Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

2

Teilen

Herunterladen, um offline zu lesen

Electrical Activity of the Heart

Herunterladen, um offline zu lesen

Electrical Activity of the Heart

Ähnliche Bücher

Kostenlos mit einer 30-tägigen Testversion von Scribd

Alle anzeigen

Ähnliche Hörbücher

Kostenlos mit einer 30-tägigen Testversion von Scribd

Alle anzeigen

Electrical Activity of the Heart

  1. 1. Electrical Activity of the Heart By SATHISKUMAR G (sathishsak111@gmail.com)
  2. 2. Introduction ✦ Where does the “electro” in electrocardiography come from?
  3. 3. Under this condition, the heart cell is said to be polarized
  4. 4. Polarization ✦ Imagine two micro-electrodes; one outside the cell, one inside the cell ✦ Difference between the two equals -90 mV inside ✦ The cell is said to be ‘polarized’
  5. 5. Action Potential Depolarization Repolarization
  6. 6. ActionPotentialin SkeletalMuscleFiber closed gates opene d gates
  7. 7. Action Potential Skeletal Cardiac
  8. 8. Myocyte Action Potentials ✦ Fast and Slow ✦ Fast = non-pacemaker cells ✦ Slow = pacemaker cells (SA and AV node)
  9. 9. Ions Ion Extra- Intra- Na 140 10 K 4 135 Ca 2 0.1
  10. 10. Action Potential ✦ Ion influx ✦ Na channels (fast and slow) ✦ K channels ✦ Ca channels
  11. 11. Inside Outside thevirtualheart.org/CAPindex.html
  12. 12. Action Potential ✦ Phase 0 ✦ Stimulation of the myocardial cell ✦ Influx of sodium ✦ The cell becomes depolarize ✦ Inside the cell = +20 mV
  13. 13. Action Potential ✦ Phase 1 ✦ Ions ✦ Influx of sodium ✦ Efflux of potassium ✦ Partial repolarization
  14. 14. Action Potential ✦ Phase 3 ✦ Ions ✦ Efflux of potassium* ✦ Influx of calcium ✦ Repolarization (slower process than depolarization) ✦ Phase 4 ✦ Interval between repolarization to the next action potential ✦ Pumps restore ionic concentrations
  15. 15. Ion 0 1 2 3 4 Na influx influx pump K efflux efflux efflux* pump Ca influx influx pump
  16. 16. Refractory Periods ✦ Absolute refractory period - phase 1 - midway through phase 3 ✦ Relative refractory period - midway through phase 3 - end of phase 3
  17. 17. SA Node Action Potential ✦ “Funny” currents (phase 4); slow Na channels that initiate spontaneous depolarization ✦ No fast sodium channels ✦ Calcium channels (slow) ✦ Long-lasting, L-type ✦ Transient, T-type ✦ Potassium channels
  18. 18. Action Potentials ✦ Fast and Slow
  19. 19. Action Potentials It is important to note that non-pacemaker action potentials can change into pacemaker cells under certain conditions. For example, if a cell becomes hypoxic, the membrane depolarizes, which closes fast Na+  channels. At a membrane potential of about –50 mV, all the fast Na+  channels are inactivated. When this occurs, action potentials can still be elicited; however, the inward current are carried by Ca++  (slow inward channels) exclusively. These action potentials resemble those found in pacemaker cells located in the SA node,and can sometimes display spontaneous depolarization and automaticity. This mechanism may serve as the electrophysiological mechanism behind certain types of ectopic beats and arrhythmias, particularly in ischemic heart disease and following myocardial infarction.
  20. 20. ❖ Conduction speed varies throughout the heart ❖ Slow - AV node ❖ Fast - Purkinje fibers
  21. 21. Action Potential ✦ ECG records depolarization and repolarization ✦ Atrial depolarization ✦ Ventricular depolarization ✦ Atrial repolarization ✦ Ventricular repolarization
  22. 22. The Body as a Conductor This is a graphical representation of the geometry and electrical current flow in a model of the human thorax. The model was created from MRI images taken of an actual patient. Shown are segments of the body surface, the heart, and lungs. The colored loops represent the flow of electric current through the thorax for a single instant of time, computed from voltages recorded from the surface of the heart during open chest surgery.
  23. 23. Assignment ✦ Read “Non-pacemaker Action Potentials” ✦ Read “SA node action potentials”
  24. 24. Basic ECG Waves Chapter 2
  25. 25. ECG Complexes
  26. 26. ECG Complexes
  27. 27. Action Potential & Mechanical Contraction
  28. 28. ECG Paper ✦ Small boxes = 1 mm ✦ Large boxes = 5 mm ✦ Small boxes = 0.04 seconds ✦ Large boxes = 0.20 seconds ✦ 5 large boxes = 1.0 second ✦ Paper speed = 25 mm / sec
  29. 29. ECG Paper ✦ Horizontal measurements in seconds ✦ Example, PR interval = .14 seconds (3.5 small boxes)
  30. 30. ECG Paper ✦ Standardization mark ✦ 10 mm vertical deflection = 1 mVolt
  31. 31. ECG Paper Top: Low amplitude complexes in an obese women with hypothyroidism Bottom: High amplitude complexes in a hypertensive man ✦ Standardization marks ✦ Double if ECG is too small ✦ Half is ECG is too large
  32. 32. ECG Description ✦ ECG amplitude (voltage) ✦ recorded in mm ✦ positive or negative or biphasic
  33. 33. ECG Waves ✦ Upward wave is described as positive ✦ Downward wave is described as negative ✦ A flat wave is said to be isoelectric ✦ Isoelectric as describes the baseline ✦ A deflection that is partially positive and negative is referred to as biphasic
  34. 34. ECG Waves ✦ P wave ✦ atrial depolarization ✦ ≤ 2.5 mm in amplitude ✦ < 0.12 sec in width ✦ PR interval (0.12 - 0.20 sec.) ✦ time of stimulus through atria and AV node ✦ e.g. prolonged interval = first-degree heart block
  35. 35. ECG Waves ✦ QRS wave ✦ Ventricle depolarization ✦ Q wave: when initial deflection is negative ✦ R wave: first positive deflection ✦ S wave: negative deflection after the R wave
  36. 36. ECG Waves✦ QRS ✦ May contain R wave only ✦ May contain QS wave only ✦ Small waves indicated with small letters (q, r, s) ✦ Repeated waves are indicated as ‘prime’
  37. 37. ECG Waves ✦ QRS ✦ width usually 0.10 second or less
  38. 38. ECG Waves ✦ RR interval ✦ interval between two consecutive QRS complexes
  39. 39. ECG Waves ✦ J point ✦ end of QRS wave and... ✦ ...beginning of ST segment ✦ ST segment ✦ beginning of ventricular repolarization ✦ normally isoelectric (flat) ✦ changes-elevation or depression-may indicate a pathological condition
  40. 40. ECG Waves
  41. 41. ECG Waves ✦ T wave ✦ part of ventricular repolarization ✦ asymmetrical shape ✦ usually not measured
  42. 42. ECG Waves ✦ QT interval ✦ from beginning of QRS to the end of the T wave ✦ ventricular depolarization & repolarization ✦ length varies with heart rate (table 2.1) ✦ long QT intervals occur with ischemia, infarction, and hemorrhage ✦ short QT intervals occur with certain medications and hypercalcemia
  43. 43. ECG Waves ✦ QT interval should be less than half the R-R interval ✦ If not, use Rate Corrected QT Interval ✦ normal ≤ 0.44 sec.
  44. 44. ECG Waves ✦ Long QT interval ✦ certain drugs ✦ electrolyte distrubances ✦ hypothermia ✦ ischemia ✦ infarction ✦ subarachnoid hemorrhage ✦ Short QT interval ✦ drugs or hypercalcemia FYI
  45. 45. ECG Waves ✦ U Wave ✦ last phase of repolarization ✦ small wave after the T wave ✦ not always seen ✦ significance is not known ✦ prominent U waves are seen with hypokalemia
  46. 46. Heart Rate Calculation 1. 1500 divided by the number of small boxes between two R waves • most accurate • take time to calculate • only use with regular rhythms 2. 300 divided by the number of large boxes between two R waves • quick • not too accurate • only use with regular rhythm 3. Number of large squares w/i RR interval 1 lg sq = 300 bpm 2 lg sq = 150 bpm 3 lg sq = 100 bpm 4 lg sq = 75 bpm 5 lg sq = 60 bpm 6 lg sq = 50 bpm
  47. 47. Heart Rate Calculation ✦ For regular rhythm... ✦ Count the number of large boxes between two consecutive QRS complexes. Divide 300 by that number ✦ 300 ÷ 4 = 75 ✦ Count the small boxes. Divide 1500 by that number ✦ 1500 ÷ 20 = 75
  48. 48. Heart Rate Calculation ✦ For irregular rhythms… ✦ Count the number of cardiac cycles in 6 seconds and multiple this by 10. (Figure 2.15)
  49. 49. The ECG as a Combination of Atrial and Ventricular Parts ✦ Atrial ECG = P wave ✦ Ventricular ECG = QRS-T waves ✦ Normally, sinus node paces the heart and P wave precedes QRS ✦ P-QRS-T ✦ Sometimes, atria and ventricles paced separately (e.g. complete heart block)
  50. 50. ECG in Perspective 1. ECG recording of electrical activity not the mechanical function 2. ECG is not a direct depiction of abnormalities 3. ECG does not record all the heart’s electrical activity
  51. 51. THANK YOU
  • EdwinKariuki12

    Nov. 14, 2020
  • emmaazma

    Sep. 9, 2018

Electrical Activity of the Heart

Aufrufe

Aufrufe insgesamt

1.523

Auf Slideshare

0

Aus Einbettungen

0

Anzahl der Einbettungen

0

Befehle

Downloads

40

Geteilt

0

Kommentare

0

Likes

2

×