SlideShare ist ein Scribd-Unternehmen logo
1 von 32
Downloaden Sie, um offline zu lesen
Chapter 3-1
Scattering Matrix and
Microwave Network
Chien-Jung Li
Department of Electronics Engineering
National Taipei University of Technology
Department of Electronic Engineering, NTUT
Traveling Waves
   
 j x
V x Ae   
 j x
V x Be
         
   j x j x
V x V x V x Ae Be
     
    
 
   
0 0
V x V x
I x I x I x
Z Z
 
 
 


 
V x
x
V x
• Introducing the notation of the voltage and current traveling
waves:
and
• The reflection coefficient between incident and reflected
wave can be written as:
2/32
Department of Electronic Engineering, NTUT
Normalized Traveling Waves
                  0
0
1 1
2 2
b x v x i x V x Z I x
Z
                  0
0
1 1
2 2
a x v x i x V x Z I x
Z
• Normalized notation of voltage and current waves:
 
 
0
V x
v x
Z
    0i x Z I x
 
 

0
V x
a x
Z
 
 

0
V x
b x
Z
      v x a x b x
      i x a x b x
      b x x a x
 Normalized incident wave
 Normalized reflected wave
and
Introduce normalization to
relate voltage with power.
 
 
2
2
0
V x
a x
Z

  
     2
10log 10log 20logaP a x a x 
3/32
Department of Electronic Engineering, NTUT
Two-port Network
Two-port
Network
 2 2a l
 2 2b l
 2 2a x
 2 2b x
 1 1a l
 1 1b l
 1 1a x
 1 1b x
1oZ 2oZ
Input port Output port
Port 1
1 1x l
Port 2
2 2x l
• If instead of a one-port transmission line we have the two-port network
shown with incident wave and reflected wave at port 1
(located at ), and incident wave and reflected wave
 1 1a l  1 1b l
1 1x l  2 2a l
 2 2b l 2 2x lat port 2 (located at )
At port 1
Reflected wave
Incident wave  1 1a l
 1 1b l
At port 1
Reflected wave
Incident wave  2 2a l
 2 2b l
4/32
Department of Electronic Engineering, NTUT
Scattering Matrix (I)
      1 1 11 1 1 12 2 2b S a S al l l
      2 2 21 1 1 22 2 2b S a S al l l
 
 
 
 
    
    
    
1 1 1 111 12
2 2 2 221 22
b aS S
b aS S
l l
l l
Scattering matrix Scattering parameters
Two-port
Network
 2 2a l
 2 2b l
 2 2a x
 2 2b x
 1 1a l
 1 1b l
 1 1a x
 1 1b x
1oZ 2oZ
Input port Output port
Port 1
1 1x l
Port 2
2 2x l
incident to the portsreflected from the ports
5/32
Department of Electronic Engineering, NTUT
Scattering Matrix (II)
contribution to the reflected wave  1 1b l
due to incident wave  2 2a l at port 2
      2 2 21 1 1 22 2 2b S a S al l l
      1 1 11 1 1 12 2 2b S a S al l l
contribution to the reflected wave  1 1b l
due to incident wave  1 1a l at port 1
contribution to the reflected wave  2 2b l
due to incident wave  2 2a l at port 2contribution to the reflected wave  2 2b l
due to incident wave  1 1a l at port 1
Two-port
Network
 2 2a l
 2 2b l
 2 2a x
 2 2b x
 1 1a l
 1 1b l
 1 1a x
 1 1b x
1oZ 2oZ
Input port Output port
Port 1
1 1x l
Port 2
2 2x l
6/32
Department of Electronic Engineering, NTUT
Scattering Parameters
 
   

2 2
1 1
11
1 1 0a
b
S
a l
l
l
Input reflection coefficient with output properly terminated
 
   

1 1
2 2
22
2 2 0a
b
S
a l
l
l
Output reflection coefficient with input properly terminated
 
   

2 2
2 2
21
1 1 0a
b
S
a l
l
l
Forward transmission coefficient with output properly terminated
 
   

1 1
1 1
12
2 2 0a
b
S
a l
l
l
Reverse transmission coefficient with output properly terminated
(measured with port 2 properly terminated)
(measured with port 2 properly terminated)
(measured with port 1 properly terminated)
(measured with port 1 properly terminated)
7/32
Department of Electronic Engineering, NTUT
Return Loss and Insertion Loss
 
   

2 2
1 1
11
1 1 0a
b
S
a l
l
l
• Return Loss (RL)
 
   

2 2
2 2
21
1 1 0a
b
S
a l
l
l
 
 
2
2 1 1 1
11 2
1 1 1
b
a
b P
S
a P
 
l
l
 21
11 11
1
10log 10log 20log (dB)b
a
P
S S
P
 
  
 
11Return Loss (RL) 10log 20log (dB)in
reft
P
S
P
 
   
 
(折返損耗, 反射損耗)
 
 
2
2 2 2 2
21 2
1 1 1
b
a
b P
S
a P
 
l
l
 22
21 21
1
10log 10log 20log (dB)b
a
P
S S
P
 
  
 
21Insertion Loss (IL) 10log 20log (dB)transmit
receive
P
S
P
 
   
 
(植入損耗, 插入損耗)• Insertion Loss (IL)
8/32
Department of Electronic Engineering, NTUT
Procedure of Measuring S11
Two-port
Network
  2 2 0a l
 2 2b l
 1 1a l
 1 1b l
1oZ 2oZ
Port 1
1 1x l
Port 2
2 2x l
2 2oZ Z
1E
1 1oZ Z
 
   

2 2
1 1
11
1 1 0a
b
S
a l
l
l
OUTZ
• With Z2=Zo2 the condition is satisfied. Similar considerations
apply to measurements at the input port. Also the characteristic
impedances of the transmission lines are usually identical (i.e. Zo1=Zo2),
with a 50 Ω being the standard value.
  2 2 0a l
matched
 
   

2 2
1 1
11
1 1 0a
b
S
a l
l
l
      1 1 11 1 1 12 2 2b S a S al l l
0
9/32
Department of Electronic Engineering, NTUT
n-port Network (I)
• The transmission lines are assumed
to be lossless with characteristic
impedance Zoi (i=1 to n). The
scattering matrix of the n port, at
the unprimed reference planes, in
the form
    b S a
n-port
Network
1oZ
Port 1Port 1'
1TZ
 1 1a l
 1 1b l
2oZ
Port 2Port 2'
 2 2a l
 2 2b l
onZ
Port nPort n'
 n na l
 n nb l
       
   
1 21
2
o oa Z V Z I
       
   
1 21
2
o ob Z V Z I
 
  
   
      
 
     
   
11 12 1
21 22 2
1 2
n
n
n n nn
S S S
S S S
S
S S S




  
 
  
           
     
   
1 2
1
1 2
2
1 2
1 2
0 0
0 0
0 0
o
o
o
on
Z
Z
Z
Z
10/32
Department of Electronic Engineering, NTUT
n-port Network (II)
• The [a], [b], [V], and [I] are column matrices. That is
 
 
 
 
  
 
 
  
1
2
n
a
a
a
a
 
 
 
 
  
 
 
  
1
2
n
b
b
b
b
 
 
 
 
  
 
 
  
1
2
n
V
V
V
V
 
 
 
 
  
 
 
  
1
2
n
I
I
I
I
 
   
l
l  

 

1 1 1 1
11
1 1 1 10 2,3, ,j
T o
T oa j n
b Z Z
S
a Z Z
The S parameters of the n-port networks are easily measured.
For example S11 at x1=l1 is given by
where ZT1 is the impedance seen at port 1 with the other ports matched.
11/32
Department of Electronic Engineering, NTUT
Reference Planes
• In practice, we often need to attach transmission lines to
the network under test for the measurement. Since the S
parameters are measured using traveling waves, we need
to specify the positions where the measurements are
made.
Device Under Test
(DUT)
1l
2l
Unprimed reference plane
12/32
Department of Electronic Engineering, NTUT
Shifting the Reference Planes
 
 
 
 
    
    
    
1 1 1 111 12
2 2 2 221 22
b aS S
b aS S
l l
l l
 
 
 
 
     
         
1 111 12
2 221 22
0 0
0 0
b aS S
b aS S
• At port 1 and port 2
• At port 1' and port 2'
 The angles and are the electrical lengths of the transmission line
between the primed and unprimed reference planes.
Two-port Network
 2 2a l
 2 2b l
 1 1a l
 1 1b l
1oZ 2oZ
Port 1
1 1x l
Port 2
2 2x l
Port 1'
1 0x
 1 0a
 1 0b
Port 2'
2 0x
 2 0a
 2 0b
 2 2l 1 1l
Primed reference plane
1 2
Unprimed reference plane
 
 
 
11 12
21 22
S S
S S
13/32
Department of Electronic Engineering, NTUT
Shifting the Reference Planes
    
 1
1 1 1 0 j
b b el
    
 1
1 1 1 0 j
a a el
    
 2
2 2 2 0 j
b b el
    
 2
2 2 2 0 j
a a el
 
 
 
 
 
 
 
 
1 21
1 2 2
2
1 1 111 12 11 12
2
2 2 221 22 21 22
0 0 0
0 0 0
jj
j j
b a aS S S e S e
b a aS S S e S e
 
  
 
  
        
                   
 
 
 
  
 
  
   
         
1 21
1 2 2
2
11 12 11 12
2
21 22 21 22
jj
j j
S S S e S e
S S S e S e
 
 
 
  


   
   
     
1 21
1 2 2
2
11 12 11 12
2
21 22 21 22
jj
j j
S S S e S e
S S S e S e
 2 2a l
 2 2b l
 1 1a l
 1 1b l
1oZ 2oZ
Port 1
1 1x l
Port 2
2 2x l
Port 1'
1 0x
 1 0a
 1 0b
Port 2'
2 0x
 2 0a
 2 0b
 2 2l 1 1l
Reference planes
 
 
 
11 12
21 22
S S
S S
14/32
Department of Electronic Engineering, NTUT
Properties of Scattering Parameters
• In order to know the properties of scattering parameters, let’s start
with a two-port network that has two transmission lines attached at
its input and output terminals. (Without considering the source and
load)

1oZ 2oZ
Port 1
1 1x l
Port 2
2 2x l
Port 1'
1 0x
 1 1I x
Port 2'
2 0x
2l1l

 1 1V x
 2 2I x


 2 2V x
 
0iP
 
0iP
 
0iP
 
0iP
• Find the incident power and reflected power .
(i=1 for port 1 and i=2 for port 2)
 
0iP  
0iP
 
 
 
11 12
21 22
S S
S S
15/32
Department of Electronic Engineering, NTUT
Incident and Reflected Power
• Average power of incident wave on the primed ith port (x1=0, x2=0)
        
   

  
      
2
2 2
,
01 1 1
0 Re 0 0 0 0
2 2 2
i
i i i i i rms
oi
V
P V I a a
Z
   

21
0 0
2
i iP a
        
   

  
      
2
2 2
,
01 1 1
0 Re 0 0 0 0
2 2 2
i
i i i i i rms
oi
V
P V I b b
Z
• Average reflected power
• Since the transmission lines are assumed to be lossless, we have
    
0i i iP P l
    
0i i iP P l
   
2 21 1
0
2 2
i i ia a x
   
2 21 1
0
2 2
i i ib b x
No power loss everywhere on the lines
   
21
0 0
2
i iP b

16/32
Department of Electronic Engineering, NTUT
Consider Matched Source and Load (I)
    2 2 20 0oV Z I
                    2 2 2 2 2 2 2 2
2 2
1 1
0 0 0 0 0 0
2 2
o o o
o o
a V Z I Z I Z I
Z Z
It follows that
Two-port
Network

1oZ
Port 1
1 1x l
Port 2
2 2x l
Port 1'
1 0x
 1 0I
Port 2'
2 0x
2l1l

 1 0V
 2 0I


 2 2V l
2oZ
 1 1I l  2 2I l
 1 1V l


1TZ
 2 2a x
 2 2b x
 1 1a x
 1 1b x


 2 0V


1E
1 1oZ Z
2 2oZ Z
matched
matched
No reflection from load• At x2=0, we have
         
1
1 1 1 1
1 1
1
0 0 0
2 2
o
o o
E
a V Z I
Z Z
  
2
2 1
1
1
0
4 o
E
a
Z
    1 1 1 10 0oV E Z I• At x1=0, we have
It follows that and
Vpp
17/32
Department of Electronic Engineering, NTUT
Consider Matched Source and Load (II)
   
  
2
2 1
1 1
1
1
0 0
2 8
AVS
o
E
P P a
Z
• Since the line is lossless, we have
   
2 2
1 1 1
1 1
0
2 2
a a l
Power available from the source is independent of
the input impedance ZT1 of the two-port network
• The power available from the source E1 with internal resistance
Z1=Zo1 is equal to the power of incident wave at x1=0:
The available power PAVS is the incident power at x1=0.
18/32
Department of Electronic Engineering, NTUT
Mismatched Source (I)
 
       2 1 1 1 1 1 1
1
1
0 0 0 01
0
2 8
o o
o
V Z I V Z I
a
Z

       
                  
2 22
1 1 1 1 1 1 1 1 1
1
1
0 0 0 0 0 0
8
o o o
o
V Z I V Z V I Z I
Z
                    
2 2 22
1 1 1 1 1 1 1 1 1 1
1
1 1
0 0 0 0 0 0 0
2 8
o o o
o
b V Z I V Z I V Z I
Z
              
     
2 2
1 1 1 1 1 1 1
1 1 1
0 0 0 0 0 0 0
2 2 4
P a b I V I V
    
 1 1
1
Re 0 0
2
I V
• Consider that if Z1 is not equal to Zo1
Similarly,
• Power delivered to port 1', or to port 1 (since the line is lossless) is
19/32
Department of Electronic Engineering, NTUT
Mismatched Source (II)
    
2
1 1
1
0 0
2
AVSb P P
   l l 
2
1 1 1 1
1
2
AVSb P P
     l  
2
1 1 1 1
1
0 0
2
AVSP P P b
                       2 2 2 2 2 2 2 2 2 2
2 2
1 1
0 0 0 0 0 0
2 2
o o o o
o o
b V Z I Z I Z I Z I
Z Z
• Reflected power from port 1 (or port 1')
It can also be written as
• If ZT1=Zo1, then the reflected power is zero. However, if ZT1≠Zo1, part of
the incident power is reflected back to the generator. The net power
delivered to port 1 is
We can obtain
20/32
Department of Electronic Engineering, NTUT
Calculation of S11 and S21 (I)
      
2 2
2 2 2 2
1 1
0 0 0
2 2
oP b I Z
 
   
 
   l l
l l
l l 


 
 
2 2 2 2
1 1 1 1
11
1 1 1 10 0a V
b V
S
a V



1 1
11
1 1
T o
T o
Z Z
S
Z Z
• Power delivered to the load Z2 (=Zo2)
• Calculate the S-parameter
S11 is the reflection coefficient of port 1 with port 2 terminated in its
normalizing impedance Zo2. (a2=0)
• The evaluation of S11 at x1=0 (S'11) can be done using .
Alternately, we can calculate the input impedance at x1=0, and its
associated reflection coefficient would be S'11.
12
11 11
j
S S e 
  l
21/32
Department of Electronic Engineering, NTUT
Calculation of S11 and S21 (II)
 
   
 
l
l l
l


 
2 2
2
2 1 1 1 1
11 2
1 1
0
AVS
AVS
a
b P P
S
Pa
     l   
2
1 1 1 110 1AVSP P P S
 
   
 
   l l
l l
l l 


 
 
2 2 2 2
2 2 2 2 1
21
1 1 1 1 10 0
o
oa I
b Z I
S
a Z I
 
   l
l
l 




2 2
2 2 2
1 1 1 0
o
o I
Z I
Z I
• The ratio of the power reflected from port 1 to the power available at
port 1.
or
• If , the power reflected is larger than the power available at
port 1. In this case, port 1 acts as a source of power and oscillations
can occur.
• Evaluation of S21 at unprimed reference plane
            
      2 2 2 2 2 2 2 2 2 2since 0I I I I Il l l l l
11 1S 
22/32
Department of Electronic Engineering, NTUT
Find S Parameter by Excitation (I)
• Thevenin’s equivalent network

 1
1, 1
j
THE E e l
Two-port
Network
Port 1
1 1x l
Port 2
2 2x l


 2 2V l
 1 1I l  2 2I l
 1 1V l


1TZ
  2 2 0a l
 2 2b l
 1 1a l
 1 1b l


1,THE
1oZ
2oZ
Two-port
Network

1oZ
Port 1
1 1x l
Port 2
2 2x l
Port 1'
1 0x
 1 0I
Port 2'
2 0x
2l1l

 1 0V
 2 0I


 2 2V l
2oZ
 1 1I l  2 2I l
 1 1V l


1TZ
 2 2a x
 2 2b x
 1 1a x
 1 1b x


 2 0V


1E
1 1oZ Z
2 2oZ Z
matched
matched
23/32
Department of Electronic Engineering, NTUT
Find S Parameter by Excitation (II)
 
 
   
l
l l l
    
1 1
1 1 1 1 1 1 1
11
1
2
o
oo
a
I V Z I
ZZ
• Thevenin’s equivalent network
Two-port
Network
Port 1
1 1x l
Port 2
2 2x l


 2 2V l
 1 1I l  2 2I l
 1 1V l


1TZ
  2 2 0a l
 2 2b l
 1 1a l
 1 1b l


1,THE
1oZ
2oZ
   l l 1 1 1, 1 1 1TH oV E Z I
 l
 1,
1 1
12
TH
o
E
I
Z
 
 l
l  2 2
2 2
2o
V
I
Z
 
   
 
2 2
2 2 2 2 21
21
1,1 1 1 20
2o o
THo oI
Z I VZ
S
EZ I Z



 
l
l l
l
• At port 1:
• At port 2:
• The S21:
S21 represents a forward voltage
transmission coefficient from
port 1 to port 2.
24/32
Department of Electronic Engineering, NTUT
Find S Parameter by Excitation (III)
 
2
2 2
22
212
1,
1
1
2
8
o
T
TH
o
V
Z
G S
E
Z
 
l

 
 
 
2
21
1,
2
TH
V
S
E  
2
2 2
21
1, 2
L
T
AVS TH
P V
G S
P E
  
GT represents the ratio of the power delivered to the load Zo2 (i.e., PL) to the
power available from the source E1,TH (i.e., PAVS).
• If Z1 = Z2 = Zo
• Transducer Power Gain:
2
21TG S
and
25/32
Department of Electronic Engineering, NTUT
Find S Parameter by Excitation (IV)
 
   

 

1 1
2 2 2 2
22
2 2 2 20
T o
T oa
b Z Z
S
a Z Zl
l
l
 
   
 

 
1 1
1 1 2 1 1
12
2 2 1 2,0
2 o
o THa
b Z V
S
a Z El
l l
l
• Excitation at port2’ by E2 with source impedance Z2=Zo2 is placed at port 2’ and
port 1’ is matched (Z1=Zo1) we find that at the unprimed reference planes
S22 is the reflection coefficient of port 2 with port 1 terminated in its
normalizing impedance Z1= Zo1. (a1(l1)=0) , and S12 represents a reverse
voltage evaluate S’22 and S’12 at the primed reference planes.
Two-port
Network1oZ
Port 1
1 1x l
Port 2
2 2x l
Port 1'
1 0x
Port 2'
2 0x
2l1l
2oZ
2TZ
 2 2a l
 2 2b l
  1 1 0a l
 1 1b l


2E
2 2oZ Z
1 1oZ Z
26/32
Department of Electronic Engineering, NTUT
Find S Parameter by Excitation (V)
 
2
1 1
2 1
12 2
2,
2
1
2
8
o
TH
o
V
Z
S
E
Z

l
The S parameter of a transistor are commonly ,measured with Zo1=Zo2=Zo
and Z1 = Z2 = Zo. These S parameters are said to be measured in a Zo system.
If this transistor is then used in the circuit with arbitrary terminations Z1 and
Z2, the gain GT is no longer as given. GT can be expressed in terms of Z1, Z2,
and the S parameters of the transistor measured in a Zo system.
• Reverse Transducer Power Gain:
27/32
Department of Electronic Engineering, NTUT
Example – S Parameter of a Series Z (I)
• Evaluate the S parameters, in a Zo system, of a series impedance Z.
Z
oZ
Port 1
1 1x l
Port 2
2 2x l
Port 1'
1 0x
Port 2'
2 0x
oZ
1TZ
 2 2a l
 2 2b l
 1 1a l
 1 1b l


1E
1 oZ Z
2 oZ Z
matched
matched
Z
Port 1 Port 2
28/32
Department of Electronic Engineering, NTUT
Example – S Parameter of a Series Z (II)
• Thevenin’s equivalent network
 
   2 2
1 1 1
11
1 1 10
T o
T oa
b Z Z
S
a Z Z

 
l
l
l
1T oZ Z Z where 11
2 o
Z
S
Z Z


Z
Port 1 Port 2
1TZ
 1 1a l
 1 1b l


1,THE
oZ
oZ


 2 2V l
 2 2 1,
2
o
TH
o
Z
V E
Z Z


l
 
   
1,
2 2
21
1, 1,
2 2
22 2
o
TH
o o
oTH TH
Z
E
V Z Z Z
S
Z ZE E

  

l
(1)
(2)
For symmetry, we observe that S22=S11 and S12 =S21. (Reciprocal condition)
• For , and in a system:100Z j  50  
0.707 45 0.707 45
0.707 45 0.707 45
S
   
  
   
29/32
Department of Electronic Engineering, NTUT
Example – S Parameter of a Shunt Y (I)
• Evaluate the S parameters, in a Zo system, of a shunt admittance Y.
oZ
Port 1
1 1x l
Port 2
2 2x l
Port 1'
1 0x
Port 2'
2 0x
oZ
1TZ
 2 2a l
 2 2b l
 1 1a l
 1 1b l


1E
1 oZ Z
2 oZ Z
matched
matched
Y
Port 1 Port 2
Y
30/32
Department of Electronic Engineering, NTUT
Example – S Parameter of a Shunt Y (II)
• Thevenin’s equivalent network
 
   2 2
1 1 1
11
1 1 10
T o
T oa
b Z Z
S
a Z Z

 
l
l
l
1
1
||
1
o
T o
o
Z
Z Z
Y Z Y
 

where 11
2
o
o
Z Y
S
Z Y



Port 1 Port 2
1TZ
 1 1a l
 1 1b l


1,THE
oZ
oZ


 2 2V l
  1,1
2 2 1,
1 2
THT
TH
T o o
EZ
V E
Z Z Z Y
 
 
l
 
 
2 2
21
1,
2
22 oTH
V
S
Z YE
 

l
(1)
(2)
For symmetry, we observe that S22=S11 and S12 =S21. (Reciprocal condition)
• For , and in a system:10 mSY  50  
0.2 0.8
0.8 0.2
S
 
   
Y
31/32
Department of Electronic Engineering, NTUT
Summary
• For a 2-port network:   11 12
21 22
S S
S
S S
 
  
 
     l   
2
1 1 1 110 1AVSP P P S
   

21
0 0
2
i iP a
   
21
0 0
2
i iP b

• Average incident power:
• Average reflected power:
 With lossless lines:
       
2 21 1
0 0
2 2
i i i i i iP P x a a x 
  
       
2 21 1
0 0
2 2
i i i i i iP P x b b x 
  
   
2
1 1
1
0 0
2
AVSP P a
 • Available power from source:
 With matched condition:    
  
2
2 1
1 1
1
1
0 0
2 8
AVS
o
E
P P a
Z
       
2 2 2
1 1 1 1
1 1 1
0 0 0 0
2 2 2
AVSP a b P b   • Power delivered to port 1:
 With lossless lines:
32/32

Weitere ähnliche Inhalte

Was ist angesagt?

射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計Simen Li
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. SystemsSimen Li
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計Simen Li
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierSimen Li
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計Simen Li
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheorySimen Li
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬Simen Li
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介Simen Li
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureSimen Li
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power AmplifierSimen Li
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined RadiosSimen Li
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計Simen Li
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] LinearitySimen Li
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
 

Was ist angesagt? (20)

射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver Architecture
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 

Andere mochten auch

電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路Simen Li
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析Simen Li
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路Simen Li
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路Simen Li
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisSimen Li
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件Simen Li
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理Simen Li
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論Simen Li
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計Simen Li
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版Simen Li
 

Andere mochten auch (14)

電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 

Ähnlich wie RF Circuit Design - [Ch3-1] Microwave Network

Notes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptxNotes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptxashokranjitha2006
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinationalDefri Tan
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.pptShivamChaturvedi67
 
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.316 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3MahoneyKadir
 
Silicon Controlled Rectifier
Silicon Controlled Rectifier Silicon Controlled Rectifier
Silicon Controlled Rectifier Nikhil Kumar
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwavesTapas Mondal
 
Differentiator.ppt
Differentiator.pptDifferentiator.ppt
Differentiator.pptPonnalaguRN1
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering fulllieulieuw
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxdivakarrvl
 
Adobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdfAdobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdfkt5830207
 
2 port network
2 port network2 port network
2 port networkmihir jain
 
2portnetwork-150303092056-conversion-gate01
2portnetwork-150303092056-conversion-gate012portnetwork-150303092056-conversion-gate01
2portnetwork-150303092056-conversion-gate01brijeshtimaniya
 
Thyristor Family Devices.ppt
  Thyristor Family Devices.ppt  Thyristor Family Devices.ppt
Thyristor Family Devices.pptAshish Sadavarti
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppttariqqureshi33
 

Ähnlich wie RF Circuit Design - [Ch3-1] Microwave Network (20)

Notes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptxNotes 16 5317-6351 Network Analysis.pptx
Notes 16 5317-6351 Network Analysis.pptx
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
 
Microwave
MicrowaveMicrowave
Microwave
 
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.316 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3
 
Lab sheet
Lab sheetLab sheet
Lab sheet
 
Two port networks
Two port networksTwo port networks
Two port networks
 
Silicon Controlled Rectifier
Silicon Controlled Rectifier Silicon Controlled Rectifier
Silicon Controlled Rectifier
 
Introduction to microwaves
Introduction to microwavesIntroduction to microwaves
Introduction to microwaves
 
Differentiator.ppt
Differentiator.pptDifferentiator.ppt
Differentiator.ppt
 
Presentation1
Presentation1Presentation1
Presentation1
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering full
 
L13 ic based triggering circuit
L13 ic based triggering circuitL13 ic based triggering circuit
L13 ic based triggering circuit
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
 
Adobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdfAdobe Scan 14 Dec 2023 (1).pdf
Adobe Scan 14 Dec 2023 (1).pdf
 
2 port network
2 port network2 port network
2 port network
 
2portnetwork-150303092056-conversion-gate01
2portnetwork-150303092056-conversion-gate012portnetwork-150303092056-conversion-gate01
2portnetwork-150303092056-conversion-gate01
 
Thyristor Family Devices.ppt
  Thyristor Family Devices.ppt  Thyristor Family Devices.ppt
Thyristor Family Devices.ppt
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppt
 

Mehr von Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Simen Li
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬Simen Li
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬Simen Li
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬Simen Li
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack FirmwareSimen Li
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack FirmwareSimen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)Simen Li
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)Simen Li
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言Simen Li
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階Simen Li
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversSimen Li
 

Mehr von Simen Li (20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 

Kürzlich hochgeladen

Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 

Kürzlich hochgeladen (20)

Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 

RF Circuit Design - [Ch3-1] Microwave Network

  • 1. Chapter 3-1 Scattering Matrix and Microwave Network Chien-Jung Li Department of Electronics Engineering National Taipei University of Technology
  • 2. Department of Electronic Engineering, NTUT Traveling Waves      j x V x Ae     j x V x Be              j x j x V x V x V x Ae Be                  0 0 V x V x I x I x I x Z Z           V x x V x • Introducing the notation of the voltage and current traveling waves: and • The reflection coefficient between incident and reflected wave can be written as: 2/32
  • 3. Department of Electronic Engineering, NTUT Normalized Traveling Waves                   0 0 1 1 2 2 b x v x i x V x Z I x Z                   0 0 1 1 2 2 a x v x i x V x Z I x Z • Normalized notation of voltage and current waves:     0 V x v x Z     0i x Z I x      0 V x a x Z      0 V x b x Z       v x a x b x       i x a x b x       b x x a x  Normalized incident wave  Normalized reflected wave and Introduce normalization to relate voltage with power.     2 2 0 V x a x Z          2 10log 10log 20logaP a x a x  3/32
  • 4. Department of Electronic Engineering, NTUT Two-port Network Two-port Network  2 2a l  2 2b l  2 2a x  2 2b x  1 1a l  1 1b l  1 1a x  1 1b x 1oZ 2oZ Input port Output port Port 1 1 1x l Port 2 2 2x l • If instead of a one-port transmission line we have the two-port network shown with incident wave and reflected wave at port 1 (located at ), and incident wave and reflected wave  1 1a l  1 1b l 1 1x l  2 2a l  2 2b l 2 2x lat port 2 (located at ) At port 1 Reflected wave Incident wave  1 1a l  1 1b l At port 1 Reflected wave Incident wave  2 2a l  2 2b l 4/32
  • 5. Department of Electronic Engineering, NTUT Scattering Matrix (I)       1 1 11 1 1 12 2 2b S a S al l l       2 2 21 1 1 22 2 2b S a S al l l                        1 1 1 111 12 2 2 2 221 22 b aS S b aS S l l l l Scattering matrix Scattering parameters Two-port Network  2 2a l  2 2b l  2 2a x  2 2b x  1 1a l  1 1b l  1 1a x  1 1b x 1oZ 2oZ Input port Output port Port 1 1 1x l Port 2 2 2x l incident to the portsreflected from the ports 5/32
  • 6. Department of Electronic Engineering, NTUT Scattering Matrix (II) contribution to the reflected wave  1 1b l due to incident wave  2 2a l at port 2       2 2 21 1 1 22 2 2b S a S al l l       1 1 11 1 1 12 2 2b S a S al l l contribution to the reflected wave  1 1b l due to incident wave  1 1a l at port 1 contribution to the reflected wave  2 2b l due to incident wave  2 2a l at port 2contribution to the reflected wave  2 2b l due to incident wave  1 1a l at port 1 Two-port Network  2 2a l  2 2b l  2 2a x  2 2b x  1 1a l  1 1b l  1 1a x  1 1b x 1oZ 2oZ Input port Output port Port 1 1 1x l Port 2 2 2x l 6/32
  • 7. Department of Electronic Engineering, NTUT Scattering Parameters        2 2 1 1 11 1 1 0a b S a l l l Input reflection coefficient with output properly terminated        1 1 2 2 22 2 2 0a b S a l l l Output reflection coefficient with input properly terminated        2 2 2 2 21 1 1 0a b S a l l l Forward transmission coefficient with output properly terminated        1 1 1 1 12 2 2 0a b S a l l l Reverse transmission coefficient with output properly terminated (measured with port 2 properly terminated) (measured with port 2 properly terminated) (measured with port 1 properly terminated) (measured with port 1 properly terminated) 7/32
  • 8. Department of Electronic Engineering, NTUT Return Loss and Insertion Loss        2 2 1 1 11 1 1 0a b S a l l l • Return Loss (RL)        2 2 2 2 21 1 1 0a b S a l l l     2 2 1 1 1 11 2 1 1 1 b a b P S a P   l l  21 11 11 1 10log 10log 20log (dB)b a P S S P        11Return Loss (RL) 10log 20log (dB)in reft P S P         (折返損耗, 反射損耗)     2 2 2 2 2 21 2 1 1 1 b a b P S a P   l l  22 21 21 1 10log 10log 20log (dB)b a P S S P        21Insertion Loss (IL) 10log 20log (dB)transmit receive P S P         (植入損耗, 插入損耗)• Insertion Loss (IL) 8/32
  • 9. Department of Electronic Engineering, NTUT Procedure of Measuring S11 Two-port Network   2 2 0a l  2 2b l  1 1a l  1 1b l 1oZ 2oZ Port 1 1 1x l Port 2 2 2x l 2 2oZ Z 1E 1 1oZ Z        2 2 1 1 11 1 1 0a b S a l l l OUTZ • With Z2=Zo2 the condition is satisfied. Similar considerations apply to measurements at the input port. Also the characteristic impedances of the transmission lines are usually identical (i.e. Zo1=Zo2), with a 50 Ω being the standard value.   2 2 0a l matched        2 2 1 1 11 1 1 0a b S a l l l       1 1 11 1 1 12 2 2b S a S al l l 0 9/32
  • 10. Department of Electronic Engineering, NTUT n-port Network (I) • The transmission lines are assumed to be lossless with characteristic impedance Zoi (i=1 to n). The scattering matrix of the n port, at the unprimed reference planes, in the form     b S a n-port Network 1oZ Port 1Port 1' 1TZ  1 1a l  1 1b l 2oZ Port 2Port 2'  2 2a l  2 2b l onZ Port nPort n'  n na l  n nb l             1 21 2 o oa Z V Z I             1 21 2 o ob Z V Z I                             11 12 1 21 22 2 1 2 n n n n nn S S S S S S S S S S                                   1 2 1 1 2 2 1 2 1 2 0 0 0 0 0 0 o o o on Z Z Z Z 10/32
  • 11. Department of Electronic Engineering, NTUT n-port Network (II) • The [a], [b], [V], and [I] are column matrices. That is                   1 2 n a a a a                   1 2 n b b b b                   1 2 n V V V V                   1 2 n I I I I       l l       1 1 1 1 11 1 1 1 10 2,3, ,j T o T oa j n b Z Z S a Z Z The S parameters of the n-port networks are easily measured. For example S11 at x1=l1 is given by where ZT1 is the impedance seen at port 1 with the other ports matched. 11/32
  • 12. Department of Electronic Engineering, NTUT Reference Planes • In practice, we often need to attach transmission lines to the network under test for the measurement. Since the S parameters are measured using traveling waves, we need to specify the positions where the measurements are made. Device Under Test (DUT) 1l 2l Unprimed reference plane 12/32
  • 13. Department of Electronic Engineering, NTUT Shifting the Reference Planes                        1 1 1 111 12 2 2 2 221 22 b aS S b aS S l l l l                         1 111 12 2 221 22 0 0 0 0 b aS S b aS S • At port 1 and port 2 • At port 1' and port 2'  The angles and are the electrical lengths of the transmission line between the primed and unprimed reference planes. Two-port Network  2 2a l  2 2b l  1 1a l  1 1b l 1oZ 2oZ Port 1 1 1x l Port 2 2 2x l Port 1' 1 0x  1 0a  1 0b Port 2' 2 0x  2 0a  2 0b  2 2l 1 1l Primed reference plane 1 2 Unprimed reference plane       11 12 21 22 S S S S 13/32
  • 14. Department of Electronic Engineering, NTUT Shifting the Reference Planes       1 1 1 1 0 j b b el       1 1 1 1 0 j a a el       2 2 2 2 0 j b b el       2 2 2 2 0 j a a el                 1 21 1 2 2 2 1 1 111 12 11 12 2 2 2 221 22 21 22 0 0 0 0 0 0 jj j j b a aS S S e S e b a aS S S e S e                                                                    1 21 1 2 2 2 11 12 11 12 2 21 22 21 22 jj j j S S S e S e S S S e S e                          1 21 1 2 2 2 11 12 11 12 2 21 22 21 22 jj j j S S S e S e S S S e S e  2 2a l  2 2b l  1 1a l  1 1b l 1oZ 2oZ Port 1 1 1x l Port 2 2 2x l Port 1' 1 0x  1 0a  1 0b Port 2' 2 0x  2 0a  2 0b  2 2l 1 1l Reference planes       11 12 21 22 S S S S 14/32
  • 15. Department of Electronic Engineering, NTUT Properties of Scattering Parameters • In order to know the properties of scattering parameters, let’s start with a two-port network that has two transmission lines attached at its input and output terminals. (Without considering the source and load)  1oZ 2oZ Port 1 1 1x l Port 2 2 2x l Port 1' 1 0x  1 1I x Port 2' 2 0x 2l1l   1 1V x  2 2I x    2 2V x   0iP   0iP   0iP   0iP • Find the incident power and reflected power . (i=1 for port 1 and i=2 for port 2)   0iP   0iP       11 12 21 22 S S S S 15/32
  • 16. Department of Electronic Engineering, NTUT Incident and Reflected Power • Average power of incident wave on the primed ith port (x1=0, x2=0)                         2 2 2 , 01 1 1 0 Re 0 0 0 0 2 2 2 i i i i i i rms oi V P V I a a Z      21 0 0 2 i iP a                         2 2 2 , 01 1 1 0 Re 0 0 0 0 2 2 2 i i i i i i rms oi V P V I b b Z • Average reflected power • Since the transmission lines are assumed to be lossless, we have      0i i iP P l      0i i iP P l     2 21 1 0 2 2 i i ia a x     2 21 1 0 2 2 i i ib b x No power loss everywhere on the lines     21 0 0 2 i iP b  16/32
  • 17. Department of Electronic Engineering, NTUT Consider Matched Source and Load (I)     2 2 20 0oV Z I                     2 2 2 2 2 2 2 2 2 2 1 1 0 0 0 0 0 0 2 2 o o o o o a V Z I Z I Z I Z Z It follows that Two-port Network  1oZ Port 1 1 1x l Port 2 2 2x l Port 1' 1 0x  1 0I Port 2' 2 0x 2l1l   1 0V  2 0I    2 2V l 2oZ  1 1I l  2 2I l  1 1V l   1TZ  2 2a x  2 2b x  1 1a x  1 1b x    2 0V   1E 1 1oZ Z 2 2oZ Z matched matched No reflection from load• At x2=0, we have           1 1 1 1 1 1 1 1 0 0 0 2 2 o o o E a V Z I Z Z    2 2 1 1 1 0 4 o E a Z     1 1 1 10 0oV E Z I• At x1=0, we have It follows that and Vpp 17/32
  • 18. Department of Electronic Engineering, NTUT Consider Matched Source and Load (II)        2 2 1 1 1 1 1 0 0 2 8 AVS o E P P a Z • Since the line is lossless, we have     2 2 1 1 1 1 1 0 2 2 a a l Power available from the source is independent of the input impedance ZT1 of the two-port network • The power available from the source E1 with internal resistance Z1=Zo1 is equal to the power of incident wave at x1=0: The available power PAVS is the incident power at x1=0. 18/32
  • 19. Department of Electronic Engineering, NTUT Mismatched Source (I)          2 1 1 1 1 1 1 1 1 0 0 0 01 0 2 8 o o o V Z I V Z I a Z                             2 22 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 8 o o o o V Z I V Z V I Z I Z                      2 2 22 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 2 8 o o o o b V Z I V Z I V Z I Z                      2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 2 2 4 P a b I V I V       1 1 1 Re 0 0 2 I V • Consider that if Z1 is not equal to Zo1 Similarly, • Power delivered to port 1', or to port 1 (since the line is lossless) is 19/32
  • 20. Department of Electronic Engineering, NTUT Mismatched Source (II)      2 1 1 1 0 0 2 AVSb P P    l l  2 1 1 1 1 1 2 AVSb P P      l   2 1 1 1 1 1 0 0 2 AVSP P P b                        2 2 2 2 2 2 2 2 2 2 2 2 1 1 0 0 0 0 0 0 2 2 o o o o o o b V Z I Z I Z I Z I Z Z • Reflected power from port 1 (or port 1') It can also be written as • If ZT1=Zo1, then the reflected power is zero. However, if ZT1≠Zo1, part of the incident power is reflected back to the generator. The net power delivered to port 1 is We can obtain 20/32
  • 21. Department of Electronic Engineering, NTUT Calculation of S11 and S21 (I)        2 2 2 2 2 2 1 1 0 0 0 2 2 oP b I Z            l l l l l l        2 2 2 2 1 1 1 1 11 1 1 1 10 0a V b V S a V    1 1 11 1 1 T o T o Z Z S Z Z • Power delivered to the load Z2 (=Zo2) • Calculate the S-parameter S11 is the reflection coefficient of port 1 with port 2 terminated in its normalizing impedance Zo2. (a2=0) • The evaluation of S11 at x1=0 (S'11) can be done using . Alternately, we can calculate the input impedance at x1=0, and its associated reflection coefficient would be S'11. 12 11 11 j S S e    l 21/32
  • 22. Department of Electronic Engineering, NTUT Calculation of S11 and S21 (II)         l l l l     2 2 2 2 1 1 1 1 11 2 1 1 0 AVS AVS a b P P S Pa      l    2 1 1 1 110 1AVSP P P S            l l l l l l        2 2 2 2 2 2 2 2 1 21 1 1 1 1 10 0 o oa I b Z I S a Z I      l l l      2 2 2 2 2 1 1 1 0 o o I Z I Z I • The ratio of the power reflected from port 1 to the power available at port 1. or • If , the power reflected is larger than the power available at port 1. In this case, port 1 acts as a source of power and oscillations can occur. • Evaluation of S21 at unprimed reference plane                    2 2 2 2 2 2 2 2 2 2since 0I I I I Il l l l l 11 1S  22/32
  • 23. Department of Electronic Engineering, NTUT Find S Parameter by Excitation (I) • Thevenin’s equivalent network   1 1, 1 j THE E e l Two-port Network Port 1 1 1x l Port 2 2 2x l    2 2V l  1 1I l  2 2I l  1 1V l   1TZ   2 2 0a l  2 2b l  1 1a l  1 1b l   1,THE 1oZ 2oZ Two-port Network  1oZ Port 1 1 1x l Port 2 2 2x l Port 1' 1 0x  1 0I Port 2' 2 0x 2l1l   1 0V  2 0I    2 2V l 2oZ  1 1I l  2 2I l  1 1V l   1TZ  2 2a x  2 2b x  1 1a x  1 1b x    2 0V   1E 1 1oZ Z 2 2oZ Z matched matched 23/32
  • 24. Department of Electronic Engineering, NTUT Find S Parameter by Excitation (II)         l l l l      1 1 1 1 1 1 1 1 1 11 1 2 o oo a I V Z I ZZ • Thevenin’s equivalent network Two-port Network Port 1 1 1x l Port 2 2 2x l    2 2V l  1 1I l  2 2I l  1 1V l   1TZ   2 2 0a l  2 2b l  1 1a l  1 1b l   1,THE 1oZ 2oZ    l l 1 1 1, 1 1 1TH oV E Z I  l  1, 1 1 12 TH o E I Z    l l  2 2 2 2 2o V I Z         2 2 2 2 2 2 21 21 1,1 1 1 20 2o o THo oI Z I VZ S EZ I Z      l l l l • At port 1: • At port 2: • The S21: S21 represents a forward voltage transmission coefficient from port 1 to port 2. 24/32
  • 25. Department of Electronic Engineering, NTUT Find S Parameter by Excitation (III)   2 2 2 22 212 1, 1 1 2 8 o T TH o V Z G S E Z   l        2 21 1, 2 TH V S E   2 2 2 21 1, 2 L T AVS TH P V G S P E    GT represents the ratio of the power delivered to the load Zo2 (i.e., PL) to the power available from the source E1,TH (i.e., PAVS). • If Z1 = Z2 = Zo • Transducer Power Gain: 2 21TG S and 25/32
  • 26. Department of Electronic Engineering, NTUT Find S Parameter by Excitation (IV)           1 1 2 2 2 2 22 2 2 2 20 T o T oa b Z Z S a Z Zl l l            1 1 1 1 2 1 1 12 2 2 1 2,0 2 o o THa b Z V S a Z El l l l • Excitation at port2’ by E2 with source impedance Z2=Zo2 is placed at port 2’ and port 1’ is matched (Z1=Zo1) we find that at the unprimed reference planes S22 is the reflection coefficient of port 2 with port 1 terminated in its normalizing impedance Z1= Zo1. (a1(l1)=0) , and S12 represents a reverse voltage evaluate S’22 and S’12 at the primed reference planes. Two-port Network1oZ Port 1 1 1x l Port 2 2 2x l Port 1' 1 0x Port 2' 2 0x 2l1l 2oZ 2TZ  2 2a l  2 2b l   1 1 0a l  1 1b l   2E 2 2oZ Z 1 1oZ Z 26/32
  • 27. Department of Electronic Engineering, NTUT Find S Parameter by Excitation (V)   2 1 1 2 1 12 2 2, 2 1 2 8 o TH o V Z S E Z  l The S parameter of a transistor are commonly ,measured with Zo1=Zo2=Zo and Z1 = Z2 = Zo. These S parameters are said to be measured in a Zo system. If this transistor is then used in the circuit with arbitrary terminations Z1 and Z2, the gain GT is no longer as given. GT can be expressed in terms of Z1, Z2, and the S parameters of the transistor measured in a Zo system. • Reverse Transducer Power Gain: 27/32
  • 28. Department of Electronic Engineering, NTUT Example – S Parameter of a Series Z (I) • Evaluate the S parameters, in a Zo system, of a series impedance Z. Z oZ Port 1 1 1x l Port 2 2 2x l Port 1' 1 0x Port 2' 2 0x oZ 1TZ  2 2a l  2 2b l  1 1a l  1 1b l   1E 1 oZ Z 2 oZ Z matched matched Z Port 1 Port 2 28/32
  • 29. Department of Electronic Engineering, NTUT Example – S Parameter of a Series Z (II) • Thevenin’s equivalent network      2 2 1 1 1 11 1 1 10 T o T oa b Z Z S a Z Z    l l l 1T oZ Z Z where 11 2 o Z S Z Z   Z Port 1 Port 2 1TZ  1 1a l  1 1b l   1,THE oZ oZ    2 2V l  2 2 1, 2 o TH o Z V E Z Z   l       1, 2 2 21 1, 1, 2 2 22 2 o TH o o oTH TH Z E V Z Z Z S Z ZE E      l (1) (2) For symmetry, we observe that S22=S11 and S12 =S21. (Reciprocal condition) • For , and in a system:100Z j  50   0.707 45 0.707 45 0.707 45 0.707 45 S            29/32
  • 30. Department of Electronic Engineering, NTUT Example – S Parameter of a Shunt Y (I) • Evaluate the S parameters, in a Zo system, of a shunt admittance Y. oZ Port 1 1 1x l Port 2 2 2x l Port 1' 1 0x Port 2' 2 0x oZ 1TZ  2 2a l  2 2b l  1 1a l  1 1b l   1E 1 oZ Z 2 oZ Z matched matched Y Port 1 Port 2 Y 30/32
  • 31. Department of Electronic Engineering, NTUT Example – S Parameter of a Shunt Y (II) • Thevenin’s equivalent network      2 2 1 1 1 11 1 1 10 T o T oa b Z Z S a Z Z    l l l 1 1 || 1 o T o o Z Z Z Y Z Y    where 11 2 o o Z Y S Z Y    Port 1 Port 2 1TZ  1 1a l  1 1b l   1,THE oZ oZ    2 2V l   1,1 2 2 1, 1 2 THT TH T o o EZ V E Z Z Z Y     l     2 2 21 1, 2 22 oTH V S Z YE    l (1) (2) For symmetry, we observe that S22=S11 and S12 =S21. (Reciprocal condition) • For , and in a system:10 mSY  50   0.2 0.8 0.8 0.2 S       Y 31/32
  • 32. Department of Electronic Engineering, NTUT Summary • For a 2-port network:   11 12 21 22 S S S S S             l    2 1 1 1 110 1AVSP P P S      21 0 0 2 i iP a     21 0 0 2 i iP b  • Average incident power: • Average reflected power:  With lossless lines:         2 21 1 0 0 2 2 i i i i i iP P x a a x             2 21 1 0 0 2 2 i i i i i iP P x b b x         2 1 1 1 0 0 2 AVSP P a  • Available power from source:  With matched condition:        2 2 1 1 1 1 1 0 0 2 8 AVS o E P P a Z         2 2 2 1 1 1 1 1 1 1 0 0 0 0 2 2 2 AVSP a b P b   • Power delivered to port 1:  With lossless lines: 32/32