SlideShare ist ein Scribd-Unternehmen logo
1 von 15
Downloaden Sie, um offline zu lesen
Amplitude Modulated Systems
(a) Modulation
1. In commercial TV transmission in India, picture and speech signals are
modulated respectively
(Picture) (Speech)
(a) VSB and VSB
(b)VSB and SSB
(c) VSB and FM
(d)FM and VSB
[GATE 1990: 2 Marks]
Soln. Note that VSB modulation is the clever compromise between SSB and
DSB. Since TV bandwidth is large so VSB is used for picture
transmission. Also, FM is the best option for speech because of better
noise immunity
Option (c)
2. In a double side-band (DSB) full carrier AM transmission system, if the
modulation index is doubled, then the ratio of total sideband power to the
carrier power increases by a factor of ____________.
[GATE 2014: 1 Mark]
Soln. The AM system is Double side band (DSB) with full carrier. The
expression for total power in such modulation signal is
𝑷𝒕 =
𝑬 𝒄 𝟐
𝟐𝑹
+
𝝁 𝟐
𝟒
𝑬 𝒄 𝟐
𝟐𝑹
+
𝝁 𝟐
𝟒
𝑬 𝒄 𝟐
𝟐𝑹
𝒐𝒓, 𝑷𝒕 = 𝑷 𝑪 +
𝝁 𝟐
𝟐
𝑷 𝑪
The second term on the right hand side is side band power.
𝒔𝒐, 𝑷 𝑺𝑩 =
𝝁 𝟐
𝟐
𝑷 𝑪
𝒐𝒓,
𝑷 𝑺𝑩
𝑷 𝑪
=
𝝁 𝟐
𝟐
Now if µ (modulation index) is doubled then
𝑷 𝑺𝑩
𝑷 𝑪
will be 4 times
So, it is factor of 4
Ans. Factor of 4
3. The maximum power efficiency of an AM modulator is
(a) 25%
(b)50%
(c) 33%
(d)100%
[GATE 1992: 2 Marks]
Soln. Efficiency of modulation can be given as
𝜼 =
𝑷 𝑺
𝑷 𝑪 + 𝑷 𝑺
=
𝝁 𝟐
𝟐
⁄ 𝑷 𝑪
𝑷 𝑪 +
𝝁 𝟐
𝟐
𝑷 𝑪
𝝁 𝟐
𝟐
⁄
𝟏 +
𝝁 𝟐
𝟐
⁄
=
𝝁 𝟐
(𝟐 + 𝝁 𝟐)
µ=1 is the optimum value
𝒔𝒐, 𝜼 =
𝟏
𝟐 + 𝟏
=
𝟏
𝟑
× 𝟏𝟎𝟎 = 𝟑𝟑%
Option (c)
4. Consider sinusoidal modulation in an AM systems. Assuming no over
modulation , the modulation index (µ) when the maximum and minimum
values of the envelope, respectively, are 3V and 1V is ____________
[GATE 2014: 1 Mark]
Soln. As given is the problem the modulation is sinusoidal this is also called
tone modulation.
There is no over modulation means that modulation index is less than or
equal to 1.
In such case the formula for modulation index is given by
𝝁 =
𝑬 𝒎𝒂𝒙 − 𝑬 𝒎𝒊𝒏
𝑬 𝒎𝒂𝒙 + 𝑬 𝒎𝒊𝒏
Where Emax is the maximum value of the envelope
Emin is the minimum value of the envelope.
This method is popular when the modulated waveform is observed is
CRO
𝝁 =
𝟑 − 𝟏
𝟑 + 𝟏
=
𝟐
𝟒
=
𝟏
𝟐
= 𝟎. 𝟓𝟎
Modulation index is 0.50
5. Which of the following analog modulation scheme requires the minimum
transmitted power and minimum channel band-width?
(a) VSB
(b)DSB-SC
(c) SSB
(d)AM
[GATE: 2005 1 Mark]
Soln. Modulation type BW Power
Conventional AM 2 fm Maximum power
DSB SC 2 fm (Less power)
VSB fm + vestige
SSB fm Less & power
So, SSB least power & bandwidth
Option (c)
6. Suppose that the modulating signal is 𝑚(𝑡) = 2 cos(2𝜋𝑓𝑚 𝑡) and the carrier
signal is 𝑥 𝐶(𝑡) = 𝐴 𝐶 cos(2𝜋𝑓𝑐 𝑡).Which one of the following is a
conventional AM signal without over-modulation?
(a) 𝑥(𝑡) = 𝐴 𝐶 𝑚(𝑡) cos(2𝜋𝑓𝑐 𝑡)
(b) 𝑥(𝑡) = 𝐴 𝐶[1 + 𝑚(𝑡)] cos(2𝜋𝑓𝑐 𝑡)
(c) 𝑥(𝑡) = 𝐴 𝐶 cos(2𝜋𝑓𝑐 𝑡) +
𝐴 𝐶
4
𝑚(𝑡) cos(2𝜋𝑓𝑐 𝑡)
(d) 𝑥(𝑡) = 𝐴 𝐶 cos(2𝜋𝑓𝑚 𝑡) cos(2𝜋𝑓𝑐 𝑡) + 𝐴 𝐶 sin(2𝜋𝑓𝑚 𝑡) sin(2𝜋𝑓𝑐 𝑡)
[GATE 2010: 1 Mark]
Soln. Given
Modulation signal𝒎(𝒕) = 𝟐 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒎 𝒕)
Carrier signal 𝒙 𝒄(𝒕) = 𝑨 𝑪 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒄)𝒕
Note that conventional AM is DSB – FC (DSB full carrier)
Standard Expression is given by
𝒆(𝒕) = 𝑬 𝑪[𝟏 + 𝒎(𝒕)] 𝐜𝐨𝐬 𝝎 𝒄 𝒕
Or 𝒆(𝒕) = 𝑬 𝑪[𝟏 + 𝝁 𝐜𝐨𝐬 𝝎 𝒎 𝒕] 𝐜𝐨𝐬 𝝎 𝒄 𝒕 − − − − − (𝟏)
Option (b) is 𝒙(𝒕) = 𝑨 𝑪[𝟏 + 𝟐 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒎 𝒕)] 𝐜𝐨𝐬 𝟐𝝅𝒇 𝒄 𝒕
Comparing this expression with the standard one given equation (I)
We get µ = 2 i.e. conventional AM with over modulation
Option (c)
𝒙(𝒕) = 𝑨 𝑪 𝐜𝐨𝐬 𝟐𝝅 𝒇 𝒄 𝒕 +
𝑨 𝑪
𝟒
𝒎(𝒕) 𝐜𝐨𝐬 𝟐𝝅 𝒇 𝒄 𝒕
= 𝑨 𝑪 [𝟏 +
𝟏
𝟒
. 𝟐 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒎 𝒕) 𝐜𝐨𝐬 𝟐𝝅𝒇 𝒄 𝒕]
= 𝑨 𝑪 [𝟏 +
𝟏
𝟐
𝐜𝐨𝐬(𝟐𝝅𝒇 𝒎 𝒕)] 𝐜𝐨𝐬 𝟐𝝅𝒇 𝒄 𝒕
Here 𝝁 = 𝟏
𝟐⁄
So, this represents conventional AM without over modulation.
Option (d) is non standard expression
So, correct option is option (c)
7. For a message signal 𝑚(𝑡) = cos(2𝜋𝑓𝑐 𝑡) and carrier of frequency𝑓𝑐. Which
of the following represents a single side-band (SSB) signal?
(a) cos(2𝜋𝑓𝑚 𝑡) cos(2𝜋𝑓𝑐 𝑡)
(b)cos(2𝜋𝑓𝑐 𝑡)
(c) cos[2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡]
(d)[1 + cos(2𝜋𝑓𝑚 𝑡)]. cos(2𝜋𝑓𝑐 𝑡)
[GATE 2009: 1 Mark]
Soln. Option (a) in the problem represents AM signal DSB-SC. If will have
both side bands
option (b) represents only the carrier frequency
Option (c), 𝐜𝐨𝐬[𝟐𝝅(𝒇 𝒄 + 𝒇 𝒎)𝒕] represents upper side band (SSB-SC).
It represent SSB signal
Option (d) represents the conventional AM signal
Ans. Option (c)
8. A DSB-SC signal is generated using the carrier cos(𝜔 𝐶 𝑡 + 𝜃) and
modulating signal x(t). The envelop of the DSB-SC signal is
(a) 𝑥(𝑡)
(b)|𝑥(𝑡)|
(c) Only positive portion of x(t)
(d) 𝑥(𝑡) cos 𝜃
[GATE 1998: 1 Mark]
Soln. Given
Carrier 𝒄(𝒕) = 𝐜𝐨𝐬(𝝎 𝒄 𝒕 + 𝜽)
Modulating signal 𝒎(𝒕) = 𝒙(𝒕)
DSB SC modulated signal is given by 𝒄(𝒕). 𝒎(𝒕) = 𝒔(𝒕)
= 𝒙(𝒕) 𝐜𝐨𝐬(𝝎 𝒄 𝒕 + 𝜽)
= 𝒙(𝒕){𝐜𝐨𝐬 𝜽 . 𝐜𝐨𝐬 𝝎 𝒄 𝒕 − 𝐬𝐢𝐧 𝜽 𝐬𝐢𝐧 𝝎 𝒄 𝒕}
= 𝒙(𝒕) 𝐜𝐨𝐬 𝜽 . 𝐜𝐨𝐬 𝝎 𝒄 𝒕 − 𝒙(𝒕). 𝐬𝐢𝐧 𝜽 𝐬𝐢𝐧 𝝎 𝒄 𝒕
Envelope of 𝒔(𝒕) = √[𝒙(𝒕) 𝐜𝐨𝐬 𝜽] 𝟐 + [𝒙(𝒕) 𝐬𝐢𝐧 𝜽] 𝟐
= √𝒙 𝟐(𝒕)(𝒄𝒐𝒔 𝟐 𝜽 + 𝒔𝒊𝒏 𝟐 𝜽)
= 𝒙(𝒕)
Option (b) |𝒙(𝒕)|
9. A 1 MHz sinusoidal carrier is amplitude modulated by a symmetrical square
wave of period 100 µsec. Which of the following frequencies will not be
present in the modulated signal?
(a) 990 kHz
(b)1010 kHz
(c) 1020 kHz
(d)1030 kHz
[GATE 2002: 1 Mark]
Soln. Frequency of carrier signal is 𝟏𝑴𝑯𝒛 = 𝟏𝟎𝟎𝟎 𝑲𝑯𝒛
Modulation signal is square wave of period 100 µS.
Frequency =
𝟏
𝟏𝟎𝟎×𝟏𝟎−𝟔
= 𝟏𝟎 𝑲𝑯𝒛
Since modulation signal is symmetrical square wave it will contain only
odd harmonics i.e. 10 KHz, 30 KHz, 50 KHz -----etc.
Thus the modulated signal has
𝒇 𝒄 ± 𝒇 𝒎 = (𝟏𝟎𝟎𝟎 ± 𝟏𝟎𝑲𝑯𝒛) = 𝟏𝟎𝟏𝟎𝑲𝑯𝒛 & 𝟗𝟗𝟎 𝑲𝑯𝒛
𝒇 𝒄 ± 𝟑𝒇 𝒎 = (𝟏𝟎𝟎𝟎 ± 𝟑𝟎𝑲𝑯𝒛) = 𝟏𝟎𝟑𝟎𝑲𝑯𝒛 & 𝟗𝟕𝟎 𝑲𝑯𝒛
So, 1020 KHz will not be present in modulated signal
Option (c)
10.A message signal given by 𝑚(𝑡) = (
1
2
) cos 𝜔1 𝑡 − (
1
2
) sin 𝜔2 𝑡 is amplitude
modulated with a carrier of frequency ωc to generate
𝑠(𝑡) = [1 + 𝑚(𝑡)] cos 𝜔𝑐 𝑡
What is the power efficiency achieved by this modulation scheme?
(a) 8.33%
(b)11.11%
(c) 20%
(d)25%
[GATE 2009: 2 Marks]
Soln. Given
𝒎(𝒕) =
𝟏
𝟐
𝐜𝐨𝐬 𝝎 𝟏 𝒕 −
𝟏
𝟐
𝐬𝐢𝐧 𝝎 𝟐 𝒕
𝒔(𝒕) = [𝟏 + 𝒎(𝒕)] 𝐜𝐨𝐬 𝝎 𝒄 𝒕
Note that the modulation frequency are 𝝎 𝟏 𝒂𝒏𝒅 𝝎 𝟐 i.e. multitone
modulation
Net modulation index is 𝝁 = √ 𝝁 𝟏
𝟐
+ 𝝁 𝟐
𝟐
+ − − 𝝁 𝒏
𝟐
Here, 𝝁 = √(
𝟏
𝟐
)
𝟐
+ (
𝟏
𝟐
)
𝟐
=
𝟏
√𝟐
𝜼 =
𝝁 𝟐
𝝁 𝟐 + 𝟐
× 𝟏𝟎𝟎%
=
(𝟏/√𝟐)
𝟐
(𝟏/√𝟐)
𝟐
+
× 𝟏𝟎𝟎% = 𝟐𝟎%
Option (c)
11. A 4 GHz carrier is DSB-SC modulated by a low-pass message signal with
maximum frequency of 2 MHz. The resultant signal is to be ideally sampled.
The minimum frequency of the sampling impulse train should be
(a) 4 MHz
(b)8 MHz
(c) 8 GHz
(d)8.004 GHz
[GATE: 1990 2 Mark]
Soln. Given
𝒇 𝒄 = 𝟒 𝑮𝑯𝒛 = 𝟒𝟎𝟎𝟎 𝑴𝑯𝒛
𝒇 𝒎 = 𝟐 𝑴𝑯𝒛 (𝒍𝒐𝒘 𝒑𝒂𝒔𝒔 𝒎𝒆𝒔𝒔𝒂𝒈𝒆 𝒔𝒊𝒈𝒏𝒂𝒍)
Such a signal is amplitude modulated (DSB-SC) i.e. two side bands
(𝒇 𝒄 + 𝒇 𝒎)&(𝒇 𝒄 − 𝒇 𝒎)
i.e. 4002 & 3998 or 4 MHz = BW
so, min. sampling frequency should be (Nyquist Rate)
option (b) 𝒇 𝒔(𝒎𝒊𝒏) = 𝟐 × 𝟒 = 𝟖 𝑴𝑯𝒛
(b) Demodulation
12.Consider the amplitude modulated (AM) signal𝐴 𝐶 cos 𝜔𝑐 𝑡 +
2 cos 𝜔 𝑚 𝑡 cos 𝜔𝑐 𝑡. For demodulating the signal using envelope detector, the
minimum value of AC should be
(a) 2
(b)1
(c) 0.5
(d)0
[GATE 2008: 1 Mark]
Soln. Modulated signal is given as
𝝋 𝑨𝑴(𝒕) = 𝑨 𝒄 𝐜𝐨𝐬 𝝎 𝒄 𝒕 + 𝟐 𝐜𝐨𝐬 𝛚 𝐦 𝐭. 𝐜𝐨𝐬 𝝎 𝒄 𝒕
𝝋 𝑨𝑴(𝒕) = [𝑨 𝒄 + 𝟐 𝐜𝐨𝐬 𝝎 𝒄 𝒕] 𝐜𝐨𝐬 𝝎 𝒎 𝒕
Note that for envelope detection the modulation should not go beyond
full modulation i.e. 𝝁 = 𝟏, so amplitude of baseband signal has to be
less than the carrier amplitude (Ac)
|𝒇(𝒕)| 𝒎𝒂𝒙 ≤ 𝑨 𝒄
i.e. |𝟐 𝐜𝐨𝐬 𝝎 𝒎 𝒕| 𝒎𝒂𝒙 = 𝟐 ≤ 𝑨 𝒄
or𝑨 𝒄 ≥ 𝟐
option (a)
13.Which of the following demodulator (s) can be used for demodulating the
signal
𝑥(𝑡) = 5(1 + 2 cos 200 𝜋𝑡)𝑐𝑜𝑠20000𝜋𝑡
(a) Envelope demodulator
(b)Square-law demodulator
(c) Synchronous demodulator
(d)None of the above
[GATE 1993: 2 Marks]
Soln. The modulated signal given is 𝒙(𝒕) = 𝟓(𝟏 + 𝟐 𝐜𝐨𝐬 𝟐𝟎𝟎𝝅𝒕). 𝐜𝐨𝐬 𝟐𝟎𝟎𝟎𝝅𝒕
The standard equation for AM is
𝑿 𝑨𝑴(𝒕) = 𝑨 𝒄(𝟏 + 𝝁 𝐜𝐨𝐬 𝝎 𝒎 𝒕) 𝐜𝐨𝐬 𝝎 𝒄 𝒕
If we compare the two equation we find 𝝁 = 𝟐.
The modulation index is more than 1 here, so it is the case of over
modulation.
When modulation index is more than 1 (over modulation) then detection
is possible only with, Synchronous modulation, such signal can not be
detected with envelope detector.
Option (c)
14. The amplitude modulated wave form 𝑠(𝑡) = 𝐴 𝐶[1 + 𝐾𝑎 𝑚(𝑡)] cos 𝜔 𝐶 𝑡 is
fed to an ideal envelope detector. The maximum magnitude of 𝐾𝑎 𝑚(𝑡) is
greater than 1. Which of the following could be the detector output ?
(a) 𝐴 𝑐 𝑚(𝑡)
(b) 𝐴 𝑐
2[1 + 𝐾𝑎 𝑚(𝑡)]2
(c) |𝐴 𝐶[1 + 𝐾𝑎 𝑚(𝑡)]|
(d) 𝐴 𝐶|1 + 𝐾𝑎 𝑚(𝑡)|2
[GATE 2000: 1 Mark]
Soln. Given
|𝑲 𝒂 𝒎(𝒕)|>|
For the above condition the AM signal is over modulated. Envelope
detector will not be able to detect over modulated signal correctly.
Non of the above options
15. The diagonal clipping in Amplitude Demodulation (using envelope
detector) can be avoided if RC time-constant of the envelope detector
satisfies the following condition, (here W is message bandwidth and ω is
carrier frequency both in rad/sec)
(a) 𝑅𝐶 <
1
𝑊
(b) 𝑅𝐶 >
1
𝑊
(c) 𝑅𝐶 <
1
𝜔
(d) 𝑅𝐶 >
1
𝜔
[GATE 2006: 2 Marks]
Soln. It is seen that to avoid negative peak clipping also said diagonal clipping
the RC time constant of detector should be
Or 𝝉 <
𝟏
𝒇 𝒎
Note fm is maximum modulating frequency i.e. the bandwidth w
So, 𝑹𝑪 <
𝟏
𝒘
16. An AM signal is detected using an envelope detector. The carrier frequency
and modulation signal frequency are 1 MHz and 2 KHz respectively. An
appropriate value for the time constant of the envelope detector is
(a) 500 µsec
(b)20 µsec
(c) 0.2 µsec
(d)1 µsec
[GATE 2004: 1 Mark]
Soln. Note that the time constant RC should satisfy the following condition
𝟏
𝒇 𝒄
< 𝑹𝑪 <
𝟏
𝒇 𝒎
𝟏
𝟏×𝟏𝟎 𝟔
< 𝑹𝑪 <
𝟏
𝟐×𝟏𝟎 𝟑
Or 𝟏 𝝁𝒔 < 𝑹𝑪 < 𝟎. 𝟓𝒎𝒔
Option (b)
17. A DSB-SC signal is to be generated with a carrier frequency 𝑓𝑐 = 1𝑀𝐻𝑧
using a non-linear device with the input-output characteristic
𝑉0 = 𝑎0 𝑣𝑖 + 𝑎1 𝑣𝑖
3
Where a0 and a1 are constants. The output of the non-linear device can be
filtered by an appropriate band-pass filter.
Let 𝑉𝑖 = 𝐴 𝑐
𝑖
cos(2𝜋𝑓𝑐
𝑖
𝑡) + 𝑚(𝑡) where m(t) is the message signal. Then the
value of 𝑓𝑐
𝑖
(in MHz) is
(a) 1.0
(b)0.333
(c) 0.5
(d)3.0
[GATE 2003: 2 Marks]
Soln. 𝑽 𝟎 = 𝝋 𝟎[𝑨 𝒄
𝒊
𝐜𝐨𝐬(𝟐𝝅𝒇 𝒄
𝒊
𝒕) + 𝒎(𝒕)]
+𝝋 𝟏[𝑨 𝒄
𝒊
𝝋 𝑨𝑴(𝒕) = 𝑨 𝒄 𝐜𝐨𝐬 𝝎 𝒄 𝒕 𝟐 𝐜𝐨𝐬 𝝎 𝒄 𝒕]
= 𝝋 𝟎[𝑨 𝒄
𝒊
𝐜𝐨𝐬(𝟐𝝅𝒇 𝒄
𝒊
𝒕) + 𝒎(𝒕)]
+𝝋 𝟏 [(𝑨 𝒄
𝒊
)
𝟑
𝒄𝒐𝒔 𝟑
(𝟐𝝅𝒇 𝒄
𝒊
𝒕) + 𝒎 𝟑(𝒕)]
+𝟑. 𝑨 𝒄
𝒊
𝐜𝐨𝐬(𝟐𝝅𝒇 𝒄
𝒊
𝒕). 𝒎 𝟐(𝒕) + 𝟑. (𝑨 𝒄
𝒊
)
𝟐
𝒄𝒐𝒔 𝟐
(𝟐𝝅𝒇 𝒄
𝒊
𝒕). 𝒎(𝒕)
AM – DSB – SC signal lies is
𝝋 𝟏. 𝟑(𝑨 𝒄
𝒊
)
𝟐
𝒎(𝒕)𝒄𝒐𝒔 𝟐
(𝝅𝒇 𝒄
𝒊
𝒕)
For DSB – SC the last term is important
𝟑𝝋 𝟏(𝑨 𝒄
𝒊
)
𝟐
𝒄𝒐𝒔 𝟐
𝟐𝝅𝒇 𝒄
𝒊
𝒕. 𝒎(𝒕)
𝟑 𝝋 𝟏(𝑨 𝒄
𝒊
)
𝟐
. 𝒎(𝒕). [𝟏 + 𝐜𝐨𝐬 𝟐𝝅(𝟐𝒇 𝒄
𝒊
)𝒕]
Note 𝒎(𝒕) 𝐜𝐨𝐬 𝝎 𝒄 𝒕 → 𝒇 𝒄 (𝒄𝒂𝒓𝒓𝒊𝒆𝒓) = 𝟏𝑴𝑯𝒛
For 𝒄𝒐𝒔 𝟐
term as expended the term is having 𝟐𝒇 𝒄
𝒊
𝟐𝒇 𝒄
𝒊
= 𝟏𝑴𝑯𝒛 𝒔𝒐, 𝒇 𝒄
𝒊
= 𝟎. 𝟓 𝑴𝑯𝒛
Option (c)
18.A message signal 𝑚(𝑡) = cos 2000 𝜋𝑡 + 4 cos 4000 𝜋𝑡 modulates the
carriers 𝑐(𝑡) = cos 2𝜋𝑓𝑐 𝑡 where 𝑓𝑐 = 1𝑀𝐻𝑧 to produce an AM signal. For
demodulating the generated AM signal using an envelope detector, the time
constant RC of the detector circuit should satisfy
(a) 0.5 ms< RC < 1 ms
(b)1 µs << RC < 0.5 ms
(c) RC<< 1 µs
(d)RC >> 0.5 ms
[GATE 2011: 2 Marks]
Soln. Message signal is
𝒎(𝒕) = 𝐜𝐨𝐬 𝟐𝟎𝟎𝟎𝝅𝒕 + 𝟒 𝐜𝐨𝐬 𝟒𝟎𝟎𝟎𝝅𝒕
It consist of two frequencies 𝝎 𝟏 = 𝟐𝟎𝟎𝟎𝝅
Or 𝟐𝝅𝒇 𝟏 = 𝟐𝟎𝟎𝟎𝝅
Or 𝒇 𝟏 = 𝟏𝑲𝑯𝒛
𝒇 𝟐 = 𝟐 𝑲𝑯𝒛
So, Max frequency is 2 KHz
So,
𝟏
𝒇 𝒄
<< 𝑹𝑪 <
𝟏
𝒇 𝒎
𝟏
𝟏 𝑴𝑯𝒛
<< 𝑹𝑪 <
𝟏
𝟐 𝑲𝑯𝒛
Or, 𝟏𝝁𝒔 << 𝑹𝑺 < 𝟎. 𝟓𝒎𝒔
Option (b)
(c) Receivers
19. A super heterodyne radio receiver with an intermediate frequency of 455
KHz is tuned to a station operating at 1200 KHz. The associated image
frequency is -----------KHz
[GATE 1993: 2 Marks]
Soln. In most receivers the local oscillator frequency is higher than incoming
signal i.e.
𝒇 𝟎(𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝒐𝒇 𝒍𝒐𝒄𝒂𝒍 𝒐𝒔𝒄𝒊𝒍𝒍𝒂𝒕𝒐𝒓) = 𝒇 𝒔 + 𝒇𝒊
Where 𝒇 𝒔------- signal frequency
𝒇𝒊 𝒐𝒓 𝒇 𝒔𝒊 -------- Image frequency
𝒇 𝒔𝒊 = 𝒇 𝒔 + 𝟐𝑰𝑭 = 𝒇 𝒔 + 𝟐𝒇𝒊
𝒇 𝒔𝒊 = 𝟏𝟐𝟎𝟎 + 𝟐(𝟒𝟓𝟓)
𝒇 𝒔𝒊 = 𝟐𝟏𝟏𝟎 𝑲𝑯𝒛
so, answer is 2110 KHz
20. The image channel selectivity of superheterodyne receiver depends upon
(a) IF amplifiers only
(b)RF and IF amplifiers only
(c) Pre selector, RF and IF amplifiers
(d)Pre selector and RF amplifiers
[GATE 1998: 1 Marks]
Soln. Image rejection depends on front end selectivity of receiver and must be
achieved before If stage. So image channel selectivity depends upon pre
selector & RF amplifier. If it enters IF stage it becomes impossible to
remove it from wanted signal.
Option (d)
NOTE:- Similar problems have appeared in GATE 1995, 1996 and 1987.
Only problem statement is different otherwise they are same problems.

Weitere ähnliche Inhalte

Was ist angesagt?

Electrónica: diseño y construcción de un transmisor y receptor FM estéreo par...
Electrónica: diseño y construcción de un transmisor y receptor FM estéreo par...Electrónica: diseño y construcción de un transmisor y receptor FM estéreo par...
Electrónica: diseño y construcción de un transmisor y receptor FM estéreo par...
SANTIAGO PABLO ALBERTO
 
Public Switched Telephone Network
Public Switched Telephone NetworkPublic Switched Telephone Network
Public Switched Telephone Network
Haither Mithath
 
Modulation
ModulationModulation
Modulation
sristykp
 
Lecture 12 representación espacial de señales
Lecture 12 representación espacial de señalesLecture 12 representación espacial de señales
Lecture 12 representación espacial de señales
nica2009
 
Chapter 6m
Chapter 6mChapter 6m
Chapter 6m
wafaa_A7
 

Was ist angesagt? (20)

Amplitude shift keying
Amplitude shift keyingAmplitude shift keying
Amplitude shift keying
 
Equalization
EqualizationEqualization
Equalization
 
Waveguides and its Types Field view and structures
Waveguides and its Types Field view and structuresWaveguides and its Types Field view and structures
Waveguides and its Types Field view and structures
 
M ary psk modulation
M ary psk modulationM ary psk modulation
M ary psk modulation
 
Amplitude shift keying (ask)
Amplitude shift keying (ask)Amplitude shift keying (ask)
Amplitude shift keying (ask)
 
3.3 modulation formats msk and gmsk
3.3 modulation formats   msk and gmsk3.3 modulation formats   msk and gmsk
3.3 modulation formats msk and gmsk
 
Digital modulation techniques
Digital modulation techniquesDigital modulation techniques
Digital modulation techniques
 
Pcm
PcmPcm
Pcm
 
Electrónica: diseño y construcción de un transmisor y receptor FM estéreo par...
Electrónica: diseño y construcción de un transmisor y receptor FM estéreo par...Electrónica: diseño y construcción de un transmisor y receptor FM estéreo par...
Electrónica: diseño y construcción de un transmisor y receptor FM estéreo par...
 
Public Switched Telephone Network
Public Switched Telephone NetworkPublic Switched Telephone Network
Public Switched Telephone Network
 
Double sideband suppressed carrier (dsb sc) modulation
Double sideband suppressed carrier (dsb sc) modulationDouble sideband suppressed carrier (dsb sc) modulation
Double sideband suppressed carrier (dsb sc) modulation
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
Modulation
ModulationModulation
Modulation
 
Ch 1 optical fiber introduction
Ch 1 optical fiber introductionCh 1 optical fiber introduction
Ch 1 optical fiber introduction
 
Lecture 12 representación espacial de señales
Lecture 12 representación espacial de señalesLecture 12 representación espacial de señales
Lecture 12 representación espacial de señales
 
Chapter 6m
Chapter 6mChapter 6m
Chapter 6m
 
Pulse Modulation ppt
Pulse Modulation pptPulse Modulation ppt
Pulse Modulation ppt
 
Radio receivers
Radio receiversRadio receivers
Radio receivers
 
Blake chpater8
Blake chpater8Blake chpater8
Blake chpater8
 
Unit 1
Unit 1Unit 1
Unit 1
 

Ähnlich wie Amplitude modulated-systems

Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
avocado1111
 

Ähnlich wie Amplitude modulated-systems (20)

_Amplitude-Modulated-Systems.pdf
_Amplitude-Modulated-Systems.pdf_Amplitude-Modulated-Systems.pdf
_Amplitude-Modulated-Systems.pdf
 
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptxgvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
 
EE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheetEE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheet
 
Amplitude modulated-systmes
Amplitude modulated-systmesAmplitude modulated-systmes
Amplitude modulated-systmes
 
21EEB0A12_Deepak_Chaurasiyahugytfrd5er.pptx
21EEB0A12_Deepak_Chaurasiyahugytfrd5er.pptx21EEB0A12_Deepak_Chaurasiyahugytfrd5er.pptx
21EEB0A12_Deepak_Chaurasiyahugytfrd5er.pptx
 
Analog Communication about amplitude modulation
Analog Communication about amplitude modulationAnalog Communication about amplitude modulation
Analog Communication about amplitude modulation
 
COMMUNICATION SYSTEM_Module-2_part1 (1).pdf
COMMUNICATION SYSTEM_Module-2_part1 (1).pdfCOMMUNICATION SYSTEM_Module-2_part1 (1).pdf
COMMUNICATION SYSTEM_Module-2_part1 (1).pdf
 
ADC PPT.pptx
ADC PPT.pptxADC PPT.pptx
ADC PPT.pptx
 
fading channels
 fading channels fading channels
fading channels
 
Analog and Digital Communication_ADC.pptx
Analog and Digital Communication_ADC.pptxAnalog and Digital Communication_ADC.pptx
Analog and Digital Communication_ADC.pptx
 
_Pulse-Modulation-Systems.pdf
_Pulse-Modulation-Systems.pdf_Pulse-Modulation-Systems.pdf
_Pulse-Modulation-Systems.pdf
 
2109986 635316076040095000
2109986 6353160760400950002109986 635316076040095000
2109986 635316076040095000
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
Digital Communication
Digital CommunicationDigital Communication
Digital Communication
 
analog communication and introduction of AM
analog communication and introduction of  AManalog communication and introduction of  AM
analog communication and introduction of AM
 
Comparative Study and Performance Analysis of different Modulation Techniques...
Comparative Study and Performance Analysis of different Modulation Techniques...Comparative Study and Performance Analysis of different Modulation Techniques...
Comparative Study and Performance Analysis of different Modulation Techniques...
 
Calculate the bandwidth of the composite channel
Calculate the bandwidth of the composite channelCalculate the bandwidth of the composite channel
Calculate the bandwidth of the composite channel
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 
Amplitude Modulation.ppt
Amplitude Modulation.pptAmplitude Modulation.ppt
Amplitude Modulation.ppt
 
Amplitude modulation
Amplitude modulationAmplitude modulation
Amplitude modulation
 

Mehr von Bharti Airtel Ltd.

Mehr von Bharti Airtel Ltd. (20)

Resume Shyamveer
Resume ShyamveerResume Shyamveer
Resume Shyamveer
 
BHEL Final Report
BHEL Final ReportBHEL Final Report
BHEL Final Report
 
BHEL PPT
BHEL PPTBHEL PPT
BHEL PPT
 
Mcq5 ac-fet-amplifiers
Mcq5 ac-fet-amplifiersMcq5 ac-fet-amplifiers
Mcq5 ac-fet-amplifiers
 
Mcq6 ac-mosfet-amplifier
Mcq6 ac-mosfet-amplifierMcq6 ac-mosfet-amplifier
Mcq6 ac-mosfet-amplifier
 
C bjt-biasing-and-stabilization
C bjt-biasing-and-stabilizationC bjt-biasing-and-stabilization
C bjt-biasing-and-stabilization
 
Mcq6 ac-mosfet-amplifier
Mcq6 ac-mosfet-amplifierMcq6 ac-mosfet-amplifier
Mcq6 ac-mosfet-amplifier
 
Mcq4 ac-operational-amplifiers
Mcq4 ac-operational-amplifiersMcq4 ac-operational-amplifiers
Mcq4 ac-operational-amplifiers
 
Logic gates-notesdc-iii
Logic gates-notesdc-iiiLogic gates-notesdc-iii
Logic gates-notesdc-iii
 
C bjt-biasing-and-stabilization
C bjt-biasing-and-stabilizationC bjt-biasing-and-stabilization
C bjt-biasing-and-stabilization
 
B bjt-characteristics
B bjt-characteristicsB bjt-characteristics
B bjt-characteristics
 
A bjt-operating-modes-configurations
A bjt-operating-modes-configurationsA bjt-operating-modes-configurations
A bjt-operating-modes-configurations
 
Resume shyam final
Resume shyam finalResume shyam final
Resume shyam final
 
Noise detection from the signal matlab code, Signal Diagnosis
Noise detection from the signal matlab code, Signal Diagnosis Noise detection from the signal matlab code, Signal Diagnosis
Noise detection from the signal matlab code, Signal Diagnosis
 
Sequence detector Verilog Code
Sequence detector Verilog CodeSequence detector Verilog Code
Sequence detector Verilog Code
 
Divine inspiration
Divine inspirationDivine inspiration
Divine inspiration
 
To designing counters using verilog code
To designing counters using verilog codeTo designing counters using verilog code
To designing counters using verilog code
 
Verilog VHDL code Multiplexer and De Multiplexer
Verilog VHDL code Multiplexer and De Multiplexer Verilog VHDL code Multiplexer and De Multiplexer
Verilog VHDL code Multiplexer and De Multiplexer
 
Verilog VHDL code Decoder and Encoder
Verilog VHDL code Decoder and EncoderVerilog VHDL code Decoder and Encoder
Verilog VHDL code Decoder and Encoder
 
Verilog VHDL code Parallel adder
Verilog VHDL code Parallel adder Verilog VHDL code Parallel adder
Verilog VHDL code Parallel adder
 

Kürzlich hochgeladen

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Kürzlich hochgeladen (20)

PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 

Amplitude modulated-systems

  • 1. Amplitude Modulated Systems (a) Modulation 1. In commercial TV transmission in India, picture and speech signals are modulated respectively (Picture) (Speech) (a) VSB and VSB (b)VSB and SSB (c) VSB and FM (d)FM and VSB [GATE 1990: 2 Marks] Soln. Note that VSB modulation is the clever compromise between SSB and DSB. Since TV bandwidth is large so VSB is used for picture transmission. Also, FM is the best option for speech because of better noise immunity Option (c) 2. In a double side-band (DSB) full carrier AM transmission system, if the modulation index is doubled, then the ratio of total sideband power to the carrier power increases by a factor of ____________. [GATE 2014: 1 Mark] Soln. The AM system is Double side band (DSB) with full carrier. The expression for total power in such modulation signal is 𝑷𝒕 = 𝑬 𝒄 𝟐 𝟐𝑹 + 𝝁 𝟐 𝟒 𝑬 𝒄 𝟐 𝟐𝑹 + 𝝁 𝟐 𝟒 𝑬 𝒄 𝟐 𝟐𝑹
  • 2. 𝒐𝒓, 𝑷𝒕 = 𝑷 𝑪 + 𝝁 𝟐 𝟐 𝑷 𝑪 The second term on the right hand side is side band power. 𝒔𝒐, 𝑷 𝑺𝑩 = 𝝁 𝟐 𝟐 𝑷 𝑪 𝒐𝒓, 𝑷 𝑺𝑩 𝑷 𝑪 = 𝝁 𝟐 𝟐 Now if µ (modulation index) is doubled then 𝑷 𝑺𝑩 𝑷 𝑪 will be 4 times So, it is factor of 4 Ans. Factor of 4 3. The maximum power efficiency of an AM modulator is (a) 25% (b)50% (c) 33% (d)100% [GATE 1992: 2 Marks] Soln. Efficiency of modulation can be given as 𝜼 = 𝑷 𝑺 𝑷 𝑪 + 𝑷 𝑺 = 𝝁 𝟐 𝟐 ⁄ 𝑷 𝑪 𝑷 𝑪 + 𝝁 𝟐 𝟐 𝑷 𝑪 𝝁 𝟐 𝟐 ⁄ 𝟏 + 𝝁 𝟐 𝟐 ⁄ = 𝝁 𝟐 (𝟐 + 𝝁 𝟐)
  • 3. µ=1 is the optimum value 𝒔𝒐, 𝜼 = 𝟏 𝟐 + 𝟏 = 𝟏 𝟑 × 𝟏𝟎𝟎 = 𝟑𝟑% Option (c) 4. Consider sinusoidal modulation in an AM systems. Assuming no over modulation , the modulation index (µ) when the maximum and minimum values of the envelope, respectively, are 3V and 1V is ____________ [GATE 2014: 1 Mark] Soln. As given is the problem the modulation is sinusoidal this is also called tone modulation. There is no over modulation means that modulation index is less than or equal to 1. In such case the formula for modulation index is given by 𝝁 = 𝑬 𝒎𝒂𝒙 − 𝑬 𝒎𝒊𝒏 𝑬 𝒎𝒂𝒙 + 𝑬 𝒎𝒊𝒏 Where Emax is the maximum value of the envelope Emin is the minimum value of the envelope. This method is popular when the modulated waveform is observed is CRO 𝝁 = 𝟑 − 𝟏 𝟑 + 𝟏 = 𝟐 𝟒 = 𝟏 𝟐 = 𝟎. 𝟓𝟎 Modulation index is 0.50
  • 4. 5. Which of the following analog modulation scheme requires the minimum transmitted power and minimum channel band-width? (a) VSB (b)DSB-SC (c) SSB (d)AM [GATE: 2005 1 Mark] Soln. Modulation type BW Power Conventional AM 2 fm Maximum power DSB SC 2 fm (Less power) VSB fm + vestige SSB fm Less & power So, SSB least power & bandwidth Option (c) 6. Suppose that the modulating signal is 𝑚(𝑡) = 2 cos(2𝜋𝑓𝑚 𝑡) and the carrier signal is 𝑥 𝐶(𝑡) = 𝐴 𝐶 cos(2𝜋𝑓𝑐 𝑡).Which one of the following is a conventional AM signal without over-modulation? (a) 𝑥(𝑡) = 𝐴 𝐶 𝑚(𝑡) cos(2𝜋𝑓𝑐 𝑡) (b) 𝑥(𝑡) = 𝐴 𝐶[1 + 𝑚(𝑡)] cos(2𝜋𝑓𝑐 𝑡) (c) 𝑥(𝑡) = 𝐴 𝐶 cos(2𝜋𝑓𝑐 𝑡) + 𝐴 𝐶 4 𝑚(𝑡) cos(2𝜋𝑓𝑐 𝑡) (d) 𝑥(𝑡) = 𝐴 𝐶 cos(2𝜋𝑓𝑚 𝑡) cos(2𝜋𝑓𝑐 𝑡) + 𝐴 𝐶 sin(2𝜋𝑓𝑚 𝑡) sin(2𝜋𝑓𝑐 𝑡) [GATE 2010: 1 Mark] Soln. Given Modulation signal𝒎(𝒕) = 𝟐 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒎 𝒕) Carrier signal 𝒙 𝒄(𝒕) = 𝑨 𝑪 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒄)𝒕 Note that conventional AM is DSB – FC (DSB full carrier) Standard Expression is given by
  • 5. 𝒆(𝒕) = 𝑬 𝑪[𝟏 + 𝒎(𝒕)] 𝐜𝐨𝐬 𝝎 𝒄 𝒕 Or 𝒆(𝒕) = 𝑬 𝑪[𝟏 + 𝝁 𝐜𝐨𝐬 𝝎 𝒎 𝒕] 𝐜𝐨𝐬 𝝎 𝒄 𝒕 − − − − − (𝟏) Option (b) is 𝒙(𝒕) = 𝑨 𝑪[𝟏 + 𝟐 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒎 𝒕)] 𝐜𝐨𝐬 𝟐𝝅𝒇 𝒄 𝒕 Comparing this expression with the standard one given equation (I) We get µ = 2 i.e. conventional AM with over modulation Option (c) 𝒙(𝒕) = 𝑨 𝑪 𝐜𝐨𝐬 𝟐𝝅 𝒇 𝒄 𝒕 + 𝑨 𝑪 𝟒 𝒎(𝒕) 𝐜𝐨𝐬 𝟐𝝅 𝒇 𝒄 𝒕 = 𝑨 𝑪 [𝟏 + 𝟏 𝟒 . 𝟐 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒎 𝒕) 𝐜𝐨𝐬 𝟐𝝅𝒇 𝒄 𝒕] = 𝑨 𝑪 [𝟏 + 𝟏 𝟐 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒎 𝒕)] 𝐜𝐨𝐬 𝟐𝝅𝒇 𝒄 𝒕 Here 𝝁 = 𝟏 𝟐⁄ So, this represents conventional AM without over modulation. Option (d) is non standard expression So, correct option is option (c) 7. For a message signal 𝑚(𝑡) = cos(2𝜋𝑓𝑐 𝑡) and carrier of frequency𝑓𝑐. Which of the following represents a single side-band (SSB) signal? (a) cos(2𝜋𝑓𝑚 𝑡) cos(2𝜋𝑓𝑐 𝑡) (b)cos(2𝜋𝑓𝑐 𝑡) (c) cos[2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡] (d)[1 + cos(2𝜋𝑓𝑚 𝑡)]. cos(2𝜋𝑓𝑐 𝑡) [GATE 2009: 1 Mark]
  • 6. Soln. Option (a) in the problem represents AM signal DSB-SC. If will have both side bands option (b) represents only the carrier frequency Option (c), 𝐜𝐨𝐬[𝟐𝝅(𝒇 𝒄 + 𝒇 𝒎)𝒕] represents upper side band (SSB-SC). It represent SSB signal Option (d) represents the conventional AM signal Ans. Option (c) 8. A DSB-SC signal is generated using the carrier cos(𝜔 𝐶 𝑡 + 𝜃) and modulating signal x(t). The envelop of the DSB-SC signal is (a) 𝑥(𝑡) (b)|𝑥(𝑡)| (c) Only positive portion of x(t) (d) 𝑥(𝑡) cos 𝜃 [GATE 1998: 1 Mark] Soln. Given Carrier 𝒄(𝒕) = 𝐜𝐨𝐬(𝝎 𝒄 𝒕 + 𝜽) Modulating signal 𝒎(𝒕) = 𝒙(𝒕) DSB SC modulated signal is given by 𝒄(𝒕). 𝒎(𝒕) = 𝒔(𝒕) = 𝒙(𝒕) 𝐜𝐨𝐬(𝝎 𝒄 𝒕 + 𝜽) = 𝒙(𝒕){𝐜𝐨𝐬 𝜽 . 𝐜𝐨𝐬 𝝎 𝒄 𝒕 − 𝐬𝐢𝐧 𝜽 𝐬𝐢𝐧 𝝎 𝒄 𝒕} = 𝒙(𝒕) 𝐜𝐨𝐬 𝜽 . 𝐜𝐨𝐬 𝝎 𝒄 𝒕 − 𝒙(𝒕). 𝐬𝐢𝐧 𝜽 𝐬𝐢𝐧 𝝎 𝒄 𝒕 Envelope of 𝒔(𝒕) = √[𝒙(𝒕) 𝐜𝐨𝐬 𝜽] 𝟐 + [𝒙(𝒕) 𝐬𝐢𝐧 𝜽] 𝟐 = √𝒙 𝟐(𝒕)(𝒄𝒐𝒔 𝟐 𝜽 + 𝒔𝒊𝒏 𝟐 𝜽) = 𝒙(𝒕) Option (b) |𝒙(𝒕)|
  • 7. 9. A 1 MHz sinusoidal carrier is amplitude modulated by a symmetrical square wave of period 100 µsec. Which of the following frequencies will not be present in the modulated signal? (a) 990 kHz (b)1010 kHz (c) 1020 kHz (d)1030 kHz [GATE 2002: 1 Mark] Soln. Frequency of carrier signal is 𝟏𝑴𝑯𝒛 = 𝟏𝟎𝟎𝟎 𝑲𝑯𝒛 Modulation signal is square wave of period 100 µS. Frequency = 𝟏 𝟏𝟎𝟎×𝟏𝟎−𝟔 = 𝟏𝟎 𝑲𝑯𝒛 Since modulation signal is symmetrical square wave it will contain only odd harmonics i.e. 10 KHz, 30 KHz, 50 KHz -----etc. Thus the modulated signal has 𝒇 𝒄 ± 𝒇 𝒎 = (𝟏𝟎𝟎𝟎 ± 𝟏𝟎𝑲𝑯𝒛) = 𝟏𝟎𝟏𝟎𝑲𝑯𝒛 & 𝟗𝟗𝟎 𝑲𝑯𝒛 𝒇 𝒄 ± 𝟑𝒇 𝒎 = (𝟏𝟎𝟎𝟎 ± 𝟑𝟎𝑲𝑯𝒛) = 𝟏𝟎𝟑𝟎𝑲𝑯𝒛 & 𝟗𝟕𝟎 𝑲𝑯𝒛 So, 1020 KHz will not be present in modulated signal Option (c) 10.A message signal given by 𝑚(𝑡) = ( 1 2 ) cos 𝜔1 𝑡 − ( 1 2 ) sin 𝜔2 𝑡 is amplitude modulated with a carrier of frequency ωc to generate 𝑠(𝑡) = [1 + 𝑚(𝑡)] cos 𝜔𝑐 𝑡 What is the power efficiency achieved by this modulation scheme? (a) 8.33% (b)11.11% (c) 20% (d)25% [GATE 2009: 2 Marks]
  • 8. Soln. Given 𝒎(𝒕) = 𝟏 𝟐 𝐜𝐨𝐬 𝝎 𝟏 𝒕 − 𝟏 𝟐 𝐬𝐢𝐧 𝝎 𝟐 𝒕 𝒔(𝒕) = [𝟏 + 𝒎(𝒕)] 𝐜𝐨𝐬 𝝎 𝒄 𝒕 Note that the modulation frequency are 𝝎 𝟏 𝒂𝒏𝒅 𝝎 𝟐 i.e. multitone modulation Net modulation index is 𝝁 = √ 𝝁 𝟏 𝟐 + 𝝁 𝟐 𝟐 + − − 𝝁 𝒏 𝟐 Here, 𝝁 = √( 𝟏 𝟐 ) 𝟐 + ( 𝟏 𝟐 ) 𝟐 = 𝟏 √𝟐 𝜼 = 𝝁 𝟐 𝝁 𝟐 + 𝟐 × 𝟏𝟎𝟎% = (𝟏/√𝟐) 𝟐 (𝟏/√𝟐) 𝟐 + × 𝟏𝟎𝟎% = 𝟐𝟎% Option (c) 11. A 4 GHz carrier is DSB-SC modulated by a low-pass message signal with maximum frequency of 2 MHz. The resultant signal is to be ideally sampled. The minimum frequency of the sampling impulse train should be (a) 4 MHz (b)8 MHz (c) 8 GHz (d)8.004 GHz [GATE: 1990 2 Mark] Soln. Given 𝒇 𝒄 = 𝟒 𝑮𝑯𝒛 = 𝟒𝟎𝟎𝟎 𝑴𝑯𝒛 𝒇 𝒎 = 𝟐 𝑴𝑯𝒛 (𝒍𝒐𝒘 𝒑𝒂𝒔𝒔 𝒎𝒆𝒔𝒔𝒂𝒈𝒆 𝒔𝒊𝒈𝒏𝒂𝒍) Such a signal is amplitude modulated (DSB-SC) i.e. two side bands (𝒇 𝒄 + 𝒇 𝒎)&(𝒇 𝒄 − 𝒇 𝒎)
  • 9. i.e. 4002 & 3998 or 4 MHz = BW so, min. sampling frequency should be (Nyquist Rate) option (b) 𝒇 𝒔(𝒎𝒊𝒏) = 𝟐 × 𝟒 = 𝟖 𝑴𝑯𝒛 (b) Demodulation 12.Consider the amplitude modulated (AM) signal𝐴 𝐶 cos 𝜔𝑐 𝑡 + 2 cos 𝜔 𝑚 𝑡 cos 𝜔𝑐 𝑡. For demodulating the signal using envelope detector, the minimum value of AC should be (a) 2 (b)1 (c) 0.5 (d)0 [GATE 2008: 1 Mark] Soln. Modulated signal is given as 𝝋 𝑨𝑴(𝒕) = 𝑨 𝒄 𝐜𝐨𝐬 𝝎 𝒄 𝒕 + 𝟐 𝐜𝐨𝐬 𝛚 𝐦 𝐭. 𝐜𝐨𝐬 𝝎 𝒄 𝒕 𝝋 𝑨𝑴(𝒕) = [𝑨 𝒄 + 𝟐 𝐜𝐨𝐬 𝝎 𝒄 𝒕] 𝐜𝐨𝐬 𝝎 𝒎 𝒕 Note that for envelope detection the modulation should not go beyond full modulation i.e. 𝝁 = 𝟏, so amplitude of baseband signal has to be less than the carrier amplitude (Ac) |𝒇(𝒕)| 𝒎𝒂𝒙 ≤ 𝑨 𝒄 i.e. |𝟐 𝐜𝐨𝐬 𝝎 𝒎 𝒕| 𝒎𝒂𝒙 = 𝟐 ≤ 𝑨 𝒄 or𝑨 𝒄 ≥ 𝟐 option (a) 13.Which of the following demodulator (s) can be used for demodulating the signal
  • 10. 𝑥(𝑡) = 5(1 + 2 cos 200 𝜋𝑡)𝑐𝑜𝑠20000𝜋𝑡 (a) Envelope demodulator (b)Square-law demodulator (c) Synchronous demodulator (d)None of the above [GATE 1993: 2 Marks] Soln. The modulated signal given is 𝒙(𝒕) = 𝟓(𝟏 + 𝟐 𝐜𝐨𝐬 𝟐𝟎𝟎𝝅𝒕). 𝐜𝐨𝐬 𝟐𝟎𝟎𝟎𝝅𝒕 The standard equation for AM is 𝑿 𝑨𝑴(𝒕) = 𝑨 𝒄(𝟏 + 𝝁 𝐜𝐨𝐬 𝝎 𝒎 𝒕) 𝐜𝐨𝐬 𝝎 𝒄 𝒕 If we compare the two equation we find 𝝁 = 𝟐. The modulation index is more than 1 here, so it is the case of over modulation. When modulation index is more than 1 (over modulation) then detection is possible only with, Synchronous modulation, such signal can not be detected with envelope detector. Option (c) 14. The amplitude modulated wave form 𝑠(𝑡) = 𝐴 𝐶[1 + 𝐾𝑎 𝑚(𝑡)] cos 𝜔 𝐶 𝑡 is fed to an ideal envelope detector. The maximum magnitude of 𝐾𝑎 𝑚(𝑡) is greater than 1. Which of the following could be the detector output ? (a) 𝐴 𝑐 𝑚(𝑡) (b) 𝐴 𝑐 2[1 + 𝐾𝑎 𝑚(𝑡)]2 (c) |𝐴 𝐶[1 + 𝐾𝑎 𝑚(𝑡)]| (d) 𝐴 𝐶|1 + 𝐾𝑎 𝑚(𝑡)|2 [GATE 2000: 1 Mark] Soln. Given |𝑲 𝒂 𝒎(𝒕)|>| For the above condition the AM signal is over modulated. Envelope detector will not be able to detect over modulated signal correctly. Non of the above options
  • 11. 15. The diagonal clipping in Amplitude Demodulation (using envelope detector) can be avoided if RC time-constant of the envelope detector satisfies the following condition, (here W is message bandwidth and ω is carrier frequency both in rad/sec) (a) 𝑅𝐶 < 1 𝑊 (b) 𝑅𝐶 > 1 𝑊 (c) 𝑅𝐶 < 1 𝜔 (d) 𝑅𝐶 > 1 𝜔 [GATE 2006: 2 Marks] Soln. It is seen that to avoid negative peak clipping also said diagonal clipping the RC time constant of detector should be Or 𝝉 < 𝟏 𝒇 𝒎 Note fm is maximum modulating frequency i.e. the bandwidth w So, 𝑹𝑪 < 𝟏 𝒘 16. An AM signal is detected using an envelope detector. The carrier frequency and modulation signal frequency are 1 MHz and 2 KHz respectively. An appropriate value for the time constant of the envelope detector is (a) 500 µsec (b)20 µsec (c) 0.2 µsec (d)1 µsec [GATE 2004: 1 Mark] Soln. Note that the time constant RC should satisfy the following condition 𝟏 𝒇 𝒄 < 𝑹𝑪 < 𝟏 𝒇 𝒎 𝟏 𝟏×𝟏𝟎 𝟔 < 𝑹𝑪 < 𝟏 𝟐×𝟏𝟎 𝟑 Or 𝟏 𝝁𝒔 < 𝑹𝑪 < 𝟎. 𝟓𝒎𝒔 Option (b)
  • 12. 17. A DSB-SC signal is to be generated with a carrier frequency 𝑓𝑐 = 1𝑀𝐻𝑧 using a non-linear device with the input-output characteristic 𝑉0 = 𝑎0 𝑣𝑖 + 𝑎1 𝑣𝑖 3 Where a0 and a1 are constants. The output of the non-linear device can be filtered by an appropriate band-pass filter. Let 𝑉𝑖 = 𝐴 𝑐 𝑖 cos(2𝜋𝑓𝑐 𝑖 𝑡) + 𝑚(𝑡) where m(t) is the message signal. Then the value of 𝑓𝑐 𝑖 (in MHz) is (a) 1.0 (b)0.333 (c) 0.5 (d)3.0 [GATE 2003: 2 Marks] Soln. 𝑽 𝟎 = 𝝋 𝟎[𝑨 𝒄 𝒊 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒄 𝒊 𝒕) + 𝒎(𝒕)] +𝝋 𝟏[𝑨 𝒄 𝒊 𝝋 𝑨𝑴(𝒕) = 𝑨 𝒄 𝐜𝐨𝐬 𝝎 𝒄 𝒕 𝟐 𝐜𝐨𝐬 𝝎 𝒄 𝒕] = 𝝋 𝟎[𝑨 𝒄 𝒊 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒄 𝒊 𝒕) + 𝒎(𝒕)] +𝝋 𝟏 [(𝑨 𝒄 𝒊 ) 𝟑 𝒄𝒐𝒔 𝟑 (𝟐𝝅𝒇 𝒄 𝒊 𝒕) + 𝒎 𝟑(𝒕)] +𝟑. 𝑨 𝒄 𝒊 𝐜𝐨𝐬(𝟐𝝅𝒇 𝒄 𝒊 𝒕). 𝒎 𝟐(𝒕) + 𝟑. (𝑨 𝒄 𝒊 ) 𝟐 𝒄𝒐𝒔 𝟐 (𝟐𝝅𝒇 𝒄 𝒊 𝒕). 𝒎(𝒕) AM – DSB – SC signal lies is 𝝋 𝟏. 𝟑(𝑨 𝒄 𝒊 ) 𝟐 𝒎(𝒕)𝒄𝒐𝒔 𝟐 (𝝅𝒇 𝒄 𝒊 𝒕) For DSB – SC the last term is important 𝟑𝝋 𝟏(𝑨 𝒄 𝒊 ) 𝟐 𝒄𝒐𝒔 𝟐 𝟐𝝅𝒇 𝒄 𝒊 𝒕. 𝒎(𝒕) 𝟑 𝝋 𝟏(𝑨 𝒄 𝒊 ) 𝟐 . 𝒎(𝒕). [𝟏 + 𝐜𝐨𝐬 𝟐𝝅(𝟐𝒇 𝒄 𝒊 )𝒕] Note 𝒎(𝒕) 𝐜𝐨𝐬 𝝎 𝒄 𝒕 → 𝒇 𝒄 (𝒄𝒂𝒓𝒓𝒊𝒆𝒓) = 𝟏𝑴𝑯𝒛 For 𝒄𝒐𝒔 𝟐 term as expended the term is having 𝟐𝒇 𝒄 𝒊 𝟐𝒇 𝒄 𝒊 = 𝟏𝑴𝑯𝒛 𝒔𝒐, 𝒇 𝒄 𝒊 = 𝟎. 𝟓 𝑴𝑯𝒛 Option (c)
  • 13. 18.A message signal 𝑚(𝑡) = cos 2000 𝜋𝑡 + 4 cos 4000 𝜋𝑡 modulates the carriers 𝑐(𝑡) = cos 2𝜋𝑓𝑐 𝑡 where 𝑓𝑐 = 1𝑀𝐻𝑧 to produce an AM signal. For demodulating the generated AM signal using an envelope detector, the time constant RC of the detector circuit should satisfy (a) 0.5 ms< RC < 1 ms (b)1 µs << RC < 0.5 ms (c) RC<< 1 µs (d)RC >> 0.5 ms [GATE 2011: 2 Marks] Soln. Message signal is 𝒎(𝒕) = 𝐜𝐨𝐬 𝟐𝟎𝟎𝟎𝝅𝒕 + 𝟒 𝐜𝐨𝐬 𝟒𝟎𝟎𝟎𝝅𝒕 It consist of two frequencies 𝝎 𝟏 = 𝟐𝟎𝟎𝟎𝝅 Or 𝟐𝝅𝒇 𝟏 = 𝟐𝟎𝟎𝟎𝝅 Or 𝒇 𝟏 = 𝟏𝑲𝑯𝒛 𝒇 𝟐 = 𝟐 𝑲𝑯𝒛 So, Max frequency is 2 KHz So, 𝟏 𝒇 𝒄 << 𝑹𝑪 < 𝟏 𝒇 𝒎 𝟏 𝟏 𝑴𝑯𝒛 << 𝑹𝑪 < 𝟏 𝟐 𝑲𝑯𝒛 Or, 𝟏𝝁𝒔 << 𝑹𝑺 < 𝟎. 𝟓𝒎𝒔 Option (b)
  • 14. (c) Receivers 19. A super heterodyne radio receiver with an intermediate frequency of 455 KHz is tuned to a station operating at 1200 KHz. The associated image frequency is -----------KHz [GATE 1993: 2 Marks] Soln. In most receivers the local oscillator frequency is higher than incoming signal i.e. 𝒇 𝟎(𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝒐𝒇 𝒍𝒐𝒄𝒂𝒍 𝒐𝒔𝒄𝒊𝒍𝒍𝒂𝒕𝒐𝒓) = 𝒇 𝒔 + 𝒇𝒊 Where 𝒇 𝒔------- signal frequency 𝒇𝒊 𝒐𝒓 𝒇 𝒔𝒊 -------- Image frequency 𝒇 𝒔𝒊 = 𝒇 𝒔 + 𝟐𝑰𝑭 = 𝒇 𝒔 + 𝟐𝒇𝒊 𝒇 𝒔𝒊 = 𝟏𝟐𝟎𝟎 + 𝟐(𝟒𝟓𝟓) 𝒇 𝒔𝒊 = 𝟐𝟏𝟏𝟎 𝑲𝑯𝒛 so, answer is 2110 KHz
  • 15. 20. The image channel selectivity of superheterodyne receiver depends upon (a) IF amplifiers only (b)RF and IF amplifiers only (c) Pre selector, RF and IF amplifiers (d)Pre selector and RF amplifiers [GATE 1998: 1 Marks] Soln. Image rejection depends on front end selectivity of receiver and must be achieved before If stage. So image channel selectivity depends upon pre selector & RF amplifier. If it enters IF stage it becomes impossible to remove it from wanted signal. Option (d) NOTE:- Similar problems have appeared in GATE 1995, 1996 and 1987. Only problem statement is different otherwise they are same problems.