SlideShare ist ein Scribd-Unternehmen logo
1 von 28
Downloaden Sie, um offline zu lesen
NIPS 2015 概要紹介
⽐⼾将平
Preferred Networks America, Inc.
⾃⼰紹介
l  ⽐⼾将平(HIDO Shohei)
l  TwitterID: @sla
l  専⾨:データマイニング、機械学習
l  経歴:
l  2006-2012: IBM東京基礎研究所データ解析グループ
l  機械学習のアルゴリズム研究開発(主に異常検知)
l  2012-2014: 株式会社Preferred Infrastructure
l  ⼤規模オンライン分散機械学習基盤Jubatusチームリーダー
l  2014-: 株式会社Preferred Networks
l  2015-: Preferred Networks America, Inc. @ シリコンバレー
l  Chief Research Officer
l  NIPSは2013年に続いてのワークショップ発表&参加
2
NIPS 2015
l  第29回のNIPS
l  ICML(32回)に次ぐ伝統
l  期間: 2015年12⽉7〜12⽇
l  チュートリアル1⽇
l  本会議3⽇
l  ワークショップ2⽇
l  開催地: ケベック州モントリオール
l  ほぼフランス語圏
3
⽬次
l  NIPSの特徴と構成
l  統計と流⾏りのトピック
l  NIPSに集まるヒトとカネ
l  NIPSのススメ
4
⽐較: ICML 2015 Main Conference
l  招待講演とベストペーパー以外は6並列セッション
5
NIPSの特徴(1)
シングルトラック
l  頑なに⼤ホール
l  アクセプト論⽂の多くは
ポスター発表のみ
l  わずか3%程度がOral発表
l  20分
l  + 7%程度がSpotlight発表
l  5分
6
「NIPSでオーラル発表しました」の意味
l  招待講演とおなじ⼤ホール、2000+席
7
NIPS特徴(2)
過酷なポスター発表
l  400+件のポスター
l  普通のポスター
セッションは各90-120分
l  NIPSは各300分(5時間)
8
夜中12時まで5時間セッション
⽴ちっぱなし x 4⽇連続
l  各⽇約100件ずつ
l  時間で割ると1時間20件
l  1ポスター3分で⾒て回って
やっと全て⾒て回れる
l  ポスター会場にはイスを
「絶対に」置かない主義
l  ※理解⼒的にも体⼒的にも
全制覇はほぼ無理
9
NIPSの特徴(3) 尖ったワークショップ
l  40種類のワークショップ / 2⽇間 = 20並列開催
l  最先端: Reasoning, Attention, Memory (RAM) Workshop
l  マイナー: Quantum Machine Learning, Time Series
l  分野特化: Reinforcement Learning, Computational Biology
l  ソフトウェア: Machine Learning Systems
10
ワークショップといえど全く気を抜けないNIPS
l  普通の国際会議
l  ワークショップ期間は過疎化
l  NIPSは90%くらい⼈が残る感覚
l  ただ参加者が偏る&深層学習⼈気
l  特に混雑:深層強化学習
l  開始30分前に全席が埋まった
l  プロジェクタ前に体育座り
l  昨年の反省は⽣かされたか?
l  Deep Learning Workshopの爆発
→別⽇のSymposiaに格上げ
11
⽬次
l  NIPSの特徴と構成
l  統計と流⾏りのトピック
l  NIPSに集まるヒトとカネ
l  NIPSのススメ
12
論⽂統計
13
l  投稿数は403/1838、アクセプト率は約22%、⼤きく変わらず
l  最も多いジャンルはディープラーニング(それでも10%)
l  ディープラーニング会議ではない(最適化、学習理論、ベイズ…)
トレンド(1) 複雑化するニューラルネットワーク
l  画像認識、⾳声認識タスクのCNNのみでは研究になりにくい
l  1. Recurrent NN (LSTM)やAttentionを⽤いた⼿法
l  2. 複数のデータソースを組み合わせる(例: 画像x⽂章)
l  3. もっと⽬新しいタスクに新しいネットワーク構造を提案する
14
Ladder Network
A. Rasmus et. al. (松元さん発表)
End-to-End Memory Network
S. Sukhbaatar et. al. (海野さん発表)
トレンド(2) 深層学習による⽣成モデル
l  DeepDream以降、特に⾃然な画像の⽣成への注⽬
l  Ex. Neural Artistic Style (chainer-goghの元論⽂)
l  Encode-Decodeに加えてGenerative Adversarial Netが⽬⽴つように
15
Laplacian Pyramid of GAN
E. L. Denton et. al. (濱⽥さん発表)
Deep Visual Analogy-Making
S. Reed et. al.
トレンド(3) 続く深層強化学習の進化
l  NIPS2013のDQN論⽂ by DeepMind以来のATARIゲーム中⼼
l  Recurrent Netによって時系列性を取り込んで⻑期予測、など
l  物理シミュレーションベースの動作獲得系(UC Berkeley盛ん)
16
Learning Continuous Control Policies by
Stochastic Value Gradients
N. Hees et. al. (DeepMind, 藤⽥さん発表)
Action-Conditional Video Prediction using
Deep Networks in Atari Games
J. Oh+
トレンド(4) ⾮凸最適化
l  深層学習のほとんどは⾮凸最適化であるのにしたがって活発化
l  ⾮同期SGDや様々な近似法に関する収束性や性能の話が増加
17
Hessian-Free Optimization for MDRNN
M. Cho et. al. (瀬⼾⼭さん発表)
Asynchronous SGD for Non-convex Opt.
X. Lian+
トレンド(5)
Probabilistic Programming & Inference
l  Tutorial on Probabilistic Programming
l  Workshop on Approximate Bayesian Inference
l  Workshop on Approximate Bayesian Computation
l  Workshop on Black-box Optimization
18
Automatic Variational Inference in Stan
A. Kucukelbir et. al. (柏野さん発表)
“A Year of Approximate Inference”
Blog by Shakir Mohamed (DeepMind)
その他雑感
l  流⾏ったarXiv論⽂の確認のような雰囲気もある(特に深層学習)
l  「あれ、この論⽂出たのまだ今年だったっけ…?」
l  ⼀⽅arXivに出てないもの、ポスターで初めて認識できるもの
l  ポスターセッションで著者に直接質問できるのも参加価値
l  Tech giantの圧倒的存在感
l  Google > Facebook = Microsoft Research >> Others
l  Google DeepMind勢の多さ(100⼈以上来てたらしい)
l  それ以外の新しいスタートアップのプレゼンスも増加
l  論⽂発表、スポンサー、デモ、ワークショップ主催など
l  OpenAIの設⽴発表(イーロン・マスクらが主導)
l  「⼤学を辞めて⺠間研究所に移ると給料も研究時間も増える」⽪⾁
19
⽬次
l  NIPSの特徴と構成
l  統計と流⾏りのトピック
l  NIPSに集まるヒトとカネ
l  NIPSのススメ
20
NIPS 2015 参加者数: 3,755
l  前年のほぼ1.5倍
l  ここ10年、指数的な伸びを続けている
l  ⼀⽅、投稿数はそこまで⼤きく増えてはいない
l  研究者が増えたというより
企業や他分野に裾野が広がった
(お⾦の匂いに寄せられて)
21
NIPS 2006 Sponsors (9)
22
NIPS 2011 Sponsors (15)
23
NIPS 2015 Sponsors (41) >> Last year (28)
24
⽬次
l  NIPSの特徴と構成
l  統計と流⾏りのトピック
l  NIPSに集まるヒトとカネ
l  NIPSのススメ
25
論⽂を書こう!&読もう!→NIPSに参加しよう!
26
NIPS 2016 @ バルセロナ
27
l  北⽶以外ではスペインにしか⾏かないNIPS (2011年はグラナダ)
NIPS 2017 @ ロングビーチ
l  寒冷地を離れ海辺のリゾート地
28

Weitere ähnliche Inhalte

Was ist angesagt?

深層学習とTensorFlow入門
深層学習とTensorFlow入門深層学習とTensorFlow入門
深層学習とTensorFlow入門tak9029
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII
 
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Daiki Shimada
 
ディープラーニングの車載応用に向けて
ディープラーニングの車載応用に向けてディープラーニングの車載応用に向けて
ディープラーニングの車載応用に向けてIkuro Sato
 
Deep Learningを用いたロボット制御
Deep Learningを用いたロボット制御Deep Learningを用いたロボット制御
Deep Learningを用いたロボット制御Ryosuke Okuta
 
日本ソフトウェア科学会第36回大会発表資料「帰納的プログラミングの初等教育の試み」西澤勇輝
日本ソフトウェア科学会第36回大会発表資料「帰納的プログラミングの初等教育の試み」西澤勇輝日本ソフトウェア科学会第36回大会発表資料「帰納的プログラミングの初等教育の試み」西澤勇輝
日本ソフトウェア科学会第36回大会発表資料「帰納的プログラミングの初等教育の試み」西澤勇輝Preferred Networks
 
これから始める人の為のディープラーニング基礎講座
これから始める人の為のディープラーニング基礎講座これから始める人の為のディープラーニング基礎講座
これから始める人の為のディープラーニング基礎講座NVIDIA Japan
 
勉強会用スライド
勉強会用スライド勉強会用スライド
勉強会用スライドharmonylab
 
20160601画像電子学会
20160601画像電子学会20160601画像電子学会
20160601画像電子学会nlab_utokyo
 
Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Taiga Nomi
 
Software for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 TokyoSoftware for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 TokyoShohei Hido
 
深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴Yuya Unno
 
画像認識と深層学習
画像認識と深層学習画像認識と深層学習
画像認識と深層学習Yusuke Uchida
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた卓也 安東
 
実社会・実環境におけるロボットの機械学習
実社会・実環境におけるロボットの機械学習実社会・実環境におけるロボットの機械学習
実社会・実環境におけるロボットの機械学習Kuniyuki Takahashi
 
DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用Kazuki Fujikawa
 
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFAShohei Hido
 
ドライブレコーダ映像からの3次元空間認識 [MOBILITY:dev]
ドライブレコーダ映像からの3次元空間認識 [MOBILITY:dev]ドライブレコーダ映像からの3次元空間認識 [MOBILITY:dev]
ドライブレコーダ映像からの3次元空間認識 [MOBILITY:dev]DeNA
 
20180115_東大医学部機能生物学セミナー_深層学習の最前線とこれから_岡野原大輔
20180115_東大医学部機能生物学セミナー_深層学習の最前線とこれから_岡野原大輔20180115_東大医学部機能生物学セミナー_深層学習の最前線とこれから_岡野原大輔
20180115_東大医学部機能生物学セミナー_深層学習の最前線とこれから_岡野原大輔Preferred Networks
 

Was ist angesagt? (20)

深層学習とTensorFlow入門
深層学習とTensorFlow入門深層学習とTensorFlow入門
深層学習とTensorFlow入門
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
 
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
 
ディープラーニングの車載応用に向けて
ディープラーニングの車載応用に向けてディープラーニングの車載応用に向けて
ディープラーニングの車載応用に向けて
 
Deep Learningを用いたロボット制御
Deep Learningを用いたロボット制御Deep Learningを用いたロボット制御
Deep Learningを用いたロボット制御
 
日本ソフトウェア科学会第36回大会発表資料「帰納的プログラミングの初等教育の試み」西澤勇輝
日本ソフトウェア科学会第36回大会発表資料「帰納的プログラミングの初等教育の試み」西澤勇輝日本ソフトウェア科学会第36回大会発表資料「帰納的プログラミングの初等教育の試み」西澤勇輝
日本ソフトウェア科学会第36回大会発表資料「帰納的プログラミングの初等教育の試み」西澤勇輝
 
これから始める人の為のディープラーニング基礎講座
これから始める人の為のディープラーニング基礎講座これから始める人の為のディープラーニング基礎講座
これから始める人の為のディープラーニング基礎講座
 
勉強会用スライド
勉強会用スライド勉強会用スライド
勉強会用スライド
 
20160601画像電子学会
20160601画像電子学会20160601画像電子学会
20160601画像電子学会
 
Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷Deep learningの概要とドメインモデルの変遷
Deep learningの概要とドメインモデルの変遷
 
Software for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 TokyoSoftware for Edge Heavy Computing @ INTEROP 2016 Tokyo
Software for Edge Heavy Computing @ INTEROP 2016 Tokyo
 
Deep learning を用いた画像から説明文の自動生成に関する研究の紹介
Deep learning を用いた画像から説明文の自動生成に関する研究の紹介Deep learning を用いた画像から説明文の自動生成に関する研究の紹介
Deep learning を用いた画像から説明文の自動生成に関する研究の紹介
 
深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴
 
画像認識と深層学習
画像認識と深層学習画像認識と深層学習
画像認識と深層学習
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた
 
実社会・実環境におけるロボットの機械学習
実社会・実環境におけるロボットの機械学習実社会・実環境におけるロボットの機械学習
実社会・実環境におけるロボットの機械学習
 
DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用DeNAにおける機械学習・深層学習活用
DeNAにおける機械学習・深層学習活用
 
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
 
ドライブレコーダ映像からの3次元空間認識 [MOBILITY:dev]
ドライブレコーダ映像からの3次元空間認識 [MOBILITY:dev]ドライブレコーダ映像からの3次元空間認識 [MOBILITY:dev]
ドライブレコーダ映像からの3次元空間認識 [MOBILITY:dev]
 
20180115_東大医学部機能生物学セミナー_深層学習の最前線とこれから_岡野原大輔
20180115_東大医学部機能生物学セミナー_深層学習の最前線とこれから_岡野原大輔20180115_東大医学部機能生物学セミナー_深層学習の最前線とこれから_岡野原大輔
20180115_東大医学部機能生物学セミナー_深層学習の最前線とこれから_岡野原大輔
 

Andere mochten auch

How AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industriesHow AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industriesShohei Hido
 
プロダクトマネージャのお仕事
プロダクトマネージャのお仕事プロダクトマネージャのお仕事
プロダクトマネージャのお仕事Shohei Hido
 
Chainer GTC 2016
Chainer GTC 2016Chainer GTC 2016
Chainer GTC 2016Shohei Hido
 
Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Shohei Hido
 
ICML2013読み会 開会宣言
ICML2013読み会 開会宣言ICML2013読み会 開会宣言
ICML2013読み会 開会宣言Shohei Hido
 
あなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントあなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントShohei Hido
 
FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」Shohei Hido
 
Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Shohei Hido
 
(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方Shohei Hido
 
ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?Shohei Hido
 
さらば!データサイエンティスト
さらば!データサイエンティストさらば!データサイエンティスト
さらば!データサイエンティストShohei Hido
 
今年のKDDベストペーパーを実装・公開しました
今年のKDDベストペーパーを実装・公開しました今年のKDDベストペーパーを実装・公開しました
今年のKDDベストペーパーを実装・公開しましたShohei Hido
 
機械学習CROSS 後半資料
機械学習CROSS 後半資料機械学習CROSS 後半資料
機械学習CROSS 後半資料Shohei Hido
 
機械学習CROSS 前半資料
機械学習CROSS 前半資料機械学習CROSS 前半資料
機械学習CROSS 前半資料Shohei Hido
 
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...Shohei Hido
 
Trust Region Policy Optimization
Trust Region Policy OptimizationTrust Region Policy Optimization
Trust Region Policy Optimizationmooopan
 
データサイエンティストのつくり方
データサイエンティストのつくり方データサイエンティストのつくり方
データサイエンティストのつくり方Shohei Hido
 
機械学習を用いた異常検知入門
機械学習を用いた異常検知入門機械学習を用いた異常検知入門
機械学習を用いた異常検知入門michiaki ito
 
素人がDeep Learningと他の機械学習の性能を比較してみた
素人がDeep Learningと他の機械学習の性能を比較してみた素人がDeep Learningと他の機械学習の性能を比較してみた
素人がDeep Learningと他の機械学習の性能を比較してみたToru Imai
 
時系列分析による異常検知入門
時系列分析による異常検知入門時系列分析による異常検知入門
時系列分析による異常検知入門Yohei Sato
 

Andere mochten auch (20)

How AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industriesHow AI revolutionizes robotics and automotive industries
How AI revolutionizes robotics and automotive industries
 
プロダクトマネージャのお仕事
プロダクトマネージャのお仕事プロダクトマネージャのお仕事
プロダクトマネージャのお仕事
 
Chainer GTC 2016
Chainer GTC 2016Chainer GTC 2016
Chainer GTC 2016
 
Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門
 
ICML2013読み会 開会宣言
ICML2013読み会 開会宣言ICML2013読み会 開会宣言
ICML2013読み会 開会宣言
 
あなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントあなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイント
 
FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」
 
Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤Jubatusが目指すインテリジェンス基盤
Jubatusが目指すインテリジェンス基盤
 
(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方(道具としての)データサイエンティストのつかい方
(道具としての)データサイエンティストのつかい方
 
ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?ビッグデータはどこまで効率化できるか?
ビッグデータはどこまで効率化できるか?
 
さらば!データサイエンティスト
さらば!データサイエンティストさらば!データサイエンティスト
さらば!データサイエンティスト
 
今年のKDDベストペーパーを実装・公開しました
今年のKDDベストペーパーを実装・公開しました今年のKDDベストペーパーを実装・公開しました
今年のKDDベストペーパーを実装・公開しました
 
機械学習CROSS 後半資料
機械学習CROSS 後半資料機械学習CROSS 後半資料
機械学習CROSS 後半資料
 
機械学習CROSS 前半資料
機械学習CROSS 前半資料機械学習CROSS 前半資料
機械学習CROSS 前半資料
 
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
NIPS2013読み会: More Effective Distributed ML via a Stale Synchronous Parallel P...
 
Trust Region Policy Optimization
Trust Region Policy OptimizationTrust Region Policy Optimization
Trust Region Policy Optimization
 
データサイエンティストのつくり方
データサイエンティストのつくり方データサイエンティストのつくり方
データサイエンティストのつくり方
 
機械学習を用いた異常検知入門
機械学習を用いた異常検知入門機械学習を用いた異常検知入門
機械学習を用いた異常検知入門
 
素人がDeep Learningと他の機械学習の性能を比較してみた
素人がDeep Learningと他の機械学習の性能を比較してみた素人がDeep Learningと他の機械学習の性能を比較してみた
素人がDeep Learningと他の機械学習の性能を比較してみた
 
時系列分析による異常検知入門
時系列分析による異常検知入門時系列分析による異常検知入門
時系列分析による異常検知入門
 

Ähnlich wie NIPS2015概要資料

「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation 「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation Takumi Ohkuma
 
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose EstimationDeep Learning JP
 
Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Koichi Hamada
 
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Preferred Networks
 
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)Yuya Unno
 
機械学習品質管理・保証の動向と取り組み
機械学習品質管理・保証の動向と取り組み機械学習品質管理・保証の動向と取り組み
機械学習品質管理・保証の動向と取り組みShintaro Fukushima
 
エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習Preferred Networks
 
Deep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みDeep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みKenta Oono
 
「解説資料」VideoMix: Rethinking Data Augmentation for Video Classification
「解説資料」VideoMix: Rethinking Data Augmentation for  Video Classification「解説資料」VideoMix: Rethinking Data Augmentation for  Video Classification
「解説資料」VideoMix: Rethinking Data Augmentation for Video ClassificationTakumi Ohkuma
 
Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介
Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介
Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介YukiK2
 
2017-05-30_deepleaning-and-chainer
2017-05-30_deepleaning-and-chainer2017-05-30_deepleaning-and-chainer
2017-05-30_deepleaning-and-chainerKeisuke Umezawa
 
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太Preferred Networks
 
先端技術とメディア表現 第4回レポートまとめ
先端技術とメディア表現 第4回レポートまとめ先端技術とメディア表現 第4回レポートまとめ
先端技術とメディア表現 第4回レポートまとめDigital Nature Group
 
Dataset cartography mapping and diagnosing datasets with training dynamics
Dataset cartography mapping and diagnosing datasets with training dynamicsDataset cartography mapping and diagnosing datasets with training dynamics
Dataset cartography mapping and diagnosing datasets with training dynamics禎晃 山崎
 
DSF2018講演スライド
DSF2018講演スライドDSF2018講演スライド
DSF2018講演スライドHiroki Nakahara
 
AlphaGo Zero 解説
AlphaGo Zero 解説AlphaGo Zero 解説
AlphaGo Zero 解説suckgeun lee
 
Autoware: ROSを用いた一般道自動運転向けソフトウェアプラットフォーム
Autoware: ROSを用いた一般道自動運転向けソフトウェアプラットフォームAutoware: ROSを用いた一般道自動運転向けソフトウェアプラットフォーム
Autoware: ROSを用いた一般道自動運転向けソフトウェアプラットフォームTakuya Azumi
 

Ähnlich wie NIPS2015概要資料 (20)

「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation 「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017
 
20150414seminar
20150414seminar20150414seminar
20150414seminar
 
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
Session4:「先進ビッグデータ応用を支える機械学習に求められる新技術」/比戸将平
 
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
企業における自然言語処理技術の活用の現場(情報処理学会東海支部主催講演会@名古屋大学)
 
機械学習品質管理・保証の動向と取り組み
機械学習品質管理・保証の動向と取り組み機械学習品質管理・保証の動向と取り組み
機械学習品質管理・保証の動向と取り組み
 
エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習エッジヘビーコンピューティングと機械学習
エッジヘビーコンピューティングと機械学習
 
Deep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組みDeep Learning技術の最近の動向とPreferred Networksの取り組み
Deep Learning技術の最近の動向とPreferred Networksの取り組み
 
「解説資料」VideoMix: Rethinking Data Augmentation for Video Classification
「解説資料」VideoMix: Rethinking Data Augmentation for  Video Classification「解説資料」VideoMix: Rethinking Data Augmentation for  Video Classification
「解説資料」VideoMix: Rethinking Data Augmentation for Video Classification
 
Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介
Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介
Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介
 
2017-05-30_deepleaning-and-chainer
2017-05-30_deepleaning-and-chainer2017-05-30_deepleaning-and-chainer
2017-05-30_deepleaning-and-chainer
 
20150930
2015093020150930
20150930
 
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
東大大学院 電子情報学特論講義資料「深層学習概論と理論解析の課題」大野健太
 
先端技術とメディア表現 第4回レポートまとめ
先端技術とメディア表現 第4回レポートまとめ先端技術とメディア表現 第4回レポートまとめ
先端技術とメディア表現 第4回レポートまとめ
 
Dataset cartography mapping and diagnosing datasets with training dynamics
Dataset cartography mapping and diagnosing datasets with training dynamicsDataset cartography mapping and diagnosing datasets with training dynamics
Dataset cartography mapping and diagnosing datasets with training dynamics
 
DSF2018講演スライド
DSF2018講演スライドDSF2018講演スライド
DSF2018講演スライド
 
[Japan Tech summit 2017] MAI 001
[Japan Tech summit 2017]  MAI 001[Japan Tech summit 2017]  MAI 001
[Japan Tech summit 2017] MAI 001
 
AlphaGo Zero 解説
AlphaGo Zero 解説AlphaGo Zero 解説
AlphaGo Zero 解説
 
Autoware: ROSを用いた一般道自動運転向けソフトウェアプラットフォーム
Autoware: ROSを用いた一般道自動運転向けソフトウェアプラットフォームAutoware: ROSを用いた一般道自動運転向けソフトウェアプラットフォーム
Autoware: ROSを用いた一般道自動運転向けソフトウェアプラットフォーム
 

Mehr von Shohei Hido

CuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPUCuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPUShohei Hido
 
Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門Shohei Hido
 
PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料Shohei Hido
 
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"Shohei Hido
 
111015 tokyo scipy2_ディスカッション
111015 tokyo scipy2_ディスカッション111015 tokyo scipy2_ディスカッション
111015 tokyo scipy2_ディスカッションShohei Hido
 
111015 tokyo scipy2_additionaldemo_pandas
111015 tokyo scipy2_additionaldemo_pandas111015 tokyo scipy2_additionaldemo_pandas
111015 tokyo scipy2_additionaldemo_pandasShohei Hido
 
111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_pythonShohei Hido
 
110828 tokyo scipy1_hido_dist
110828 tokyo scipy1_hido_dist110828 tokyo scipy1_hido_dist
110828 tokyo scipy1_hido_distShohei Hido
 
110901 tokyo scipy1_アンケート結果
110901 tokyo scipy1_アンケート結果110901 tokyo scipy1_アンケート結果
110901 tokyo scipy1_アンケート結果Shohei Hido
 

Mehr von Shohei Hido (10)

CuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPUCuPy: A NumPy-compatible Library for GPU
CuPy: A NumPy-compatible Library for GPU
 
Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門Deep Learning Lab 異常検知入門
Deep Learning Lab 異常検知入門
 
NIPS2017概要
NIPS2017概要NIPS2017概要
NIPS2017概要
 
PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料PFIセミナー "「失敗の本質」を読む"発表資料
PFIセミナー "「失敗の本質」を読む"発表資料
 
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
Travis E. Oliphant, "NumPy and SciPy: History and Ideas for the Future"
 
111015 tokyo scipy2_ディスカッション
111015 tokyo scipy2_ディスカッション111015 tokyo scipy2_ディスカッション
111015 tokyo scipy2_ディスカッション
 
111015 tokyo scipy2_additionaldemo_pandas
111015 tokyo scipy2_additionaldemo_pandas111015 tokyo scipy2_additionaldemo_pandas
111015 tokyo scipy2_additionaldemo_pandas
 
111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python111015 tokyo scipy2_discussionquestionaire_i_python
111015 tokyo scipy2_discussionquestionaire_i_python
 
110828 tokyo scipy1_hido_dist
110828 tokyo scipy1_hido_dist110828 tokyo scipy1_hido_dist
110828 tokyo scipy1_hido_dist
 
110901 tokyo scipy1_アンケート結果
110901 tokyo scipy1_アンケート結果110901 tokyo scipy1_アンケート結果
110901 tokyo scipy1_アンケート結果
 

Kürzlich hochgeladen

プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価sugiuralab
 
IoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptxIoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptxAtomu Hidaka
 
PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000Shota Ito
 
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。iPride Co., Ltd.
 
20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directoryosamut
 
プレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールプレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールsugiuralab
 
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
新人研修のまとめ       2024/04/12の勉強会で発表されたものです。新人研修のまとめ       2024/04/12の勉強会で発表されたものです。
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。iPride Co., Ltd.
 

Kürzlich hochgeladen (7)

プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価
 
IoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptxIoT in the era of generative AI, Thanks IoT ALGYAN.pptx
IoT in the era of generative AI, Thanks IoT ALGYAN.pptx
 
PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000PHP-Conference-Odawara-2024-04-000000000
PHP-Conference-Odawara-2024-04-000000000
 
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
Amazon SES を勉強してみる その12024/04/12の勉強会で発表されたものです。
 
20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory20240412_HCCJP での Windows Server 2025 Active Directory
20240412_HCCJP での Windows Server 2025 Active Directory
 
プレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールプレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツール
 
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
新人研修のまとめ       2024/04/12の勉強会で発表されたものです。新人研修のまとめ       2024/04/12の勉強会で発表されたものです。
新人研修のまとめ 2024/04/12の勉強会で発表されたものです。
 

NIPS2015概要資料