SlideShare ist ein Scribd-Unternehmen logo
1 von 7
Downloaden Sie, um offline zu lesen
TRABALHO DIRIGIDO FÍSICA 2
                           Professor (a)        Ano                Ensino        Turno            Data
                          Sergio Wagner          20                Médio         Manhã
  100% de aprovação                                    Aluno (a)                                     Nº
     para a vida.



01. (UECE) A temperatura de 0,15 kg, de um líquido cujo calor específico é 0,50 cal/g.0C, elevou-se de – 200C
até 400C. A quantidade de calor recebida pelo corpo foi de:
a) 4,5.103 cal    b) 4,0.103 cal    c) 1,5.103 cal    d) 1,0.103 cal
m = 0,15 kg = 150 g.
Q = m.c.∆θ = 150.0,5.[40 – (-20)] = 75.60 = 4500 cal = 4,5.103 cal.

02. (UECE) Geraldo, velho admirador de Sócrates, filosofia: “ Verifico que, fornecendo calor a um corpo, sua
temperatura se eleva; logo, o fornecimento de calor a coros sempre implicará em aumento de sua temperatura “.
a) a verificação de Geraldo pode ser correta, mas sua generalização é falsa.
b) a verificação e a generalização são ambas corretas.
c) a verificação e a generalização só serão corretas para corpos de boa condutividade térmica.
d) a verificação pode ser correta, mas a generalização só será válida para corpos de alto calor específico.
O calor pode ser recebido (∆θ > 0) ou liberado (∆θ < 0).

03. (UECE) Associe a primeira coluna com a segunda:
        COLUNA1                                 COLUNA 2
I. irradiação                                ( ) não depende do meio material
II. convecção calorífica                     ( ) ocorre mais facilmente nos sólidos que
                                                 nos gases
III. condução térmica                        ( ) implica transporte de matéria
A sequência correta, de cima para baixo, é:
a) I, II, III   b) I, III, II    c) II, I, III    d) II, III, I
Na condução ocorre somente nos sólidos; na convecção, ocorre nos fluídos (líquidos e gases) com transporte de
matéria (massas de ar); e na irradiação, é a única que ocorre no vácuo, através de ondas eletromagnéticas, sendo
que estas, não precisam de um meio material para se propagar.

04. (UECE) Cedem-se 684 cal a 200 g de ferro que estão a uma temperatura de 100C. Sabendo-se que o calor
específico do ferro vale 0,114 cal/0C, concluímos que a temperatura final do ferro será:
a) 100C      b) 200C       c) 300C       d) 400C
Q = m.c.∆θ ՜ 684 = 200.0,114.∆θ ՜ ∆θ = 684/22,8 = 300C.
∆θ = θ – θ0 ՜ 30 = θ – 10 ՜ θ = 30 + 10 = 400C.

05. (UECE) O gráfico abaixo indica a variação da temperatura de 1,0 g de uma substância em função da
quantidade de calor que lhe é fornecido. A substância está primitivamente no estado sólido. O calor de fusão da
substância é, em cal/g:
a) 5     b) 30     c) 45      d) 60




Q = m.Lf ՜ 30 = 1.Lf ՜ Lf = 30 cal/g.

06. (UECE) Em um calorímetro, mistura-se um corpo A, de massa 200 g, de calor específico 0,2 cal/g.0C e a
600C, com outro corpo B, de massa 100 g, calor específico 0,1 cal/g.0C e a 100C. A temperatura final de
equilíbrio térmico, é:
a) 500C       b) 400C    c) 300C     d) 200C
QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ 200.0,2.(T – 60) + 100.0,1.(T – 10) = 0 ՜ 40.(T – 60)
+ 10.(T – 10) = 0 ՜ 40T – 2400 + 10T – 100 = 0 ՜ T = 2500/50 = 500C.

07. (UECE) Se um material A tem calor específico superior o de um material B, podemos assegurar que:
a) A conduz melhor calor que B.
b) B conduz melhor calor que A.
c) A perde calor mais facilmente que B.
d) B perde calor mais facilmente que A.

08. (UECE) A capacidade térmica de uma caneca de alumínio é 16 cal/0C. Sabendo-se que o calor específico do
alumínio é 0,2 cal/g.0C, pode-s afirmar que a massa dessa caneca, em gramas, é:
a) 3,2     b) 32      c) 80      d) 160
C = m.c ՜ 16 = 0,2.m ՜ m = 16/0,2 = 80 g.

09. (UECE) Um calorímetro, cujo equivalente em água é igual a 35 g, contém 115 g de água à temperatura de
200C. Colocam-se, então, no calorímetro, mais 300 g de água à temperatura de 500C. A temperatura de
equilíbrio térmico é:
a) 400C       b) 500C    c) 350C      d) 200C
QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ (35 + 115).1.(T – 20) + 100.1.(T – 50) = 0 ՜ 150.(T –
20) + 300.(T – 50) = 0 ՜ 150T – 3000 + 300T – 15000 = 0 ՜ T = 18000/450 = 400C.

10. (UECE) O aumento da quantidade de dióxido de carbono (CO2) na atmosfera, motivado pela queima do
petróleo e derivados (óleo diesel e gasolina), carvão e lenha, nas usinas termoelétricas, na indústria, nos
caminhões e automóveis, torna a atmosfera opaca à radiação térmica que tenta sair para o espaço, devolvendo-o
à Terra: é o efeito estufa.
Durante a Conferência Rio-92, robusteceu se a consciência de que é preciso encontrar substitutos mais limpos
                           92, robusteceu-se
para esses combustíveis, como por exemplo a energia solar. O esquema abaixo ilustra um sistema de
aquecimento de água por energia solar: uma placa metálica P, pintada de preto, serve de apoio a um tubo
metálico T, recurvado em forma de serpentina; um depósito de água R é conectado à serpentina por meio de
condutos de borracha S. A água passa pela serpentina exposta ao sol e vai para o recipiente R onde é
                                                                sol
armazenada. O aquecimento da água contida no depósito R, pela absorção de energia solar, é devido
basicamente aos seguintes fenômenos, pela ordem:




a) condução, irradiação, convecção.
b) irradiação, convecção, condução.
c) convecção, condução, irradiação.
d) irradiação, condução, convecção.

11. (UECE) Quando há diferença de temperatura entre dois pontos, o calor pode fluir por condução, convecção
ou radiação, do ponto de temperatura mais alta para o de temperatura mais baixa. O “ transporte “ de calor se dá
                                                                          baixa.
junto com o transporte de matéria no caso da:
a) condução somente.
b) radiação somente.
c) convecção somente.
d) radiação e convecção.

12. (UECE) Mistura-se água fria,`a temperatura de 200C, com água quente a 800C, obtendo-se 1 kg de água a
                   se
400C. A massa de água fria misturada é, em, kg:
a) 2/3    b) 1/3     c) 1/2       d) 1/4
mF + mQ = 1 kg mQ = 1– mF.
QF + QQ = 0 mF.cF.(40 – 20) + mQ.cQ.(40 – 80) = 0 mF.1.20 + (1– mF).1.(– 40) = 0 20mF – 40 + 40mF
= 0 mF = 40/60 = 2/3 kg.

13. (UECE) O gráfico fornece a variação de temperatura de uma substância, inicialmente no estado sólido, em
função da quantidade de calor que ela recebe. A massa da substância vale 5 gramas. A razão do calor específico
da substância no estado sólido pelo seu calor específico no estado líquido é:




a) 1/4      b) 1/3     c) 2/3     d) 3/4
I. No sólido: QS = m.cS.∆θL ՜ 50 = 5.cS.40 ՜ cS = 50/200 = 1/4 cal/g.0C.
II. No Líquido: QL = m.cL.∆θL ՜ 100 = 5.cL.60 ՜ cL = 100/300 = 1/3 cal/g.0C.
III. cS/cL = (1/4)/(1/3) = 3/4.

14. (UECE) O chamado “ efeito estufa “, devido ao excesso de gás carbônico presente na atmosfera, provocado
pelos poluentes, faz aumentar a temperatura por que:
a) A atmosfera é transparente à energia radiante do sol e opaca às ondas de calor.
b) A atmosfera é opaca à energia radiante do sol e transparente para as ondas de calor.
c) A atmosfera é transparente tanto para a energia radiante do sol como para as ondas de calor.
d) A atmosfera funciona como um meio refletor para a energia radiante e como meio absorvente para a energia
térmica.

15. (UECE) O uso de chaminés para escape de gases quentes oriundos de combustão é uma aplicação do
processo térmico de:
a) irradiação b) condução c) dilatação d) convecção

16. (UECE) A capacidade térmica de uma amostra de água é 5 vezes maior que a de um bloco de ferro. A
amostra de água se encontra a 20ºC e a do bloco, a 50ºC. Colocando-os num recipiente termicamente isolado e
de capacidade térmica desprezível, a temperatura final de equilíbrio é:
a) 250C     b) 300C    c) 350C d) 400C
Sabendo que C = m.c, CA = 5.CB = 5.mB.cB.
QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ CA.(T – 20) + CB.(T – 50) = 0 ՜ 5.CB.(T – 20) +
CB.(T – 50) = 0 ՜ (dividindo os dois termos por CB) temos: 5.(T – 20) + 1.(T – 50) = 0 ՜ 5T – 100 + T – 50 =
0 ՜ T = 150/6 = 250C.

17. (UECE) O calor se propaga por convecção no(na):
a) água b) vácuo c) chumbo         d) vidro

18. (UECE) Considere um sistema constituído de dois volumes de água, um de 400 litros à temperatura de 20ºC
e o outro de 100 litros à 70ºC. Sabendo-se que o sistema está isolado da vizinhança, a temperatura de equilíbrio
é, em graus centígrados, igual a:
a) 20      b) 30      c) 45      d) 60
QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ 400.1.(T – 20) + 100.1.(T – 70) = 0 ՜ 400.(T – 20) +
100.(T – 10) = 0 ՜ 400T – 8000 + 100T – 7000 = 0 ՜ T = 15000/500 = 300C.

19. (UECE) Considerando que os calores específico e latente de vaporização da água são respectivamente c =
4190 J/kg.K e L = 2256 kJ/kg, a energia mínima necessária para vaporizar 0,5 kg de água que se encontra a
30oC, em kJ, é aproximadamente:
a) 645     b) 1275      c) 1940      d) 3820
Q1 = m.c.∆θ = 0,5.4190.(100 – 30) = 146,65 Kj e Q2 = m.L = 0,5.2256 = 1128 kJ, logo QTOTAL = 146,65 +
1128 = 1274,65 kJ.

20. (UECE) Um corpo de massa 400 g é aquecido através de fonte térmica de potência 500 cal/min. constante.
A temperatura do corpo, em função do tempo, aumenta segundo o gráfico abaixo:




O calor específico do material de que é feito o corpo é:
a) 0,615 cal/g.oC    b) 0,715 cal/g.oC      c) 0,625 cal/g.oC   d) 0,725 cal/g.oC




P = Q/∆t ՜ 500 = Q/10 ՜ Q = 5000 cal.
Q = m.c.∆θ ՜ 5000 = 400.c.20 ՜ c = 5000/8000 = 0,625 cal/g.oC.

21. Ográfico a seguir indica esquematicamente o diagrama da pressão (p) exercida sobre uma substância em
função de sua temperatura (θ ):




Quais as correspondentes fases do estado de agregação das partículas dessa substância, indicadas pelas regiões
assinaladas na figura?
Região I – Sólido; Região II – Líquido; Região III – Vapor; e Região IV – Gás;

22. (UECE) O gráfico representa a variação da temperatura de um corpo sólido em função do tempo, ao ser
aquecido por uma fonte que libera energia a uma potência constante de 150 cal/min. Sendo a massa do corpo
igual a 100 g, o seu calor específico, em cal/gºC, é:
a) 0,55   b) 0,75   c) 0,65   d) 0,85




P = Q/∆t ՜ 150 = Q/10 ՜ Q = 1500 cal.
Q = m.c.∆θ ՜ 1500 = 100.c.20 ՜ c = 1500/2000 = 0,75 cal/g.oC.

23. O diagrama de estado de uma substância é esquematizado abaixo:




Identifique o que representa cada letra no diagrama:
A – estado sólido; B – estado líquido; C – estado gasoso (vapor); D – estado gasoso (gás); K – temperatura
crítica ou ponto crítico; e Z – ponto triplo.

24. Um corpo de massa 50 g, inicialmente no estado sólido, recebe calor de acordo com a representação gráfica
a seguir, passando para o estado líquido:




No gráfico, Q representa a quantidade de calor recebida pelo corpo e T, sua temperatura na escala Celsius.
Calcule:
a) o calor específico do estado líquido;
No estado sólido:
Q = m.c.∆θ
400 = 50 · cS · (40 – 0)
cS = 0,20 cal/g.°C.

b) o calor latente de fusão;
Na fusão (patamar):
Q=mL
500 – 400 = 50 · LF
LF = 2,0 cal/g.

c) o calor específico do estado gasoso;
No estado líquido:
Q = m.c.∆θ
600 – 500 = 50.cL.(80 – 40)
cL = 0,05 cal/g °C

25. (Efoa-MG) O gráfico ao lado representa o resultado do monitoramento da temperatura de um metal como
          MG)
função do tempo durante o processo termodinâmico.




Analisando o gráfico, é CORRETO afirmar que:
a) o metal sofreu apenas a mudança da fase líquida para a sólida.
b) o metal sofreu apenas a mudança da fase vapor para a líquida.
c) ao final do processo o metal encontra na fase sólida.
                                 encontra-se
d) ao final do processo o metal encontra na fase líquida.
                                 encontra-se
e) ao final do processo o metal encontra na fase vapor.
                                 encontra-se
Durante todo o processo, a temperatura diminui e há dois patamares em que a temperatura se
mantém constante durante certo tempo, indicando então mudança de estado. Assim, o metal começa
no estado gasoso, resfria-se até mudar para o estado líquido, resfria se novamente e muda para o
                          se                                  resfria-se
estado sólido e ainda se resfria mais um pouco.

“O único lugar onde o sucesso vem antes do trabalho é no dicionário [ Albert Einstein ]
 O                                                       dicionário”.

Weitere ähnliche Inhalte

Was ist angesagt?

Atividades de matemática 2° ano trigonometria no triângulo retângulo prof wal...
Atividades de matemática 2° ano trigonometria no triângulo retângulo prof wal...Atividades de matemática 2° ano trigonometria no triângulo retângulo prof wal...
Atividades de matemática 2° ano trigonometria no triângulo retângulo prof wal...
Waldir Montenegro
 
Exercicios+de+notacao+cientifica[1] +com+gabarito
Exercicios+de+notacao+cientifica[1] +com+gabaritoExercicios+de+notacao+cientifica[1] +com+gabarito
Exercicios+de+notacao+cientifica[1] +com+gabarito
André Luís Nogueira
 
Exercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com GabaritoExercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com Gabarito
guesta4929b
 
Lista Unidades De Medida
Lista Unidades De MedidaLista Unidades De Medida
Lista Unidades De Medida
tioheraclito
 
Mat utfrs 21. quadrilateros exercicios
Mat utfrs 21. quadrilateros exerciciosMat utfrs 21. quadrilateros exercicios
Mat utfrs 21. quadrilateros exercicios
trigono_metria
 
Mat exercicios deteminantes 2 e 3 ordem
Mat exercicios deteminantes  2 e 3 ordemMat exercicios deteminantes  2 e 3 ordem
Mat exercicios deteminantes 2 e 3 ordem
trigono_metria
 
Exercícios monomios extra 8º ano
Exercícios monomios extra   8º anoExercícios monomios extra   8º ano
Exercícios monomios extra 8º ano
Adriano Capilupe
 
Atividade 1º ano do ensino médio átomos neutros e íons
Atividade 1º ano do ensino médio átomos neutros e íonsAtividade 1º ano do ensino médio átomos neutros e íons
Atividade 1º ano do ensino médio átomos neutros e íons
Escola Pública/Particular
 
Prova de matemática 9 ano prof thiago versao 1 8 copias
Prova de matemática 9 ano  prof thiago versao 1   8 copiasProva de matemática 9 ano  prof thiago versao 1   8 copias
Prova de matemática 9 ano prof thiago versao 1 8 copias
abbeg
 
Exercicios de-semlhanca-e-teorema-de-tales
Exercicios de-semlhanca-e-teorema-de-talesExercicios de-semlhanca-e-teorema-de-tales
Exercicios de-semlhanca-e-teorema-de-tales
cleicia
 
Lista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreLista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestre
Rafael Marques
 
Mat utfrs 17. teorema de tales exercicios
Mat utfrs 17. teorema de tales exerciciosMat utfrs 17. teorema de tales exercicios
Mat utfrs 17. teorema de tales exercicios
trigono_metria
 

Was ist angesagt? (20)

2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA
 
Lista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – PorcentagemLista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – Porcentagem
 
Atividades de matemática 2° ano trigonometria no triângulo retângulo prof wal...
Atividades de matemática 2° ano trigonometria no triângulo retângulo prof wal...Atividades de matemática 2° ano trigonometria no triângulo retângulo prof wal...
Atividades de matemática 2° ano trigonometria no triângulo retângulo prof wal...
 
Revisão de eletrostática e campo elétrico
Revisão de eletrostática e campo elétricoRevisão de eletrostática e campo elétrico
Revisão de eletrostática e campo elétrico
 
Exercicios+de+notacao+cientifica[1] +com+gabarito
Exercicios+de+notacao+cientifica[1] +com+gabaritoExercicios+de+notacao+cientifica[1] +com+gabarito
Exercicios+de+notacao+cientifica[1] +com+gabarito
 
Exercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com GabaritoExercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com Gabarito
 
Lista Unidades De Medida
Lista Unidades De MedidaLista Unidades De Medida
Lista Unidades De Medida
 
Mat utfrs 21. quadrilateros exercicios
Mat utfrs 21. quadrilateros exerciciosMat utfrs 21. quadrilateros exercicios
Mat utfrs 21. quadrilateros exercicios
 
IV Lista de Exercícios - 8º ano
IV Lista de Exercícios - 8º anoIV Lista de Exercícios - 8º ano
IV Lista de Exercícios - 8º ano
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricas
 
Mat exercicios deteminantes 2 e 3 ordem
Mat exercicios deteminantes  2 e 3 ordemMat exercicios deteminantes  2 e 3 ordem
Mat exercicios deteminantes 2 e 3 ordem
 
caderno de atividades 6o ano_ 1 sem.docx
caderno de atividades 6o ano_ 1 sem.docxcaderno de atividades 6o ano_ 1 sem.docx
caderno de atividades 6o ano_ 1 sem.docx
 
Exercícios monomios extra 8º ano
Exercícios monomios extra   8º anoExercícios monomios extra   8º ano
Exercícios monomios extra 8º ano
 
Atividade 1º ano do ensino médio átomos neutros e íons
Atividade 1º ano do ensino médio átomos neutros e íonsAtividade 1º ano do ensino médio átomos neutros e íons
Atividade 1º ano do ensino médio átomos neutros e íons
 
Prova de matemática 9 ano prof thiago versao 1 8 copias
Prova de matemática 9 ano  prof thiago versao 1   8 copiasProva de matemática 9 ano  prof thiago versao 1   8 copias
Prova de matemática 9 ano prof thiago versao 1 8 copias
 
Wania regia 5º aula
Wania regia     5º aulaWania regia     5º aula
Wania regia 5º aula
 
Exercicios de-semlhanca-e-teorema-de-tales
Exercicios de-semlhanca-e-teorema-de-talesExercicios de-semlhanca-e-teorema-de-tales
Exercicios de-semlhanca-e-teorema-de-tales
 
Lista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreLista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestre
 
Mat utfrs 17. teorema de tales exercicios
Mat utfrs 17. teorema de tales exerciciosMat utfrs 17. teorema de tales exercicios
Mat utfrs 17. teorema de tales exercicios
 
Pg Lista
Pg ListaPg Lista
Pg Lista
 

Ähnlich wie Td de calorimetria

Av2 2º ano 3º bim listão
Av2 2º ano 3º bim   listãoAv2 2º ano 3º bim   listão
Av2 2º ano 3º bim listão
jacoanderle
 
Exercícios extras_calorimetria
Exercícios extras_calorimetriaExercícios extras_calorimetria
Exercícios extras_calorimetria
O mundo da FÍSICA
 
3° Etapa_1° Avaliação_Tipo I_2° Ano
3° Etapa_1° Avaliação_Tipo I_2° Ano3° Etapa_1° Avaliação_Tipo I_2° Ano
3° Etapa_1° Avaliação_Tipo I_2° Ano
O mundo da FÍSICA
 
Lista 13 calorimetria
Lista 13 calorimetriaLista 13 calorimetria
Lista 13 calorimetria
rodrigoateneu
 
3° Etapa_1° Avaliação_Tipo II_2° Ano
3° Etapa_1° Avaliação_Tipo II_2° Ano3° Etapa_1° Avaliação_Tipo II_2° Ano
3° Etapa_1° Avaliação_Tipo II_2° Ano
O mundo da FÍSICA
 

Ähnlich wie Td de calorimetria (20)

Lista 2° ano
Lista 2° anoLista 2° ano
Lista 2° ano
 
Calor sensivel e calor latente
Calor sensivel e calor latenteCalor sensivel e calor latente
Calor sensivel e calor latente
 
CALORIMETRIA
CALORIMETRIACALORIMETRIA
CALORIMETRIA
 
Lista Termologia (T2)
Lista Termologia (T2)Lista Termologia (T2)
Lista Termologia (T2)
 
Av2 2º ano 3º bim listão
Av2 2º ano 3º bim   listãoAv2 2º ano 3º bim   listão
Av2 2º ano 3º bim listão
 
www.videoaulagratisapoio.com.br - Física - Termologia
www.videoaulagratisapoio.com.br - Física -  Termologiawww.videoaulagratisapoio.com.br - Física -  Termologia
www.videoaulagratisapoio.com.br - Física - Termologia
 
calorimetria (2).pptx
calorimetria (2).pptxcalorimetria (2).pptx
calorimetria (2).pptx
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Calorimetria:Quantidade e trocas de calor
Calorimetria:Quantidade e trocas de calorCalorimetria:Quantidade e trocas de calor
Calorimetria:Quantidade e trocas de calor
 
206 calorimetria
206 calorimetria206 calorimetria
206 calorimetria
 
Exercícios extras_calorimetria
Exercícios extras_calorimetriaExercícios extras_calorimetria
Exercícios extras_calorimetria
 
Simulado calorimetria 2
Simulado calorimetria 2Simulado calorimetria 2
Simulado calorimetria 2
 
3° Etapa_1° Avaliação_Tipo I_2° Ano
3° Etapa_1° Avaliação_Tipo I_2° Ano3° Etapa_1° Avaliação_Tipo I_2° Ano
3° Etapa_1° Avaliação_Tipo I_2° Ano
 
Revparalela2ano
Revparalela2anoRevparalela2ano
Revparalela2ano
 
Lista 13 calorimetria
Lista 13 calorimetriaLista 13 calorimetria
Lista 13 calorimetria
 
3° Etapa_1° Avaliação_Tipo II_2° Ano
3° Etapa_1° Avaliação_Tipo II_2° Ano3° Etapa_1° Avaliação_Tipo II_2° Ano
3° Etapa_1° Avaliação_Tipo II_2° Ano
 
Calorimetria (2017)
Calorimetria (2017)Calorimetria (2017)
Calorimetria (2017)
 
www.AulasEnsinoMedio.com.br - Física - Exercício calorimetria
www.AulasEnsinoMedio.com.br - Física - Exercício calorimetriawww.AulasEnsinoMedio.com.br - Física - Exercício calorimetria
www.AulasEnsinoMedio.com.br - Física - Exercício calorimetria
 
Termometria e calorimetria
Termometria  e calorimetriaTermometria  e calorimetria
Termometria e calorimetria
 
www.TutoresEscolares.Com.Br - Física - Exercícios Resolvidos de Calorimetria
www.TutoresEscolares.Com.Br  - Física - Exercícios Resolvidos de Calorimetriawww.TutoresEscolares.Com.Br  - Física - Exercícios Resolvidos de Calorimetria
www.TutoresEscolares.Com.Br - Física - Exercícios Resolvidos de Calorimetria
 

Kürzlich hochgeladen

ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
azulassessoria9
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
azulassessoria9
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
azulassessoria9
 

Kürzlich hochgeladen (20)

Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
 
Educação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxEducação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptx
 
AULÃO de Língua Portuguesa para o Saepe 2022
AULÃO de Língua Portuguesa para o Saepe 2022AULÃO de Língua Portuguesa para o Saepe 2022
AULÃO de Língua Portuguesa para o Saepe 2022
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
 
Questões de Língua Portuguesa - gincana da LP
Questões de Língua Portuguesa - gincana da LPQuestões de Língua Portuguesa - gincana da LP
Questões de Língua Portuguesa - gincana da LP
 
Pesquisa Ação René Barbier Livro acadêmico
Pesquisa Ação René Barbier Livro  acadêmicoPesquisa Ação René Barbier Livro  acadêmico
Pesquisa Ação René Barbier Livro acadêmico
 
Quiz | Dia da Europa 2024 (comemoração)
Quiz | Dia da Europa 2024  (comemoração)Quiz | Dia da Europa 2024  (comemoração)
Quiz | Dia da Europa 2024 (comemoração)
 
Falando de Física Quântica apresentação introd
Falando de Física Quântica apresentação introdFalando de Física Quântica apresentação introd
Falando de Física Quântica apresentação introd
 
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptxSlides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
Slides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptx
Slides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptxSlides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptx
Slides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptx
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
Apresentação | Símbolos e Valores da União Europeia
Apresentação | Símbolos e Valores da União EuropeiaApresentação | Símbolos e Valores da União Europeia
Apresentação | Símbolos e Valores da União Europeia
 
Sistema de Bibliotecas UCS - Cantos do fim do século
Sistema de Bibliotecas UCS  - Cantos do fim do séculoSistema de Bibliotecas UCS  - Cantos do fim do século
Sistema de Bibliotecas UCS - Cantos do fim do século
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
O desenvolvimento é um conceito mais amplo, pode ter um contexto biológico ou...
O desenvolvimento é um conceito mais amplo, pode ter um contexto biológico ou...O desenvolvimento é um conceito mais amplo, pode ter um contexto biológico ou...
O desenvolvimento é um conceito mais amplo, pode ter um contexto biológico ou...
 
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
 
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
 

Td de calorimetria

  • 1. TRABALHO DIRIGIDO FÍSICA 2 Professor (a) Ano Ensino Turno Data Sergio Wagner 20 Médio Manhã 100% de aprovação Aluno (a) Nº para a vida. 01. (UECE) A temperatura de 0,15 kg, de um líquido cujo calor específico é 0,50 cal/g.0C, elevou-se de – 200C até 400C. A quantidade de calor recebida pelo corpo foi de: a) 4,5.103 cal b) 4,0.103 cal c) 1,5.103 cal d) 1,0.103 cal m = 0,15 kg = 150 g. Q = m.c.∆θ = 150.0,5.[40 – (-20)] = 75.60 = 4500 cal = 4,5.103 cal. 02. (UECE) Geraldo, velho admirador de Sócrates, filosofia: “ Verifico que, fornecendo calor a um corpo, sua temperatura se eleva; logo, o fornecimento de calor a coros sempre implicará em aumento de sua temperatura “. a) a verificação de Geraldo pode ser correta, mas sua generalização é falsa. b) a verificação e a generalização são ambas corretas. c) a verificação e a generalização só serão corretas para corpos de boa condutividade térmica. d) a verificação pode ser correta, mas a generalização só será válida para corpos de alto calor específico. O calor pode ser recebido (∆θ > 0) ou liberado (∆θ < 0). 03. (UECE) Associe a primeira coluna com a segunda: COLUNA1 COLUNA 2 I. irradiação ( ) não depende do meio material II. convecção calorífica ( ) ocorre mais facilmente nos sólidos que nos gases III. condução térmica ( ) implica transporte de matéria A sequência correta, de cima para baixo, é: a) I, II, III b) I, III, II c) II, I, III d) II, III, I Na condução ocorre somente nos sólidos; na convecção, ocorre nos fluídos (líquidos e gases) com transporte de matéria (massas de ar); e na irradiação, é a única que ocorre no vácuo, através de ondas eletromagnéticas, sendo que estas, não precisam de um meio material para se propagar. 04. (UECE) Cedem-se 684 cal a 200 g de ferro que estão a uma temperatura de 100C. Sabendo-se que o calor específico do ferro vale 0,114 cal/0C, concluímos que a temperatura final do ferro será: a) 100C b) 200C c) 300C d) 400C Q = m.c.∆θ ՜ 684 = 200.0,114.∆θ ՜ ∆θ = 684/22,8 = 300C. ∆θ = θ – θ0 ՜ 30 = θ – 10 ՜ θ = 30 + 10 = 400C. 05. (UECE) O gráfico abaixo indica a variação da temperatura de 1,0 g de uma substância em função da quantidade de calor que lhe é fornecido. A substância está primitivamente no estado sólido. O calor de fusão da substância é, em cal/g:
  • 2. a) 5 b) 30 c) 45 d) 60 Q = m.Lf ՜ 30 = 1.Lf ՜ Lf = 30 cal/g. 06. (UECE) Em um calorímetro, mistura-se um corpo A, de massa 200 g, de calor específico 0,2 cal/g.0C e a 600C, com outro corpo B, de massa 100 g, calor específico 0,1 cal/g.0C e a 100C. A temperatura final de equilíbrio térmico, é: a) 500C b) 400C c) 300C d) 200C QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ 200.0,2.(T – 60) + 100.0,1.(T – 10) = 0 ՜ 40.(T – 60) + 10.(T – 10) = 0 ՜ 40T – 2400 + 10T – 100 = 0 ՜ T = 2500/50 = 500C. 07. (UECE) Se um material A tem calor específico superior o de um material B, podemos assegurar que: a) A conduz melhor calor que B. b) B conduz melhor calor que A. c) A perde calor mais facilmente que B. d) B perde calor mais facilmente que A. 08. (UECE) A capacidade térmica de uma caneca de alumínio é 16 cal/0C. Sabendo-se que o calor específico do alumínio é 0,2 cal/g.0C, pode-s afirmar que a massa dessa caneca, em gramas, é: a) 3,2 b) 32 c) 80 d) 160 C = m.c ՜ 16 = 0,2.m ՜ m = 16/0,2 = 80 g. 09. (UECE) Um calorímetro, cujo equivalente em água é igual a 35 g, contém 115 g de água à temperatura de 200C. Colocam-se, então, no calorímetro, mais 300 g de água à temperatura de 500C. A temperatura de equilíbrio térmico é: a) 400C b) 500C c) 350C d) 200C QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ (35 + 115).1.(T – 20) + 100.1.(T – 50) = 0 ՜ 150.(T – 20) + 300.(T – 50) = 0 ՜ 150T – 3000 + 300T – 15000 = 0 ՜ T = 18000/450 = 400C. 10. (UECE) O aumento da quantidade de dióxido de carbono (CO2) na atmosfera, motivado pela queima do petróleo e derivados (óleo diesel e gasolina), carvão e lenha, nas usinas termoelétricas, na indústria, nos caminhões e automóveis, torna a atmosfera opaca à radiação térmica que tenta sair para o espaço, devolvendo-o à Terra: é o efeito estufa.
  • 3. Durante a Conferência Rio-92, robusteceu se a consciência de que é preciso encontrar substitutos mais limpos 92, robusteceu-se para esses combustíveis, como por exemplo a energia solar. O esquema abaixo ilustra um sistema de aquecimento de água por energia solar: uma placa metálica P, pintada de preto, serve de apoio a um tubo metálico T, recurvado em forma de serpentina; um depósito de água R é conectado à serpentina por meio de condutos de borracha S. A água passa pela serpentina exposta ao sol e vai para o recipiente R onde é sol armazenada. O aquecimento da água contida no depósito R, pela absorção de energia solar, é devido basicamente aos seguintes fenômenos, pela ordem: a) condução, irradiação, convecção. b) irradiação, convecção, condução. c) convecção, condução, irradiação. d) irradiação, condução, convecção. 11. (UECE) Quando há diferença de temperatura entre dois pontos, o calor pode fluir por condução, convecção ou radiação, do ponto de temperatura mais alta para o de temperatura mais baixa. O “ transporte “ de calor se dá baixa. junto com o transporte de matéria no caso da: a) condução somente. b) radiação somente. c) convecção somente. d) radiação e convecção. 12. (UECE) Mistura-se água fria,`a temperatura de 200C, com água quente a 800C, obtendo-se 1 kg de água a se 400C. A massa de água fria misturada é, em, kg: a) 2/3 b) 1/3 c) 1/2 d) 1/4 mF + mQ = 1 kg mQ = 1– mF. QF + QQ = 0 mF.cF.(40 – 20) + mQ.cQ.(40 – 80) = 0 mF.1.20 + (1– mF).1.(– 40) = 0 20mF – 40 + 40mF = 0 mF = 40/60 = 2/3 kg. 13. (UECE) O gráfico fornece a variação de temperatura de uma substância, inicialmente no estado sólido, em função da quantidade de calor que ela recebe. A massa da substância vale 5 gramas. A razão do calor específico da substância no estado sólido pelo seu calor específico no estado líquido é: a) 1/4 b) 1/3 c) 2/3 d) 3/4
  • 4. I. No sólido: QS = m.cS.∆θL ՜ 50 = 5.cS.40 ՜ cS = 50/200 = 1/4 cal/g.0C. II. No Líquido: QL = m.cL.∆θL ՜ 100 = 5.cL.60 ՜ cL = 100/300 = 1/3 cal/g.0C. III. cS/cL = (1/4)/(1/3) = 3/4. 14. (UECE) O chamado “ efeito estufa “, devido ao excesso de gás carbônico presente na atmosfera, provocado pelos poluentes, faz aumentar a temperatura por que: a) A atmosfera é transparente à energia radiante do sol e opaca às ondas de calor. b) A atmosfera é opaca à energia radiante do sol e transparente para as ondas de calor. c) A atmosfera é transparente tanto para a energia radiante do sol como para as ondas de calor. d) A atmosfera funciona como um meio refletor para a energia radiante e como meio absorvente para a energia térmica. 15. (UECE) O uso de chaminés para escape de gases quentes oriundos de combustão é uma aplicação do processo térmico de: a) irradiação b) condução c) dilatação d) convecção 16. (UECE) A capacidade térmica de uma amostra de água é 5 vezes maior que a de um bloco de ferro. A amostra de água se encontra a 20ºC e a do bloco, a 50ºC. Colocando-os num recipiente termicamente isolado e de capacidade térmica desprezível, a temperatura final de equilíbrio é: a) 250C b) 300C c) 350C d) 400C Sabendo que C = m.c, CA = 5.CB = 5.mB.cB. QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ CA.(T – 20) + CB.(T – 50) = 0 ՜ 5.CB.(T – 20) + CB.(T – 50) = 0 ՜ (dividindo os dois termos por CB) temos: 5.(T – 20) + 1.(T – 50) = 0 ՜ 5T – 100 + T – 50 = 0 ՜ T = 150/6 = 250C. 17. (UECE) O calor se propaga por convecção no(na): a) água b) vácuo c) chumbo d) vidro 18. (UECE) Considere um sistema constituído de dois volumes de água, um de 400 litros à temperatura de 20ºC e o outro de 100 litros à 70ºC. Sabendo-se que o sistema está isolado da vizinhança, a temperatura de equilíbrio é, em graus centígrados, igual a: a) 20 b) 30 c) 45 d) 60 QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ 400.1.(T – 20) + 100.1.(T – 70) = 0 ՜ 400.(T – 20) + 100.(T – 10) = 0 ՜ 400T – 8000 + 100T – 7000 = 0 ՜ T = 15000/500 = 300C. 19. (UECE) Considerando que os calores específico e latente de vaporização da água são respectivamente c = 4190 J/kg.K e L = 2256 kJ/kg, a energia mínima necessária para vaporizar 0,5 kg de água que se encontra a 30oC, em kJ, é aproximadamente: a) 645 b) 1275 c) 1940 d) 3820
  • 5. Q1 = m.c.∆θ = 0,5.4190.(100 – 30) = 146,65 Kj e Q2 = m.L = 0,5.2256 = 1128 kJ, logo QTOTAL = 146,65 + 1128 = 1274,65 kJ. 20. (UECE) Um corpo de massa 400 g é aquecido através de fonte térmica de potência 500 cal/min. constante. A temperatura do corpo, em função do tempo, aumenta segundo o gráfico abaixo: O calor específico do material de que é feito o corpo é: a) 0,615 cal/g.oC b) 0,715 cal/g.oC c) 0,625 cal/g.oC d) 0,725 cal/g.oC P = Q/∆t ՜ 500 = Q/10 ՜ Q = 5000 cal. Q = m.c.∆θ ՜ 5000 = 400.c.20 ՜ c = 5000/8000 = 0,625 cal/g.oC. 21. Ográfico a seguir indica esquematicamente o diagrama da pressão (p) exercida sobre uma substância em função de sua temperatura (θ ): Quais as correspondentes fases do estado de agregação das partículas dessa substância, indicadas pelas regiões assinaladas na figura? Região I – Sólido; Região II – Líquido; Região III – Vapor; e Região IV – Gás; 22. (UECE) O gráfico representa a variação da temperatura de um corpo sólido em função do tempo, ao ser aquecido por uma fonte que libera energia a uma potência constante de 150 cal/min. Sendo a massa do corpo igual a 100 g, o seu calor específico, em cal/gºC, é:
  • 6. a) 0,55 b) 0,75 c) 0,65 d) 0,85 P = Q/∆t ՜ 150 = Q/10 ՜ Q = 1500 cal. Q = m.c.∆θ ՜ 1500 = 100.c.20 ՜ c = 1500/2000 = 0,75 cal/g.oC. 23. O diagrama de estado de uma substância é esquematizado abaixo: Identifique o que representa cada letra no diagrama: A – estado sólido; B – estado líquido; C – estado gasoso (vapor); D – estado gasoso (gás); K – temperatura crítica ou ponto crítico; e Z – ponto triplo. 24. Um corpo de massa 50 g, inicialmente no estado sólido, recebe calor de acordo com a representação gráfica a seguir, passando para o estado líquido: No gráfico, Q representa a quantidade de calor recebida pelo corpo e T, sua temperatura na escala Celsius. Calcule: a) o calor específico do estado líquido; No estado sólido:
  • 7. Q = m.c.∆θ 400 = 50 · cS · (40 – 0) cS = 0,20 cal/g.°C. b) o calor latente de fusão; Na fusão (patamar): Q=mL 500 – 400 = 50 · LF LF = 2,0 cal/g. c) o calor específico do estado gasoso; No estado líquido: Q = m.c.∆θ 600 – 500 = 50.cL.(80 – 40) cL = 0,05 cal/g °C 25. (Efoa-MG) O gráfico ao lado representa o resultado do monitoramento da temperatura de um metal como MG) função do tempo durante o processo termodinâmico. Analisando o gráfico, é CORRETO afirmar que: a) o metal sofreu apenas a mudança da fase líquida para a sólida. b) o metal sofreu apenas a mudança da fase vapor para a líquida. c) ao final do processo o metal encontra na fase sólida. encontra-se d) ao final do processo o metal encontra na fase líquida. encontra-se e) ao final do processo o metal encontra na fase vapor. encontra-se Durante todo o processo, a temperatura diminui e há dois patamares em que a temperatura se mantém constante durante certo tempo, indicando então mudança de estado. Assim, o metal começa no estado gasoso, resfria-se até mudar para o estado líquido, resfria se novamente e muda para o se resfria-se estado sólido e ainda se resfria mais um pouco. “O único lugar onde o sucesso vem antes do trabalho é no dicionário [ Albert Einstein ] O dicionário”.