G A A G A A C C U U A C C U G G U C U U G A C A U C C A C G G A A G U U U U C A G A G A U G A G A A U G U G C C U U C G G G A A C C G U GA G A C A G G U G C U G C A U G G C U G U C G U C A G C U C G U G U U G U G A A A U G U U G G G U U A A G U C C C G C A A C G A G C G C A A C C C U U A U C C U U U G U U G C C A G C G G U C C G G C C G G G A A C U C A A A G G A G A C U G C C A G U G A U A A A C U G G A G G A A G G U G G G G A U G A C G U C A A G U C A U C A U G G C C C U U A C G A C C A G G G C U A C A C A C G U G C U A C A A U G G C G C A U A C A A A G A G A A G C G A C C U C G C G A G A G C A A G C G G A C C U C A U A A A G U G C G U C G U A G U C C G G A U U G G A G U C U G C A A C U C G A C U C C A U G A A G U C G G A A U C G C U A G U A A U C G U G G A U C A G A A U G C C A C G G U G A A U A C G U U C C C G G G C C U U G U A C A C A C C G C C C G U C A C A C C A U G G G A G U G G G U U G C A A A A G A A G U A G G U A G C U U A A C C U U C G G G A G G G C G C U U A C C A C U U U G U G A U U C A U G A C U G G G G U GA A G U C G U A A C A A G G U A A C C G U A G G G G A A C C U G C G G U U G G A U C A C C U C C U U A