SlideShare ist ein Scribd-Unternehmen logo
1 von 51
Downloaden Sie, um offline zu lesen
Chapter 2-1
Resonators and Impedance Matching
with Lumped Elements
Chien-Jung Li
Department of Electronics Engineering
National Taipei University of Technology
Department of Electronic Engineering, NTUT
Resonators
• Lump Resonators
 Series resonant circuit
I R L
C
 inZ
CV


  

  
1
inZ R j L
j C

21
2
RP I R

21
4
mW I L
 
  
2 2 2
2 2 2
1 1 1 1
4 4 4
e C
C
W V C I I
C C
At resonant frequency  0 02 f
m eW W  0
1
LC
  0inZ R
Resonance occurs when the
average stored magnetic and
electric energies are equal, and
the input impedance is a purely
real impedance.
2/51
Department of Electronic Engineering, NTUT
Series Resonant Circuit
• Quality Factor:
 


average energy stored
energy loss/sec
m e
R
W W
Q
P
At resonance   0

 

  
2
0
0 0
2
1
22 4
1
2
m
R
I L LW
Q
P RI R

 


  
2
2
0
0 0
2
0
1 1
2
2 4 1
1
2
e
R
I
W C
Q
P CRI R

X
Q
R
where 

 0
0
1
orX L
C
Q is a measure of the loss of
a resonance circuit, and lower
loss implies higher Q.
3/51
Department of Electronic Engineering, NTUT
Comparisons


X L
Q
R R
L R
C R


1X
Q
R CR
Although the Q is defined, but the resonant frequency can’t be defined
(they are not resonators).
• For series RL and series RC Circuits
4/51
Department of Electronic Engineering, NTUT
Define the Bandwidth
• For series resonant circuits, as   0
  

  
1
inZ R j L
j C
    0
Let   0  0
1
LC
 
 
   
 

 
    
           
    
 
2 2
0
22 2
2
0
1 1
1 1inZ R j L R j L R j L
LC
       

 
   
  0 0 0
2
0
2
R j L R jL
 

 
       
 0
2 2
QR
R j L R j

 0L
Q
R
I L R
C
 inZ
CV


where
5/51
Department of Electronic Engineering, NTUT
3-dB Bandwidth



0
2
BW


 
     
 
0
0
2
2
in
BW QR
Z R j R jBW QR
when 
1
BW
Q
   2inZ R jR R

   0
03-dB Bandwidth BW
Q
 
1
3-dB Bandwidth in % BW
Q
inZ
0

R
2R
2
• Define the bandwidth
When resonance occurs, the absolute
value of impedance is minimum in the
series resonant circuit.
6/51
Department of Electronic Engineering, NTUT
Parallel Resonant Circuit
 Parallel resonant circuit
  

  
1 1
inY j C
R j L

2
2
R
V
P
R

21
4
eW V C
 
  
2 2
2
2 2 2
1 1 1
4 4 4
m L
V V
W I L L
L L
At resonance, the angular resonant frequency  0 02 f
m eW W  0
1
LC
  0
1
inY
R
LI
LR C
 inY
V


7/51
Department of Electronic Engineering, NTUT
Parallel Resonant Circuit
• Quality Factor:
 


average energy stored
energy loss/sec
m e
R
W W
Q
P
At resonance   0

B
Q
G
where 

 0
0
1
orB C
L

1
G
R
Comparisons:


B R
Q
G L

B
Q CR
G
L
R
C
R
and
8/51
Department of Electronic Engineering, NTUT
3dB Bandwidth
• For parallel resonant circuits, as   0
   

    
1 1 1
2inY j C jC
R j L R



0
2
BWDefine
 




   0
0
1 1
2
2
in
BW Q Q
Y j jBW
R R R R
when 
1
BW
Q
  
1 1 2
inY j
R R R

   0
03-dB Bandwidth BW
Q
 
1
3-dB Bandwidth in % BW
Q
inY
0

1
R
2
R
2
When resonance occurs, the absolute
value of admittance is minimum
(maximum impedance) in the parallel
resonant circuit.
9/51
Department of Electronic Engineering, NTUT
Loaded and Unloaded Q
LR
Resonant
Circuit
Unloaded Q
• For series RLC circuit
• For parallel RLC circuit
 


 
 
0
0
1
L
L L
L
Q
R R C R R
 

  0
0
//
//L
L L
R R
Q C R R
L
• Define the external Q  eQ


 0
0
1
e
L L
L
Q
R R C
for series RLC


  0
0
L
e L
R
Q R C
L
 
1 1 1
L eQ Q Q
for parallel RLC
for both cases
10/51
Department of Electronic Engineering, NTUT
Impedance Matching
Matching
Network
in sZ R


sV
sR
LZo sZ R
  0in
Goal:
• The matching network is ideally lossless, to avoid unnecessary loss of
power, and is usually designed so that the impedance seen looking
into the matching network is Zo (matched with the transmission line) or Rs
(matched with the source impedance when no line connected).
• Maximum power is delivered when the load is matched to the line
(assuming the generator is matched), and power los in the feed line is
minimized.
• Impedance matching may be used to improve the signal-to-noise
ratio or amplitude/phase errors in some applications.
11/51
Department of Electronic Engineering, NTUT
Eight Ell Matching Sections (L-Shape)
LZ1C
2C
LZL
C
LZ1L
2L
LZC
L
LZC
L
LZ2C
1C
LZL
C
LZ2L
1L
12/51
Department of Electronic Engineering, NTUT
Lump Element Matching
• Two element (L-shape) matching


sV
sR
jX
jB LY  L L LY G jB
inZ
X : matching reactance
B : matching susceptance
We want to find X and B
 Case (a)   
1
ors s L
L
R R R
G
in sZ R

  

0in s
in s
Z R
Z R
Goal:
13/51
Department of Electronic Engineering, NTUT
L-Shape Matching – Case (a) Rs < RL
 
  
 
1
in s
L L
Z jX R
G jB jB
Real part:     1s L LR G X B B
Imaginary part:     0s L LR B B XG


sV
sR
jX
  Lj B B LG
lQsQ
Use the resonator concept:
Series RC or RL
Parallel RC or RL
s
s
X
Q
R l

 L
L
B B
Q
G
When the impedances are matched,
the imaginary part of the input
impedance looking into the matching
network is equal to zero.
14/51
Department of Electronic Engineering, NTUT
L-Shape Matching – Case (a) Rs < RL
Imaginary part:     0s L LR B B XG

   L
s
s L
X B B
Q Q
R G
lReal part:     1s L LR G X B B
  2
1 1s LR G Q   
1
1
s L
Q
R G
Choose l    
1
1s
s L
Q Q Q
R G
  
1
1s s
s L
X R Q R
R G
and
    
1
1L L L L
s L
B G Q B G B
R G
(>0, capacitance)
(<0, inductance)
(>0, inductance)
 
   
 
or 1L
s
R
R
When Q is chosen, X and B are also
decided.
15/51
Department of Electronic Engineering, NTUT
L-Shape Matching – Case (b) Rs > RL


sV
sR
jX
jB LZ  L L LZ R jX
inY
X : matching reactance
B : matching susceptance 
1
in
s
Y
R

  

1
0
1
in
s
in
s
Y
R
Y
R
Again, we want to find X and B
 Case (b) s LR R
Goal:
16/51
Department of Electronic Engineering, NTUT
L-Shape Matching – Case (b) Rs > RL
 
  
 
1 1
in
L L s
Y jB
R jX jX R
Real part:    s L s LBR X X R R
Imaginary part:     0L s LX X BR R
Use resonator concept:
s sQ BR l

 L
L
X X
Q
R


sV
sR
  Lj X X
jB LR
lQsQ
Parallel
RC or RL
Series RC or RL
When the impedances are matched,
the imaginary part of the input
admittance looking into the matching
network is equal to zero.
17/51
Department of Electronic Engineering, NTUT
L-Shape Matching – Case (b) Rs > RL
Imaginary part: l

   L
s s
L
X X
Q BR Q Q
R
Real part:
 2
L s LQ R R R   1s
L
R
Q
R
Choose l    1s
s
L
R
Q Q Q
R
    1s
L L L L
L
R
X R Q X R X
R
(>0, inductance)
  
1
1s
s s L
RQ
B
R R R
(>0, capacitance)
(<0, capacitance)
    0L s LX X BR R
   s L s LBR X X R R
When Q is chosen, X and B are also
decided.
18/51
Department of Electronic Engineering, NTUT
Series-to-Parallel Transformation
• Series-to-Parallel transformation
sR
sjX
pR
pjX
 s
s
s
X
Q
R
 s s sZ R jX
 p
p
p
R
Q
X



p p
p
p p
R jX
Z
R jX
    ps
s p
s p
RX
Q Q Q
R X

   

p p
s p s s
p p
R jX
Z Z R jX
R jX
  2
1s pR Q R
19/51
Department of Electronic Engineering, NTUT
Matching Bandwidth (I)
 Case (a)   
1
ors s L
L
R R R
G


sV
sR
jX
jB LY  L L LY G jB
inZ

 

in s
in s
Z R
Z R


sV
sR
jX
  Lj B B LG


sV
sR
jX eqjB
eqR

 2
1 1
1
eq
L
R
G Q
 2
11 L
eq
eq
G Q
B
QR Q

 
20/51
Department of Electronic Engineering, NTUT
Matching Bandwidth (II)


sV
sR
jX eqjB
eqR
Impedance matching at   0
      0
1
in eq s
eq
Z jX R R
jB
Imaginary part:  
1
0
eq
jX
jB
 1eqXB
Let  0X L  0eqB C  0
1
LC
Real part: eq sR R 
 2
1 1
1
s
L
R
G Q
  
1
1
L s
Q
G R
and ,where
and
Series resonant circuit
21/51
Department of Electronic Engineering, NTUT
Matching Bandwidth (III)


sV
sR
jX eqjB
eq sR R
inQ

1
2
L inQ Q
• Define QL and Qin for RLC resonator
      2
1in s L
eq
X
Q R Q G Q Q
R
 Find 3-dB bandwidth for 
Let X L eqB C
as   0 ,let     0  0
1
LC
  0



 
  
   
1
2
1 2 22
eqin s
in s s
s
eq
jX
jBZ R jL
Z R jL RjX R
jB
and
where and
22/51
Department of Electronic Engineering, NTUT
Matching Bandwidth (IV)
 3-dB bandwidth for    2 occurs when
 2 2 sL R

   02 2
2 s sR R
L X
3-dB Bandwidth in % BW



    
0
22 2 1 2
1
1
s
L
s L
R
BW
X Q Q
R G
 Similarly, for case (b)
  

1 2 2
1
1L
s L
BW
Q Q
R G

0

1
2
1
2
 
1
1
s L
Q
R G
 Case (a)

1
s
L
R
G
 1s
L
R
Q
R
 Case (b)
s LR R
23/51
Department of Electronic Engineering, NTUT
Example – L-Shape Matching (I)
• Find element values and 3-dB fractional bandwidth of the two-element
matching network.
     
1 2000
1 1
50s L
Q
R G
s
L
1
R < , choose case (a)
G
 6.245Q


       

       
6
6
50 6.245 2 100 10
6.245/ 2000 0 2 100 10
s
L L
X R Q L
B G Q B C
 1st Solution: choose
Matching
Network
  100in sZ f MHz R


sV
 50sR  2000LR
   100 0in f MHz
Goal:
LR
LR 4.9696C pF
 496.96L nH


sV
 50sR

   

  
-9
12
496.96 10 ( ) 496.96 ( )
4.9696 10 ( ) 4.9696 ( )
L H nH
C F pF
  6.245
24/51
Department of Electronic Engineering, NTUT
Example – L-Shape Matching (II)


         

         
6
6
50 ( 6.245) 1/(2 100 10 )
( 6.245)/ 2000 0 1/(2 100 10 )
s
L L
X R Q C
B G Q B L
 6.245Q 2nd Solution: choose


   

  
12
9
5.097 10 ( ) 5.097 ( )
509.7 10 ( ) 509.7 ( )
C F pF
L H nH
LR


sV
 50sR
 509.7L nH
 5.097C pF
   3dB
1 2 2
32%
| | 6.245L
BW
Q Q
 9dB 15dB16%, 8%BW BWand
25/51
Department of Electronic Engineering, NTUT
Three Elements Matching (High Q)
 Case (a) Pi-Shape Matching


sV
sR
2jX
3jB LY  L L LY G jB
inZ in sZ R

  

0in s
in s
Z R
Z R
1jB


sV
sR
1jX
LZ  L L LZ R jX
inZ in sZ R

  

0in s
in s
Z R
Z R
2jB
3jX
 Case (b) T-Shape Matching
26/51
Department of Electronic Engineering, NTUT
Pi-Shape Matching


sV
sR
2ajX
3jB LY  L L LY G jB
VR
1jB
2bjX
VR
 2 2 2a bX X X
VR : virtual resistance (designed by yourself)

1
V
L
R
G
V sR R
Splitting into 2 “L-shape” matching networks


sV
sR
2ajX
3jB LY
 L L LY G jB
1jB
2bjX
VR


sV
sR
in sZ R   0 in VZ R   0
27/51
Department of Electronic Engineering, NTUT
Pi-Shape Matching


sV
sR
2ajX
3jB LY
 L L LY G jB
1jB
2bjX
VR


sV
VR
in sZ R   0 in VZ R   0
  1 1s
V
R
Q
R
  2
1
1
V L
Q
R G
Since is small, you can get a high QVR
1
1
2
BW
Q
2
2
2
BW
Q
 1 2min ,BW BW BW
28/51
Department of Electronic Engineering, NTUT
T-Shape Matching
VR : virtual resistance (designed by yourself)


sV
sR
1jX
LZ  L L LZ R jX
VR
2ajB
3jX
2bjB
VR V LR RV sR R


sV
sR
1jX
LZ
 L L LZ R jX
in sZ R   0
2ajB
3jX
VR 2bjB


sV
VR
in VZ R   0
Splitting into 2 “L-shape” matching networks
29/51
Department of Electronic Engineering, NTUT
T-Shape Matching


sV
sR
1jX
in sZ R   0
2ajB VR LZ
 L L LZ R jX
3jX
2bjB


sV
VR
in VZ R   0
  1 1V
s
R
Q
R
  2 1V
L
R
Q
R
Since is large, you can get a high QVR
1
1
2
BW
Q
2
2
2
BW
Q
 1 2min ,BW BW BW
30/51
Department of Electronic Engineering, NTUT
Example – Pi and T Matching Networks
• Use Pi and T matching networks to achieve a matching BW<5%.
Matching
Network
  100in sZ f MHz R


sV
 50sR  2000LR
   100 0in f MHz
Goal:
LR
31/51
Department of Electronic Engineering, NTUT
Example – Pi Matching Network (I)


sV
 50sR
2ajX
3jB1jB
2bjX
 1.249VR


sV
 1.249VR
   100 50inZ f MHz
   100 0f MHz
   100 1.2492inZ f MHz
   100 0f MHz
VR LG
       1
50
1 1 6.247
1.2492
s
V
R
Q
R
       2
1 2000
1 1 40
1.2492V L
Q
R G


1
2000
LG
 Pi-section matching network
     1 2max(| |,| |) max( 50/ 1, 2000/ 1) 2000/ 1v v vQ Q Q R R R
    

2
5% 1.249
(2000/ ) 1
v
v
BW R
R
32/51
Department of Electronic Engineering, NTUT
Example – Pi Matching Network (II)


sV
 50sR
2ajX
1jB
 1.249VR
   100 50inZ f MHz
   100 0f MHz
VR
 1 6.247Q
 1
1 0
s
Q
B C
R
 198.85C pF
 2 1 0a VX R Q L  12.42L nH
 1 6.247Q


 1
1
0
1
s
Q
B
R L
 203.95C pF


 2 1
0
1
a VX R Q
C
 12.74L nH
33/51
Department of Electronic Engineering, NTUT
Example – Pi Matching Network (III)
3jB
2bjX


sV
 1.249VR
   100 1.2492inZ f MHz
   100 0f MHz


1
2000
LG
 2 40Q
  3 2 0L LB G Q B C  31.83C pF
 2 2 0b VX R Q L  79.53L nH
 2 40Q 

  3 2
0
1
L LB G Q B
L
 79.58L nH


 2 2
0
1
b VX R Q
C
 31.85C pF
34/51
Department of Electronic Engineering, NTUT
Example – Pi Matching Network (IV)
2k198.85pF
12.42nH


sV
50 79.53nH
31.83pF 2k198.85pF
12.42nH


sV 79.58nH
31.85pF
2k12.74nH
203.95pF


sV
50 79.53nH
31.83pF 2k12.74nH
203.95pF


sV
50
31.85pF
79.58nH
50
35/51
Department of Electronic Engineering, NTUT
Example – Pi Matching Network (V)
36/51
Department of Electronic Engineering, NTUT
Example – T Matching Network (I)


sV
50
1jX
   100 50inZ f MHz
   100 0f MHz
2ajB VR
3jX
2bjB


sV
 T-section matching network
     1 2max(| |,| |) max( ( /50) 1, ( / 2000) 1) ( /50) 1v v vQ Q Q R R R
    

2
5% 80050
( /50) 1
v
v
BW R
R
 80050VR
   100 80050inZ f MHz
   100 0f MHz
 80050VR
LR
 2LR k
       1
80050
1 1 40
50
V
s
R
Q
R
       2
80050
1 1 6.247
2000
V
L
R
Q
R
37/51
Department of Electronic Engineering, NTUT
Example – T Matching Network (II)


sV
50
1jX
   100 50inZ f MHz
   100 0f MHz
2ajB  80050VR
 1 40Q
 1 1 0sX R Q L  3.183L H
 1
2 0a
V
Q
B C
R
 0.795C pF


 1 1
0
1
sX R Q
C
 0.796C pF


 1
2
0
1
a
V
Q
B
R L
 3.185L H
 1 40Q
38/51
Department of Electronic Engineering, NTUT
Example – T Matching Network (III)
3jX
2bjB


sV
   100 80050inZ f MHz
   100 0f MHz
 80050VR
 2LR k
 2 6.247Q
  3 2 0L LX R Q X L  19.884L H
 2
2 0b
V
Q
B C
R
 0.124C pF


  3 2
0
1
L LX R Q X
C
 0.127C pF


 2
2
0
1
b
V
Q
B
R L
 20.394L H
 2 6.247Q
39/51
Department of Electronic Engineering, NTUT
Example – T Matching Network (IV)
2k0.795pF
3.183 H


sV
50 19.884 H
0.124pF
2k3.185 H
0.796pF


sV
50 19.884 H
0.124pF
2k0.795pF
3.183 H


sV
50 0.127pF
20.394 H
2k3.185 H
0.796pF


sV
50
0.127pF
20.394 H
40/51
Department of Electronic Engineering, NTUT
Example – T Matching Network (V)
41/51
Department of Electronic Engineering, NTUT
Cascaded L-Shape Matching (Low Q)
 Case (a)  
1
s V
L
R R
G


sV
sR
1jX
1jB LY  L L LY G jB
in sZ R
2jX
2jB
  0
VRVR


sV
VR
2jX
LY
 L L LY G jB
2jB


sV
sR
1jX
1jB VR
in sZ R
  0
in VZ R
  0
Splitting into 2 “L-shape” matching networks
42/51
Department of Electronic Engineering, NTUT
Cascaded L-Shape Matching (Low Q)


sV
VR
2jX
  2Lj B B LG


sV
sR
1jX
1jB VR
in sZ R
  0
in VZ R
  0
  1 1V
s
R
Q
R
  2
1
1
L V
Q
G R
We want to have the maximum bandwidth (find minimum Q)
Let  1 2Q Q Q  s
V
L
R
R
G
 

2 2 2
2 1
1
s L
BW
QQ
R G
43/51
Department of Electronic Engineering, NTUT
Cascaded L-Shape Matching (Low Q)
 Case (b)  s V LR R R


sV
sR
1jX
1jB LZ  L L LZ R jX
in sZ R
2jX
2jB
VRVR
  0


sV
sR
1jX
1jB LZ
 L L LZ R jX
in sZ R
2jX
2jB
  0
VR


sV
VR
in VZ R   0
Splitting into 2 “L-shape” matching networks
44/51
Department of Electronic Engineering, NTUT
Cascaded L-Shape Matching (Low Q)


sV
sR
1jX
1jB
in sZ R
 2 Lj X X
2jB
  0
VR


sV
VR
in VZ R   0
VR
  1 1s
V
R
Q
R
  2 1V
L
R
Q
R
Let  1 2Q Q Q V s LR R R
2 2 2
2 1
1
s L
BW
QQ
R G
 

We want to have the maximum bandwidth (find minimum Q)
45/51
Department of Electronic Engineering, NTUT
Example – Cascaded L-Shape Matching (I)
• Use Cascaded L-shape matching networks to achieve BW>60%.
Matching
Network
  100in sZ f MHz R


sV
 50sR  2000LR
   100 0in f MHz
Goal:
LR
Choose RV to let
   50 2000 316.23V s LR R R
  

2 2
61.29%
1 2000 50 11
s L
BW
R G
 s V LR R R
46/51
Department of Electronic Engineering, NTUT
Example – Cascaded L-Shape Matching (II)


sV
 50sR
1jX
1jB
   100 50inZ f MHz
2jX
2jB
   100 0f MHz
VR


sV
 316.23VR
   100 0f MHz
   100 316.23inZ f MHz
LR
       1
316.23
1 1 2.3075
50
V
s
R
Q
R
       2
2000
1 1 2.3075
316.23
L
V
R
Q
R
 1 2.3075Q
 1 1 0sX R Q L  183.63L nH
 1
1 0
V
Q
B C
R
 11.61C pF
 1 2.3075Q


 1 1
0
1
sX R Q
C
 13.79C pF


 1
1
0
1
V
Q
B
R L
 218.11L nH
 2 2.3075Q
 2 2 0VX R Q L  1.161L H
  2
2 0L
L
Q
B B C
R
 1.836C pF
 2 2.3075Q


 2 2
0
1
VX R Q
C
 2.181C pF


  2
2
0
1
L
L
Q
B B
R L
 1.379L H
 316.23VR  2LR k
47/51
Department of Electronic Engineering, NTUT
Example – Cascaded L-Shape Matching (III)
2k11.61pF
183.63nH


sV
50 1.161 H
1.836pF
2k218.11nH
13.79pF


sV
50 1.161 H
1.836pF
2k11.61pF
183.63nH


sV
50
2.181pF
1.379 H
2k218.11nH
13.79pF


sV
50
2.181pF
1.379 H
48/51
Department of Electronic Engineering, NTUT
Example – Cascaded L-Shape Matching (IV)
49/51
Department of Electronic Engineering, NTUT
Matching For Larger Bandwidth
L-Shape
Matching
Network


sV
 50sR
LR
L-Shape
Matching
Network
L-Shape
Matching
Network
• Use multi-section L-shape matching networks to extend BW.
50/51
Department of Electronic Engineering, NTUT
Summary
• Impedance matching is a procedure of transforming the
complex load impedance ZL to match with the source
impedance Zs or characteristics impedance Zo of the
transmission line (Generally, Zs = Rs = Zo).
• The lossless lumped element matching networks that are
commonly used include L-section, Pi-section, T-section,
and cascaded L-section. L-section has medium but not
adjustable matching bandwidth. Pi and T sections have
rather small and adjustable matching bandwidth.
Cascaded L-section can increase bandwidth as the
number of stages increases.
51/51

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
Chapter 2 passive components, resonators and impedance matching
Chapter 2 passive components, resonators and impedance matchingChapter 2 passive components, resonators and impedance matching
Chapter 2 passive components, resonators and impedance matching
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
Pulse shaping
Pulse shapingPulse shaping
Pulse shaping
 
Low noise amplifier
Low noise amplifierLow noise amplifier
Low noise amplifier
 
Random process and noise
Random process and noiseRandom process and noise
Random process and noise
 
Impedance Matching
Impedance MatchingImpedance Matching
Impedance Matching
 
Analog Layout design
Analog Layout design Analog Layout design
Analog Layout design
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
VLSI circuit design process
VLSI circuit design processVLSI circuit design process
VLSI circuit design process
 
Design of IIR filters
Design of IIR filtersDesign of IIR filters
Design of IIR filters
 

Andere mochten auch

Andere mochten auch (15)

電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 

Ähnlich wie RF Circuit Design - [Ch2-1] Resonator and Impedance Matching

LC2-EE3726-C14-Frequency_responses.pdf
LC2-EE3726-C14-Frequency_responses.pdfLC2-EE3726-C14-Frequency_responses.pdf
LC2-EE3726-C14-Frequency_responses.pdf
VQuangKhi
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
kiran93845
 

Ähnlich wie RF Circuit Design - [Ch2-1] Resonator and Impedance Matching (20)

unit 2.ppt
unit 2.pptunit 2.ppt
unit 2.ppt
 
lecture12.ppt
lecture12.pptlecture12.ppt
lecture12.ppt
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Unit 1
Unit 1Unit 1
Unit 1
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
 
Bridge ppt 1
Bridge ppt 1Bridge ppt 1
Bridge ppt 1
 
Lecture 4 b signalconditioning_ac bridge
Lecture 4 b signalconditioning_ac bridgeLecture 4 b signalconditioning_ac bridge
Lecture 4 b signalconditioning_ac bridge
 
Impedance Matching by YEASIN NEWAJ
Impedance Matching by YEASIN NEWAJ Impedance Matching by YEASIN NEWAJ
Impedance Matching by YEASIN NEWAJ
 
Natural response for RC and RL
Natural response for RC and RLNatural response for RC and RL
Natural response for RC and RL
 
RLC circuits.pdf
RLC circuits.pdfRLC circuits.pdf
RLC circuits.pdf
 
Transmission Lines Part 2 (TL Formulas).pptx
Transmission Lines Part 2 (TL Formulas).pptxTransmission Lines Part 2 (TL Formulas).pptx
Transmission Lines Part 2 (TL Formulas).pptx
 
LC2-EE3726-C14-Frequency_responses.pdf
LC2-EE3726-C14-Frequency_responses.pdfLC2-EE3726-C14-Frequency_responses.pdf
LC2-EE3726-C14-Frequency_responses.pdf
 
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
tlwg2.ppt filters and attunatotrs notes classification of filters and attunat...
 
module5.pdf
module5.pdfmodule5.pdf
module5.pdf
 
Lect_12_2016.pdf
Lect_12_2016.pdfLect_12_2016.pdf
Lect_12_2016.pdf
 
Electrical circuit ii (eee 121)
Electrical circuit ii (eee 121)Electrical circuit ii (eee 121)
Electrical circuit ii (eee 121)
 
Resonance in series and parallel circuits
Resonance in series and parallel circuitsResonance in series and parallel circuits
Resonance in series and parallel circuits
 
Lesson5
Lesson5Lesson5
Lesson5
 
Digital logic families
Digital logic familiesDigital logic families
Digital logic families
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppt
 

Mehr von Simen Li

Mehr von Simen Li (20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 

Kürzlich hochgeladen

"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 

Kürzlich hochgeladen (20)

Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 

RF Circuit Design - [Ch2-1] Resonator and Impedance Matching

  • 1. Chapter 2-1 Resonators and Impedance Matching with Lumped Elements Chien-Jung Li Department of Electronics Engineering National Taipei University of Technology
  • 2. Department of Electronic Engineering, NTUT Resonators • Lump Resonators  Series resonant circuit I R L C  inZ CV          1 inZ R j L j C  21 2 RP I R  21 4 mW I L      2 2 2 2 2 2 1 1 1 1 4 4 4 e C C W V C I I C C At resonant frequency  0 02 f m eW W  0 1 LC   0inZ R Resonance occurs when the average stored magnetic and electric energies are equal, and the input impedance is a purely real impedance. 2/51
  • 3. Department of Electronic Engineering, NTUT Series Resonant Circuit • Quality Factor:     average energy stored energy loss/sec m e R W W Q P At resonance   0        2 0 0 0 2 1 22 4 1 2 m R I L LW Q P RI R         2 2 0 0 0 2 0 1 1 2 2 4 1 1 2 e R I W C Q P CRI R  X Q R where    0 0 1 orX L C Q is a measure of the loss of a resonance circuit, and lower loss implies higher Q. 3/51
  • 4. Department of Electronic Engineering, NTUT Comparisons   X L Q R R L R C R   1X Q R CR Although the Q is defined, but the resonant frequency can’t be defined (they are not resonators). • For series RL and series RC Circuits 4/51
  • 5. Department of Electronic Engineering, NTUT Define the Bandwidth • For series resonant circuits, as   0        1 inZ R j L j C     0 Let   0  0 1 LC                                      2 2 0 22 2 2 0 1 1 1 1inZ R j L R j L R j L LC                  0 0 0 2 0 2 R j L R jL               0 2 2 QR R j L R j   0L Q R I L R C  inZ CV   where 5/51
  • 6. Department of Electronic Engineering, NTUT 3-dB Bandwidth    0 2 BW             0 0 2 2 in BW QR Z R j R jBW QR when  1 BW Q    2inZ R jR R     0 03-dB Bandwidth BW Q   1 3-dB Bandwidth in % BW Q inZ 0  R 2R 2 • Define the bandwidth When resonance occurs, the absolute value of impedance is minimum in the series resonant circuit. 6/51
  • 7. Department of Electronic Engineering, NTUT Parallel Resonant Circuit  Parallel resonant circuit        1 1 inY j C R j L  2 2 R V P R  21 4 eW V C      2 2 2 2 2 2 1 1 1 4 4 4 m L V V W I L L L L At resonance, the angular resonant frequency  0 02 f m eW W  0 1 LC   0 1 inY R LI LR C  inY V   7/51
  • 8. Department of Electronic Engineering, NTUT Parallel Resonant Circuit • Quality Factor:     average energy stored energy loss/sec m e R W W Q P At resonance   0  B Q G where    0 0 1 orB C L  1 G R Comparisons:   B R Q G L  B Q CR G L R C R and 8/51
  • 9. Department of Electronic Engineering, NTUT 3dB Bandwidth • For parallel resonant circuits, as   0           1 1 1 2inY j C jC R j L R    0 2 BWDefine          0 0 1 1 2 2 in BW Q Q Y j jBW R R R R when  1 BW Q    1 1 2 inY j R R R     0 03-dB Bandwidth BW Q   1 3-dB Bandwidth in % BW Q inY 0  1 R 2 R 2 When resonance occurs, the absolute value of admittance is minimum (maximum impedance) in the parallel resonant circuit. 9/51
  • 10. Department of Electronic Engineering, NTUT Loaded and Unloaded Q LR Resonant Circuit Unloaded Q • For series RLC circuit • For parallel RLC circuit         0 0 1 L L L L Q R R C R R      0 0 // //L L L R R Q C R R L • Define the external Q  eQ    0 0 1 e L L L Q R R C for series RLC     0 0 L e L R Q R C L   1 1 1 L eQ Q Q for parallel RLC for both cases 10/51
  • 11. Department of Electronic Engineering, NTUT Impedance Matching Matching Network in sZ R   sV sR LZo sZ R   0in Goal: • The matching network is ideally lossless, to avoid unnecessary loss of power, and is usually designed so that the impedance seen looking into the matching network is Zo (matched with the transmission line) or Rs (matched with the source impedance when no line connected). • Maximum power is delivered when the load is matched to the line (assuming the generator is matched), and power los in the feed line is minimized. • Impedance matching may be used to improve the signal-to-noise ratio or amplitude/phase errors in some applications. 11/51
  • 12. Department of Electronic Engineering, NTUT Eight Ell Matching Sections (L-Shape) LZ1C 2C LZL C LZ1L 2L LZC L LZC L LZ2C 1C LZL C LZ2L 1L 12/51
  • 13. Department of Electronic Engineering, NTUT Lump Element Matching • Two element (L-shape) matching   sV sR jX jB LY  L L LY G jB inZ X : matching reactance B : matching susceptance We want to find X and B  Case (a)    1 ors s L L R R R G in sZ R      0in s in s Z R Z R Goal: 13/51
  • 14. Department of Electronic Engineering, NTUT L-Shape Matching – Case (a) Rs < RL        1 in s L L Z jX R G jB jB Real part:     1s L LR G X B B Imaginary part:     0s L LR B B XG   sV sR jX   Lj B B LG lQsQ Use the resonator concept: Series RC or RL Parallel RC or RL s s X Q R l   L L B B Q G When the impedances are matched, the imaginary part of the input impedance looking into the matching network is equal to zero. 14/51
  • 15. Department of Electronic Engineering, NTUT L-Shape Matching – Case (a) Rs < RL Imaginary part:     0s L LR B B XG     L s s L X B B Q Q R G lReal part:     1s L LR G X B B   2 1 1s LR G Q    1 1 s L Q R G Choose l     1 1s s L Q Q Q R G    1 1s s s L X R Q R R G and      1 1L L L L s L B G Q B G B R G (>0, capacitance) (<0, inductance) (>0, inductance)         or 1L s R R When Q is chosen, X and B are also decided. 15/51
  • 16. Department of Electronic Engineering, NTUT L-Shape Matching – Case (b) Rs > RL   sV sR jX jB LZ  L L LZ R jX inY X : matching reactance B : matching susceptance  1 in s Y R      1 0 1 in s in s Y R Y R Again, we want to find X and B  Case (b) s LR R Goal: 16/51
  • 17. Department of Electronic Engineering, NTUT L-Shape Matching – Case (b) Rs > RL        1 1 in L L s Y jB R jX jX R Real part:    s L s LBR X X R R Imaginary part:     0L s LX X BR R Use resonator concept: s sQ BR l   L L X X Q R   sV sR   Lj X X jB LR lQsQ Parallel RC or RL Series RC or RL When the impedances are matched, the imaginary part of the input admittance looking into the matching network is equal to zero. 17/51
  • 18. Department of Electronic Engineering, NTUT L-Shape Matching – Case (b) Rs > RL Imaginary part: l     L s s L X X Q BR Q Q R Real part:  2 L s LQ R R R   1s L R Q R Choose l    1s s L R Q Q Q R     1s L L L L L R X R Q X R X R (>0, inductance)    1 1s s s L RQ B R R R (>0, capacitance) (<0, capacitance)     0L s LX X BR R    s L s LBR X X R R When Q is chosen, X and B are also decided. 18/51
  • 19. Department of Electronic Engineering, NTUT Series-to-Parallel Transformation • Series-to-Parallel transformation sR sjX pR pjX  s s s X Q R  s s sZ R jX  p p p R Q X    p p p p p R jX Z R jX     ps s p s p RX Q Q Q R X       p p s p s s p p R jX Z Z R jX R jX   2 1s pR Q R 19/51
  • 20. Department of Electronic Engineering, NTUT Matching Bandwidth (I)  Case (a)    1 ors s L L R R R G   sV sR jX jB LY  L L LY G jB inZ     in s in s Z R Z R   sV sR jX   Lj B B LG   sV sR jX eqjB eqR   2 1 1 1 eq L R G Q  2 11 L eq eq G Q B QR Q    20/51
  • 21. Department of Electronic Engineering, NTUT Matching Bandwidth (II)   sV sR jX eqjB eqR Impedance matching at   0       0 1 in eq s eq Z jX R R jB Imaginary part:   1 0 eq jX jB  1eqXB Let  0X L  0eqB C  0 1 LC Real part: eq sR R   2 1 1 1 s L R G Q    1 1 L s Q G R and ,where and Series resonant circuit 21/51
  • 22. Department of Electronic Engineering, NTUT Matching Bandwidth (III)   sV sR jX eqjB eq sR R inQ  1 2 L inQ Q • Define QL and Qin for RLC resonator       2 1in s L eq X Q R Q G Q Q R  Find 3-dB bandwidth for  Let X L eqB C as   0 ,let     0  0 1 LC   0             1 2 1 2 22 eqin s in s s s eq jX jBZ R jL Z R jL RjX R jB and where and 22/51
  • 23. Department of Electronic Engineering, NTUT Matching Bandwidth (IV)  3-dB bandwidth for    2 occurs when  2 2 sL R     02 2 2 s sR R L X 3-dB Bandwidth in % BW         0 22 2 1 2 1 1 s L s L R BW X Q Q R G  Similarly, for case (b)     1 2 2 1 1L s L BW Q Q R G  0  1 2 1 2   1 1 s L Q R G  Case (a)  1 s L R G  1s L R Q R  Case (b) s LR R 23/51
  • 24. Department of Electronic Engineering, NTUT Example – L-Shape Matching (I) • Find element values and 3-dB fractional bandwidth of the two-element matching network.       1 2000 1 1 50s L Q R G s L 1 R < , choose case (a) G  6.245Q                    6 6 50 6.245 2 100 10 6.245/ 2000 0 2 100 10 s L L X R Q L B G Q B C  1st Solution: choose Matching Network   100in sZ f MHz R   sV  50sR  2000LR    100 0in f MHz Goal: LR LR 4.9696C pF  496.96L nH   sV  50sR          -9 12 496.96 10 ( ) 496.96 ( ) 4.9696 10 ( ) 4.9696 ( ) L H nH C F pF   6.245 24/51
  • 25. Department of Electronic Engineering, NTUT Example – L-Shape Matching (II)                        6 6 50 ( 6.245) 1/(2 100 10 ) ( 6.245)/ 2000 0 1/(2 100 10 ) s L L X R Q C B G Q B L  6.245Q 2nd Solution: choose           12 9 5.097 10 ( ) 5.097 ( ) 509.7 10 ( ) 509.7 ( ) C F pF L H nH LR   sV  50sR  509.7L nH  5.097C pF    3dB 1 2 2 32% | | 6.245L BW Q Q  9dB 15dB16%, 8%BW BWand 25/51
  • 26. Department of Electronic Engineering, NTUT Three Elements Matching (High Q)  Case (a) Pi-Shape Matching   sV sR 2jX 3jB LY  L L LY G jB inZ in sZ R      0in s in s Z R Z R 1jB   sV sR 1jX LZ  L L LZ R jX inZ in sZ R      0in s in s Z R Z R 2jB 3jX  Case (b) T-Shape Matching 26/51
  • 27. Department of Electronic Engineering, NTUT Pi-Shape Matching   sV sR 2ajX 3jB LY  L L LY G jB VR 1jB 2bjX VR  2 2 2a bX X X VR : virtual resistance (designed by yourself)  1 V L R G V sR R Splitting into 2 “L-shape” matching networks   sV sR 2ajX 3jB LY  L L LY G jB 1jB 2bjX VR   sV sR in sZ R   0 in VZ R   0 27/51
  • 28. Department of Electronic Engineering, NTUT Pi-Shape Matching   sV sR 2ajX 3jB LY  L L LY G jB 1jB 2bjX VR   sV VR in sZ R   0 in VZ R   0   1 1s V R Q R   2 1 1 V L Q R G Since is small, you can get a high QVR 1 1 2 BW Q 2 2 2 BW Q  1 2min ,BW BW BW 28/51
  • 29. Department of Electronic Engineering, NTUT T-Shape Matching VR : virtual resistance (designed by yourself)   sV sR 1jX LZ  L L LZ R jX VR 2ajB 3jX 2bjB VR V LR RV sR R   sV sR 1jX LZ  L L LZ R jX in sZ R   0 2ajB 3jX VR 2bjB   sV VR in VZ R   0 Splitting into 2 “L-shape” matching networks 29/51
  • 30. Department of Electronic Engineering, NTUT T-Shape Matching   sV sR 1jX in sZ R   0 2ajB VR LZ  L L LZ R jX 3jX 2bjB   sV VR in VZ R   0   1 1V s R Q R   2 1V L R Q R Since is large, you can get a high QVR 1 1 2 BW Q 2 2 2 BW Q  1 2min ,BW BW BW 30/51
  • 31. Department of Electronic Engineering, NTUT Example – Pi and T Matching Networks • Use Pi and T matching networks to achieve a matching BW<5%. Matching Network   100in sZ f MHz R   sV  50sR  2000LR    100 0in f MHz Goal: LR 31/51
  • 32. Department of Electronic Engineering, NTUT Example – Pi Matching Network (I)   sV  50sR 2ajX 3jB1jB 2bjX  1.249VR   sV  1.249VR    100 50inZ f MHz    100 0f MHz    100 1.2492inZ f MHz    100 0f MHz VR LG        1 50 1 1 6.247 1.2492 s V R Q R        2 1 2000 1 1 40 1.2492V L Q R G   1 2000 LG  Pi-section matching network      1 2max(| |,| |) max( 50/ 1, 2000/ 1) 2000/ 1v v vQ Q Q R R R       2 5% 1.249 (2000/ ) 1 v v BW R R 32/51
  • 33. Department of Electronic Engineering, NTUT Example – Pi Matching Network (II)   sV  50sR 2ajX 1jB  1.249VR    100 50inZ f MHz    100 0f MHz VR  1 6.247Q  1 1 0 s Q B C R  198.85C pF  2 1 0a VX R Q L  12.42L nH  1 6.247Q    1 1 0 1 s Q B R L  203.95C pF    2 1 0 1 a VX R Q C  12.74L nH 33/51
  • 34. Department of Electronic Engineering, NTUT Example – Pi Matching Network (III) 3jB 2bjX   sV  1.249VR    100 1.2492inZ f MHz    100 0f MHz   1 2000 LG  2 40Q   3 2 0L LB G Q B C  31.83C pF  2 2 0b VX R Q L  79.53L nH  2 40Q     3 2 0 1 L LB G Q B L  79.58L nH    2 2 0 1 b VX R Q C  31.85C pF 34/51
  • 35. Department of Electronic Engineering, NTUT Example – Pi Matching Network (IV) 2k198.85pF 12.42nH   sV 50 79.53nH 31.83pF 2k198.85pF 12.42nH   sV 79.58nH 31.85pF 2k12.74nH 203.95pF   sV 50 79.53nH 31.83pF 2k12.74nH 203.95pF   sV 50 31.85pF 79.58nH 50 35/51
  • 36. Department of Electronic Engineering, NTUT Example – Pi Matching Network (V) 36/51
  • 37. Department of Electronic Engineering, NTUT Example – T Matching Network (I)   sV 50 1jX    100 50inZ f MHz    100 0f MHz 2ajB VR 3jX 2bjB   sV  T-section matching network      1 2max(| |,| |) max( ( /50) 1, ( / 2000) 1) ( /50) 1v v vQ Q Q R R R       2 5% 80050 ( /50) 1 v v BW R R  80050VR    100 80050inZ f MHz    100 0f MHz  80050VR LR  2LR k        1 80050 1 1 40 50 V s R Q R        2 80050 1 1 6.247 2000 V L R Q R 37/51
  • 38. Department of Electronic Engineering, NTUT Example – T Matching Network (II)   sV 50 1jX    100 50inZ f MHz    100 0f MHz 2ajB  80050VR  1 40Q  1 1 0sX R Q L  3.183L H  1 2 0a V Q B C R  0.795C pF    1 1 0 1 sX R Q C  0.796C pF    1 2 0 1 a V Q B R L  3.185L H  1 40Q 38/51
  • 39. Department of Electronic Engineering, NTUT Example – T Matching Network (III) 3jX 2bjB   sV    100 80050inZ f MHz    100 0f MHz  80050VR  2LR k  2 6.247Q   3 2 0L LX R Q X L  19.884L H  2 2 0b V Q B C R  0.124C pF     3 2 0 1 L LX R Q X C  0.127C pF    2 2 0 1 b V Q B R L  20.394L H  2 6.247Q 39/51
  • 40. Department of Electronic Engineering, NTUT Example – T Matching Network (IV) 2k0.795pF 3.183 H   sV 50 19.884 H 0.124pF 2k3.185 H 0.796pF   sV 50 19.884 H 0.124pF 2k0.795pF 3.183 H   sV 50 0.127pF 20.394 H 2k3.185 H 0.796pF   sV 50 0.127pF 20.394 H 40/51
  • 41. Department of Electronic Engineering, NTUT Example – T Matching Network (V) 41/51
  • 42. Department of Electronic Engineering, NTUT Cascaded L-Shape Matching (Low Q)  Case (a)   1 s V L R R G   sV sR 1jX 1jB LY  L L LY G jB in sZ R 2jX 2jB   0 VRVR   sV VR 2jX LY  L L LY G jB 2jB   sV sR 1jX 1jB VR in sZ R   0 in VZ R   0 Splitting into 2 “L-shape” matching networks 42/51
  • 43. Department of Electronic Engineering, NTUT Cascaded L-Shape Matching (Low Q)   sV VR 2jX   2Lj B B LG   sV sR 1jX 1jB VR in sZ R   0 in VZ R   0   1 1V s R Q R   2 1 1 L V Q G R We want to have the maximum bandwidth (find minimum Q) Let  1 2Q Q Q  s V L R R G    2 2 2 2 1 1 s L BW QQ R G 43/51
  • 44. Department of Electronic Engineering, NTUT Cascaded L-Shape Matching (Low Q)  Case (b)  s V LR R R   sV sR 1jX 1jB LZ  L L LZ R jX in sZ R 2jX 2jB VRVR   0   sV sR 1jX 1jB LZ  L L LZ R jX in sZ R 2jX 2jB   0 VR   sV VR in VZ R   0 Splitting into 2 “L-shape” matching networks 44/51
  • 45. Department of Electronic Engineering, NTUT Cascaded L-Shape Matching (Low Q)   sV sR 1jX 1jB in sZ R  2 Lj X X 2jB   0 VR   sV VR in VZ R   0 VR   1 1s V R Q R   2 1V L R Q R Let  1 2Q Q Q V s LR R R 2 2 2 2 1 1 s L BW QQ R G    We want to have the maximum bandwidth (find minimum Q) 45/51
  • 46. Department of Electronic Engineering, NTUT Example – Cascaded L-Shape Matching (I) • Use Cascaded L-shape matching networks to achieve BW>60%. Matching Network   100in sZ f MHz R   sV  50sR  2000LR    100 0in f MHz Goal: LR Choose RV to let    50 2000 316.23V s LR R R     2 2 61.29% 1 2000 50 11 s L BW R G  s V LR R R 46/51
  • 47. Department of Electronic Engineering, NTUT Example – Cascaded L-Shape Matching (II)   sV  50sR 1jX 1jB    100 50inZ f MHz 2jX 2jB    100 0f MHz VR   sV  316.23VR    100 0f MHz    100 316.23inZ f MHz LR        1 316.23 1 1 2.3075 50 V s R Q R        2 2000 1 1 2.3075 316.23 L V R Q R  1 2.3075Q  1 1 0sX R Q L  183.63L nH  1 1 0 V Q B C R  11.61C pF  1 2.3075Q    1 1 0 1 sX R Q C  13.79C pF    1 1 0 1 V Q B R L  218.11L nH  2 2.3075Q  2 2 0VX R Q L  1.161L H   2 2 0L L Q B B C R  1.836C pF  2 2.3075Q    2 2 0 1 VX R Q C  2.181C pF     2 2 0 1 L L Q B B R L  1.379L H  316.23VR  2LR k 47/51
  • 48. Department of Electronic Engineering, NTUT Example – Cascaded L-Shape Matching (III) 2k11.61pF 183.63nH   sV 50 1.161 H 1.836pF 2k218.11nH 13.79pF   sV 50 1.161 H 1.836pF 2k11.61pF 183.63nH   sV 50 2.181pF 1.379 H 2k218.11nH 13.79pF   sV 50 2.181pF 1.379 H 48/51
  • 49. Department of Electronic Engineering, NTUT Example – Cascaded L-Shape Matching (IV) 49/51
  • 50. Department of Electronic Engineering, NTUT Matching For Larger Bandwidth L-Shape Matching Network   sV  50sR LR L-Shape Matching Network L-Shape Matching Network • Use multi-section L-shape matching networks to extend BW. 50/51
  • 51. Department of Electronic Engineering, NTUT Summary • Impedance matching is a procedure of transforming the complex load impedance ZL to match with the source impedance Zs or characteristics impedance Zo of the transmission line (Generally, Zs = Rs = Zo). • The lossless lumped element matching networks that are commonly used include L-section, Pi-section, T-section, and cascaded L-section. L-section has medium but not adjustable matching bandwidth. Pi and T sections have rather small and adjustable matching bandwidth. Cascaded L-section can increase bandwidth as the number of stages increases. 51/51