SlideShare ist ein Scribd-Unternehmen logo
1 von 43
Downloaden Sie, um offline zu lesen
Neutrino mass and the LHC


                        Miha Nemevšek
                         ICTP, Trieste


with Maiezza, Melfo, Nesti, Senjanović, Tello, Vissani and Zhang


           Balkan Workshop 2011, Donji Milanovac
LHC a neutrino machine?


 Neutrino mass is an experimentally
  established fact for BSM physics.


Might as well be @ TeV (hierarchy)

A phenomenological hint may already be here
Neutrino mass and BSM

        Facts                        Questions
    2
  ∆mS,A & θA,S,13              Mass scale & hierarchy

At least two massive light     CP phases

neutrinos                      Dirac or Majorana

 LHC may play a crucial role

 Low-high energy interplay becomes important

            The theory of neutrino mass?
Origin of mν

   Standard Model       νL only, mν = 0

                                 h h        y2v2
   Effective theory OW        =y     ⇒ mν =
                                 Λ           Λ

       High scale                         TeV
Typical in GUTs                    Theory: GUT remnant

Indirect, LHC of little use        Phenomenological


                               Neutrino mass and the LHC
UV completions of OW
        Renormalizable theory = seesaw scenarios
Fermionic singlet           Bosonic triplet                Fermionic triplet




          I                     II                          III
                                   h       h

    h          h                                             h         h

                                       ∆
ν          S        ν                                  ν          T0           ν
                               ν               ν




                             Type I+III
        Triplet predicted at TeV by a minimal SU(5) with 24F
        Neutrino mass matrix through decays
                                                        Bajc, Senjanović ’06
        Oscillations-collider connection           Bajc, MN, Senjanović ’07
UV completions of OW
Fermionic singlet           Bosonic triplet            Fermionic triplet




          I                     II                      III
                                   h       h

    h          h                                         h         h

                                       ∆
ν          S        ν                              ν          T0           ν
                               ν               ν




                               Type I+II
        Predicted by a minimal LR symmetric theory
        Singlet is gauged, type I required by anomalies
        Triplet breaks the LR symmetry - type II
        May need to be light   →
Left-Right symmetry

              νL              νR
                 , WL ↔          , WR
              eL              eR

Parity restoration at high scales            Pati, Salam ’74
                                          Mohapatra, Pati ’75


Spontaneously broken                Mohapatra, Senjanović ’75


                                                 Minkowski ’77
Origin of the seesaw mechanism                   Senjanović ’79
                                     Senjanović, Mohapatra ’80
Minimal LR Model
                SU (2)L × SU (2)R × U (1)B−L
   LR symmetric Higgs sector, parity invariant L
               Φ(2, 2, 0), ∆L (3, 1, 2), ∆R (1, 3, 2)

   First stage @ TeV                      Second stage @ 100 GeV
              0 0                                 v1      0
     ∆R   =                              Φ =
             vR 0                                 0     v2 eiα
     ∆L   ≡ vL = 0                       vL = λ v 2 /vR
    Breaks SU (2)R and Lepton number
                                 MW ∝ v ≡         2    2
                                                 v1 + v2 ,       mD ∝ v
MWR = g vR ,     mN = y vR
Mass spectra
               ˜ ˜
LY = L (YΦ Φ + YΦ Φ)     R   +    T
                                  L   Y∆L ∆L    L   +   T
                                                        R   Y∆R ∆R   R   + h.c.
         Dirac terms                            Majorana terms

MD   =   v1 YΦ + v2 e   ˜
                       YΦ , MνR
                       −iα
                                           = vR Y∆R
M    =       iα       ˜
         v2 e YΦ + v1 YΦ MνL                           T
                                           = vL Y∆L − MD MνR MD
                                                          −1


          C:    YΦ = YΦ T ,        Y∆L,R = Y∆R,L ∗

         Mass eigenstate basis
                †                 ∗         †                  ∗        †
 M =U    Lm    U R,   MνL =      UνL mν    UνL ,    MνR =     UνR   mN UνR
                                            ∗
                             C:U   L   =   UR
The Interactions
                      g
New Gauge:    Lcc   = √ νL VL † W
                         ¯      /     L     ¯   † /
                                          + νR VR W R   R
                       2
                      T        ++
New Scalar: L∆++ =   eR   Y   ∆R eR
                     g    ∗      †
                Y =     VR mN VR
                    MWR
                          ∗
Flavor fixed in type II: VR = VL
 Remember; two angles, one limit, no phases
The Interactions
                       g
New Gauge:     Lcc   = √ νL VL † W
                          ¯      /     L     ¯   † /
                                           + νR VR W R   R
                        2
                       T        ++
New Scalar: L∆++ =    eR   Y   ∆R eR
                     g    ∗      †
                Y =     VR mN VR
                    MWR

Flavor fixed in type II: VR = oL ly!
                           ∗
                             Vn
                     xam ple
               E
 Remember; two angles, one limit, no phases

LHC could eventually measure these
Bounds on the LR scale

Theoretical bounds since ’81              Beall et al. ’81...Zhang et al. ’07

A recent detailed study, including CP violation
                                       Maiezza, Nesti, MN, Senjanović ’10


    C : MWR > 2.5 TeV          P : MWR > 3.2 − 4.2 TeV

Direct searches
   Dijets             MWR > 1.51 TeV                       CMS 1107.4771

   Light neutrino     MWR > 2.27 TeV                 CMS PAS EXO-11-024



              LHC is here!        L ≈ 2.5 fb    −1
Left-Right @ LHC

    Most interesting channel: l l j j
                                                Keung, Senjanović ’83
    LNV at colliders
p
            WR
                                  i
                                          Gauge production: s-channel,
                 VR iα
p                        Nα
                                          W nearly on-shell
                 VR jα                j
                                          Clean, no missing energy
                         WR


                                  j       Reconstructs W and N masses
                              j
                                          Information on the flavor
Limits from the LHC
                                                                                                        MN, Nesti, Senjanović, Zhang ’11


      1000                                             1.64`                     1000
                                                                                                                                   1.64`
      800                                                                        800
             D0: dijets




                                                                                                                               2




                                                                                          D0: dijets
                                                   2
GeV




                                 3




                                                                           GeV
      600                                                                        600
                          4
                                                                                                        4      3




                                                                           MNΜ
MN




      400                                                                        400


      200                                                                        200
                                                                     1
                                                          L 33.2pb                                                                   L 34pb   1

        0                                                                          0
         800              1000       1200      1400        1600    1800                 800            1000   1200         1400     1600          1800
      March                            MWR   GeV                                                                   MWR   GeV



         High N inaccessible due to jets, low N due to isolation
         This year: L = 0.1(1) fb                                 −1
                                                                         : MWR > 1.6(2.2) TeV
         Electron and muon channel essentially the same
Limits from the LHC
             CMS PAS EXO-11-002                                                                                                                                      MN, Nesti, Senjanović, Zhang ’11
                                                                                CMS Preliminary                                                                                                 CMS Preliminary
MNe [GeV]




                                                                                                          MNµ [GeV]
                                     MNe > MWR                                  240 pb-1 at 7 TeV
                                                                                 1.64`                                                                 MNµ > MWR                                240 pb-1 at 7 TeV
       1200
       1000
                                                                                             Observed
                                                                                                                  1200
                                                                                                                  1000
                                                                                                                                                                                                              Observed
                                                                                                                                                                                                      1.64`
                                                                                             Expected                                                                                                         Expected
            800                                                                                                       800
                  D0: dijets




        1000                                                                                                      1000                                                                      2




                                                                                                                                D0: dijets
                                                                            2
GeV




                                                          3




                                                                                                            GeV
            600                                                                                                       600
                                                   4
                                                                                                                                                                     4      3
             800                                                                                                      800




                                                                                                            MNΜ
MN




            400                                                                                                       400


            200
             600                                                                                                      600
                                                                                                                      200
                                                                                                    1
                                                                                     L 33.2pb                                                                                                           L 34pb     1
                           Excluded by Tevatron




                                                                                                                                             Excluded by Tevatron
             0                                                                                                         0
              800                                  1000       1200      1400          1600        1800
            400                                                                                                       400
                                                                                                                        800                                         1000   1200         1400           1600            1800
      March                                                     MWR   GeV                                                                                                       MWR   GeV


            200                                  200
              High N inaccessible due to jets, low N due to isolation
                  0                                                                                                         0
              This year: L = 0.1(1) fb            800     1000 1200 1400 1600
                                                                                              −1
                                                                                                        : MWR > 1.6(2.2) TeV
                                                                                                                800 1000 1200                                                                    1400 1600
   July                                                                             MWR [GeV]                                                                                                       MWR [GeV]
              Electron and muon channel essentially the same
Low/high energy interplay
      Majorana mass term dominance
                                                       ∗
          MνR = vR Y                      MνL = vL Y
      Implications for masses and mixings
                                             ∗              ∗
           mN ∝ mν                  UνR =   UνL   ⇒ VR =   VL

mN 2 2 − mN 1 2   mν2 2 − mν1 2                     Hierarchy probe
                =                    ±0.03
mN 3 2 − mN 1 2   mν3 2 − mν1 2                     @ LHC

                         i   mN i
mcosm =     ∆m2
              A                       ,       Cosmo-oscillations
                    |mN3 2 − m2 2 |
                              N               -LHC link
0ν2β and cosmology

         1.01                                       Majorana mass implies
                                                    0ν2β             Vissani ’99
         0.1
          0.1
                inverted
                                                    Gerda, Cuore, Majorana,...
|mee| in eV




        0.01
         0.01                                            Review by Rodejohann ’11
                normal
  ν




                                                    Claim of observation
       10−3
        0.001

                                                         |mν |
                                                           ee
                                                                      0.4 eV
       10−4 −4
        10 4 4                                       Klapdor-Kleingrothaus ’06, ’09
           10
            10      0.001
                     0.001    0.01
                               0.01   0.1
                                      0.1       1
                                                1
                 lightest neutrino mass in eV
0ν2β and cosmology

         1.01                                       Cosmological bounds

                                                         mν < 0.17 eV
         0.1
          0.1
                inverted
                                                                 Seljak et al. ’06
|mee| in eV




                                                    WMAP alone
        0.01
         0.01
                normal
  ν




                                                         mν < 0.44 eV
       10−3
        0.001                                               Hannestad et al. ’10



       10−4 −4
        10 4 4
                                                    If confirmed, a hint for NP
           10
            10      0.001
                     0.001    0.01
                               0.01   0.1
                                      0.1       1
                                                1
                                                                     Vissani ’02
                 lightest neutrino mass in eV
New Diagrams for 0ν2β
                                                     Mohapatra, Senjanović ’81


n              p        n                 p          n                 p
     WR
                            W                            WR
    VR eα                                        e                            e
               e                       (YL )ee                      (YR )ee

    WR
     Nα

    VR eα
               e
                            vL
                                 ∆L
                                  ∆L
                                                 e
                                                         vR
                                                              ∆R
                                                               ∆R
                                                                              e
                            W                            WR
     WR


n              p        n                 p          n                 p


    ∝ 1/mN                       ∝ mν                         ∝ mN

      Large?                      Tiny                   Subdominant?

                   In agreement with cosmology?
0ν2β : the new contribution
                                                                                   e
     LR mixings small                       e          e
                                                                                       e

                                          ;N                           ´L;R
sin ξ < MW /MWR < 10       −3
                                                           c
                                 WL;R           WL;R            WL;R           WL;R

              mD       0        A         A        A           A         A           A
                                ZX      Z`1 X    Z`2 X         ZX      Z`1 X       Z`2 X




                                                   4
             2    2      1     2 mN j            MW      µ     c
    HNP =   GF VR ej         +                    4 JRµ JR eR eR
                        mN j    m2∆              MWR

     Type II: VR = VL
                 ∗
                                     ∆L suppressed: mν /m∆                     1
     LFV:     mN /m∆R < 1
     The gauge contribution is dominant
0ν2β : the total contribution
        LHC accessible regime                                                   ee 2
                                                                          |mν+N | ≡
                                  lightest mN in GeV
                                                                            ee 2        ee 2
                1.
               1.0
                     1         10          100     400           500      |mν | + |mN |
               0.5                                                        Interference small
                                         normal
                          inverted
|mee | in eV




               0.1                                                        Reversed role of
          0.05                                                            hierarchies
  ν +N




          0.01                                                            No tension with
        0.005                                        MWR = 3.5 TeV        cosmology
                                               largest mN = 0.5 TeV
         10−3
        0.001 −4
                                                                          A light mN < MWR
            10 4
              10              0.001
                              0.001        0.01
                                           0.01         0.1           1
                               lightest neutrino mass in eV
                                                                          No cancellations
LHC and 0ν2β
Suppose NP is a must for 0ν2β ; θ13   0 α = 2(ϕ2 − ϕ1 )



         ee 2            2            iα     2    2
  |Mν+N | = |mν1 cos θ12 + mν2 e           sin θ12 | +
            4                                         2
        2 MW     1      2       1 iα 2
      p    4         cos θ12 +      e sin θ12
          MWR   mN 1           mN 2
LHC and 0ν2β
 Suppose NP is a must for 0ν2β ; θ13                                               0 α = 2(ϕ2 − ϕ1 )
       1000
        1000                                                    1000
                                                                 1000
                  Normal Hierarchy                                         Normal Hierarchy
             500 MWR = 3.5TeV, α = 0
              500                                                     500 MWR = 3.5TeV, α = π
                                                                       500
                      ee                                                       ee
                    |Mν+N |                                                  |Mν+N |
             200
              200                                                     200
                                                                       200
mN1 in GeV




                                                         mN1 in GeV
                        0.05 ee 2                    2                           0.05
                                                                                   iα      2       2
              |Mν+N | = |mν1 cos θ12 + m e
             100
              100                                                     100 ν2
                                                                       100              sin θ12 | +
                        0.1                                                      0.1
              50
              50
                              4                                        50
                                                                       50                               2
                         0.2
                         2   MW         1      2         1 0.2iα 2
              20
              20
                        p0.4 4              cos θ12 + 20 0.4 sin θ12
                                                      20
                                                            e
                            MWR        mN 1            mN 2
              10
              10         0.6                                           10
                                                                       10        0.6
                        1.0                                                      1.0
               55                                                       5
                                                                        5
                10−4
               0.0001     0.001
                           0.001    0.01
                                     0.01    0.1
                                             0.1     1
                                                     1                   10−4
                                                                        0.0001     0.001
                                                                                    0.001    0.01
                                                                                              0.01    0.1
                                                                                                      0.1     1
                                                                                                              1
                        lightest neutrino mass in eV                             lightest neutrino mass in eV

                         jj : mN           50 GeV                       v : mN
                                                                        /                      20 GeV
LHC:                     j : mN            20 GeV                       /
                                                                        E : mN                 3 − 7 GeV
LHC and 0ν2β
 Suppose NP is a must for 0ν2β ; θ13                                                0 α = 2(ϕ2 − ϕ1 )
        1000
        1000
         1000
         1000                                                     1000
                                                                 1000 Inverted Hierarchy
                                                                   1000
                                                                  1000
                   Normal Hierarchy
                   Inverted Hierarchy                                    Normal Hierarchy
              500 MWR = 3.5TeV, α = 0
               500
              500
               500
                            3.5TeV, α = 0                           500 MWR = 3.5TeV, α = π
                                                                   500 MWR = 3.5TeV, α = π
                                                                     500
                                                                    500
                        ee
                     |Mν+N |
                        ee                                                       ee
                     |Mν+N |                                                   |Mν+N |
              200
               200
              200      0.05                                          200
                                                                      200
                                                                    200
                                                                     200




                                                           mN1 in GeV
               200
mN in GeV




                                                           mN1 in GeV
mN11 in GeV




                       0.05 ee 2                       2                        0.05
                                                                                  iα        2        2
               |M
              100
               100
               100     0.1
                     ν+N         | = |mν1 cos θ12 + m e              100
                                                                    100
                                                                      100
                                                                     100       |M ee
                                                                              ν2 ν+N |   sin θ12 | +
                       0.1                                                      0.1
               50
               50
                50     0.2    4                                          50
                                                                         50
                                                                        50
                                                                        50       0.05                     2
                       0.2
                        2  M  W              1      2          1     2          0.2iα
                                                                                 0.1
               20
               20
                         p
                       0.4   4                   cos θ12 + 20 0.4 sin θ12
                                                            20
                                                            20
                                                           20
                                                                 e
                20     0.4
                       0.6 M WR             mN 1            mN2 0.2
               10
               10      0.6                                               10
                                                                         10
                                                                        10
                                                                        10         0.6
                10     1.0                                                          0.4
                       1.0                                                         1.0
                                                                                    0.6
                55                                                       5
                                                                         55
                                                                        50.0001
                 10−4
                0.0001      0.001
                           0.001
                            0.001    0.01
                                      0.01
                                     0.01
                                      0.01    0.1
                                               0.1
                                              0.1
                                              0.1     11
                                                      11                  10−4
                                                                         10−4
                                                                        0.0001       0.001
                                                                                       0.001
                                                                                     0.001
                                                                                      0.001    0.01
                                                                                                0.01
                                                                                              0.01
                                                                                               0.01     0.1
                                                                                                         0.1
                                                                                                       0.1
                                                                                                        0.1     1
                                                                                                                1
                                                                                                                1
                                                                                                                1
                         lightest neutrino mass in eV
                                  neutrino mass in eV                              lightest neutrino mass in eV
                                                                                  lightest neutrino mass in eV

                          jj : mN            50 GeV                      v : mN
                                                                         /                      20 GeV
LHC:                      j : mN             20 GeV                      /
                                                                         E : mN                 3 − 7 GeV
Lepton Flavor Violation
                                                                       Cirigliano et al ’04
 LFV rates computable: type II (or LHC)                            Raidal, Santamaria ’97
                            µ       Y∆µe           e



                                                                                      T
 →3       tree                            ∆++
                                           L,R
                                                                 VL mN /m∆ VL
                            e       Y∆ ∗
                                       ee          e


                                          γ

                                                                                      †
 → γ      loop            ∆++                      ∆++           VL mN /m∆ VL
                      µ     Y∆µi      c        Y∆ ∗          e
                                      i           ie
                            µL Y∆             Y∆ ∗ eL

                                    L (νL )



                       ∆++ (∆+ )                 ∆++ (∆+ )
                                                                                      †
µN− eN    log                                                    VL mN /m∆ VL
                        L    L                    L    L




                                          γ, ZL , ZR



                                N              N
Combined LFV constraints
         Muonic and tau channels                                          Tello, MN, Senjanović, Vissani ’10

         Varying PMNS constrains                      mN /m∆ < 1
        5.0                                                    5.0
          5.
               absolute bound from LFV                           5.   absolute bound from LFV


        1.0
          1.                                                   1.0
                                                                 1.
mN/m∆




                                                       mN/m∆
        0.5
         0.5                                                   0.5
                                                                0.5




     0.1
      0.1                                                   0.1
                                                             0.1

    0.05 always allowed by LFV
     0.05                                                  0.05 always allowed by LFV
                                                            0.05


                                    MWR = 3.5TeV                                          MWR = 3.5TeV
    0.01 4                       Inverted Hierarchy        0.01 4                        Normal Hierarchy
     0.01                                                   0.01
      10−4
        10          0.001
                     0.001    0.01
                               0.01    0.1
                                        0.1       1
                                                  1
                                                             10−4
                                                               10          0.001
                                                                            0.001    0.01
                                                                                      0.01    0.1
                                                                                               0.1      1
                                                                                                        1

                  lightest neutrino mass in eV                           lightest neutrino mass in eV
Triplet searches
          2001   2003     2003   2004    2004   2005   2006   2008   2008    2011   2011    2011
    350
                                                                                            313

    300


    250


    200                                                                            LHC
                                                              150                   156
m




                                                146    141                   144
    150                                  136
                                 118.4                                114
          98.5    97.3    100
    100

                 Delphi          CDF     CDF    CDF    H1     D0     CDFII   D0     CMS     CMS
          Opal            L3
    50            ΤΤ              ΜΜ     e&Μ      0    eΜ     ΜΜ      eΤ     ΜΤ     April   July


     0
          2001   2003     2003   2004    2004   2005   2006   2008   2008    2011   2011    2011
Gauge Production
                             √
                         ∆+ / 2          ∆++
             ∆=                              √
                          ∆0            −∆+ / 2
Pair-wise through Z, γ           ∗


  ∗     ∆+                              ∆++                    ∆0
 γ ,Z                             ∗
                                 γ ,Z                      Z

        ∆−                              ∆−−                    ∆0




Associated via W

                 ±
                     ∆±±                          ±
                                                      ∆±
             W                                W
                           GeV
                     ∆                                ∆0
Gauge Production
                                        √
       2.00                         ∆+ / 2       ∆++            LHC @ 7 TeV
                           ∆=                        √
       1.00
                                     ∆0         −∆+ / 2
       0.50   Pair-wise through Z, γ     ∗
                                                                solid=LO
       0.20
                                                                Z dashed=NLO
Σ pb




                                                                      0
                ∗     ∆+                        ∆++                    ∆
               γ ,Z                       ∗
                                         γ ,Z
       0.10

       0.05
                      ∆−                        ∆−−
                                                                K-factor =1.3
                                                                     ∆0




       0.02   Associated via W
              100     120W ±   140
                                ∆±±
                                         160      180 ±    ±
                                                          200
                                                           ∆
                                                                red = assoc.
                                                    W
                               M TeV
                                   GeV
                                ∆                         ∆0    blue=pair.
Decay Phase Diagram

         m∆ U ∗ mν U †          m3 v∆ 2
Γ∆→   ∝                Γ∆→V V ∝  ∆
                                    4
                                        Γ∆→∆ V ∝ ∆m5 /m4
                                                       W
             v∆                   v
        a)                   b)                c)
      Decays

      a) Leptonic       ∆→                Tiny v∆

      b) Gauge boson    ∆→VV              Large v∆

      c) Cascade        ∆→∆V              Mass split

      D0: pair-production only, CMS degenerate mass
Decay Phase Diagram
          100.0
           50.0 ∗                 Cascade 2
                                          Decay
             m∆ U mν U †           m3 v∆
Γ∆→       ∝              Γ∆→V V ∝    ∆
                                        4
                                            Γ∆→∆ V ∝ ∆m5 /m4
                                                           W
                 v∆                   v
            a)                 b)                  c)
           10.0
          Decays
  M GeV




            5.0
          a) Leptonic        ∆→             Tiny v∆
             1.0      Leptonic Decay
          b) Gauge boson
             0.5             ∆→VV           Large v∆
                                                Gauge
          c) Cascade        ∆→∆V            Mass split
                                             Boson Decay

          D0: pair-production only, 6
            10 10     10 8     10 CMS degenerate mass
                                       10 4    0.01     1
                                   v GeV
Mass splits
 The general potential
        2     †      2    †        T    ∗
V =−   mH   H H + m∆ Tr∆ ∆ + (µH iσ2 ∆ H                + h.c.)+
         †    2         † c2         †  2
   λ1 (H    H) + λ2 (Tr∆ ∆) + λ3 Tr(∆ ∆) +
        †         †          †      †
   α H H Tr∆ ∆ + β H ∆∆ H

 Splits components by v 2; there is a sum rule
         2             2      2          2       2
        m∆ +      −   m∆++   m∆ 0
                                −       m∆ +   β v /4
                              c
                       mS    mA = m∆ 0
                                                            v2
 Only two mass scales govern the spectrum up to O
                                                           v∆ 2
Electroweak Precision Tests
            EWPT calculated for the first time                    Melfo, MN, Nesti, Senjanović, Zhang ’11

            Oblique parameters suffice (Yukawa small by LFV)
                             m       200 GeV
      100                                                              T parameter
      80
                                                           T positive definite, controlled by
      60
                                                           mass splits
GeV




      40
            68
      20         95
                                                           Heavy Higgs=negative T
m




                        99
                                                                        Bottom-line
m




        0

      20
                                                           O(10 GeV) splits allowed
      40

        100           200        300     400   500   600   Cascade region opens up...
                                   mh GeV
Type II Roadmap
                                                          Melfo, MN, Nesti, Senjanović, Zhang ’11




      100
      100                                     Sum Rule
                                               Sum Rule
                                                                               β<3
                                                                                c
                Direct search
                Direct search
      50
      50         LHC 980 pb 11
                  LHC 980 pb
                                                                             CMS data
GeV
GeV




                 v 10 66 GeV
                  v 10 GeV
                                               EWPT
       0
       0                                                                     CMS-PAS-
                                             mh 300GeV
m
m




                                                                             HIG-11-007
                LE
m




                LEP
m




      50
      50                          EWPT
                                                                             Light Higgs
                   P




                                 mh 130GeV
                                             Sum Rule &
                                              Sum Rule &
      100
      100                                      Z width
                                                Z width                   mh = 130 GeV
                                                                                c
            0
            0    100
                 100     200
                         200     300
                                 300  400
                                       400      500
                                                 500      600
                                                           600     700
                                                                    700
                                 mm GeV
                                     GeV
Type II Roadmap
                                                          Melfo, MN, Nesti, Senjanović, Zhang ’11




      100                                     Sum Rule
                                                                               β<3
                                                                                c
                Direct search
       50        LHC 980 pb 1
                                                                             CMS data
GeV




                 v 10 6 GeV
                                               EWPT
        0                                                                    CMS-PAS-
                                             mh 300GeV
m




                                                                             HIG-11-007
                LE
m




      50
                                                                             Heavy Higgs
                P




                                             Sum Rule &
      100                                      Z width
                                                                         mh = 300 GeV
                                                                               c
            0    100     200    300    400      500       600      700
                                m     GeV
Conclusions

0ν2β signal may require new physics at TeV

Left-Right symmetry @ LHC a natural example

   no tension with cosmology, precision data or LFV

   links oscillations, cosmology and the LHC

Exclusions with fairly low luminosity and 7 TeV

LHC may observe LNV and in turn connect it to low
energy rates, both LNV and LFV
Thank you.
Higgs decay

    Heavy Higgs decay: a way to probe α                 Akeroyd, Moretti ’11


    mh > 2m∆                                    Br(h → W W )
                                                                               100
                2
Γh→∆++ ∆−− ∝ α                    1.5

                          2
 Γh→∆+ ∆− ∝ (α + β/2)             1.0
                              Α

                                  0.5
    Higgs Br’s change                                                          10
                                  0.0
                        ++                150    200        300       500
    Easy to search if ∆                            Mh GeV


    Hidden if ∆0                        Melfo, MN, Nesti, Senjanović, Zhang ’11
A global picture
                                                             MN, Nesti, Senjanović, Zhang ’11



      1000                                                                          1
                                                                    L 33.2pb
      500                   4              1.64`
             D0: dijets



                             3    2
      100
GeV




                                                                   0Ν2
       50                                                                Β H
                                                                             M
                                  jet EM activity
MN




                                                                                 Τ N 1 mm

       10                              Displaced Vertex
        5                                                                         ΤN 5 m

                                 CMS           Missing Energy

        1
                          1000          1500          2000            2500              3000
                                               MWR   GeV
Non-minimal case
                                           CKM              CKM∗
Minimal case: gL = gR             C : VL           = VR
                                   Maiezza, Nesti, MN, Senjanović ’10

           1.4



           1.2                                      95% CL
   gR gL




           1.0



           0.8



           0.6                             mN = 500 GeV
            1200   1300   1400      1500    1600     1700      1800
                                 MWR GeV
And the WR ?

Less important, loop suppressed
   no log enhancement
   flavor structure always                       mN < MWR
                        †
      VL mN /MWR VL
Still, future µ N − e N useful
 J-PARC and Fermilab
 could probe the mediator         Cirigliano, Kitano, Okada, Tuzon ’09

 even CP phases if LR                       Bajc, MN, Senjanović ’09
Role of θ13
    Flavor structure in muon-electron transitions
                                iα
   A(µ → 3e) ∝ −mN1 + exp            mN2 sin 2θ12 cos θ23
                           2            iα          2         2
                  mN1 cos θ12 + exp          mN2 sin    θ12 /m∆++

    µ → 3e insensitive to θ13

           ∆m2 13
              N         ∆m2
A(µ → e) ∝                S
                             sin 2θ12 cos θ23 + eiδ sin θ13 sin θ23
           m2 ++
            ∆          2∆m2A


    µ − e conversion and µ → eγ depend a lot
Role of θ13
                                                        Impact of non zero Θ13
                                      0.200
                            Flavor structure in muon-electron transitions      T2K
   sin2Θ12 cosΘ23 ei∆ sinΘ13 sinΘ23




                                      0.100                              sin2 2Θ13 0.11
                                                        iα                   Minos
               → 3e)
          A(µ 0.050 ∝                         −mN1 + exp mN2 sin 2θ12 cos θ23
                                                    2      iα         2  sin2 2Θ13 20.04
                                              mN1 cos θ12 + exp       mN2 sin θ12 /m∆++
                                      0.020
                    µ → 3e insensitive to θ13
                       0.010
                                                                                       Θ13 0
           ∆m2 13
              N
                                      0.005        ∆m2
A(µ → e) ∝                                           S
                                                        sin 2θ12 cos θ23 + eiδ sin θ13 sin θ23
           m2 ++                                  2∆m2
                         2 mA 2




                                                      A
 mS 2




            ∆                                                          2           4
                                      0.002                            sin 2Θ13 8x10

                       0.001
                    µ − e conversion            and Π → eγ depend a lot
                             0                      µ
                                                    2
                                                              Π                  3Π            2Π
                                                                                  2
                                                                  ∆

Weitere ähnliche Inhalte

Was ist angesagt?

Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationColm Connaughton
 
TU3.T10.2.pdf
TU3.T10.2.pdfTU3.T10.2.pdf
TU3.T10.2.pdfgrssieee
 
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...Colm Connaughton
 
Quantum Computation and Algorithms
Quantum Computation and Algorithms Quantum Computation and Algorithms
Quantum Computation and Algorithms Reza Rahimi
 
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...Colm Connaughton
 
Fluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationFluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationColm Connaughton
 
Cluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationCluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationColm Connaughton
 
Introduction to (weak) wave turbulence
Introduction to (weak) wave turbulenceIntroduction to (weak) wave turbulence
Introduction to (weak) wave turbulenceColm Connaughton
 
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...Colm Connaughton
 
Colafrancesco - Dark Matter Dectection 2
Colafrancesco - Dark Matter Dectection 2Colafrancesco - Dark Matter Dectection 2
Colafrancesco - Dark Matter Dectection 2CosmoAIMS Bassett
 
Borut Bajc "Asymptotic safety"
Borut Bajc "Asymptotic safety"Borut Bajc "Asymptotic safety"
Borut Bajc "Asymptotic safety"SEENET-MTP
 
CP and Discrete Symmetries
CP and Discrete SymmetriesCP and Discrete Symmetries
CP and Discrete Symmetriesmholthau
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applicationsvvk0
 
Oscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregationOscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregationColm Connaughton
 
W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and G...
W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and G...W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and G...
W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and G...SEENET-MTP
 
The two dimensional wave equation
The two dimensional wave equationThe two dimensional wave equation
The two dimensional wave equationGermán Ceballos
 
Light Stop Notes
Light Stop NotesLight Stop Notes
Light Stop NotesFlip Tanedo
 

Was ist angesagt? (20)

Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentation
 
TU3.T10.2.pdf
TU3.T10.2.pdfTU3.T10.2.pdf
TU3.T10.2.pdf
 
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick  ...
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
 
Quantum Computation and Algorithms
Quantum Computation and Algorithms Quantum Computation and Algorithms
Quantum Computation and Algorithms
 
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
 
Fluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationFluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregation
 
Cluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentationCluster aggregation with complete collisional fragmentation
Cluster aggregation with complete collisional fragmentation
 
Introduction to (weak) wave turbulence
Introduction to (weak) wave turbulenceIntroduction to (weak) wave turbulence
Introduction to (weak) wave turbulence
 
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
Colafrancesco - Dark Matter Dectection 2
Colafrancesco - Dark Matter Dectection 2Colafrancesco - Dark Matter Dectection 2
Colafrancesco - Dark Matter Dectection 2
 
Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
Borut Bajc "Asymptotic safety"
Borut Bajc "Asymptotic safety"Borut Bajc "Asymptotic safety"
Borut Bajc "Asymptotic safety"
 
Rumus fisika
Rumus fisikaRumus fisika
Rumus fisika
 
CP and Discrete Symmetries
CP and Discrete SymmetriesCP and Discrete Symmetries
CP and Discrete Symmetries
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
 
Oscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregationOscillatory kinetics in cluster-cluster aggregation
Oscillatory kinetics in cluster-cluster aggregation
 
W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and G...
W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and G...W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and G...
W. Buchmüller: Cosmological B-L Breaking: Baryon Asymmetry, Dark Matter and G...
 
The two dimensional wave equation
The two dimensional wave equationThe two dimensional wave equation
The two dimensional wave equation
 
Light Stop Notes
Light Stop NotesLight Stop Notes
Light Stop Notes
 

Andere mochten auch

F. Remey - French scientific cooperation, The example of Serbia, Perspectives...
F. Remey - French scientific cooperation, The example of Serbia, Perspectives...F. Remey - French scientific cooperation, The example of Serbia, Perspectives...
F. Remey - French scientific cooperation, The example of Serbia, Perspectives...SEENET-MTP
 
V. Ciornea - Institute of Applied Physics of the Academy of Science of Moldava
V. Ciornea - Institute of Applied Physics of the Academy of Science of MoldavaV. Ciornea - Institute of Applied Physics of the Academy of Science of Moldava
V. Ciornea - Institute of Applied Physics of the Academy of Science of MoldavaSEENET-MTP
 
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasSEENET-MTP
 
A. Proykova - National, Regional and European Physical Societies
A. Proykova - National, Regional and European Physical SocietiesA. Proykova - National, Regional and European Physical Societies
A. Proykova - National, Regional and European Physical SocietiesSEENET-MTP
 
Astronomical Statiоn at Vidojevica
Astronomical Statiоn at VidojevicaAstronomical Statiоn at Vidojevica
Astronomical Statiоn at VidojevicaSEENET-MTP
 
Astronomy Via the Internet
Astronomy Via the InternetAstronomy Via the Internet
Astronomy Via the InternetSEENET-MTP
 
M. Buric - Julius and his Students
M. Buric - Julius and his StudentsM. Buric - Julius and his Students
M. Buric - Julius and his StudentsSEENET-MTP
 
R. Constantinescu - Science and Society
R. Constantinescu - Science and SocietyR. Constantinescu - Science and Society
R. Constantinescu - Science and SocietySEENET-MTP
 
G. Senjanovic - Neutrino Paradigm and LHC
G. Senjanovic - Neutrino Paradigm and LHCG. Senjanovic - Neutrino Paradigm and LHC
G. Senjanovic - Neutrino Paradigm and LHCSEENET-MTP
 
G. Fiore - Learning from Julius
G. Fiore - Learning from JuliusG. Fiore - Learning from Julius
G. Fiore - Learning from JuliusSEENET-MTP
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergySEENET-MTP
 
B. Nikolic - Renormalizability of the D-Deformed Wess-Zumino Model
B. Nikolic - Renormalizability of the D-Deformed Wess-Zumino ModelB. Nikolic - Renormalizability of the D-Deformed Wess-Zumino Model
B. Nikolic - Renormalizability of the D-Deformed Wess-Zumino ModelSEENET-MTP
 
F. Stoeckel - DAAD Activities in SEE
F. Stoeckel - DAAD Activities in SEEF. Stoeckel - DAAD Activities in SEE
F. Stoeckel - DAAD Activities in SEESEENET-MTP
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheorySEENET-MTP
 
Ernest Rutherford and The Discovery of Atomic Nucleus
Ernest Rutherford and The Discovery of Atomic NucleusErnest Rutherford and The Discovery of Atomic Nucleus
Ernest Rutherford and The Discovery of Atomic NucleusSEENET-MTP
 
Problems of the Environment in the Science Classroom. Introducing the STSE
Problems of the Environment in the Science Classroom. Introducing the STSEProblems of the Environment in the Science Classroom. Introducing the STSE
Problems of the Environment in the Science Classroom. Introducing the STSESEENET-MTP
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...SEENET-MTP
 
B. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-dualityB. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-dualitySEENET-MTP
 
W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?
W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?
W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?SEENET-MTP
 
An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...
An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...
An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...SEENET-MTP
 

Andere mochten auch (20)

F. Remey - French scientific cooperation, The example of Serbia, Perspectives...
F. Remey - French scientific cooperation, The example of Serbia, Perspectives...F. Remey - French scientific cooperation, The example of Serbia, Perspectives...
F. Remey - French scientific cooperation, The example of Serbia, Perspectives...
 
V. Ciornea - Institute of Applied Physics of the Academy of Science of Moldava
V. Ciornea - Institute of Applied Physics of the Academy of Science of MoldavaV. Ciornea - Institute of Applied Physics of the Academy of Science of Moldava
V. Ciornea - Institute of Applied Physics of the Academy of Science of Moldava
 
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
 
A. Proykova - National, Regional and European Physical Societies
A. Proykova - National, Regional and European Physical SocietiesA. Proykova - National, Regional and European Physical Societies
A. Proykova - National, Regional and European Physical Societies
 
Astronomical Statiоn at Vidojevica
Astronomical Statiоn at VidojevicaAstronomical Statiоn at Vidojevica
Astronomical Statiоn at Vidojevica
 
Astronomy Via the Internet
Astronomy Via the InternetAstronomy Via the Internet
Astronomy Via the Internet
 
M. Buric - Julius and his Students
M. Buric - Julius and his StudentsM. Buric - Julius and his Students
M. Buric - Julius and his Students
 
R. Constantinescu - Science and Society
R. Constantinescu - Science and SocietyR. Constantinescu - Science and Society
R. Constantinescu - Science and Society
 
G. Senjanovic - Neutrino Paradigm and LHC
G. Senjanovic - Neutrino Paradigm and LHCG. Senjanovic - Neutrino Paradigm and LHC
G. Senjanovic - Neutrino Paradigm and LHC
 
G. Fiore - Learning from Julius
G. Fiore - Learning from JuliusG. Fiore - Learning from Julius
G. Fiore - Learning from Julius
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
 
B. Nikolic - Renormalizability of the D-Deformed Wess-Zumino Model
B. Nikolic - Renormalizability of the D-Deformed Wess-Zumino ModelB. Nikolic - Renormalizability of the D-Deformed Wess-Zumino Model
B. Nikolic - Renormalizability of the D-Deformed Wess-Zumino Model
 
F. Stoeckel - DAAD Activities in SEE
F. Stoeckel - DAAD Activities in SEEF. Stoeckel - DAAD Activities in SEE
F. Stoeckel - DAAD Activities in SEE
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
Ernest Rutherford and The Discovery of Atomic Nucleus
Ernest Rutherford and The Discovery of Atomic NucleusErnest Rutherford and The Discovery of Atomic Nucleus
Ernest Rutherford and The Discovery of Atomic Nucleus
 
Problems of the Environment in the Science Classroom. Introducing the STSE
Problems of the Environment in the Science Classroom. Introducing the STSEProblems of the Environment in the Science Classroom. Introducing the STSE
Problems of the Environment in the Science Classroom. Introducing the STSE
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
 
B. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-dualityB. Sazdovic - Noncommutativity and T-duality
B. Sazdovic - Noncommutativity and T-duality
 
W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?
W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?
W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?
 
An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...
An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...
An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...
 

Ähnlich wie M. Nemevsek - Neutrino Mass and the LHC

Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Roppon Picha
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detectionwtyru1989
 
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with FluxesA. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with FluxesSEENET-MTP
 
Structure of atom
Structure of atom Structure of atom
Structure of atom sahil9100
 
Electron configurations 1a presentation
Electron configurations 1a presentationElectron configurations 1a presentation
Electron configurations 1a presentationPaul Cummings
 
HSC Chemistry Preparation Tips Part - I
HSC Chemistry Preparation Tips Part - IHSC Chemistry Preparation Tips Part - I
HSC Chemistry Preparation Tips Part - IEdnexa
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejadaoriolespinal
 
Strongly interacting fermions in optical lattices
Strongly interacting fermions in optical latticesStrongly interacting fermions in optical lattices
Strongly interacting fermions in optical latticesUtrecht University
 
Achieving the Neel state in an optical lattice
Achieving the Neel state in an optical latticeAchieving the Neel state in an optical lattice
Achieving the Neel state in an optical latticeUtrecht University
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013oriolespinal
 
Atomic Structure ( sri chaitanya).pdf
Atomic Structure ( sri chaitanya).pdfAtomic Structure ( sri chaitanya).pdf
Atomic Structure ( sri chaitanya).pdfssuseree13e2
 
Searches with LHC
Searches with LHCSearches with LHC
Searches with LHCkneemo
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics conceptsMuhammad IrfaN
 

Ähnlich wie M. Nemevsek - Neutrino Mass and the LHC (20)

Atom hidrogen
Atom hidrogenAtom hidrogen
Atom hidrogen
 
resumoFinal
resumoFinalresumoFinal
resumoFinal
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detection
 
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with FluxesA. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
 
Structure of atom
Structure of atom Structure of atom
Structure of atom
 
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
 
Electron configurations 1a presentation
Electron configurations 1a presentationElectron configurations 1a presentation
Electron configurations 1a presentation
 
HSC Chemistry Preparation Tips Part - I
HSC Chemistry Preparation Tips Part - IHSC Chemistry Preparation Tips Part - I
HSC Chemistry Preparation Tips Part - I
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
 
Fismod ke 14
Fismod ke 14Fismod ke 14
Fismod ke 14
 
662 magnetrons
662 magnetrons662 magnetrons
662 magnetrons
 
Strongly interacting fermions in optical lattices
Strongly interacting fermions in optical latticesStrongly interacting fermions in optical lattices
Strongly interacting fermions in optical lattices
 
Achieving the Neel state in an optical lattice
Achieving the Neel state in an optical latticeAchieving the Neel state in an optical lattice
Achieving the Neel state in an optical lattice
 
Kondo Effect.pptx
Kondo Effect.pptxKondo Effect.pptx
Kondo Effect.pptx
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
 
Atomic Structure ( sri chaitanya).pdf
Atomic Structure ( sri chaitanya).pdfAtomic Structure ( sri chaitanya).pdf
Atomic Structure ( sri chaitanya).pdf
 
Searches with LHC
Searches with LHCSearches with LHC
Searches with LHC
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 

Mehr von SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...SEENET-MTP
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"SEENET-MTP
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"SEENET-MTP
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...SEENET-MTP
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...SEENET-MTP
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"SEENET-MTP
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...SEENET-MTP
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"SEENET-MTP
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...SEENET-MTP
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"SEENET-MTP
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...SEENET-MTP
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...SEENET-MTP
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...SEENET-MTP
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...SEENET-MTP
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...SEENET-MTP
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"SEENET-MTP
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...SEENET-MTP
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"SEENET-MTP
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"SEENET-MTP
 

Mehr von SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 

Kürzlich hochgeladen

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 

Kürzlich hochgeladen (20)

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 

M. Nemevsek - Neutrino Mass and the LHC

  • 1. Neutrino mass and the LHC Miha Nemevšek ICTP, Trieste with Maiezza, Melfo, Nesti, Senjanović, Tello, Vissani and Zhang Balkan Workshop 2011, Donji Milanovac
  • 2. LHC a neutrino machine? Neutrino mass is an experimentally established fact for BSM physics. Might as well be @ TeV (hierarchy) A phenomenological hint may already be here
  • 3. Neutrino mass and BSM Facts Questions 2 ∆mS,A & θA,S,13 Mass scale & hierarchy At least two massive light CP phases neutrinos Dirac or Majorana LHC may play a crucial role Low-high energy interplay becomes important The theory of neutrino mass?
  • 4. Origin of mν Standard Model νL only, mν = 0 h h y2v2 Effective theory OW =y ⇒ mν = Λ Λ High scale TeV Typical in GUTs Theory: GUT remnant Indirect, LHC of little use Phenomenological Neutrino mass and the LHC
  • 5. UV completions of OW Renormalizable theory = seesaw scenarios Fermionic singlet Bosonic triplet Fermionic triplet I II III h h h h h h ∆ ν S ν ν T0 ν ν ν Type I+III Triplet predicted at TeV by a minimal SU(5) with 24F Neutrino mass matrix through decays Bajc, Senjanović ’06 Oscillations-collider connection Bajc, MN, Senjanović ’07
  • 6. UV completions of OW Fermionic singlet Bosonic triplet Fermionic triplet I II III h h h h h h ∆ ν S ν ν T0 ν ν ν Type I+II Predicted by a minimal LR symmetric theory Singlet is gauged, type I required by anomalies Triplet breaks the LR symmetry - type II May need to be light →
  • 7. Left-Right symmetry νL νR , WL ↔ , WR eL eR Parity restoration at high scales Pati, Salam ’74 Mohapatra, Pati ’75 Spontaneously broken Mohapatra, Senjanović ’75 Minkowski ’77 Origin of the seesaw mechanism Senjanović ’79 Senjanović, Mohapatra ’80
  • 8. Minimal LR Model SU (2)L × SU (2)R × U (1)B−L LR symmetric Higgs sector, parity invariant L Φ(2, 2, 0), ∆L (3, 1, 2), ∆R (1, 3, 2) First stage @ TeV Second stage @ 100 GeV 0 0 v1 0 ∆R = Φ = vR 0 0 v2 eiα ∆L ≡ vL = 0 vL = λ v 2 /vR Breaks SU (2)R and Lepton number MW ∝ v ≡ 2 2 v1 + v2 , mD ∝ v MWR = g vR , mN = y vR
  • 9. Mass spectra ˜ ˜ LY = L (YΦ Φ + YΦ Φ) R + T L Y∆L ∆L L + T R Y∆R ∆R R + h.c. Dirac terms Majorana terms MD = v1 YΦ + v2 e ˜ YΦ , MνR −iα = vR Y∆R M = iα ˜ v2 e YΦ + v1 YΦ MνL T = vL Y∆L − MD MνR MD −1 C: YΦ = YΦ T , Y∆L,R = Y∆R,L ∗ Mass eigenstate basis † ∗ † ∗ † M =U Lm U R, MνL = UνL mν UνL , MνR = UνR mN UνR ∗ C:U L = UR
  • 10. The Interactions g New Gauge: Lcc = √ νL VL † W ¯ / L ¯ † / + νR VR W R R 2 T ++ New Scalar: L∆++ = eR Y ∆R eR g ∗ † Y = VR mN VR MWR ∗ Flavor fixed in type II: VR = VL Remember; two angles, one limit, no phases
  • 11. The Interactions g New Gauge: Lcc = √ νL VL † W ¯ / L ¯ † / + νR VR W R R 2 T ++ New Scalar: L∆++ = eR Y ∆R eR g ∗ † Y = VR mN VR MWR Flavor fixed in type II: VR = oL ly! ∗ Vn xam ple E Remember; two angles, one limit, no phases LHC could eventually measure these
  • 12. Bounds on the LR scale Theoretical bounds since ’81 Beall et al. ’81...Zhang et al. ’07 A recent detailed study, including CP violation Maiezza, Nesti, MN, Senjanović ’10 C : MWR > 2.5 TeV P : MWR > 3.2 − 4.2 TeV Direct searches Dijets MWR > 1.51 TeV CMS 1107.4771 Light neutrino MWR > 2.27 TeV CMS PAS EXO-11-024 LHC is here! L ≈ 2.5 fb −1
  • 13. Left-Right @ LHC Most interesting channel: l l j j Keung, Senjanović ’83 LNV at colliders p WR i Gauge production: s-channel, VR iα p Nα W nearly on-shell VR jα j Clean, no missing energy WR j Reconstructs W and N masses j Information on the flavor
  • 14. Limits from the LHC MN, Nesti, Senjanović, Zhang ’11 1000 1.64` 1000 1.64` 800 800 D0: dijets 2 D0: dijets 2 GeV 3 GeV 600 600 4 4 3 MNΜ MN 400 400 200 200 1 L 33.2pb L 34pb 1 0 0 800 1000 1200 1400 1600 1800 800 1000 1200 1400 1600 1800 March MWR GeV MWR GeV High N inaccessible due to jets, low N due to isolation This year: L = 0.1(1) fb −1 : MWR > 1.6(2.2) TeV Electron and muon channel essentially the same
  • 15. Limits from the LHC CMS PAS EXO-11-002 MN, Nesti, Senjanović, Zhang ’11 CMS Preliminary CMS Preliminary MNe [GeV] MNµ [GeV] MNe > MWR 240 pb-1 at 7 TeV 1.64` MNµ > MWR 240 pb-1 at 7 TeV 1200 1000 Observed 1200 1000 Observed 1.64` Expected Expected 800 800 D0: dijets 1000 1000 2 D0: dijets 2 GeV 3 GeV 600 600 4 4 3 800 800 MNΜ MN 400 400 200 600 600 200 1 L 33.2pb L 34pb 1 Excluded by Tevatron Excluded by Tevatron 0 0 800 1000 1200 1400 1600 1800 400 400 800 1000 1200 1400 1600 1800 March MWR GeV MWR GeV 200 200 High N inaccessible due to jets, low N due to isolation 0 0 This year: L = 0.1(1) fb 800 1000 1200 1400 1600 −1 : MWR > 1.6(2.2) TeV 800 1000 1200 1400 1600 July MWR [GeV] MWR [GeV] Electron and muon channel essentially the same
  • 16. Low/high energy interplay Majorana mass term dominance ∗ MνR = vR Y MνL = vL Y Implications for masses and mixings ∗ ∗ mN ∝ mν UνR = UνL ⇒ VR = VL mN 2 2 − mN 1 2 mν2 2 − mν1 2 Hierarchy probe = ±0.03 mN 3 2 − mN 1 2 mν3 2 − mν1 2 @ LHC i mN i mcosm = ∆m2 A , Cosmo-oscillations |mN3 2 − m2 2 | N -LHC link
  • 17. 0ν2β and cosmology 1.01 Majorana mass implies 0ν2β Vissani ’99 0.1 0.1 inverted Gerda, Cuore, Majorana,... |mee| in eV 0.01 0.01 Review by Rodejohann ’11 normal ν Claim of observation 10−3 0.001 |mν | ee 0.4 eV 10−4 −4 10 4 4 Klapdor-Kleingrothaus ’06, ’09 10 10 0.001 0.001 0.01 0.01 0.1 0.1 1 1 lightest neutrino mass in eV
  • 18. 0ν2β and cosmology 1.01 Cosmological bounds mν < 0.17 eV 0.1 0.1 inverted Seljak et al. ’06 |mee| in eV WMAP alone 0.01 0.01 normal ν mν < 0.44 eV 10−3 0.001 Hannestad et al. ’10 10−4 −4 10 4 4 If confirmed, a hint for NP 10 10 0.001 0.001 0.01 0.01 0.1 0.1 1 1 Vissani ’02 lightest neutrino mass in eV
  • 19. New Diagrams for 0ν2β Mohapatra, Senjanović ’81 n p n p n p WR W WR VR eα e e e (YL )ee (YR )ee WR Nα VR eα e vL ∆L ∆L e vR ∆R ∆R e W WR WR n p n p n p ∝ 1/mN ∝ mν ∝ mN Large? Tiny Subdominant? In agreement with cosmology?
  • 20. 0ν2β : the new contribution e LR mixings small e e e ;N ´L;R sin ξ < MW /MWR < 10 −3 c WL;R WL;R WL;R WL;R mD 0 A A A A A A ZX Z`1 X Z`2 X ZX Z`1 X Z`2 X 4 2 2 1 2 mN j MW µ c HNP = GF VR ej + 4 JRµ JR eR eR mN j m2∆ MWR Type II: VR = VL ∗ ∆L suppressed: mν /m∆ 1 LFV: mN /m∆R < 1 The gauge contribution is dominant
  • 21. 0ν2β : the total contribution LHC accessible regime ee 2 |mν+N | ≡ lightest mN in GeV ee 2 ee 2 1. 1.0 1 10 100 400 500 |mν | + |mN | 0.5 Interference small normal inverted |mee | in eV 0.1 Reversed role of 0.05 hierarchies ν +N 0.01 No tension with 0.005 MWR = 3.5 TeV cosmology largest mN = 0.5 TeV 10−3 0.001 −4 A light mN < MWR 10 4 10 0.001 0.001 0.01 0.01 0.1 1 lightest neutrino mass in eV No cancellations
  • 22. LHC and 0ν2β Suppose NP is a must for 0ν2β ; θ13 0 α = 2(ϕ2 − ϕ1 ) ee 2 2 iα 2 2 |Mν+N | = |mν1 cos θ12 + mν2 e sin θ12 | + 4 2 2 MW 1 2 1 iα 2 p 4 cos θ12 + e sin θ12 MWR mN 1 mN 2
  • 23. LHC and 0ν2β Suppose NP is a must for 0ν2β ; θ13 0 α = 2(ϕ2 − ϕ1 ) 1000 1000 1000 1000 Normal Hierarchy Normal Hierarchy 500 MWR = 3.5TeV, α = 0 500 500 MWR = 3.5TeV, α = π 500 ee ee |Mν+N | |Mν+N | 200 200 200 200 mN1 in GeV mN1 in GeV 0.05 ee 2 2 0.05 iα 2 2 |Mν+N | = |mν1 cos θ12 + m e 100 100 100 ν2 100 sin θ12 | + 0.1 0.1 50 50 4 50 50 2 0.2 2 MW 1 2 1 0.2iα 2 20 20 p0.4 4 cos θ12 + 20 0.4 sin θ12 20 e MWR mN 1 mN 2 10 10 0.6 10 10 0.6 1.0 1.0 55 5 5 10−4 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 10−4 0.0001 0.001 0.001 0.01 0.01 0.1 0.1 1 1 lightest neutrino mass in eV lightest neutrino mass in eV jj : mN 50 GeV v : mN / 20 GeV LHC: j : mN 20 GeV / E : mN 3 − 7 GeV
  • 24. LHC and 0ν2β Suppose NP is a must for 0ν2β ; θ13 0 α = 2(ϕ2 − ϕ1 ) 1000 1000 1000 1000 1000 1000 Inverted Hierarchy 1000 1000 Normal Hierarchy Inverted Hierarchy Normal Hierarchy 500 MWR = 3.5TeV, α = 0 500 500 500 3.5TeV, α = 0 500 MWR = 3.5TeV, α = π 500 MWR = 3.5TeV, α = π 500 500 ee |Mν+N | ee ee |Mν+N | |Mν+N | 200 200 200 0.05 200 200 200 200 mN1 in GeV 200 mN in GeV mN1 in GeV mN11 in GeV 0.05 ee 2 2 0.05 iα 2 2 |M 100 100 100 0.1 ν+N | = |mν1 cos θ12 + m e 100 100 100 100 |M ee ν2 ν+N | sin θ12 | + 0.1 0.1 50 50 50 0.2 4 50 50 50 50 0.05 2 0.2 2 M W 1 2 1 2 0.2iα 0.1 20 20 p 0.4 4 cos θ12 + 20 0.4 sin θ12 20 20 20 e 20 0.4 0.6 M WR mN 1 mN2 0.2 10 10 0.6 10 10 10 10 0.6 10 1.0 0.4 1.0 1.0 0.6 55 5 55 50.0001 10−4 0.0001 0.001 0.001 0.001 0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.1 11 11 10−4 10−4 0.0001 0.001 0.001 0.001 0.001 0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.1 1 1 1 1 lightest neutrino mass in eV neutrino mass in eV lightest neutrino mass in eV lightest neutrino mass in eV jj : mN 50 GeV v : mN / 20 GeV LHC: j : mN 20 GeV / E : mN 3 − 7 GeV
  • 25. Lepton Flavor Violation Cirigliano et al ’04 LFV rates computable: type II (or LHC) Raidal, Santamaria ’97 µ Y∆µe e T →3 tree ∆++ L,R VL mN /m∆ VL e Y∆ ∗ ee e γ † → γ loop ∆++ ∆++ VL mN /m∆ VL µ Y∆µi c Y∆ ∗ e i ie µL Y∆ Y∆ ∗ eL L (νL ) ∆++ (∆+ ) ∆++ (∆+ ) † µN− eN log VL mN /m∆ VL L L L L γ, ZL , ZR N N
  • 26. Combined LFV constraints Muonic and tau channels Tello, MN, Senjanović, Vissani ’10 Varying PMNS constrains mN /m∆ < 1 5.0 5.0 5. absolute bound from LFV 5. absolute bound from LFV 1.0 1. 1.0 1. mN/m∆ mN/m∆ 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.05 always allowed by LFV 0.05 0.05 always allowed by LFV 0.05 MWR = 3.5TeV MWR = 3.5TeV 0.01 4 Inverted Hierarchy 0.01 4 Normal Hierarchy 0.01 0.01 10−4 10 0.001 0.001 0.01 0.01 0.1 0.1 1 1 10−4 10 0.001 0.001 0.01 0.01 0.1 0.1 1 1 lightest neutrino mass in eV lightest neutrino mass in eV
  • 27. Triplet searches 2001 2003 2003 2004 2004 2005 2006 2008 2008 2011 2011 2011 350 313 300 250 200 LHC 150 156 m 146 141 144 150 136 118.4 114 98.5 97.3 100 100 Delphi CDF CDF CDF H1 D0 CDFII D0 CMS CMS Opal L3 50 ΤΤ ΜΜ e&Μ 0 eΜ ΜΜ eΤ ΜΤ April July 0 2001 2003 2003 2004 2004 2005 2006 2008 2008 2011 2011 2011
  • 28. Gauge Production √ ∆+ / 2 ∆++ ∆= √ ∆0 −∆+ / 2 Pair-wise through Z, γ ∗ ∗ ∆+ ∆++ ∆0 γ ,Z ∗ γ ,Z Z ∆− ∆−− ∆0 Associated via W ± ∆±± ± ∆± W W GeV ∆ ∆0
  • 29. Gauge Production √ 2.00 ∆+ / 2 ∆++ LHC @ 7 TeV ∆= √ 1.00 ∆0 −∆+ / 2 0.50 Pair-wise through Z, γ ∗ solid=LO 0.20 Z dashed=NLO Σ pb 0 ∗ ∆+ ∆++ ∆ γ ,Z ∗ γ ,Z 0.10 0.05 ∆− ∆−− K-factor =1.3 ∆0 0.02 Associated via W 100 120W ± 140 ∆±± 160 180 ± ± 200 ∆ red = assoc. W M TeV GeV ∆ ∆0 blue=pair.
  • 30. Decay Phase Diagram m∆ U ∗ mν U † m3 v∆ 2 Γ∆→ ∝ Γ∆→V V ∝ ∆ 4 Γ∆→∆ V ∝ ∆m5 /m4 W v∆ v a) b) c) Decays a) Leptonic ∆→ Tiny v∆ b) Gauge boson ∆→VV Large v∆ c) Cascade ∆→∆V Mass split D0: pair-production only, CMS degenerate mass
  • 31. Decay Phase Diagram 100.0 50.0 ∗ Cascade 2 Decay m∆ U mν U † m3 v∆ Γ∆→ ∝ Γ∆→V V ∝ ∆ 4 Γ∆→∆ V ∝ ∆m5 /m4 W v∆ v a) b) c) 10.0 Decays M GeV 5.0 a) Leptonic ∆→ Tiny v∆ 1.0 Leptonic Decay b) Gauge boson 0.5 ∆→VV Large v∆ Gauge c) Cascade ∆→∆V Mass split Boson Decay D0: pair-production only, 6 10 10 10 8 10 CMS degenerate mass 10 4 0.01 1 v GeV
  • 32. Mass splits The general potential 2 † 2 † T ∗ V =− mH H H + m∆ Tr∆ ∆ + (µH iσ2 ∆ H + h.c.)+ † 2 † c2 † 2 λ1 (H H) + λ2 (Tr∆ ∆) + λ3 Tr(∆ ∆) + † † † † α H H Tr∆ ∆ + β H ∆∆ H Splits components by v 2; there is a sum rule 2 2 2 2 2 m∆ + − m∆++ m∆ 0 − m∆ + β v /4 c mS mA = m∆ 0 v2 Only two mass scales govern the spectrum up to O v∆ 2
  • 33. Electroweak Precision Tests EWPT calculated for the first time Melfo, MN, Nesti, Senjanović, Zhang ’11 Oblique parameters suffice (Yukawa small by LFV) m 200 GeV 100 T parameter 80 T positive definite, controlled by 60 mass splits GeV 40 68 20 95 Heavy Higgs=negative T m 99 Bottom-line m 0 20 O(10 GeV) splits allowed 40 100 200 300 400 500 600 Cascade region opens up... mh GeV
  • 34. Type II Roadmap Melfo, MN, Nesti, Senjanović, Zhang ’11 100 100 Sum Rule Sum Rule β<3 c Direct search Direct search 50 50 LHC 980 pb 11 LHC 980 pb CMS data GeV GeV v 10 66 GeV v 10 GeV EWPT 0 0 CMS-PAS- mh 300GeV m m HIG-11-007 LE m LEP m 50 50 EWPT Light Higgs P mh 130GeV Sum Rule & Sum Rule & 100 100 Z width Z width mh = 130 GeV c 0 0 100 100 200 200 300 300 400 400 500 500 600 600 700 700 mm GeV GeV
  • 35. Type II Roadmap Melfo, MN, Nesti, Senjanović, Zhang ’11 100 Sum Rule β<3 c Direct search 50 LHC 980 pb 1 CMS data GeV v 10 6 GeV EWPT 0 CMS-PAS- mh 300GeV m HIG-11-007 LE m 50 Heavy Higgs P Sum Rule & 100 Z width mh = 300 GeV c 0 100 200 300 400 500 600 700 m GeV
  • 36. Conclusions 0ν2β signal may require new physics at TeV Left-Right symmetry @ LHC a natural example no tension with cosmology, precision data or LFV links oscillations, cosmology and the LHC Exclusions with fairly low luminosity and 7 TeV LHC may observe LNV and in turn connect it to low energy rates, both LNV and LFV
  • 38. Higgs decay Heavy Higgs decay: a way to probe α Akeroyd, Moretti ’11 mh > 2m∆ Br(h → W W ) 100 2 Γh→∆++ ∆−− ∝ α 1.5 2 Γh→∆+ ∆− ∝ (α + β/2) 1.0 Α 0.5 Higgs Br’s change 10 0.0 ++ 150 200 300 500 Easy to search if ∆ Mh GeV Hidden if ∆0 Melfo, MN, Nesti, Senjanović, Zhang ’11
  • 39. A global picture MN, Nesti, Senjanović, Zhang ’11 1000 1 L 33.2pb 500 4 1.64` D0: dijets 3 2 100 GeV 0Ν2 50 Β H M jet EM activity MN Τ N 1 mm 10 Displaced Vertex 5 ΤN 5 m CMS Missing Energy 1 1000 1500 2000 2500 3000 MWR GeV
  • 40. Non-minimal case CKM CKM∗ Minimal case: gL = gR C : VL = VR Maiezza, Nesti, MN, Senjanović ’10 1.4 1.2 95% CL gR gL 1.0 0.8 0.6 mN = 500 GeV 1200 1300 1400 1500 1600 1700 1800 MWR GeV
  • 41. And the WR ? Less important, loop suppressed no log enhancement flavor structure always mN < MWR † VL mN /MWR VL Still, future µ N − e N useful J-PARC and Fermilab could probe the mediator Cirigliano, Kitano, Okada, Tuzon ’09 even CP phases if LR Bajc, MN, Senjanović ’09
  • 42. Role of θ13 Flavor structure in muon-electron transitions iα A(µ → 3e) ∝ −mN1 + exp mN2 sin 2θ12 cos θ23 2 iα 2 2 mN1 cos θ12 + exp mN2 sin θ12 /m∆++ µ → 3e insensitive to θ13 ∆m2 13 N ∆m2 A(µ → e) ∝ S sin 2θ12 cos θ23 + eiδ sin θ13 sin θ23 m2 ++ ∆ 2∆m2A µ − e conversion and µ → eγ depend a lot
  • 43. Role of θ13 Impact of non zero Θ13 0.200 Flavor structure in muon-electron transitions T2K sin2Θ12 cosΘ23 ei∆ sinΘ13 sinΘ23 0.100 sin2 2Θ13 0.11 iα Minos → 3e) A(µ 0.050 ∝ −mN1 + exp mN2 sin 2θ12 cos θ23 2 iα 2 sin2 2Θ13 20.04 mN1 cos θ12 + exp mN2 sin θ12 /m∆++ 0.020 µ → 3e insensitive to θ13 0.010 Θ13 0 ∆m2 13 N 0.005 ∆m2 A(µ → e) ∝ S sin 2θ12 cos θ23 + eiδ sin θ13 sin θ23 m2 ++ 2∆m2 2 mA 2 A mS 2 ∆ 2 4 0.002 sin 2Θ13 8x10 0.001 µ − e conversion and Π → eγ depend a lot 0 µ 2 Π 3Π 2Π 2 ∆