SlideShare ist ein Scribd-Unternehmen logo
1 von 68
1
DEPARTMENT OF MECHANICAL ENGINEERING
MAHARANA PRATAP ENGINEERING COLLEGE,
KANPUR
PROJECT REPORT
ON
DESIGN AND FABRICATION OF MOTORIZED
VEHICLE
Submitted to U.P.Technical University,Lucknow in partial fulfillment of
requirement for the award of degree
of
BACHELOR OF TECHNOLOGY
(MECHANICAL ENGINEERING)
UNDER THE GUIDENCE OF SUBMITTED BY
Er. PARITOSH KUMAR RAHUL ARYA(0704640065)
LECTURER SHUBHAM AWASTHI(0704640078)
Deptt. Of Mechanical Engg. ZIAUR RAHMAN(0704640089)
M.P.E.C.KANPUR ZIA ZAFAR(07004640090)
(Mechanical 4th
year)
2
MAHARANA PRATAP ENGINEERING COLLEGE
Department of Mechanical Engineering
CERTIFICATE
This is to certify that Rahul Arya , Shubham Awasthi , Ziaur Rahman , Zia Zafar of Eight Semester
B.tech Course in Mechanical Engineering Department have Satisfactorily Completed the Project work
on “DESIGN AND FABRICATION OF MOTORIZED VEHICLE”
In partial fulfillment , during the academic session 2010-2011 as prescribed by Uttar Pradesh
Technical University , Lucknow.
They have worked hard for this project and I wish all of them bright future.
Internal Examiner External Examiner
Mr.Paritosh Kumar
Lecturer
Mechanical Engg. Deptt.
3
ACKNOWLEDGEMENT
We feel great pleasure in expressing our deep sense of gratitude and
heartiest respect to Mr.Paritosh Kumar, for his surveillance, learned
guidance and heart touching inspirations through out our project work.
We take our privilege to have worked under Mr. Paritosh Kumar for his
valuable suggestions and pruning at every stage. He has been gracious
all along. The current work might not have been accomplished but his
supervision, constant encouragement, keep interests, patience, sparing
time for thought provoking discussion throughout the study. We do not
have words adequate enough to express our thanks to our guide.
We have a special mention of our gratitude to Mr.B.B.Maurya, Head of
Department , Mechanical Engineering for providing us the facilities of
the department . We express our deep sense of gratitude to Mr.Vikas
Singh and all other faculty members for antagonistic discussion and
suggestions providing us.
We thankfully, acknowledge the valuable opinions and co-operation of
all the students of Mechanical Engineering M.P.E.C Kanpur.
Rahul Arya (0704640061)
Shubham Awasthi(0704640078)
Ziaur Rahman (0704640089)
Zia Zafar (0704640090)
4
PREFACE
The concept of Design and Fabrication of Motorized Vehicle came in our mind
during the visit of IIT KANPUR. It was one of the most innovative and interesting
project.
It was challenging job for us to design and fabricate Motorized Vehicle with
speed control. But our source of inspiration came from our mentor
Mr. Paritosh kumar and our workshop head Vikas Singh who helped to make
imagination into reality.
We also constantly strived ourselves to set up bench mark for peers and juniors
and finally lot of credit goes to our Head of Department Mr. B.B. Maurya .
A motorized bicycle is a bicycle with an attached motor used either to power the
vehicle, or to assist with pedaling.
5
IDOLOGY OF PROJECT
Before staring our work we must know the meaning of “PROJECT” means to give
physically existence to the vibrating idea of mind.
Hence the combination of vibrating idea of mind is know as project the word
project consists of Seven letters. Each of them has its specific significance which is
given as follows.
P-PLANNING- Planning is a word which deals with the idea of thing
which is hypothesized before borning the construction of
project.
R-RESOURCE- It signifies the resources of which are able to make any
project. Resources are the ideas of which which guide to
routine function of planned work.
O-OPERATION- Its represents the operation of project i.e. the principle on
which device hold up.
J-JOINT LABOUR- It stands for the effort taking for meaning body jointly is
a work that can be accomplished to perform with full
efforts.
E-ECONOMY- The economy means the machine which is to prepared
have a reasonable cost. It indicates the construction
which is come to manufacture the machine.
C-CONSTRUCTION- It is main features to prepare the project.
T-TECHNIQUE- To accomplished the project technique which is being
used comes under the word.
6
CONTENT
S.NO. TOPIC PAGE NO.
1.) Introduction and selection criteria of design and fabrication of motorized vehicle 1
Introduction 1
History 3
2.) About design and fabrication of motorized Vehicle 10
Working principle 11
Description of component 11
3.) Drawing details of the component 24
4.) Machine used in design and fabrication of motorized vehicle 27
List of machine used in project 28
Operation done by the machine 29
5.) Hand tools and Equipment used 31
List of hand tool and equipment
6.) Cost Estimation 33
7.) Properties of motorized vehicle 36
8.) Merits and Demerits of motorized vehicle 44
9.) Environmental impact of motorized vehicle 50
10.) Present Scenerio in India 53
11.) Conclusion 56
12.) Bibliography 58
7
CHAPTER 1
INTRODUCTION AND
SELECTION CRITERIA
OF
“DESIGN
ANDFABRICATION
OF
MOTORIZED VECHILE”
8
INTRODUCTION
A Motorized vehicle (MV), also referred to as an electric drive vehicle, uses one or
more electric motors or traction motors for propulsion. Electric vehicles include electric
cars, electric trains, electric lorries, electric aeroplanes, electric boats, electric motorcycles
and scooters and electric spacecraft.
A Motorized vehicle is vehicle with an attached motor used either to power the vehicle, or
to assist with pedaling. Sometimes classified as a motor vehicle, or a class of hybrid
vehicle, motorized vehicles may be powered by a variety of engine types and power
sources.
Electric vehicles first came into existence in the mid-19th century, when electricity was
among the preferred methods for motor vehicle propulsion, providing a level of comfort
and ease of operation that could not be achieved by the gasoline cars of the time.
The internal combustion engine (ICE) is the dominant propulsion method for motor
vehicles but electric power has remained commonplace in other vehicle types, such as trains
and smaller vehicles of all types.
During the last few decades, environmental impact of the petroleum-based transportation
infrastructure, along with the peak oil, has led to renewed interest in an electric
transportation infrastructure. Electric vehicles differ from fossil fuel-powered vehicles in
that the electricity they consume can be generated from a wide range of sources, including
fossil fuels, nuclear power, and renewable sources such as tidal power, solar power,
and wind power or any combination of those. Currently though there are more than 400
coal power plants in the U.S. alone. However it is generated, this energy is then transmitted
to the vehicle through use of overhead lines, wireless energy transfer such as inductive
charging, or a direct connection through an electrical cable. The electricity may then be
stored on board the vehicle using a battery, flywheel, or super capacitors. Vehicles making
use of engines working on the principle of combustion can usually only derive their energy
9
from a single or a few sources, usually non-renewable fossil fuels. A key advantage of
electric or Motorized electric vehicles is regenerative braking and suspension; their ability
to recover energy normally lost during braking as electricity to be restored to the on-board
battery.
In 2003, the first mass-produced Motorized gasoline-electric car, the Toyota Prius, was
introduced worldwide, in the same year Going Green in London launched the G-Wiz
electric car, a quadric cycle that became the world's best selling EV.
HISTORY
Electric motive power started with a small drifter operated by a miniature electric motor,
built by Thomas Davenport in 1835. In 1838, a Scotsman named Robert Davidson built an
electric locomotive that attained a speed of four miles per hour (6 km/h). In England a
patent was granted in 1840 for the use of rails as conductors of electric current, and similar
American patents were issued to Lilley and Colten in 1847.
Figure 01-: Electric vehicle model by Ányos Jedlik, an early electric
motor experimenter ( 1828, Hungary)
Between 1832 and 1839 (the exact year is uncertain), Robert
Anderson of Scotland invented the first crude electric carriage, powered by non-
rechargeable primary cells.
10
By the 20th century, electric cars and rail transport were commonplace, with commercial
electric automobiles having the majority of the market. Over time their general-purpose
commercial use reduced to specialist roles, as platform trucks, forklift trucks, tow tractors
and urban delivery vehicles, such as the iconic British milk float; for most of the 20th
century, the UK was the world's largest user of electric road vehicles.
Electrified trains were used for coal transport, as the motors did not use precious oxygen in
the mines. Switzerland's lack of natural fossil resources forced the rapid electrification
of their rail network. One of the earliest rechargeable batteries - the nickel-iron battery -
was favored by Edison for use in electric cars.
• Electric vehicles were among the earliest automobiles, and before the preeminence of light,
powerful internal combustion engines, electric automobiles held many vehicle land speed
and distance records in the early 1900s. They were produced by Baker Electric, Columbia
Electric, Detroit Electric, and others, and at one point in history out-sold gasoline-powered
vehicles.
Figure 02-: Edison and a 1914 Detroit Electric, model 47 (courtesy of the National
Museum of American History)
11
In the 1930s, National City Lines, which was a partnership of General Motors, Firestone,
and Standard Oil of California purchased many electric tramnet works across the country to
dismantle them and replace them with GM buses.
Figure 03-:An electric vehicle and an antique car on display at a 1912 auto show
The partnership was convicted of conspiring to monopolize the sale of equipment and
supplies to their subsidiary companies conspiracy, but were acquitted of conspiring to
monopolize the provision of transportation services. Electric tram line technologies could
be used to recharge BEVs and PHEVs on the highway while the user drives, providing
virtually unrestricted driving range. The technology is old and well established
➢ EXPERIMENTATION
In January 1990, General Motors' President introduced its EV concept two-seater, the
"Impact", at the Los Angeles Auto Show. That September, the California Air Resources
12
Board mandated major-automaker sales of EVs, in phases starting in 1998. From 1996 to
1998 GM produced 1117 EV1s, 800 of which were made available through three-year
leases.
Chrysler, Ford, GM, Honda, Nissan and Toyota also produced limited numbers of EVs for
California drivers. In 2003, upon the expiration of GM's EV1 leases, GM crushed them.
The crushing has variously been attributed to 1) the auto industry's successful federal
court challenge to California's zero-emissions vehicle mandate, 2) a federal regulation
requiring GM to produce and maintain spare parts for the few thousands EV1s and 3) the
success of the oil and auto industries' media campaign to reduce public acceptance of electric
vehicles.
Figure 04-Display of an electric car
Ford released a number of their Ford Ecostar delivery vans into the market. Honda, Nissan
and Toyota also repossessed and crushed most of their EVs, which, like the GM EV1s, had
been available only by closed-end lease. After public protests, Toyota sold 200 of its RAV
EVs to eager buyers; they now sell, five years later, at over their original forty-thousand-
dollar price. This lesson did not go unlearned; BMW of Canada sold off a number of Mini
EV's when their Canadian testing ended.
The production of the Citroën Berlingo Electrique stopped in September 2005.
13
➢ REINTRODUCTION
With increasing prices of gasoline, electric vehicles are hitting the mainstream.
Major car makers, such as Ford Daimler AG, Toyota Motor Corp., General Motors
Corp., Renault SA, Peugeot-Citroen, VW, Nissan and Mitsubishi Corp., are developing
new-generation electric vehicles.
ELECRICITY SOURCES
There are many ways to generate electricity, some of them more ecological than others:
▪ On-board rechargeable electricity storage system (RESS), called Full Electric Vehicles
(FEV). Power storage methods include:
▪ Chemical energy stored on the vehicle in on-board batteries: Battery electric vehicle (BEV)
▪ Static energy stored on the vehicle in on-board electric double-layer capacitors
▪ kinetic energy storage: flywheels
▪ Direct connection to generation plants as is common among electric trains, trolley buses,
and trolley trucks (See also : overhead lines, third rail andconduit current collection)
▪ Renewable sources such as solar power: solar vehicle
▪ Generated on-board using a diesel engine: diesel-electric locomotive
▪ Generated on-board using a fuel cell: fuel cell vehicle
▪ Generated on-board using nuclear energy: nuclear submarines and aircraft carriers
It is also possible to have Motoried electric vehicles that derive electricity from multiple
sources. Such as:
▪ On-board rechargeable electricity storage system (RESS) and a direct continuous
connection to land-based generation plants for purposes of on-highway recharging with
unrestricted highway range
▪ On-board rechargeable electricity storage system and a fueled propulsion power source
(internal combustion engine): plug-in Motoried
14
Batteries, electric double-layer capacitors and flywheel energy storage are forms of
rechargeable on-board electrical storage. By avoiding an intermediate mechanical step,
the energy conversion efficiency can be improved over the Motorieds already discussed, by
avoiding unnecessary energy conversions. Furthermore, electro-chemical batteries
conversions are easy to reverse, allowing electrical energy to be stored in chemical form.
Another form of chemical to electrical conversion is fuel cells, projected for future use.
For especially large electric vehicles, such as submarines, the chemical energy of the diesel-
electric can be replaced by a nuclear reactor. The nuclear reactor usually provides heat,
which drives a steam turbine, which drives a generator, which is then fed to the propulsion.
ENERGY TRANSFORMATION
In physics, the term energy describes the capacity to produce changes within a system,
without regard to limitations in transformation imposed by entropy. Changes in total energy
of systems can only be accomplished by adding or subtracting energy from them, as energy
is a quantity which is conserved, according to the first law of thermodynamics. According
to special relativity, changes in the energy of systems will also coincide with changes in the
system's mass, and the total amount of mass of a system is a measure of its energy.
Energy in a system may be transformed so that it resides in a different state. Energy in
many states may be used to do many varieties of physical work. Energy may be used in
natural processes or machines, or else to provide some service to society (such as
heat, light, or motion). For example, an internal combustion engine converts the
potential chemical energy in gasoline and oxygen into heat, which is then transformed into
the propulsive energy (kinetic energy that moves a vehicle.) A solar cell converts solar
radiation into electrical energy that can then be used to light a bulb or power a computer.
The generic name for a device which converts energy from one form to another is
a transducer.
15
In general, most types of energy, save for thermal energy, may be converted to any other
kind of energy, with a theoretical efficiency of 100%. Such efficiencies might occur in
practice, such as when chemical potential energy is completely converted into kinetic
energies, and vice versa, only in isolated systems.
Conversion of other types of energies to heat also may occur with high efficiency but a
perfect level would be only possible for isolated systems also.
If there is nothing beyond the frontiers of the universe then the only real isolated system
would be the universe itself. Currently we do not have the knowledge or technology to
create an isolated system from a portion of the universe.
Exceptions for perfect efficiency (even for isolated systems) occur when energy has already
been partly distributed among many available quantum states for a collection of particles,
which are freely allowed to explore any state of momentum and position (phase space).
In such circumstances, a measure called entropy, or evening-out of energy distribution in
such states, dictates that future states of the system must be of at least equal evenness in
energy distribution. (There is no way, taking the universe as a whole, to collect energy into
fewer states, once it has spread to them).
A consequence of this requirement is that there are limitations to the efficiency with which
thermal energy can be converted to other kinds of energy, since thermal energy in
equilibrium at a given temperature already represents the maximal evening-out of energy
between all possible states. Such energy is sometimes considered "degraded energy,"
because it is not entirely usable. The second law of thermodynamics is a way of stating that,
for this reason, thermal energy in a system may be converted to other kinds of energy with
efficiencies approaching 100%, only if the entropy (even-ness or disorder) of the universe is
increased by other means, to compensate for the decrease in entropy associated with the
disappearance of the thermal energy and its entropy content.
16
CHAPTER 2
ABOUT
DESIGN AND
FABRICATION
OF
MOTORIZED VECHILE
17
WORKING PRINCIPLE
The vehicle has lead-acid battery mounted near the rear wheel that
provide electricity to a motor. The electric motor drives the rear wheel
and the motor is mounted inside the rear wheel .DC to DC convertor is
used to convert high voltage supply to low voltage supply. Here the
electrical energy is converted into the rotation energy which gives
momentum to the vehicle. On the steering handle there is a accelerating
throttle which help in the acceleration of the vehicle with the help of
speed controller.
Despite the weight and size, the acceleration is very good.
DESCRIPTION OF COMPONENT
➢ Controllers
Electric vehicles brushless DC motor controller provides efficient, smooth and quite
controls for electric VEHICLE, electric motorcycle, scooter conversion, etc. Electric
vehicles brushless motor controller outputs high taking off current, and strictly limit battery
current. Motor speed controller can work with relative small battery, but provide good
acceleration and hill climbing. BLDC motor speed controller uses high power MOSFET,
PWM to achieve efficiency 99%. In most cases, Powerful microprocessor brings in
comprehensive and precise control to BLDC motor controllers. This programmable
brushless motor controller also allows users to set parameters, conduct tests, and obtain
diagnostic information quickly and easily.
Features of controllers:
•Special designed for electric VEHICLE and scooter.
• Intelligence with powerful microprocessor.
• Synchronous rectification, ultra low drop, fast PWM to achieve very high efficiency.
18
• Electronic reversing.
• Voltage monitoring on 3 motor phases, bus, and power supply.
• Voltage monitoring on voltage source 12V and 5V.
• Current sense on all 3 motor phases.
• Current control loop.
• Hardware over current protection.
• Hardware over voltage protection.
• Support torque mode, speed mode, and balanced mode operation.
• Configurable limit for motor current and battery current.
• Battery current limiting available, doesn’t affect taking off performance.
• More startup current ,can get more startup speed.
• Low EMC.
• LED fault code.
• Battery protection: current cutback, warning and shutdown at configurable high and low
battery voltage.
• Rugged aluminum housing for maximum heat dissipation and harsh environment.
• Rugged high current terminals, and rugged aviation connectors for small signal.
• Thermal protection: current cut back, warning and shutdown on high temperature.
• Configurable 60 degree or 120 degree hall position sensors.
• Support motors with any number of poles.
Up to 40,000 electric RPM standard. Optional high speed 70,000 ERPM, and ultra high
speed 100,000 ERPM. (Electric RPM = mechanical RPM * motor pole pairs).
• Brake switch is used to start regen.
• 0-5V brake signal is used to command regen current.
• Support three modes of regenerative braking: brake switch regen, release throttle regen,0-
5V analog signal variable regen.
• Configurable high pedal protection: Disable operation if power up with high throttle.
• Current multiplication: Take less current from battery, output more current to motor.
• Easy installation: 3-wire potentiometer will work.
19
• Current meter output.
• Standard PC/Laptop computer to do programming. No special tools needed.
• User program provided. Easy to use. No cost to customers.
General Specifications of Controllers:
•Frequency of Operation: 16.6kHz.
•Standby Battery Current: < 0.5mA.
•5V Sensor Supply Current: 40mA.
•Controller supply voltage range, PWR, 18V to 90V.
•Supply Current, PWR, 150mA.
•Configurable battery voltage range, B+. Max operating range: 18V to 60V.
•Analog Brake and Throttle Input: 0-5 Volts. Producing 0-5V signal with 3-wire pot.
•Full Power Operating Temperature Range: 0℃ to 50℃ (controller case temperature).
•Operating Temperature Range: -30℃ to 90℃, 100℃ shutdown (controller case
temperature).
•Peak Phase Current, 30 seconds: 300A.
•Continuous Phase Current Limit: 150A.
•Maximum Battery Current: Configurable.
Battery
An electric vehicle battery (EVB) or traction battery is a rechargeable battery used for
propulsion of battery electric vehicles (BEVs). Traction batteries are used in forklifts,
electric Golf carts, riding floor scrubbers, electric motorcycles, full-size
electric cars, trucks, and vans, and other electric vehicles.
The electric motors are usually powered by 12-15 volt rechargeable batteries, similar to
those used to power outboard boat engines. These are available in wet or dry options. Many
VEHICLE carry an on-board charger which can be plugged into a standard wall outlet;
older or more portable models may have a separate charger unit.
20
Electric vehicle batteries differ from starting, lighting, and ignition (SLI) batteries because
they are designed to give power over sustained periods of time. Deep cycle batteries are
used instead of SLI batteries for these applications. Traction batteries must be designed
with a high ampere-hour capacity. Batteries for electric vehicles are characterized by their
relatively high power-to-weight ratio, energy to weight ratio and energy density; smaller,
lighter batteries reduce the weight of the vehicle and improve its performance. Compared to
liquid fuels, all current battery technologies have much lower specific energy; and this often
impacts the maximum all-electric range of the vehicles.
Batteries are usually the most expensive component of BEVs. The cost of battery
manufacture is substantial, but increasing returns to scale lower costs.
The predicted market for automobile traction batteries is over $37 billion in 2020.
On an energy basis, the price of electricity to run an EV is a small fraction of the cost of
liquid fuel needed to produce an equivalent amount of energy
➢ Lead Acid Battery
Flooded lead-acid batteries are the cheapest and most common traction batteries available,
usually discharged to roughly 80%. They will accept high charge rates for fast charges.
Flooded batteries require inspection of electrolyte level and replacement of water.
21
Figure05: Lead Acid Battery pack
Traditionally, most electric vehicles have used lead-acid batteries due to their mature
technology, high availability, and low cost (exception: some early EVs, such as the Detroit
Electric, used a nickel-iron battery.) Like all batteries, these have an environmental impact
through their construction, use, disposal or recycling. On the upside, vehicle battery
recycling rates top 95% in the United States. Deep-cycle lead batteries are expensive and
have a shorter life than the vehicle itself, typically needing replacement every 3 years.
Lead-acid batteries in EV applications end up being a significant (25–50%) portion of the
final vehicle mass. Like all batteries, they have significantly lowerenergy density than
petroleum fuels—in this case, 30–40 Wh/kg. While the difference isn't as extreme as it first
appears due to the lighter drive-train in an EV, even the best batteries tend to lead to higher
masses when applied to vehicles with a normal range.
Charging and operation of batteries typically results in the emission
of hydrogen, oxygen and sulfur, which are naturally occurring and normally harmless if
properly vented. Early Citicar owners discovered that, if not vented properly, unpleasant
sulfur smells would leak into the cabin immediately after charging.
22
Lead-acid batteries powered such early-modern EVs as the original versions of the EV1 and
the RAV4EV.
• Battery cost
The cost of the battery when distributed over the life cycle of the vehicle (compared with an
up to 10 years life cycle of an internal combustion engine vehicle) can easily be more than
the cost of the electricity. This is because of the high initial cost relative to the life of the
batteries. Battery weight is a problem; in trying to achieve a reasonable miles/charge, the
weight is still not reasonable for anything but local driving. For example, a 1-kWhr battery
using LiFePO4 technology costs $500USD. A typical small passenger electric car will use
8 kW-hrs for a 40-mile (64 km) range each day. Using the 7000 cycle or 10 year life given
in the previous section, 365 cycles per year would take 19 years to reach the 7000 cycles.
Using the lower estimate of a ten year life gives 3650 cycles over ten years giving 146000
total miles driven. At $500 per kWh an 8 kWh battery costs $4000 resulting in
$4000/146000 miles or $0.027 per mile. In reality a larger pack would be used to avoid
stressing the battery by avoiding complete discharge or 100% charge. Adding a 2 kWh in
battery adds $1000 to the cost resulting in $5000/146000 miles or $0.034/mile.
Scientists at Technical University of Denmark paid $10,000USD for a certified EV battery
with 25kWh capacity, with no rebates or overprice.[15]
Two out of 15 battery producers
could supply the necessary technical documents about quality and fire safety.[16]
Estimated
time is 10 years before battery price comes down to 1/3 of present.[15]
Battery professor
Poul Norby states that lithium batteries will need to double their energy density and bring
down the price from $500 (2010) to $100 per kWh capacity in order to make an impact on
petrol cars.
A solution to the range problem is detailed in an article on Battery Exchange and explains
how the total battery needs would be reduced by using a battery exchange or battery swap
system. This requires substantial investment in setting up exchange stations but would
23
allow for the use of lighter batteries as they would not be required to provide many miles of
use. Lighter batteries make the ecar system far more efficient and lower overall costs.
The LiFePO4 technology has yielded batteries that have a higher miles/$ over the life of the
packs but they require a complex control system. The manufacture of the batteries is still
being developed and is not a reliable source.
Some batteries can be leased or rented instead of bought (see Think Global).
One article indicates that 10 kW·h of battery energy provides a range of about 20 miles
(32 km) in a Toyota Prius, but this is not a primary source, and does not fit with estimates
elsewhere of about 5 miles (8.0 km) /(kW·h). The Chevrolet Volt is expected to achieve 50
MPG when running on the auxiliary power unit (a small onboard generator) - at 33%
thermodynamic efficiency that would mean 12 kW·h for 50 miles (80 km), or about 240
watt-hours per mile. For prices of 1 kW·h of charge with various different battery
technologies, see the "Energy/Consumer Price" column in the "Table of rechargeable
battery technologies" section in the rechargeable battery.
Rechargeable batteries used in electric vehicles include lead-acid ("flooded", Deep cycle,
and VRLA), Ni Cd, nickel metal hydride, lithium ion, Li-ion polymer, and, less
commonly, zinc-air and molten salt batteries. The amount of electricity (i.e. electric charge)
stored in batteries is measured in ampere hours or incoulombs, with the total energy often
measured in watt hours.
• Internal Components
Battery pack designs for Electric Vehicles (EVs) are complex and vary widely by
manufacturer and specific application. However, they all incorporate a combination of
several simple mechanical and electrical component systems which perform the basic
required functions of the pack.
The actual battery cells can have different chemistry, physical shapes, and sizes as preferred
by various pack manufacturers. Battery pack will always incorporate many discrete cells
24
connected in series and parallel to achieve the total voltage and current requirements of the
pack. Battery packs for all electric drive EVs can contain several hundred individual cells.
To assist in manufacturing and assembly, the large stack of cells is typically grouped into
smaller stacks called modules. Several of these modules will be placed into a single pack.
Within each module the cells are welded together to complete the electrical path for current
flow. Modules can also incorporate cooling mechanisms, temperature monitors, and other
devices. In most cases, modules also allow for monitoring the voltage produced by each
battery cell in the stack by the Battery Management System (BMS).
The battery cell stack has a main fuse which limits the current of the pack under a short
circuit condition. A “service plug” or “service disconnect” can be removed to split the
battery stack into two electrically isolated halves. With the service plug removed, the
exposed main terminals of the battery present no high potential electrical danger to service
technicians.
The battery pack also contains relays, or contactors, which control the distribution of the
battery pack’s electrical power to the output terminals. In most cases there will be a
minimum of two main relays which connect the battery cell stack to the main positive and
negative output terminals of the pack, those supplying high current to the electrical drive
motor. Some pack designs will include alternate current paths for pre-charging the drive
system through a pre-charge resistor or for powering an auxiliary buss which will also have
their own associated control relays. For obvious safety reasons these relays are all normally
open.
The battery pack also contains a variety of temperature, voltage, and current sensors.
Collection of data from the pack sensors and activation of the pack relays are accomplished
by the pack ’s Battery Monitoring Unit (BMU) or Battery Management System (BMS). The
BMS is also responsible for communications with the world outside the battery pack.
25
• Charging
Batteries in BEVs must be periodically recharged. BEVs most commonly charge from
the power grid (at home or using a street or shop recharging point), which is in turn
generated from a variety of domestic resources, such as coal, hydroelectricity, nuclear and
others. Home power such as roof top photovoltaic solar cell
panels, microhydro or wind may also be used and are promoted because of concerns
regarding global warming.
Charging time is limited primarily by the capacity of the grid connection. A
normal household outlet is between 1.5 kilowatts (in the US, Canada, Japan, and other
countries with 110 volt supply) to 3 kilowatts (in countries with 240 V supply). Many
European countries feed domestic consumers with a 3 phase system fused at 16-25 amp
allowing for a theoretical capacity around 20-30 kW. However, this capacity is also
required to feed the rest of the location and hence cannot be used practically and will also
not be supported "en masse" by the distribution network. At this higher power level
charging even a small, 7 kilowatt-hour (14–28 mi) pack, would probably require one hour.
This is small compared to the effective power delivery rate of an average petrol pump,
about 5,000 kilowatt.
In 1995, some charging stations charged BEVs in one hour. In November 1997, Ford
purchased a fast-charge system produced by AeroVironment called "PosiCharge" for
testing its fleets of Ranger EVs, which charged their lead-acid batteries in between six and
fifteen minutes. In February 1998, General Motors announced a version of its "Magne
Charge" system which could recharge NiMH batteries in about ten minutes, providing a
range of sixty to one hundred miles.
Most people do not always require fast recharging because they have enough time, six to
eight hours, during the work day or overnight to recharge. As the charging does not require
attention it takes a few seconds for an owner to plug in and unplug their vehicle. Many BEV
drivers prefer refueling at home, avoiding the inconvenience of visiting a fuel station. Some
workplaces provide special parking bays for electric vehicles with charging equipment
provided.
26
• Connectors
The charging power can be connected to the car in two ways. The first is a direct electrical
connection known as conductive coupling. This might be as simple as a mains lead into a
weatherproof socket through special high capacity cables with connectors to protect the
user from high voltages.The modern standard for plug-in vehicle charging is the SAE 1772
conductive connector (IEC 62196 Type 1) in the USA. The ACEA has chosen the VDE-
AR-E 2623-2-2 (IEC 62196 Type 2) for deployment in Europe.
The second approach is known as inductive charging. A special 'paddle' is inserted into a
slot on the car. The paddle is one winding of a transformer, while the other is built into the
car. When the paddle is inserted it completes a magnetic circuit which provides power to
the battery pack. In one inductive charging system, one winding is attached to the underside
of the car, and the other stays on the floor of the garage. The advantage of the inductive
approach is that there is no possibility of electrocution as there are no exposed conductors,
although interlocks, special connectors and ground fault detectors can make conductive
coupling nearly as safe. Inductive charging can also reduce vehicle weight, by moving more
charging componentry offboard. An inductive charging proponent from Toyota contended
in 1998 that overall cost differences were minimal, while a conductive charging proponent
from Ford contended that conductive charging was more cost efficient.
• Travel range before recharging and trailers
The range of a BEV depends on the number and type of batteries used, terrain, weather, and
the performance of the driver. The weight and type of vehicle also have an impact just as
they do on the mileage of traditional vehicles. Electric vehicle conversion performance
depends on a number of factors including the battery chemistry:
▪ Lead-acid batteries are the most available and inexpensive. Such conversions generally
have a range of 30 to 80 km (20 to 50 mi). Production EVs with lead-acid batteries are
capable of up to 130 km (80 mi) per charge.
27
▪ NiMH batteries have higher energy density than lead-acid; prototype EVs deliver up to
200 km (120 mi) of range.
▪ New lithium-ion battery-equipped EVs provide 320–480 km (200–300 mi) of range per
charge. Lithium is also less expensive than nickel.
▪ Nickel-zinc battery are cheaper and lighter than Nickel-cadmium batteries. They are also
cheaper (but not as light) as Lithium-Ion batteries.
Finding the economic balance of range versus performance, battery capacity versus weight,
and battery type versus cost challenges every EV manufacturer.
With an AC system or Advanced DC systems regenerative braking can extend range by up
to 50% under extreme traffic conditions without complete stopping. Otherwise, the range is
extended by about 10 to 15% in city driving, and only negligibly in highway driving,
depending upon terrain.
BEVs (including buses and trucks) can also use genset trailers and pusher trailers in order
to extend their range when desired without the additional weight during normal short range
use. Discharged baset trailers can be replaced by recharged ones in a route point. If rented
then maintenance costs can be deferred to the agency.
Such BEVs can become Motoried vehicles depending on the trailer and car types of energy
and powertrain
• Lifespan
Individual batteries are usually arranged into large battery packs of
various voltage and ampere-hour capacity products to give the required energy capacity.
Battery service life should be considered when calculating the extended cost of ownership,
as all batteries eventually wear out and must be replaced. The rate at which they expire
depends on a number of factors.
The depth of discharge (DOD) is the recommended proportion of the total available energy
storage for which that battery will achieve its rated cycles. Deep cycle lead-acid batteries
28
generally should not be discharged to below 20% of total capacity. More modern
formulations can survive deeper cycles.
• Safety
The safety issues of battery electric vehicles are largely dealt with by the international
standard ISO 6469. This document is divided in three parts dealing with specific issues:
▪ On-board electrical energy storage, i.e. the battery
▪ Functional safety means and protection against failures
▪ Protection of persons against electrical hazards.
Firefighters and rescue personnel receive special training to deal with the higher voltages
and chemicals encountered in electric and Motoried electric vehicle accidents. While BEV
accidents may present unusual problems, such as fires and fumes resulting from rapid
battery discharge, there is apparently no available information regarding whether they are
inherently more or less dangerous than gasoline or diesel internal combustion vehicles
which carry flammable fuels.
• Future
The future of battery electric vehicles depends primarily upon the cost and availability
of batteries with high energy densities, power density, and long life, as all other aspects
such as motors, motor controllers, and chargers are fairly mature and cost-competitive with
internal combustion engine components. Li-ion, Li-poly and zinc-air batteries have
demonstrated energy densities high enough to deliver range and recharge times comparable
to conventional vehicles.
29
➢ Steering system
Steering is the term applied to the collection of components, linkages, etc. which will
allow a vessel (ship, boat) or vehicle (car, motorcycle, VEHICLE) to follow the desired
course. An exception is the case of rail transport by which rail tracks combined together
with railroad switches (and also known as 'points' in British English) provide the steering
function.
• Basic geometry
The basic aim of steering is to ensure that the wheels are pointing in the desired directions.
This is typically achieved by a series of linkages, rods, pivots and gears. One of the
fundamental concepts is that of caster angle- each wheel is steered with a pivot point ahead
of the wheel; this makes the steering tend to be self-centering towards the direction travel.
Figure: Ackermann steering geometry
30
• The steering linkages connecting the steering box and the wheels usually conforms to a
variation of Ackermann steering geometry, to account for the fact that in a turn, the inner
wheel is actually travelling a path of smaller radius than the outer wheel, so that the degree
of toe suitable for driving in a straight path is not suitable for turns.
31
CHAPTER 3
DRAWING
DETAILS
OF
COMPONENTS
32
Design of Vehicle
Assume
load on vehicle= 100 kg
Load (P)= 1000 N
Let Area cross section =
Stress = load / area
= 1000/160×100×10^-4
σ = 625.55 n/m²
From tensile testing , σ’ = 650 N/m²
Thus, σ’ > σ theoretical
Hence design of the vehicle is safe
33
Capability of Motor
Specification of motor Power (P)= 1.5 KW
No. of revolution per min(N)= 500 RPM
P=2 πrt/60×1000
Torque Transmitted T = 28.62 N-m
Shear Stress τ = 16T/πd³
Where D= dia of wheel
D=40 cm
τ = 16×28.62/π(0.4)³
τ = 2278.66 N/m²
Load carried by motor = shear stress × area of cross section
P= 2278.66×160×100 ×10^-4
P= 3645.5 N
or P= 364 kg
therefore the load on vehicle is easily carried by this motor .
Hence Design is safe
34
CHAPTER 4
MACHINES USED
IN
DESIGN AND
FABRICATION OF
MOTORIZED VEHICLE
35
LIST OF MACHINE USED IN PROJECT
1.) LATHE MACHINE:-
Center height 170 mm
Distance between center 600 mm
Maximum speed 2000 mm
Motor Power 500 kw
2.) DRILL MACHINE :-
Capacity 50 mm
Range of Spindle Speed 35-195 rpm
Working space on base 412 * 412 mm
3.) SHAPER MACHINE :-
Type Push cut horizontal type
Stroke 175-900 mm
Power Feed 0.2-5 mm
Motor 500 kw
4.) HACKSAW MACHINE :-
Maximum dia. Of root of cut 180 mm
Maximum square section to cut 125 mm
Stroke 75-150 mm
Blade Size 350 mm
Motor 1 HP
36
OPERATION DONE BY THE MACHINES
1.)DRILLING
It is a process of making hole and enlarging it in an object by forcing a rotating tool called a
drill. The same operation can be accomplished in some other machine by holding the drill
stationary and rotating the work.
2.) BORING
It is the process of enlarging a hole that has already drilled or cored. Principally, it is an
operation of turning a hole that has been drilled previously, with a single point tool.
3.) REAMING
Reamer is a cutting tool, used for enlarging or finishing to accurate dimensions a hole
previously formed.The flutes on reamer body act both as cutting teeth and as grooves for
accommodating the chips removed.
4.) GRINDING
It is the process in which the metal cutting or removal take place comparatively in smaller
volume through friction for accuracy. It is also used for sharpening the tool.
5.) TURNING
It is the process which is performed on lathe machine in which remove the excess of
material from the work piece to produce crown shaped .
6.) TAPPING
Taping and threading is a process of making threads, are being made on adjustable rod, for
fixing steering column.
7.) SHAPING
It is used principally to machine flat or plane surface in horizontal, vertical and angular.
37
8.) CUTTING
It is used principally to cut the material for making structure other parts.
9.) WELDING
It is the process of joining different material with help of heat and with or without the
application of filler material. In the manufacturing of chassis, battery cabin.
38
CHAPTER 5
HAND TOOL
AND
EQUIPMENTS
USED
39
LIST OF HAND TOOLS AND EQUIPMENT
• Single point cutting tool
• Drills
• Vernier Caliper
• Hacksaw
• Files
• Measuring Tap
• Hammers
• Punch
• Screw Driver
• Hand grinding machine
• Hand Drilling machine
• T joint
• Oxy-Acetylene gas welding system
• Grease and oil
• Paint
40
CHAPTER 6
COST
ESTIMATION
41
COST ESTIMATION
SR.
NO.
COMPONENT
NAME
MATERIAL NO.OF
COMP
ONEN
T
COST
RS.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Rectangular Pipe
(150 * 3.5)
Rectangular Pipe
(120 * 3.5)
Cover sheet (75*120)
Batteries(12 volt)
Wheels
Motorized wheel
Steering Handle
Controller
(MOSFET)
Accelerator
Braking System
Seat
Blancing Rod
Coupling
Mild Steel
Mild Steel
Mild Steel
Lead acid
Mild steel
Plastic
Mild steel
Cast Iron
2
2
1
4
3
1
1
1
1
1
1
1
4
Nil
Nil
Nil
1600
1500
1850
250
850
100
200
150
500
100
42
13.
14.
15.
Bearing
Nut & Bolt
Others
Cast Iron
Cast Iron
Mild steel
4
15
200
100
800
Grand Total 42 Rs.8200
43
CHAPTER 7
PROPERTIES
OF
MOTORIZED
VEHICLES
44
PROPERTIES OF ELECTRIC VEHICLE
➢ ENERGY SOURCES
Although electric vehicles have few direct emissions, all rely on energy created
through electricity generation, and will usually emit pollution and generate waste, unless it
is generated by renewable source power plants. Since electric vehicles use whatever
electricity is delivered by their electrical utility/grid operator, electric vehicles can be made
more or less efficient, polluting and expensive to run, by modifying the electrical
generating stations. This would be done by an electrical utility under a government energy
policy, in a timescale negotiated between utilities and government.
Fossil fuel vehicle efficiency and pollution standards take years to filter through a nation's
fleet of vehicles. New efficiency and pollution standards rely on the purchase of new
vehicles, often as the current vehicles already on the road reach their end-of-life. Only a
few nations set a retirement age for old vehicles, such as Japan or Singapore, forcing
periodic upgrading of all vehicles already on the road.
Electric vehicles will take advantage of whatever environmental gains happen when a
renewable energy generation station comes online, a fossil-fuel power station is
decommissioned or upgraded. Conversely, if government policy or economic conditions
shifts generators back to use more polluting fossil fuels andinternal combustion engine
vehicles (ICEVs), or more inefficient sources, the reverse can happen. Even in such a
situation, electrical vehicles are still more efficient than a comparable amount of fossil fuel
vehicles. In areas with a deregulated electrical energy market, an electrical vehicle owner
can choose whether to run his electrical vehicle off conventional electrical energy sources,
45
or strictly from renewable electrical energy sources (presumably at an additional cost),
pushing other consumers onto conventional sources, and switch at any time between the
two.
➢ EFFICIENCY
Because of the different methods of charging possible, the emissions produced have been
quantified in different ways. Plug-in all-electric and Motoried vehicles also have different
consumption characteristics.
➢ ELECTROMAGNETIC RADIATION
Electromagnetic radiation from high performance electrical motors has been claimed to be
associated with some human ailments, but such claims are largely unsubstantiated except
for extremely high exposures. Electric motors can be shielded within a metallic Faraday
cage, but this reduces efficiency by adding weight to the vehicle, while it is not conclusive
that all electromagnetic radiation can be contained.
➢ CHARGING (Grid Capacity)
If a large proportion of private vehicles were to convert to grid electricity it would increase
the demand for generation and transmission, and consequent emissions. However, overall
energy consumption and emissions would diminish because of the higher efficiency of
electric vehicles over the entire cycle. In the USA it has been estimated there is already
nearly sufficient existing power plant and transmission infrastructure, assuming that most
charging would occur overnight, using the most efficient off-peak base load sources.
In the UK however, things are different. While National Grid’s high-voltage electricity
transmission system can currently manage the demand of 1 million electric cars, Steve
Holliday (CEO National Grid PLC) said, “penetration up and above that becomes a real
46
issue. Local distribution networks in cities like London may struggle to balance their grids
if drivers choose to all plug in their cars at the same time."
➢ CHARGING STATIONS
Electric vehicles typically charge from conventional power outlets or dedicated charging
stations, a process that typically takes hours, but can be done overnight and often gives a
charge that is sufficient for normal everyday usage.
However with the widespread implementation of electric vehicle networks within large
cities, such as those provided by POD Point in the UK and Europe, electric vehicle users
can plug in their cars whilst at work and leave them to charge throughout the day, extending
the possible range of commutes and eliminating range anxiety.
One proposed solution for daily recharging is a standardized inductive charging system
such as Evatran's Plugless Power. Benefits are the convenience of with parking over the
charge station and minimized cabling and connection infrastructure.
Another proposed solution for the typically less frequent, long distance travel is "rapid
charging", such as the Aerovironment PosiCharge line (up to 250 kW) and
the Norvik MinitCharge line (up to 300 kW). Ecotality is a manufacturer of Charging
Stations and has partnered with Nissan on several installations. Battery replacement is also
proposed as an alternative, although no OEM's including Nissan/Renault have any
production vehicle plans. Swapping requires standardization across platforms, models and
manufacturers. Swapping also requires many times more battery packs to be in the system.
One type of battery "replacement" proposed is much simpler: while the latest generation
of vanadium redox battery only has an energy density similar to lead-acid, the charge is
stored solely in a vanadium-based electrolyte, which can be pumped out and replaced with
charged fluid. The vanadium battery system is also a potential candidate for intermediate
energy storage in quick charging stations because of its high power density and extremely
good endurance in daily use. System cost however, is still prohibitive. As vanadium battery
47
systems are estimated to range between $350–$600 per kWh, a battery that can service one
hundred customers in a 24 hour period at 50 kWh per charge would cost $1.8-$3 million.
According to Department of Energy research conducted at Pacific National Laboratory,
84% of existing vehicles could be switched over to plug-in Motorieds without requiring any
new grid infrastructure. In terms of transportation, the net result would be a 27% total
reduction in emissions of the greenhouse gases carbon dioxide, methane, and nitrous oxide,
a 31% total reduction in nitrogen oxides, a slight reduction in nitrous oxide emissions, an
increase in particulate matter emissions, the same sulfur dioxide emissions, and the near
elimination of carbon monoxide and volatile organic compound emissions (a 98% decrease
in carbon monoxide and a 93% decrease in volatile organic compounds). The emissions
would be displaced away from street level, where they have "high human-health
implications."
➢ Battery swapping
There is another way to "refuel" electric vehicles. Instead of recharging them from electric
socket, batteries could be mechanically replaced on special stations just in a couple of
minutes (battery swapping).
Batteries with greatest energy density such as metal-air fuel cells usually cannot be
recharged in purely electric way. Instead some kind of metallurgical process is needed, such
as aluminum smelting and similar.
Silicon-air, aluminum-air and other metal-air fuel cells look promising candidates for swap
batteries. Any source of energy, renewable or non-renewable, could be used to remake used
metal-air fuel cells with relatively high efficiency. Investment in infrastructure will be
needed. The cost of such batteries could be an issue, although they could be made with
replaceable anodes and electrolyte.
48
➢ OTHER IN-DEVELOPMENT TECHNOLOGIES
Conventional electric double-layer capacitors are being worked to achieve the energy
density of lithium ion batteries, offering almost unlimited lifespans and no environmental
issues. High-K electric double-layer capacitors, such as EEStor's EESU, could improve
lithium ion energy density several times over if they can be produced. Lithium-sulphur
batteries offer 250Wh/kg. Sodium-ion batteries promise 400Wh/kg with only minimal
expansion/contraction during charge/discharge and a very high surface area. Researchers
from one of the Ukrainian state universities claim that they have manufactured samples of
supercapacitor based on intercalation process with 318 W-h/kg specific energy, which seem
to be at least two times improvement in comparison to typical Li-ion batteries.
➢ SAFETY
The United Nations in Geneva (UNECE) has adopted the first international regulation
(Regulation 100) on safety of both fully electric and Motoried electric cars to ensure that
cars with a high voltageelectric power train, such as Motoried and fully electric vehicles,
are as safe as combustion cars. The EU and Japan have already indicated that they intend to
incorporate the new UNECE Regulation in their respective rules on technical standards for
vehicles.
➢ ENERGY RESILIENCE
Electricity is a form of energy that remains within the country or region where it was
produced and can be multi-sourced. As a result it gives the greatest degree of energy
resilience.
➢ ENERGY EFFICIENCY
Electric vehicle 'tank-to-wheels' efficiency is about a factor of 3 higher than internal
combustion engine vehicles. It does not consume energy when it is not moving, unlike
internal combustion engines where they continue running even during idling. However,
looking at the well-to-wheel efficiency of electric vehicles, their emissions are comparable
49
to an efficient gasoline or diesel in most countries because electricity generation relies on
fossil fuels.
➢ COST OF RECHARGE
The GM Volt will cost "less than purchasing a cup of your favorite coffee" to recharge. The
Volt should cost less than 2 cents per mile to drive on electricity, compared with 12 cents a
mile on gasoline at a price of $3.60 a gallon. This means a trip from Los Angeles to New
York would cost $56 on electricity, and $336 with gasoline. This would be the equivalent to
paying 60 cents a gallon of gas.
➢ STABILIZATION OF THE GRID
Since electric vehicles can be plugged into the electric grid when not in use, there is a
potential for battery powered vehicles to even out the demand for electricity by feeding
electricity into the grid from their batteries during peak use periods (such as midafternoon
air conditioning use) while doing most of their charging at night, when there is unused
generating capacity. This Vehicle to Grid (V2G) connection has the potential to reduce the
need for new power plants.
Furthermore, our current electricity infrastructure may need to cope with increasing shares
of variable-output power sources such as windmills and PV solar panels. This variability
could be addressed by adjusting the speed at which EV batteries are charged, or possibly
even discharged.
Some concepts see battery exchanges and battery charging stations, much like gas/petrol
stations today. Clearly these will require enormous storage and charging potentials, which
could be manipulated to vary the rate of charging, and to output power during shortage
periods, much as diesel generators are used for short periods to stabilize some national
grids.
50
➢ RANGE
Many electric designs have limited range, due to the low energy density of batteries
compared to the fuel of internal combustion engine vehicles. Electric vehicles also often
have long recharge times compared to the relatively fast process of refueling a tank. This is
further complicated by the current scarcity of public charging stations. "Range anxiety" is a
label for consumer concern about EV range.
➢ HEATING OF ELECTRIC VEHICLES
In cold climates considerable energy is needed to heat the interior of a vehicle and to
defrost the windows. With internal combustion engines, this heat already exists from the
combustion process from the waste heat from the engine cooling circuit and this offsets
the greenhouse gases' external costs. If this is done with battery electric vehicles, this will
require extra energy from the vehicles' batteries. Although some heat could be harvested
from the motor(s) and battery, due to their greater efficiency there is not as much waste heat
available as from a combustion engine.
However, for vehicles which are connected to the grid, battery electric vehicles can be
preheated, or cooled, and need little or no energy from the battery, especially for short trips.
Newer designs are focused on using super-insulated cabins which can heat the vehicle using
the body heat of the passengers. This is not enough, however, in colder climates as a driver
delivers only about 100 W of heating power. A reversible AC-system, cooling the cabin
during summer and heating it during winter, seems to be the most practical and promising
way of solving the thermal management of the EV. Ricardo Arboix introduced (2008) a
new concept based on the principle of combining the thermal-management of the EV-
battery with the thermal-management of the cabin using a reversible AC-system. This is
done by adding a third heat-exchanger, thermally connected with the battery-core, to the
traditional heat pump/air conditioning system used in previous EV-models like the GM
EV1 and Toyota RAV4 EV.
51
The concept has proven to bring several benefits, such as prolonging the life-span of the
battery as well as improving the performance and overall energy-efficiency of the EV.
➢ ELECTRIC PUBLIC TRANSIT EFFICIENCY
Shifts from private to public transport (train, trolleybus or tram) have the potential for large
gains in efficiency in terms of individual miles per kWh.
Research shows people do prefer trams, because they are quieter and more comfortable and
perceived as having higher status.
Therefore, it may be possible to cut liquid fossil fuel consumption in cities through the use
of electric trams.
Trams may be the most energy-efficient form of public transportation, with rubber wheeled
vehicles using 2/3 more energy than the equivalent tram, and run on electricity rather than
fossil fuels.
In terms of net present value, they are also the cheapest—Blackpool trams are still running
after 100-years, but combustion buses only last about 15-years.
52
CHAPTER 8
MERITS
AND
DEMERITS
OF
MOTORIZED VEHICLE
53
ADVANTAGES AND DISADVANTAGES OF MOTORIZED
VEHICLES
➢ ENVIRONMENTAL
• Due to efficiency of electric engines as compared to combustion engines, even when the
electricity used to charge electric vehicles comes from a CO2 emitting source, such as a
coal or gas fired powered plant, the net CO2 production from an electric car is typically one
half to one third of that from a comparable combustion vehicle.
• Electric vehicles release almost no air pollutants at the place where they are operated. In
addition, it is generally easier to build pollution control systems into centralised power
stations than retrofit enormous numbers of cars.
• Electric vehicles typically have less noise pollution than an internal combustion engine
vehicle, whether it is at rest or in motion. Electric vehicles emit no tailpipe CO2 or
pollutants such as NOx,NMHC, CO and PM at the point of use.
• Electric motors don't require oxygen, unlike internal combustion engines; this is useful
for submarines.
• While electric and Motoried cars have reduced tailpipe carbon emissions, the energy they
consume is sometimes produced by means that have environmental impacts. For example,
the majority ofelectricity produced in the United States comes from fossil
fuels (coal and natural gas) so use of an Electric Vehicle in the United States would not be
completely carbon neutral. Electric and Motoried cars can help decrease energy use and
pollution, with local no pollution at all being generated by electric vehicles, and may
someday use only renewable resources, but the choice that would have the lowest negative
environmental impact would be a lifestyle change in favor of walking, biking, use of public
transit or telecommuting. Governments may invest in research and development of electric
54
cars with the intention of reducing the impact on the environment where they could instead
develop pedestrian-friendly communities or electric mass transit.
➢ MECHANICAL
• Electric motors are mechanically very simple.
• Electric motors often achieve 90% energy conversion efficiency over the full range of
speeds and power output and can be precisely controlled. They can also be combined
with regenerative braking systems that have the ability to convert movement energy back
into stored electricity.
• This can be used to reduce the wear on brake systems (and consequent brake pad dust) and
reduce the total energy requirement of a trip. Regenerative braking is especially effective
for start-and-stop city use.
Figure-:An Alkè electric city van.
55
• They can be finely controlled and provide high torque from rest, unlike internal combustion
engines, and do not need multiple gears to match power curves. This removes the need
for gearboxes and torque converters.
• Electric vehicles provide quiet and smooth operation and consequently have less noise
and vibration than internal combustion engines.
➢ FUTURE ASPECTS
Figure:Eliica Battery Electric Car with 370 km/h top speed and 200 km range
• The number of US survey respondents willing to pay $4,000 more for a plug-in
Motoried car increased from 17% in 2005 to 26% in 2006.
• Ferdinand Dudenhoeffer, head of the Centre of Automotive Research at the Gelsenkirchen
University of Applied Sciences in Germany, said that "by 2025, allpassenger cars sold in
Europe will be electric or Motoried" electric.
• Several startup companies like Tesla Motors, Commuter Cars, and Miles Electric
Vehicles will have powerful battery-electric vehicles available to the public in 2008.
Battery and energy storage technology is advancing rapidly. The average distance driven by
80% of citizens per day in a car in the US is about 50 miles (US dept of transport, 1991),
which fits easily within the current range of the electric car.
56
• This range can be improved by technologies such as Plug-in Motoriedelectric vehicles
which are capable of using traditional fuels for unlimited range, rapid charging stations for
BEVs, improved energy density batteries, flow batteries, or battery swapping.
• In 2006 GM began the development of a plug-in Motoried that will use a lithium-ion
battery. The vehicle, initially known as the Car, is now called the Chevrolet Volt. The basic
design was first exhibited January 2007 at the North American International Auto Show.
GM is planning to have this EV ready for sale to the public in the latter half of 2010. The
car is to have a 40-mile (64 km) range. If the battery capacity falls below 30 percent a small
internal combustion engine will kick in to charge the battery on the go.
• This in effect increases the range of the vehicle, allowing it to be driven until it can be fully
charged by plugging it into a standard household AC electrical source. In December 2010
Nissan introduced the Nissan Leaf in Japan and the U.S.
• The Nissan Leaf is a five-door mid-size hatchback electric car. The U.S. Environmental
Protection Agency determined the range to be 117 kilometres (73 mi), with an energy
consumption of 765 kJ/km (34 kWh per 100 miles). Among other awards and recognition,
the Nissan Leaf won the 2010 Green Car Vision Award award, the 2011 European Car of
the Year award, the 2011 World Car of the Year, and ranks as the most efficient EPA
certified vehicle for all fuels ever.
• On October 29, 2007, Shai Agassi launched Project Better Place, a company focused on
building massive scale Electric Recharge Grids as infrastructure supporting the deployment
of electric vehicles (including plug-in Motorieds) in countries around the world. On January
21, PBP and the Nissan–Renault group signed a MOU - PBP will provide the battery
recharging and swapping infrastructure and Renault-Nissan will mass-produce the vehicles.
➢ Improved long term energy storage and nano batteries
• There have been several developments which could bring electric vehicles outside their
current fields of application, as scooters, golf cars, neighborhood vehicles, in industrial
operational yards and indoor operation. First, advances in lithium-based battery technology,
57
in large part driven by the consumer electronics industry, allow full-sized, highway-capable
electric vehicles to be propelled as far on a single charge as conventional cars go on a single
tank of gasoline. Lithium batteries have been made safe, can be recharged in minutes
instead of hours, and now last longer than the typical vehicle. The production cost of these
lighter, higher-capacity lithium batteries is gradually decreasing as the technology matures
and production volumes increase.
• Rechargeable Lithium-air batteries potentially offer increased range over other types and
are a current topic of research
➢ Introduction of battery management and intermediate storage
• Another improvement is to decouple the electric motor from the battery through electronic
control, employing ultra-capacitors to buffer large but short power demands
and regenerative braking energy.
• The development of new cell types combined with intelligent cell management improved
both weak points mentioned above. The cell management involves not only monitoring the
health of the cells but also a redundant cell configuration (one more cell than needed). With
sophisticated switched wiring it is possible to condition one cell while the rest are on duty.
➢ Faster battery recharging
• By soaking the matter found in conventional lithium ion batteries in a special solution,
lithium ion batteries were supposedly said to be recharged 100x faster. This test was
however done with a specially-designed battery with little capacity. Batteries with higher
capacity can be recharged 40x faster.
• The research was conducted by Byoungwoo Kang and Gerbrand Ceder of MIT. The
researchers believe the solution may appear on the market in 2011. Another method to
speed up battery charging is by adding an additional oscillating electric field. This method
was proposed byIbrahim Abou Hamad from Mississippi State University.The
company Epyon specializes in faster charging of electric vehicles
58
CHAPTER 9
ENVIRONMENTAL
IMPACT
OF
MOTORIZED
VEHICLE
59
Environmental Impact of Motorized Vehicle
• Though Motoried cars consume less petroleum than conventional cars, there is still an issue
regarding the environmental damage of the Motoried car battery. Today most Motoried car
batteries are one of two types: (1) nickel metal hydride, or (2) lithium ion; both are regarded
as more environmentally friendly than lead-based batteries which constitute the bulk of car
batteries today.
• There are many types of batteries. Some are far more toxic than others. While batteries like
lead acid or nickel cadmium are incredibly bad for the environment, the toxicity levels and
environmental impact of nickel metal hydride batteries—the type currently used in
Motorieds—are much lower. Nickel-based batteries are known carcinogens, and have been
shown to cause a variety of teratogenic effects.
• The Lithium-ion battery has attracted attention due to its potential for use in Motoried
electric vehicles. Hitachi is a leader in its development.
• Additionally, the market for Lithium-ion batteries is rapidly expanding as an alternative to
the nickel-metal hydride batteries, which have been utilized in the Motoried market thus
far. In addition to its smaller size and lighter weight, lithium-ion batteries deliver
performance that helps to protect the environment with features such as improved charge
efficiency without memory effect.
• In an environment where motor vehicle requirements including lower exhaust emissions
and better fuel economy are prevalent, it is anticipated that the practical use of Motoried,
electric, and fuel cell vehicles will continue to increase.
• The lithium-ion batteries are appealing because they have the highest energy density of any
rechargeable batteries and can produce a voltage more than three times that of nickel-metal
hydride battery cell while simultaneously storing large quantities of electricity as well.
60
• The batteries also produce higher output (boosting vehicle power), higher efficiency
(avoiding wasteful use of electricity), and provides excellent durability, compared with the
life of the battery being roughly equivalent to the life of the vehicle.
• Additionally, use of lithium-ion batteries reduces the overall weight of the vehicle and also
achieves improved fuel economy of 30% better than gasoline-powered vehicles with a
consequent reduction in CO2 emissions helping to prevent global warming. The lithium-ion
batteries supplied by Hitachi are flourishing in a wide range of different applications
including cars, buses, commercial vehicles and trains.
• Electric vehicles that have the ability to be recharged from an owner’s main power supply
are now available in several global automotive markets. When these vehicles are charged
overnight, which is less costly than charging the vehicle during the day in Japan, the
expense is about one-ninth of the cost for fueling a gasoline powered vehicle.
61
MOTORIED VEHICLE EMISSIONS
• Motorized vehicle emissions today are getting close to or even lower than the
recommended level set by the EPA (Environmental Protection Agency).
• The recommended levels they suggest for a typical passenger vehicle should be equated to
5.5 metric tons of carbon dioxide. The three most popular Motorized vehicles, Honda
Civic, Honda Insight and Toyota Prius, set the standards even higher by producing 4.1, 3.5,
and 3.5 tons showing a major improvement in carbon dioxide emissions.
• Motorized vehicles can reduce air emissions of smog-forming pollutants by up to 90% and
cut carbon dioxide emissions in half.
62
CHAPTER 10
PRESENT
SCENERIO
IN
INDIA
63
PRESENT SCENERIO IN INDIA
Practically the only Electric Vehicle to have been manufactured for several years is the
Indian REVA. It is produced by REVA Electric Car Company Private Ltd. (RECC) in
Bangalore, India, a company established in 1994 as a joint venture between the Maini
Group India and AEV LLC, California USA. After seven years of R&D, they
commercialized the first REVA car in June 2001.
The current version of the REVA is the REVAi. It was first reserved for the Indian market,
but it is now distributed in several European countries: UK (by GoinGreenunder the name
G-Wiz), Cyprus and Greece (by REVA Phaedra Electricity Mobility Ltd., Belgium
(by Green Mobil), Norway (by Ole Chr. Bye AS), Iceland (byPerlukafarinn ehf), Spain
(by Emovement)and Germany (by Elektro PKW, the REVA is also available in the
Republic of Ireland GreenAer. It may be exported to the USA with a speed limiter for use
as a Neighborhood Electric Vehicle (NEV).
In July 2010, the government of Tamil Nadu allocated land in Ranipet to Bavina Cars India
for production of electric cars. The plant is set to be operational by 2011.
In addition to Bangalore-based Reva, which currently is the only company actually selling
EVs today, electric cars made in India includes:
▪ Mahindra & Mahindra: Four-seat model by 2010.
▪ Tata: 2008-2009 (also possibly an air car).
▪ Ajanta Group: clockmaker with plans for low-cost electric vehicle.
▪ Tara: Low-cost EV less than a Tata Nano.
▪ Hero Electric: 2013 Electric car.
With Tata, Ajanta and Tara talking about 'low-cost' cars and "less than a Tata Nano".
64
CHAPTER 11
CONCLUSION
65
Conclusion
All types of engine-driven vehicles from automobiles, airplanes, aircraft carriers
and agricultural equipment to zambonis may have electric motors to perform a
variety of functions. In electric vehicles, diesel-electric vehicles, and hybrid
vehicles, electric motors are used to propel the vehicle. The motor controllers in
vehicle applications are integrated into the vehicle.
The machine is very much advance and simple to construst. The working
of machine is easy and eco friendly . Its is the most economical vehicle as there
is no fuel consumption. The cost of all the component is less and the component
should be easily available in the market .so presently it is common to use in
developing countries.
66
CHAPTER 12
BIBLIOGRAPHY
67
BIBLIOGRAPHY
Books
• Automobile Engineering- by P.C.Sharma
• Machine design- by V.B.Bandhari
• Machine design- by P.C.Sharma
Website
• www.ask.com
• www.engineersedge.com
• www.howstuffworks.com
• www.google.com
• www.encyclopedia.com
• www.sciencedirect.com
• www.answer.com
68

Weitere ähnliche Inhalte

Was ist angesagt?

HYBRID ELECTRIC VEHICLE
HYBRID ELECTRIC VEHICLEHYBRID ELECTRIC VEHICLE
HYBRID ELECTRIC VEHICLE
Sharath S
 

Was ist angesagt? (20)

central railway internship report
central railway internship reportcentral railway internship report
central railway internship report
 
Hybrid vehicle architecture
Hybrid vehicle architectureHybrid vehicle architecture
Hybrid vehicle architecture
 
Automobile Industry - history, evolution & growth
Automobile Industry - history, evolution & growthAutomobile Industry - history, evolution & growth
Automobile Industry - history, evolution & growth
 
Hybrid Electric Vehicle Powertrain
Hybrid Electric Vehicle Powertrain Hybrid Electric Vehicle Powertrain
Hybrid Electric Vehicle Powertrain
 
Electric vehicles
Electric vehiclesElectric vehicles
Electric vehicles
 
HYBRID ELECTRIC VEHICLE
HYBRID ELECTRIC VEHICLEHYBRID ELECTRIC VEHICLE
HYBRID ELECTRIC VEHICLE
 
Jet engine seminar report
Jet engine seminar reportJet engine seminar report
Jet engine seminar report
 
Fabrication of Electric Bicycle
Fabrication of Electric BicycleFabrication of Electric Bicycle
Fabrication of Electric Bicycle
 
Electrification of aircraft
Electrification of aircraftElectrification of aircraft
Electrification of aircraft
 
Hybrid Electric Vehicle
Hybrid Electric VehicleHybrid Electric Vehicle
Hybrid Electric Vehicle
 
Automobile chassis,types of automobile
Automobile chassis,types of automobileAutomobile chassis,types of automobile
Automobile chassis,types of automobile
 
Hybrid Electric Vehicle
Hybrid Electric VehicleHybrid Electric Vehicle
Hybrid Electric Vehicle
 
Electronic Control Unit(ECU)
Electronic Control Unit(ECU)Electronic Control Unit(ECU)
Electronic Control Unit(ECU)
 
Capasitor discharge ignition ppt
Capasitor discharge ignition pptCapasitor discharge ignition ppt
Capasitor discharge ignition ppt
 
Fundamentals of electric and hybrid vehicles
Fundamentals of electric and hybrid vehiclesFundamentals of electric and hybrid vehicles
Fundamentals of electric and hybrid vehicles
 
Types of charging stations.pptx
Types of charging stations.pptxTypes of charging stations.pptx
Types of charging stations.pptx
 
Electric car
Electric carElectric car
Electric car
 
2.frame
2.frame2.frame
2.frame
 
Parts of an Ev
Parts of an EvParts of an Ev
Parts of an Ev
 
Electric vehicles
Electric vehicles Electric vehicles
Electric vehicles
 

Ähnlich wie Design & fabrication of Motorised vehicle

Objective of the workshop will be to create awareness & impart information on...
Objective of the workshop will be to create awareness & impart information on...Objective of the workshop will be to create awareness & impart information on...
Objective of the workshop will be to create awareness & impart information on...
satyendrapandey53
 
19-AE-M-N-Nasim.pptx
19-AE-M-N-Nasim.pptx19-AE-M-N-Nasim.pptx
19-AE-M-N-Nasim.pptx
tesfa36
 
Design and fabrication of car parking system th esis
Design and fabrication of car parking system th esisDesign and fabrication of car parking system th esis
Design and fabrication of car parking system th esis
ankit chauhan
 
Anuvrat_REPORT AT SPRING FAILURE
Anuvrat_REPORT AT SPRING FAILUREAnuvrat_REPORT AT SPRING FAILURE
Anuvrat_REPORT AT SPRING FAILURE
Anuvrat Shukla
 

Ähnlich wie Design & fabrication of Motorised vehicle (20)

DLW Summer training report
DLW Summer  training  reportDLW Summer  training  report
DLW Summer training report
 
E Rickshaw Seminar Report
E Rickshaw Seminar ReportE Rickshaw Seminar Report
E Rickshaw Seminar Report
 
Electric traction doc/sanjeet-1308143
Electric traction doc/sanjeet-1308143Electric traction doc/sanjeet-1308143
Electric traction doc/sanjeet-1308143
 
Objective of the workshop will be to create awareness & impart information on...
Objective of the workshop will be to create awareness & impart information on...Objective of the workshop will be to create awareness & impart information on...
Objective of the workshop will be to create awareness & impart information on...
 
iii cell ecb.pptx
iii cell ecb.pptxiii cell ecb.pptx
iii cell ecb.pptx
 
auto.pptx
auto.pptxauto.pptx
auto.pptx
 
19-AE-M-N-Nasim.pptx
19-AE-M-N-Nasim.pptx19-AE-M-N-Nasim.pptx
19-AE-M-N-Nasim.pptx
 
Hybrid vehicle
Hybrid vehicleHybrid vehicle
Hybrid vehicle
 
Dlw locomotive workshop
Dlw locomotive workshopDlw locomotive workshop
Dlw locomotive workshop
 
diesel locomotive works training report by somesh dwivedi
diesel locomotive works training report by somesh dwivedidiesel locomotive works training report by somesh dwivedi
diesel locomotive works training report by somesh dwivedi
 
Complete final
Complete finalComplete final
Complete final
 
MARKET SURVEY OF E BIKES IN PUNE CITY
MARKET SURVEY OF E BIKES IN PUNE CITYMARKET SURVEY OF E BIKES IN PUNE CITY
MARKET SURVEY OF E BIKES IN PUNE CITY
 
Design and fabrication of car parking system th esis
Design and fabrication of car parking system th esisDesign and fabrication of car parking system th esis
Design and fabrication of car parking system th esis
 
Report on Studies of Electric Vehicle Technologies
Report on Studies of Electric Vehicle TechnologiesReport on Studies of Electric Vehicle Technologies
Report on Studies of Electric Vehicle Technologies
 
238605407 self-study
238605407 self-study238605407 self-study
238605407 self-study
 
Solar train by rohit
Solar train by rohitSolar train by rohit
Solar train by rohit
 
Anuvrat_REPORT AT SPRING FAILURE
Anuvrat_REPORT AT SPRING FAILUREAnuvrat_REPORT AT SPRING FAILURE
Anuvrat_REPORT AT SPRING FAILURE
 
M1
M1M1
M1
 
DLW WORKSHOP , VARANSI
DLW WORKSHOP , VARANSIDLW WORKSHOP , VARANSI
DLW WORKSHOP , VARANSI
 
Automobile module1
Automobile module1Automobile module1
Automobile module1
 

Mehr von Government engineering College- Banswara,Rajasthan

Mehr von Government engineering College- Banswara,Rajasthan (7)

Jaisalmer wind park rajasthan
Jaisalmer wind park rajasthanJaisalmer wind park rajasthan
Jaisalmer wind park rajasthan
 
A Case Study on Productivity Improvement of Assembly line using VSM Methodology
A Case Study on Productivity Improvement of Assembly line using VSM MethodologyA Case Study on Productivity Improvement of Assembly line using VSM Methodology
A Case Study on Productivity Improvement of Assembly line using VSM Methodology
 
IJIRS_Improvement of Quality Sigma Level of Copper Terminal at Vertical Machi...
IJIRS_Improvement of Quality Sigma Level of Copper Terminal at Vertical Machi...IJIRS_Improvement of Quality Sigma Level of Copper Terminal at Vertical Machi...
IJIRS_Improvement of Quality Sigma Level of Copper Terminal at Vertical Machi...
 
A Case Study on Reducing in Lead Time by Using Value Stream Mapping
A Case Study on Reducing in Lead Time by Using Value Stream MappingA Case Study on Reducing in Lead Time by Using Value Stream Mapping
A Case Study on Reducing in Lead Time by Using Value Stream Mapping
 
Review on Quality Management using 7 QC Tools
Review on Quality Management using 7 QC ToolsReview on Quality Management using 7 QC Tools
Review on Quality Management using 7 QC Tools
 
Lead Time Reduction of Power Control Center (Pcc) Electric Panel by Lean Phil...
Lead Time Reduction of Power Control Center (Pcc) Electric Panel by Lean Phil...Lead Time Reduction of Power Control Center (Pcc) Electric Panel by Lean Phil...
Lead Time Reduction of Power Control Center (Pcc) Electric Panel by Lean Phil...
 
IMPROVEMENT OF QUALITY SIGMA LEVEL OF COPPER TERMINAL AT VERTICAL MACHINING C...
IMPROVEMENT OF QUALITY SIGMA LEVEL OF COPPER TERMINAL AT VERTICAL MACHINING C...IMPROVEMENT OF QUALITY SIGMA LEVEL OF COPPER TERMINAL AT VERTICAL MACHINING C...
IMPROVEMENT OF QUALITY SIGMA LEVEL OF COPPER TERMINAL AT VERTICAL MACHINING C...
 

Kürzlich hochgeladen

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 

Kürzlich hochgeladen (20)

Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
Air Compressor reciprocating single stage
Air Compressor reciprocating single stageAir Compressor reciprocating single stage
Air Compressor reciprocating single stage
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 

Design & fabrication of Motorised vehicle

  • 1. 1 DEPARTMENT OF MECHANICAL ENGINEERING MAHARANA PRATAP ENGINEERING COLLEGE, KANPUR PROJECT REPORT ON DESIGN AND FABRICATION OF MOTORIZED VEHICLE Submitted to U.P.Technical University,Lucknow in partial fulfillment of requirement for the award of degree of BACHELOR OF TECHNOLOGY (MECHANICAL ENGINEERING) UNDER THE GUIDENCE OF SUBMITTED BY Er. PARITOSH KUMAR RAHUL ARYA(0704640065) LECTURER SHUBHAM AWASTHI(0704640078) Deptt. Of Mechanical Engg. ZIAUR RAHMAN(0704640089) M.P.E.C.KANPUR ZIA ZAFAR(07004640090) (Mechanical 4th year)
  • 2. 2 MAHARANA PRATAP ENGINEERING COLLEGE Department of Mechanical Engineering CERTIFICATE This is to certify that Rahul Arya , Shubham Awasthi , Ziaur Rahman , Zia Zafar of Eight Semester B.tech Course in Mechanical Engineering Department have Satisfactorily Completed the Project work on “DESIGN AND FABRICATION OF MOTORIZED VEHICLE” In partial fulfillment , during the academic session 2010-2011 as prescribed by Uttar Pradesh Technical University , Lucknow. They have worked hard for this project and I wish all of them bright future. Internal Examiner External Examiner Mr.Paritosh Kumar Lecturer Mechanical Engg. Deptt.
  • 3. 3 ACKNOWLEDGEMENT We feel great pleasure in expressing our deep sense of gratitude and heartiest respect to Mr.Paritosh Kumar, for his surveillance, learned guidance and heart touching inspirations through out our project work. We take our privilege to have worked under Mr. Paritosh Kumar for his valuable suggestions and pruning at every stage. He has been gracious all along. The current work might not have been accomplished but his supervision, constant encouragement, keep interests, patience, sparing time for thought provoking discussion throughout the study. We do not have words adequate enough to express our thanks to our guide. We have a special mention of our gratitude to Mr.B.B.Maurya, Head of Department , Mechanical Engineering for providing us the facilities of the department . We express our deep sense of gratitude to Mr.Vikas Singh and all other faculty members for antagonistic discussion and suggestions providing us. We thankfully, acknowledge the valuable opinions and co-operation of all the students of Mechanical Engineering M.P.E.C Kanpur. Rahul Arya (0704640061) Shubham Awasthi(0704640078) Ziaur Rahman (0704640089) Zia Zafar (0704640090)
  • 4. 4 PREFACE The concept of Design and Fabrication of Motorized Vehicle came in our mind during the visit of IIT KANPUR. It was one of the most innovative and interesting project. It was challenging job for us to design and fabricate Motorized Vehicle with speed control. But our source of inspiration came from our mentor Mr. Paritosh kumar and our workshop head Vikas Singh who helped to make imagination into reality. We also constantly strived ourselves to set up bench mark for peers and juniors and finally lot of credit goes to our Head of Department Mr. B.B. Maurya . A motorized bicycle is a bicycle with an attached motor used either to power the vehicle, or to assist with pedaling.
  • 5. 5 IDOLOGY OF PROJECT Before staring our work we must know the meaning of “PROJECT” means to give physically existence to the vibrating idea of mind. Hence the combination of vibrating idea of mind is know as project the word project consists of Seven letters. Each of them has its specific significance which is given as follows. P-PLANNING- Planning is a word which deals with the idea of thing which is hypothesized before borning the construction of project. R-RESOURCE- It signifies the resources of which are able to make any project. Resources are the ideas of which which guide to routine function of planned work. O-OPERATION- Its represents the operation of project i.e. the principle on which device hold up. J-JOINT LABOUR- It stands for the effort taking for meaning body jointly is a work that can be accomplished to perform with full efforts. E-ECONOMY- The economy means the machine which is to prepared have a reasonable cost. It indicates the construction which is come to manufacture the machine. C-CONSTRUCTION- It is main features to prepare the project. T-TECHNIQUE- To accomplished the project technique which is being used comes under the word.
  • 6. 6 CONTENT S.NO. TOPIC PAGE NO. 1.) Introduction and selection criteria of design and fabrication of motorized vehicle 1 Introduction 1 History 3 2.) About design and fabrication of motorized Vehicle 10 Working principle 11 Description of component 11 3.) Drawing details of the component 24 4.) Machine used in design and fabrication of motorized vehicle 27 List of machine used in project 28 Operation done by the machine 29 5.) Hand tools and Equipment used 31 List of hand tool and equipment 6.) Cost Estimation 33 7.) Properties of motorized vehicle 36 8.) Merits and Demerits of motorized vehicle 44 9.) Environmental impact of motorized vehicle 50 10.) Present Scenerio in India 53 11.) Conclusion 56 12.) Bibliography 58
  • 7. 7 CHAPTER 1 INTRODUCTION AND SELECTION CRITERIA OF “DESIGN ANDFABRICATION OF MOTORIZED VECHILE”
  • 8. 8 INTRODUCTION A Motorized vehicle (MV), also referred to as an electric drive vehicle, uses one or more electric motors or traction motors for propulsion. Electric vehicles include electric cars, electric trains, electric lorries, electric aeroplanes, electric boats, electric motorcycles and scooters and electric spacecraft. A Motorized vehicle is vehicle with an attached motor used either to power the vehicle, or to assist with pedaling. Sometimes classified as a motor vehicle, or a class of hybrid vehicle, motorized vehicles may be powered by a variety of engine types and power sources. Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not be achieved by the gasoline cars of the time. The internal combustion engine (ICE) is the dominant propulsion method for motor vehicles but electric power has remained commonplace in other vehicle types, such as trains and smaller vehicles of all types. During the last few decades, environmental impact of the petroleum-based transportation infrastructure, along with the peak oil, has led to renewed interest in an electric transportation infrastructure. Electric vehicles differ from fossil fuel-powered vehicles in that the electricity they consume can be generated from a wide range of sources, including fossil fuels, nuclear power, and renewable sources such as tidal power, solar power, and wind power or any combination of those. Currently though there are more than 400 coal power plants in the U.S. alone. However it is generated, this energy is then transmitted to the vehicle through use of overhead lines, wireless energy transfer such as inductive charging, or a direct connection through an electrical cable. The electricity may then be stored on board the vehicle using a battery, flywheel, or super capacitors. Vehicles making use of engines working on the principle of combustion can usually only derive their energy
  • 9. 9 from a single or a few sources, usually non-renewable fossil fuels. A key advantage of electric or Motorized electric vehicles is regenerative braking and suspension; their ability to recover energy normally lost during braking as electricity to be restored to the on-board battery. In 2003, the first mass-produced Motorized gasoline-electric car, the Toyota Prius, was introduced worldwide, in the same year Going Green in London launched the G-Wiz electric car, a quadric cycle that became the world's best selling EV. HISTORY Electric motive power started with a small drifter operated by a miniature electric motor, built by Thomas Davenport in 1835. In 1838, a Scotsman named Robert Davidson built an electric locomotive that attained a speed of four miles per hour (6 km/h). In England a patent was granted in 1840 for the use of rails as conductors of electric current, and similar American patents were issued to Lilley and Colten in 1847. Figure 01-: Electric vehicle model by Ányos Jedlik, an early electric motor experimenter ( 1828, Hungary) Between 1832 and 1839 (the exact year is uncertain), Robert Anderson of Scotland invented the first crude electric carriage, powered by non- rechargeable primary cells.
  • 10. 10 By the 20th century, electric cars and rail transport were commonplace, with commercial electric automobiles having the majority of the market. Over time their general-purpose commercial use reduced to specialist roles, as platform trucks, forklift trucks, tow tractors and urban delivery vehicles, such as the iconic British milk float; for most of the 20th century, the UK was the world's largest user of electric road vehicles. Electrified trains were used for coal transport, as the motors did not use precious oxygen in the mines. Switzerland's lack of natural fossil resources forced the rapid electrification of their rail network. One of the earliest rechargeable batteries - the nickel-iron battery - was favored by Edison for use in electric cars. • Electric vehicles were among the earliest automobiles, and before the preeminence of light, powerful internal combustion engines, electric automobiles held many vehicle land speed and distance records in the early 1900s. They were produced by Baker Electric, Columbia Electric, Detroit Electric, and others, and at one point in history out-sold gasoline-powered vehicles. Figure 02-: Edison and a 1914 Detroit Electric, model 47 (courtesy of the National Museum of American History)
  • 11. 11 In the 1930s, National City Lines, which was a partnership of General Motors, Firestone, and Standard Oil of California purchased many electric tramnet works across the country to dismantle them and replace them with GM buses. Figure 03-:An electric vehicle and an antique car on display at a 1912 auto show The partnership was convicted of conspiring to monopolize the sale of equipment and supplies to their subsidiary companies conspiracy, but were acquitted of conspiring to monopolize the provision of transportation services. Electric tram line technologies could be used to recharge BEVs and PHEVs on the highway while the user drives, providing virtually unrestricted driving range. The technology is old and well established ➢ EXPERIMENTATION In January 1990, General Motors' President introduced its EV concept two-seater, the "Impact", at the Los Angeles Auto Show. That September, the California Air Resources
  • 12. 12 Board mandated major-automaker sales of EVs, in phases starting in 1998. From 1996 to 1998 GM produced 1117 EV1s, 800 of which were made available through three-year leases. Chrysler, Ford, GM, Honda, Nissan and Toyota also produced limited numbers of EVs for California drivers. In 2003, upon the expiration of GM's EV1 leases, GM crushed them. The crushing has variously been attributed to 1) the auto industry's successful federal court challenge to California's zero-emissions vehicle mandate, 2) a federal regulation requiring GM to produce and maintain spare parts for the few thousands EV1s and 3) the success of the oil and auto industries' media campaign to reduce public acceptance of electric vehicles. Figure 04-Display of an electric car Ford released a number of their Ford Ecostar delivery vans into the market. Honda, Nissan and Toyota also repossessed and crushed most of their EVs, which, like the GM EV1s, had been available only by closed-end lease. After public protests, Toyota sold 200 of its RAV EVs to eager buyers; they now sell, five years later, at over their original forty-thousand- dollar price. This lesson did not go unlearned; BMW of Canada sold off a number of Mini EV's when their Canadian testing ended. The production of the Citroën Berlingo Electrique stopped in September 2005.
  • 13. 13 ➢ REINTRODUCTION With increasing prices of gasoline, electric vehicles are hitting the mainstream. Major car makers, such as Ford Daimler AG, Toyota Motor Corp., General Motors Corp., Renault SA, Peugeot-Citroen, VW, Nissan and Mitsubishi Corp., are developing new-generation electric vehicles. ELECRICITY SOURCES There are many ways to generate electricity, some of them more ecological than others: ▪ On-board rechargeable electricity storage system (RESS), called Full Electric Vehicles (FEV). Power storage methods include: ▪ Chemical energy stored on the vehicle in on-board batteries: Battery electric vehicle (BEV) ▪ Static energy stored on the vehicle in on-board electric double-layer capacitors ▪ kinetic energy storage: flywheels ▪ Direct connection to generation plants as is common among electric trains, trolley buses, and trolley trucks (See also : overhead lines, third rail andconduit current collection) ▪ Renewable sources such as solar power: solar vehicle ▪ Generated on-board using a diesel engine: diesel-electric locomotive ▪ Generated on-board using a fuel cell: fuel cell vehicle ▪ Generated on-board using nuclear energy: nuclear submarines and aircraft carriers It is also possible to have Motoried electric vehicles that derive electricity from multiple sources. Such as: ▪ On-board rechargeable electricity storage system (RESS) and a direct continuous connection to land-based generation plants for purposes of on-highway recharging with unrestricted highway range ▪ On-board rechargeable electricity storage system and a fueled propulsion power source (internal combustion engine): plug-in Motoried
  • 14. 14 Batteries, electric double-layer capacitors and flywheel energy storage are forms of rechargeable on-board electrical storage. By avoiding an intermediate mechanical step, the energy conversion efficiency can be improved over the Motorieds already discussed, by avoiding unnecessary energy conversions. Furthermore, electro-chemical batteries conversions are easy to reverse, allowing electrical energy to be stored in chemical form. Another form of chemical to electrical conversion is fuel cells, projected for future use. For especially large electric vehicles, such as submarines, the chemical energy of the diesel- electric can be replaced by a nuclear reactor. The nuclear reactor usually provides heat, which drives a steam turbine, which drives a generator, which is then fed to the propulsion. ENERGY TRANSFORMATION In physics, the term energy describes the capacity to produce changes within a system, without regard to limitations in transformation imposed by entropy. Changes in total energy of systems can only be accomplished by adding or subtracting energy from them, as energy is a quantity which is conserved, according to the first law of thermodynamics. According to special relativity, changes in the energy of systems will also coincide with changes in the system's mass, and the total amount of mass of a system is a measure of its energy. Energy in a system may be transformed so that it resides in a different state. Energy in many states may be used to do many varieties of physical work. Energy may be used in natural processes or machines, or else to provide some service to society (such as heat, light, or motion). For example, an internal combustion engine converts the potential chemical energy in gasoline and oxygen into heat, which is then transformed into the propulsive energy (kinetic energy that moves a vehicle.) A solar cell converts solar radiation into electrical energy that can then be used to light a bulb or power a computer. The generic name for a device which converts energy from one form to another is a transducer.
  • 15. 15 In general, most types of energy, save for thermal energy, may be converted to any other kind of energy, with a theoretical efficiency of 100%. Such efficiencies might occur in practice, such as when chemical potential energy is completely converted into kinetic energies, and vice versa, only in isolated systems. Conversion of other types of energies to heat also may occur with high efficiency but a perfect level would be only possible for isolated systems also. If there is nothing beyond the frontiers of the universe then the only real isolated system would be the universe itself. Currently we do not have the knowledge or technology to create an isolated system from a portion of the universe. Exceptions for perfect efficiency (even for isolated systems) occur when energy has already been partly distributed among many available quantum states for a collection of particles, which are freely allowed to explore any state of momentum and position (phase space). In such circumstances, a measure called entropy, or evening-out of energy distribution in such states, dictates that future states of the system must be of at least equal evenness in energy distribution. (There is no way, taking the universe as a whole, to collect energy into fewer states, once it has spread to them). A consequence of this requirement is that there are limitations to the efficiency with which thermal energy can be converted to other kinds of energy, since thermal energy in equilibrium at a given temperature already represents the maximal evening-out of energy between all possible states. Such energy is sometimes considered "degraded energy," because it is not entirely usable. The second law of thermodynamics is a way of stating that, for this reason, thermal energy in a system may be converted to other kinds of energy with efficiencies approaching 100%, only if the entropy (even-ness or disorder) of the universe is increased by other means, to compensate for the decrease in entropy associated with the disappearance of the thermal energy and its entropy content.
  • 17. 17 WORKING PRINCIPLE The vehicle has lead-acid battery mounted near the rear wheel that provide electricity to a motor. The electric motor drives the rear wheel and the motor is mounted inside the rear wheel .DC to DC convertor is used to convert high voltage supply to low voltage supply. Here the electrical energy is converted into the rotation energy which gives momentum to the vehicle. On the steering handle there is a accelerating throttle which help in the acceleration of the vehicle with the help of speed controller. Despite the weight and size, the acceleration is very good. DESCRIPTION OF COMPONENT ➢ Controllers Electric vehicles brushless DC motor controller provides efficient, smooth and quite controls for electric VEHICLE, electric motorcycle, scooter conversion, etc. Electric vehicles brushless motor controller outputs high taking off current, and strictly limit battery current. Motor speed controller can work with relative small battery, but provide good acceleration and hill climbing. BLDC motor speed controller uses high power MOSFET, PWM to achieve efficiency 99%. In most cases, Powerful microprocessor brings in comprehensive and precise control to BLDC motor controllers. This programmable brushless motor controller also allows users to set parameters, conduct tests, and obtain diagnostic information quickly and easily. Features of controllers: •Special designed for electric VEHICLE and scooter. • Intelligence with powerful microprocessor. • Synchronous rectification, ultra low drop, fast PWM to achieve very high efficiency.
  • 18. 18 • Electronic reversing. • Voltage monitoring on 3 motor phases, bus, and power supply. • Voltage monitoring on voltage source 12V and 5V. • Current sense on all 3 motor phases. • Current control loop. • Hardware over current protection. • Hardware over voltage protection. • Support torque mode, speed mode, and balanced mode operation. • Configurable limit for motor current and battery current. • Battery current limiting available, doesn’t affect taking off performance. • More startup current ,can get more startup speed. • Low EMC. • LED fault code. • Battery protection: current cutback, warning and shutdown at configurable high and low battery voltage. • Rugged aluminum housing for maximum heat dissipation and harsh environment. • Rugged high current terminals, and rugged aviation connectors for small signal. • Thermal protection: current cut back, warning and shutdown on high temperature. • Configurable 60 degree or 120 degree hall position sensors. • Support motors with any number of poles. Up to 40,000 electric RPM standard. Optional high speed 70,000 ERPM, and ultra high speed 100,000 ERPM. (Electric RPM = mechanical RPM * motor pole pairs). • Brake switch is used to start regen. • 0-5V brake signal is used to command regen current. • Support three modes of regenerative braking: brake switch regen, release throttle regen,0- 5V analog signal variable regen. • Configurable high pedal protection: Disable operation if power up with high throttle. • Current multiplication: Take less current from battery, output more current to motor. • Easy installation: 3-wire potentiometer will work.
  • 19. 19 • Current meter output. • Standard PC/Laptop computer to do programming. No special tools needed. • User program provided. Easy to use. No cost to customers. General Specifications of Controllers: •Frequency of Operation: 16.6kHz. •Standby Battery Current: < 0.5mA. •5V Sensor Supply Current: 40mA. •Controller supply voltage range, PWR, 18V to 90V. •Supply Current, PWR, 150mA. •Configurable battery voltage range, B+. Max operating range: 18V to 60V. •Analog Brake and Throttle Input: 0-5 Volts. Producing 0-5V signal with 3-wire pot. •Full Power Operating Temperature Range: 0℃ to 50℃ (controller case temperature). •Operating Temperature Range: -30℃ to 90℃, 100℃ shutdown (controller case temperature). •Peak Phase Current, 30 seconds: 300A. •Continuous Phase Current Limit: 150A. •Maximum Battery Current: Configurable. Battery An electric vehicle battery (EVB) or traction battery is a rechargeable battery used for propulsion of battery electric vehicles (BEVs). Traction batteries are used in forklifts, electric Golf carts, riding floor scrubbers, electric motorcycles, full-size electric cars, trucks, and vans, and other electric vehicles. The electric motors are usually powered by 12-15 volt rechargeable batteries, similar to those used to power outboard boat engines. These are available in wet or dry options. Many VEHICLE carry an on-board charger which can be plugged into a standard wall outlet; older or more portable models may have a separate charger unit.
  • 20. 20 Electric vehicle batteries differ from starting, lighting, and ignition (SLI) batteries because they are designed to give power over sustained periods of time. Deep cycle batteries are used instead of SLI batteries for these applications. Traction batteries must be designed with a high ampere-hour capacity. Batteries for electric vehicles are characterized by their relatively high power-to-weight ratio, energy to weight ratio and energy density; smaller, lighter batteries reduce the weight of the vehicle and improve its performance. Compared to liquid fuels, all current battery technologies have much lower specific energy; and this often impacts the maximum all-electric range of the vehicles. Batteries are usually the most expensive component of BEVs. The cost of battery manufacture is substantial, but increasing returns to scale lower costs. The predicted market for automobile traction batteries is over $37 billion in 2020. On an energy basis, the price of electricity to run an EV is a small fraction of the cost of liquid fuel needed to produce an equivalent amount of energy ➢ Lead Acid Battery Flooded lead-acid batteries are the cheapest and most common traction batteries available, usually discharged to roughly 80%. They will accept high charge rates for fast charges. Flooded batteries require inspection of electrolyte level and replacement of water.
  • 21. 21 Figure05: Lead Acid Battery pack Traditionally, most electric vehicles have used lead-acid batteries due to their mature technology, high availability, and low cost (exception: some early EVs, such as the Detroit Electric, used a nickel-iron battery.) Like all batteries, these have an environmental impact through their construction, use, disposal or recycling. On the upside, vehicle battery recycling rates top 95% in the United States. Deep-cycle lead batteries are expensive and have a shorter life than the vehicle itself, typically needing replacement every 3 years. Lead-acid batteries in EV applications end up being a significant (25–50%) portion of the final vehicle mass. Like all batteries, they have significantly lowerenergy density than petroleum fuels—in this case, 30–40 Wh/kg. While the difference isn't as extreme as it first appears due to the lighter drive-train in an EV, even the best batteries tend to lead to higher masses when applied to vehicles with a normal range. Charging and operation of batteries typically results in the emission of hydrogen, oxygen and sulfur, which are naturally occurring and normally harmless if properly vented. Early Citicar owners discovered that, if not vented properly, unpleasant sulfur smells would leak into the cabin immediately after charging.
  • 22. 22 Lead-acid batteries powered such early-modern EVs as the original versions of the EV1 and the RAV4EV. • Battery cost The cost of the battery when distributed over the life cycle of the vehicle (compared with an up to 10 years life cycle of an internal combustion engine vehicle) can easily be more than the cost of the electricity. This is because of the high initial cost relative to the life of the batteries. Battery weight is a problem; in trying to achieve a reasonable miles/charge, the weight is still not reasonable for anything but local driving. For example, a 1-kWhr battery using LiFePO4 technology costs $500USD. A typical small passenger electric car will use 8 kW-hrs for a 40-mile (64 km) range each day. Using the 7000 cycle or 10 year life given in the previous section, 365 cycles per year would take 19 years to reach the 7000 cycles. Using the lower estimate of a ten year life gives 3650 cycles over ten years giving 146000 total miles driven. At $500 per kWh an 8 kWh battery costs $4000 resulting in $4000/146000 miles or $0.027 per mile. In reality a larger pack would be used to avoid stressing the battery by avoiding complete discharge or 100% charge. Adding a 2 kWh in battery adds $1000 to the cost resulting in $5000/146000 miles or $0.034/mile. Scientists at Technical University of Denmark paid $10,000USD for a certified EV battery with 25kWh capacity, with no rebates or overprice.[15] Two out of 15 battery producers could supply the necessary technical documents about quality and fire safety.[16] Estimated time is 10 years before battery price comes down to 1/3 of present.[15] Battery professor Poul Norby states that lithium batteries will need to double their energy density and bring down the price from $500 (2010) to $100 per kWh capacity in order to make an impact on petrol cars. A solution to the range problem is detailed in an article on Battery Exchange and explains how the total battery needs would be reduced by using a battery exchange or battery swap system. This requires substantial investment in setting up exchange stations but would
  • 23. 23 allow for the use of lighter batteries as they would not be required to provide many miles of use. Lighter batteries make the ecar system far more efficient and lower overall costs. The LiFePO4 technology has yielded batteries that have a higher miles/$ over the life of the packs but they require a complex control system. The manufacture of the batteries is still being developed and is not a reliable source. Some batteries can be leased or rented instead of bought (see Think Global). One article indicates that 10 kW·h of battery energy provides a range of about 20 miles (32 km) in a Toyota Prius, but this is not a primary source, and does not fit with estimates elsewhere of about 5 miles (8.0 km) /(kW·h). The Chevrolet Volt is expected to achieve 50 MPG when running on the auxiliary power unit (a small onboard generator) - at 33% thermodynamic efficiency that would mean 12 kW·h for 50 miles (80 km), or about 240 watt-hours per mile. For prices of 1 kW·h of charge with various different battery technologies, see the "Energy/Consumer Price" column in the "Table of rechargeable battery technologies" section in the rechargeable battery. Rechargeable batteries used in electric vehicles include lead-acid ("flooded", Deep cycle, and VRLA), Ni Cd, nickel metal hydride, lithium ion, Li-ion polymer, and, less commonly, zinc-air and molten salt batteries. The amount of electricity (i.e. electric charge) stored in batteries is measured in ampere hours or incoulombs, with the total energy often measured in watt hours. • Internal Components Battery pack designs for Electric Vehicles (EVs) are complex and vary widely by manufacturer and specific application. However, they all incorporate a combination of several simple mechanical and electrical component systems which perform the basic required functions of the pack. The actual battery cells can have different chemistry, physical shapes, and sizes as preferred by various pack manufacturers. Battery pack will always incorporate many discrete cells
  • 24. 24 connected in series and parallel to achieve the total voltage and current requirements of the pack. Battery packs for all electric drive EVs can contain several hundred individual cells. To assist in manufacturing and assembly, the large stack of cells is typically grouped into smaller stacks called modules. Several of these modules will be placed into a single pack. Within each module the cells are welded together to complete the electrical path for current flow. Modules can also incorporate cooling mechanisms, temperature monitors, and other devices. In most cases, modules also allow for monitoring the voltage produced by each battery cell in the stack by the Battery Management System (BMS). The battery cell stack has a main fuse which limits the current of the pack under a short circuit condition. A “service plug” or “service disconnect” can be removed to split the battery stack into two electrically isolated halves. With the service plug removed, the exposed main terminals of the battery present no high potential electrical danger to service technicians. The battery pack also contains relays, or contactors, which control the distribution of the battery pack’s electrical power to the output terminals. In most cases there will be a minimum of two main relays which connect the battery cell stack to the main positive and negative output terminals of the pack, those supplying high current to the electrical drive motor. Some pack designs will include alternate current paths for pre-charging the drive system through a pre-charge resistor or for powering an auxiliary buss which will also have their own associated control relays. For obvious safety reasons these relays are all normally open. The battery pack also contains a variety of temperature, voltage, and current sensors. Collection of data from the pack sensors and activation of the pack relays are accomplished by the pack ’s Battery Monitoring Unit (BMU) or Battery Management System (BMS). The BMS is also responsible for communications with the world outside the battery pack.
  • 25. 25 • Charging Batteries in BEVs must be periodically recharged. BEVs most commonly charge from the power grid (at home or using a street or shop recharging point), which is in turn generated from a variety of domestic resources, such as coal, hydroelectricity, nuclear and others. Home power such as roof top photovoltaic solar cell panels, microhydro or wind may also be used and are promoted because of concerns regarding global warming. Charging time is limited primarily by the capacity of the grid connection. A normal household outlet is between 1.5 kilowatts (in the US, Canada, Japan, and other countries with 110 volt supply) to 3 kilowatts (in countries with 240 V supply). Many European countries feed domestic consumers with a 3 phase system fused at 16-25 amp allowing for a theoretical capacity around 20-30 kW. However, this capacity is also required to feed the rest of the location and hence cannot be used practically and will also not be supported "en masse" by the distribution network. At this higher power level charging even a small, 7 kilowatt-hour (14–28 mi) pack, would probably require one hour. This is small compared to the effective power delivery rate of an average petrol pump, about 5,000 kilowatt. In 1995, some charging stations charged BEVs in one hour. In November 1997, Ford purchased a fast-charge system produced by AeroVironment called "PosiCharge" for testing its fleets of Ranger EVs, which charged their lead-acid batteries in between six and fifteen minutes. In February 1998, General Motors announced a version of its "Magne Charge" system which could recharge NiMH batteries in about ten minutes, providing a range of sixty to one hundred miles. Most people do not always require fast recharging because they have enough time, six to eight hours, during the work day or overnight to recharge. As the charging does not require attention it takes a few seconds for an owner to plug in and unplug their vehicle. Many BEV drivers prefer refueling at home, avoiding the inconvenience of visiting a fuel station. Some workplaces provide special parking bays for electric vehicles with charging equipment provided.
  • 26. 26 • Connectors The charging power can be connected to the car in two ways. The first is a direct electrical connection known as conductive coupling. This might be as simple as a mains lead into a weatherproof socket through special high capacity cables with connectors to protect the user from high voltages.The modern standard for plug-in vehicle charging is the SAE 1772 conductive connector (IEC 62196 Type 1) in the USA. The ACEA has chosen the VDE- AR-E 2623-2-2 (IEC 62196 Type 2) for deployment in Europe. The second approach is known as inductive charging. A special 'paddle' is inserted into a slot on the car. The paddle is one winding of a transformer, while the other is built into the car. When the paddle is inserted it completes a magnetic circuit which provides power to the battery pack. In one inductive charging system, one winding is attached to the underside of the car, and the other stays on the floor of the garage. The advantage of the inductive approach is that there is no possibility of electrocution as there are no exposed conductors, although interlocks, special connectors and ground fault detectors can make conductive coupling nearly as safe. Inductive charging can also reduce vehicle weight, by moving more charging componentry offboard. An inductive charging proponent from Toyota contended in 1998 that overall cost differences were minimal, while a conductive charging proponent from Ford contended that conductive charging was more cost efficient. • Travel range before recharging and trailers The range of a BEV depends on the number and type of batteries used, terrain, weather, and the performance of the driver. The weight and type of vehicle also have an impact just as they do on the mileage of traditional vehicles. Electric vehicle conversion performance depends on a number of factors including the battery chemistry: ▪ Lead-acid batteries are the most available and inexpensive. Such conversions generally have a range of 30 to 80 km (20 to 50 mi). Production EVs with lead-acid batteries are capable of up to 130 km (80 mi) per charge.
  • 27. 27 ▪ NiMH batteries have higher energy density than lead-acid; prototype EVs deliver up to 200 km (120 mi) of range. ▪ New lithium-ion battery-equipped EVs provide 320–480 km (200–300 mi) of range per charge. Lithium is also less expensive than nickel. ▪ Nickel-zinc battery are cheaper and lighter than Nickel-cadmium batteries. They are also cheaper (but not as light) as Lithium-Ion batteries. Finding the economic balance of range versus performance, battery capacity versus weight, and battery type versus cost challenges every EV manufacturer. With an AC system or Advanced DC systems regenerative braking can extend range by up to 50% under extreme traffic conditions without complete stopping. Otherwise, the range is extended by about 10 to 15% in city driving, and only negligibly in highway driving, depending upon terrain. BEVs (including buses and trucks) can also use genset trailers and pusher trailers in order to extend their range when desired without the additional weight during normal short range use. Discharged baset trailers can be replaced by recharged ones in a route point. If rented then maintenance costs can be deferred to the agency. Such BEVs can become Motoried vehicles depending on the trailer and car types of energy and powertrain • Lifespan Individual batteries are usually arranged into large battery packs of various voltage and ampere-hour capacity products to give the required energy capacity. Battery service life should be considered when calculating the extended cost of ownership, as all batteries eventually wear out and must be replaced. The rate at which they expire depends on a number of factors. The depth of discharge (DOD) is the recommended proportion of the total available energy storage for which that battery will achieve its rated cycles. Deep cycle lead-acid batteries
  • 28. 28 generally should not be discharged to below 20% of total capacity. More modern formulations can survive deeper cycles. • Safety The safety issues of battery electric vehicles are largely dealt with by the international standard ISO 6469. This document is divided in three parts dealing with specific issues: ▪ On-board electrical energy storage, i.e. the battery ▪ Functional safety means and protection against failures ▪ Protection of persons against electrical hazards. Firefighters and rescue personnel receive special training to deal with the higher voltages and chemicals encountered in electric and Motoried electric vehicle accidents. While BEV accidents may present unusual problems, such as fires and fumes resulting from rapid battery discharge, there is apparently no available information regarding whether they are inherently more or less dangerous than gasoline or diesel internal combustion vehicles which carry flammable fuels. • Future The future of battery electric vehicles depends primarily upon the cost and availability of batteries with high energy densities, power density, and long life, as all other aspects such as motors, motor controllers, and chargers are fairly mature and cost-competitive with internal combustion engine components. Li-ion, Li-poly and zinc-air batteries have demonstrated energy densities high enough to deliver range and recharge times comparable to conventional vehicles.
  • 29. 29 ➢ Steering system Steering is the term applied to the collection of components, linkages, etc. which will allow a vessel (ship, boat) or vehicle (car, motorcycle, VEHICLE) to follow the desired course. An exception is the case of rail transport by which rail tracks combined together with railroad switches (and also known as 'points' in British English) provide the steering function. • Basic geometry The basic aim of steering is to ensure that the wheels are pointing in the desired directions. This is typically achieved by a series of linkages, rods, pivots and gears. One of the fundamental concepts is that of caster angle- each wheel is steered with a pivot point ahead of the wheel; this makes the steering tend to be self-centering towards the direction travel. Figure: Ackermann steering geometry
  • 30. 30 • The steering linkages connecting the steering box and the wheels usually conforms to a variation of Ackermann steering geometry, to account for the fact that in a turn, the inner wheel is actually travelling a path of smaller radius than the outer wheel, so that the degree of toe suitable for driving in a straight path is not suitable for turns.
  • 32. 32 Design of Vehicle Assume load on vehicle= 100 kg Load (P)= 1000 N Let Area cross section = Stress = load / area = 1000/160×100×10^-4 σ = 625.55 n/m² From tensile testing , σ’ = 650 N/m² Thus, σ’ > σ theoretical Hence design of the vehicle is safe
  • 33. 33 Capability of Motor Specification of motor Power (P)= 1.5 KW No. of revolution per min(N)= 500 RPM P=2 πrt/60×1000 Torque Transmitted T = 28.62 N-m Shear Stress τ = 16T/πd³ Where D= dia of wheel D=40 cm τ = 16×28.62/π(0.4)³ τ = 2278.66 N/m² Load carried by motor = shear stress × area of cross section P= 2278.66×160×100 ×10^-4 P= 3645.5 N or P= 364 kg therefore the load on vehicle is easily carried by this motor . Hence Design is safe
  • 34. 34 CHAPTER 4 MACHINES USED IN DESIGN AND FABRICATION OF MOTORIZED VEHICLE
  • 35. 35 LIST OF MACHINE USED IN PROJECT 1.) LATHE MACHINE:- Center height 170 mm Distance between center 600 mm Maximum speed 2000 mm Motor Power 500 kw 2.) DRILL MACHINE :- Capacity 50 mm Range of Spindle Speed 35-195 rpm Working space on base 412 * 412 mm 3.) SHAPER MACHINE :- Type Push cut horizontal type Stroke 175-900 mm Power Feed 0.2-5 mm Motor 500 kw 4.) HACKSAW MACHINE :- Maximum dia. Of root of cut 180 mm Maximum square section to cut 125 mm Stroke 75-150 mm Blade Size 350 mm Motor 1 HP
  • 36. 36 OPERATION DONE BY THE MACHINES 1.)DRILLING It is a process of making hole and enlarging it in an object by forcing a rotating tool called a drill. The same operation can be accomplished in some other machine by holding the drill stationary and rotating the work. 2.) BORING It is the process of enlarging a hole that has already drilled or cored. Principally, it is an operation of turning a hole that has been drilled previously, with a single point tool. 3.) REAMING Reamer is a cutting tool, used for enlarging or finishing to accurate dimensions a hole previously formed.The flutes on reamer body act both as cutting teeth and as grooves for accommodating the chips removed. 4.) GRINDING It is the process in which the metal cutting or removal take place comparatively in smaller volume through friction for accuracy. It is also used for sharpening the tool. 5.) TURNING It is the process which is performed on lathe machine in which remove the excess of material from the work piece to produce crown shaped . 6.) TAPPING Taping and threading is a process of making threads, are being made on adjustable rod, for fixing steering column. 7.) SHAPING It is used principally to machine flat or plane surface in horizontal, vertical and angular.
  • 37. 37 8.) CUTTING It is used principally to cut the material for making structure other parts. 9.) WELDING It is the process of joining different material with help of heat and with or without the application of filler material. In the manufacturing of chassis, battery cabin.
  • 39. 39 LIST OF HAND TOOLS AND EQUIPMENT • Single point cutting tool • Drills • Vernier Caliper • Hacksaw • Files • Measuring Tap • Hammers • Punch • Screw Driver • Hand grinding machine • Hand Drilling machine • T joint • Oxy-Acetylene gas welding system • Grease and oil • Paint
  • 41. 41 COST ESTIMATION SR. NO. COMPONENT NAME MATERIAL NO.OF COMP ONEN T COST RS. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Rectangular Pipe (150 * 3.5) Rectangular Pipe (120 * 3.5) Cover sheet (75*120) Batteries(12 volt) Wheels Motorized wheel Steering Handle Controller (MOSFET) Accelerator Braking System Seat Blancing Rod Coupling Mild Steel Mild Steel Mild Steel Lead acid Mild steel Plastic Mild steel Cast Iron 2 2 1 4 3 1 1 1 1 1 1 1 4 Nil Nil Nil 1600 1500 1850 250 850 100 200 150 500 100
  • 42. 42 13. 14. 15. Bearing Nut & Bolt Others Cast Iron Cast Iron Mild steel 4 15 200 100 800 Grand Total 42 Rs.8200
  • 44. 44 PROPERTIES OF ELECTRIC VEHICLE ➢ ENERGY SOURCES Although electric vehicles have few direct emissions, all rely on energy created through electricity generation, and will usually emit pollution and generate waste, unless it is generated by renewable source power plants. Since electric vehicles use whatever electricity is delivered by their electrical utility/grid operator, electric vehicles can be made more or less efficient, polluting and expensive to run, by modifying the electrical generating stations. This would be done by an electrical utility under a government energy policy, in a timescale negotiated between utilities and government. Fossil fuel vehicle efficiency and pollution standards take years to filter through a nation's fleet of vehicles. New efficiency and pollution standards rely on the purchase of new vehicles, often as the current vehicles already on the road reach their end-of-life. Only a few nations set a retirement age for old vehicles, such as Japan or Singapore, forcing periodic upgrading of all vehicles already on the road. Electric vehicles will take advantage of whatever environmental gains happen when a renewable energy generation station comes online, a fossil-fuel power station is decommissioned or upgraded. Conversely, if government policy or economic conditions shifts generators back to use more polluting fossil fuels andinternal combustion engine vehicles (ICEVs), or more inefficient sources, the reverse can happen. Even in such a situation, electrical vehicles are still more efficient than a comparable amount of fossil fuel vehicles. In areas with a deregulated electrical energy market, an electrical vehicle owner can choose whether to run his electrical vehicle off conventional electrical energy sources,
  • 45. 45 or strictly from renewable electrical energy sources (presumably at an additional cost), pushing other consumers onto conventional sources, and switch at any time between the two. ➢ EFFICIENCY Because of the different methods of charging possible, the emissions produced have been quantified in different ways. Plug-in all-electric and Motoried vehicles also have different consumption characteristics. ➢ ELECTROMAGNETIC RADIATION Electromagnetic radiation from high performance electrical motors has been claimed to be associated with some human ailments, but such claims are largely unsubstantiated except for extremely high exposures. Electric motors can be shielded within a metallic Faraday cage, but this reduces efficiency by adding weight to the vehicle, while it is not conclusive that all electromagnetic radiation can be contained. ➢ CHARGING (Grid Capacity) If a large proportion of private vehicles were to convert to grid electricity it would increase the demand for generation and transmission, and consequent emissions. However, overall energy consumption and emissions would diminish because of the higher efficiency of electric vehicles over the entire cycle. In the USA it has been estimated there is already nearly sufficient existing power plant and transmission infrastructure, assuming that most charging would occur overnight, using the most efficient off-peak base load sources. In the UK however, things are different. While National Grid’s high-voltage electricity transmission system can currently manage the demand of 1 million electric cars, Steve Holliday (CEO National Grid PLC) said, “penetration up and above that becomes a real
  • 46. 46 issue. Local distribution networks in cities like London may struggle to balance their grids if drivers choose to all plug in their cars at the same time." ➢ CHARGING STATIONS Electric vehicles typically charge from conventional power outlets or dedicated charging stations, a process that typically takes hours, but can be done overnight and often gives a charge that is sufficient for normal everyday usage. However with the widespread implementation of electric vehicle networks within large cities, such as those provided by POD Point in the UK and Europe, electric vehicle users can plug in their cars whilst at work and leave them to charge throughout the day, extending the possible range of commutes and eliminating range anxiety. One proposed solution for daily recharging is a standardized inductive charging system such as Evatran's Plugless Power. Benefits are the convenience of with parking over the charge station and minimized cabling and connection infrastructure. Another proposed solution for the typically less frequent, long distance travel is "rapid charging", such as the Aerovironment PosiCharge line (up to 250 kW) and the Norvik MinitCharge line (up to 300 kW). Ecotality is a manufacturer of Charging Stations and has partnered with Nissan on several installations. Battery replacement is also proposed as an alternative, although no OEM's including Nissan/Renault have any production vehicle plans. Swapping requires standardization across platforms, models and manufacturers. Swapping also requires many times more battery packs to be in the system. One type of battery "replacement" proposed is much simpler: while the latest generation of vanadium redox battery only has an energy density similar to lead-acid, the charge is stored solely in a vanadium-based electrolyte, which can be pumped out and replaced with charged fluid. The vanadium battery system is also a potential candidate for intermediate energy storage in quick charging stations because of its high power density and extremely good endurance in daily use. System cost however, is still prohibitive. As vanadium battery
  • 47. 47 systems are estimated to range between $350–$600 per kWh, a battery that can service one hundred customers in a 24 hour period at 50 kWh per charge would cost $1.8-$3 million. According to Department of Energy research conducted at Pacific National Laboratory, 84% of existing vehicles could be switched over to plug-in Motorieds without requiring any new grid infrastructure. In terms of transportation, the net result would be a 27% total reduction in emissions of the greenhouse gases carbon dioxide, methane, and nitrous oxide, a 31% total reduction in nitrogen oxides, a slight reduction in nitrous oxide emissions, an increase in particulate matter emissions, the same sulfur dioxide emissions, and the near elimination of carbon monoxide and volatile organic compound emissions (a 98% decrease in carbon monoxide and a 93% decrease in volatile organic compounds). The emissions would be displaced away from street level, where they have "high human-health implications." ➢ Battery swapping There is another way to "refuel" electric vehicles. Instead of recharging them from electric socket, batteries could be mechanically replaced on special stations just in a couple of minutes (battery swapping). Batteries with greatest energy density such as metal-air fuel cells usually cannot be recharged in purely electric way. Instead some kind of metallurgical process is needed, such as aluminum smelting and similar. Silicon-air, aluminum-air and other metal-air fuel cells look promising candidates for swap batteries. Any source of energy, renewable or non-renewable, could be used to remake used metal-air fuel cells with relatively high efficiency. Investment in infrastructure will be needed. The cost of such batteries could be an issue, although they could be made with replaceable anodes and electrolyte.
  • 48. 48 ➢ OTHER IN-DEVELOPMENT TECHNOLOGIES Conventional electric double-layer capacitors are being worked to achieve the energy density of lithium ion batteries, offering almost unlimited lifespans and no environmental issues. High-K electric double-layer capacitors, such as EEStor's EESU, could improve lithium ion energy density several times over if they can be produced. Lithium-sulphur batteries offer 250Wh/kg. Sodium-ion batteries promise 400Wh/kg with only minimal expansion/contraction during charge/discharge and a very high surface area. Researchers from one of the Ukrainian state universities claim that they have manufactured samples of supercapacitor based on intercalation process with 318 W-h/kg specific energy, which seem to be at least two times improvement in comparison to typical Li-ion batteries. ➢ SAFETY The United Nations in Geneva (UNECE) has adopted the first international regulation (Regulation 100) on safety of both fully electric and Motoried electric cars to ensure that cars with a high voltageelectric power train, such as Motoried and fully electric vehicles, are as safe as combustion cars. The EU and Japan have already indicated that they intend to incorporate the new UNECE Regulation in their respective rules on technical standards for vehicles. ➢ ENERGY RESILIENCE Electricity is a form of energy that remains within the country or region where it was produced and can be multi-sourced. As a result it gives the greatest degree of energy resilience. ➢ ENERGY EFFICIENCY Electric vehicle 'tank-to-wheels' efficiency is about a factor of 3 higher than internal combustion engine vehicles. It does not consume energy when it is not moving, unlike internal combustion engines where they continue running even during idling. However, looking at the well-to-wheel efficiency of electric vehicles, their emissions are comparable
  • 49. 49 to an efficient gasoline or diesel in most countries because electricity generation relies on fossil fuels. ➢ COST OF RECHARGE The GM Volt will cost "less than purchasing a cup of your favorite coffee" to recharge. The Volt should cost less than 2 cents per mile to drive on electricity, compared with 12 cents a mile on gasoline at a price of $3.60 a gallon. This means a trip from Los Angeles to New York would cost $56 on electricity, and $336 with gasoline. This would be the equivalent to paying 60 cents a gallon of gas. ➢ STABILIZATION OF THE GRID Since electric vehicles can be plugged into the electric grid when not in use, there is a potential for battery powered vehicles to even out the demand for electricity by feeding electricity into the grid from their batteries during peak use periods (such as midafternoon air conditioning use) while doing most of their charging at night, when there is unused generating capacity. This Vehicle to Grid (V2G) connection has the potential to reduce the need for new power plants. Furthermore, our current electricity infrastructure may need to cope with increasing shares of variable-output power sources such as windmills and PV solar panels. This variability could be addressed by adjusting the speed at which EV batteries are charged, or possibly even discharged. Some concepts see battery exchanges and battery charging stations, much like gas/petrol stations today. Clearly these will require enormous storage and charging potentials, which could be manipulated to vary the rate of charging, and to output power during shortage periods, much as diesel generators are used for short periods to stabilize some national grids.
  • 50. 50 ➢ RANGE Many electric designs have limited range, due to the low energy density of batteries compared to the fuel of internal combustion engine vehicles. Electric vehicles also often have long recharge times compared to the relatively fast process of refueling a tank. This is further complicated by the current scarcity of public charging stations. "Range anxiety" is a label for consumer concern about EV range. ➢ HEATING OF ELECTRIC VEHICLES In cold climates considerable energy is needed to heat the interior of a vehicle and to defrost the windows. With internal combustion engines, this heat already exists from the combustion process from the waste heat from the engine cooling circuit and this offsets the greenhouse gases' external costs. If this is done with battery electric vehicles, this will require extra energy from the vehicles' batteries. Although some heat could be harvested from the motor(s) and battery, due to their greater efficiency there is not as much waste heat available as from a combustion engine. However, for vehicles which are connected to the grid, battery electric vehicles can be preheated, or cooled, and need little or no energy from the battery, especially for short trips. Newer designs are focused on using super-insulated cabins which can heat the vehicle using the body heat of the passengers. This is not enough, however, in colder climates as a driver delivers only about 100 W of heating power. A reversible AC-system, cooling the cabin during summer and heating it during winter, seems to be the most practical and promising way of solving the thermal management of the EV. Ricardo Arboix introduced (2008) a new concept based on the principle of combining the thermal-management of the EV- battery with the thermal-management of the cabin using a reversible AC-system. This is done by adding a third heat-exchanger, thermally connected with the battery-core, to the traditional heat pump/air conditioning system used in previous EV-models like the GM EV1 and Toyota RAV4 EV.
  • 51. 51 The concept has proven to bring several benefits, such as prolonging the life-span of the battery as well as improving the performance and overall energy-efficiency of the EV. ➢ ELECTRIC PUBLIC TRANSIT EFFICIENCY Shifts from private to public transport (train, trolleybus or tram) have the potential for large gains in efficiency in terms of individual miles per kWh. Research shows people do prefer trams, because they are quieter and more comfortable and perceived as having higher status. Therefore, it may be possible to cut liquid fossil fuel consumption in cities through the use of electric trams. Trams may be the most energy-efficient form of public transportation, with rubber wheeled vehicles using 2/3 more energy than the equivalent tram, and run on electricity rather than fossil fuels. In terms of net present value, they are also the cheapest—Blackpool trams are still running after 100-years, but combustion buses only last about 15-years.
  • 53. 53 ADVANTAGES AND DISADVANTAGES OF MOTORIZED VEHICLES ➢ ENVIRONMENTAL • Due to efficiency of electric engines as compared to combustion engines, even when the electricity used to charge electric vehicles comes from a CO2 emitting source, such as a coal or gas fired powered plant, the net CO2 production from an electric car is typically one half to one third of that from a comparable combustion vehicle. • Electric vehicles release almost no air pollutants at the place where they are operated. In addition, it is generally easier to build pollution control systems into centralised power stations than retrofit enormous numbers of cars. • Electric vehicles typically have less noise pollution than an internal combustion engine vehicle, whether it is at rest or in motion. Electric vehicles emit no tailpipe CO2 or pollutants such as NOx,NMHC, CO and PM at the point of use. • Electric motors don't require oxygen, unlike internal combustion engines; this is useful for submarines. • While electric and Motoried cars have reduced tailpipe carbon emissions, the energy they consume is sometimes produced by means that have environmental impacts. For example, the majority ofelectricity produced in the United States comes from fossil fuels (coal and natural gas) so use of an Electric Vehicle in the United States would not be completely carbon neutral. Electric and Motoried cars can help decrease energy use and pollution, with local no pollution at all being generated by electric vehicles, and may someday use only renewable resources, but the choice that would have the lowest negative environmental impact would be a lifestyle change in favor of walking, biking, use of public transit or telecommuting. Governments may invest in research and development of electric
  • 54. 54 cars with the intention of reducing the impact on the environment where they could instead develop pedestrian-friendly communities or electric mass transit. ➢ MECHANICAL • Electric motors are mechanically very simple. • Electric motors often achieve 90% energy conversion efficiency over the full range of speeds and power output and can be precisely controlled. They can also be combined with regenerative braking systems that have the ability to convert movement energy back into stored electricity. • This can be used to reduce the wear on brake systems (and consequent brake pad dust) and reduce the total energy requirement of a trip. Regenerative braking is especially effective for start-and-stop city use. Figure-:An Alkè electric city van.
  • 55. 55 • They can be finely controlled and provide high torque from rest, unlike internal combustion engines, and do not need multiple gears to match power curves. This removes the need for gearboxes and torque converters. • Electric vehicles provide quiet and smooth operation and consequently have less noise and vibration than internal combustion engines. ➢ FUTURE ASPECTS Figure:Eliica Battery Electric Car with 370 km/h top speed and 200 km range • The number of US survey respondents willing to pay $4,000 more for a plug-in Motoried car increased from 17% in 2005 to 26% in 2006. • Ferdinand Dudenhoeffer, head of the Centre of Automotive Research at the Gelsenkirchen University of Applied Sciences in Germany, said that "by 2025, allpassenger cars sold in Europe will be electric or Motoried" electric. • Several startup companies like Tesla Motors, Commuter Cars, and Miles Electric Vehicles will have powerful battery-electric vehicles available to the public in 2008. Battery and energy storage technology is advancing rapidly. The average distance driven by 80% of citizens per day in a car in the US is about 50 miles (US dept of transport, 1991), which fits easily within the current range of the electric car.
  • 56. 56 • This range can be improved by technologies such as Plug-in Motoriedelectric vehicles which are capable of using traditional fuels for unlimited range, rapid charging stations for BEVs, improved energy density batteries, flow batteries, or battery swapping. • In 2006 GM began the development of a plug-in Motoried that will use a lithium-ion battery. The vehicle, initially known as the Car, is now called the Chevrolet Volt. The basic design was first exhibited January 2007 at the North American International Auto Show. GM is planning to have this EV ready for sale to the public in the latter half of 2010. The car is to have a 40-mile (64 km) range. If the battery capacity falls below 30 percent a small internal combustion engine will kick in to charge the battery on the go. • This in effect increases the range of the vehicle, allowing it to be driven until it can be fully charged by plugging it into a standard household AC electrical source. In December 2010 Nissan introduced the Nissan Leaf in Japan and the U.S. • The Nissan Leaf is a five-door mid-size hatchback electric car. The U.S. Environmental Protection Agency determined the range to be 117 kilometres (73 mi), with an energy consumption of 765 kJ/km (34 kWh per 100 miles). Among other awards and recognition, the Nissan Leaf won the 2010 Green Car Vision Award award, the 2011 European Car of the Year award, the 2011 World Car of the Year, and ranks as the most efficient EPA certified vehicle for all fuels ever. • On October 29, 2007, Shai Agassi launched Project Better Place, a company focused on building massive scale Electric Recharge Grids as infrastructure supporting the deployment of electric vehicles (including plug-in Motorieds) in countries around the world. On January 21, PBP and the Nissan–Renault group signed a MOU - PBP will provide the battery recharging and swapping infrastructure and Renault-Nissan will mass-produce the vehicles. ➢ Improved long term energy storage and nano batteries • There have been several developments which could bring electric vehicles outside their current fields of application, as scooters, golf cars, neighborhood vehicles, in industrial operational yards and indoor operation. First, advances in lithium-based battery technology,
  • 57. 57 in large part driven by the consumer electronics industry, allow full-sized, highway-capable electric vehicles to be propelled as far on a single charge as conventional cars go on a single tank of gasoline. Lithium batteries have been made safe, can be recharged in minutes instead of hours, and now last longer than the typical vehicle. The production cost of these lighter, higher-capacity lithium batteries is gradually decreasing as the technology matures and production volumes increase. • Rechargeable Lithium-air batteries potentially offer increased range over other types and are a current topic of research ➢ Introduction of battery management and intermediate storage • Another improvement is to decouple the electric motor from the battery through electronic control, employing ultra-capacitors to buffer large but short power demands and regenerative braking energy. • The development of new cell types combined with intelligent cell management improved both weak points mentioned above. The cell management involves not only monitoring the health of the cells but also a redundant cell configuration (one more cell than needed). With sophisticated switched wiring it is possible to condition one cell while the rest are on duty. ➢ Faster battery recharging • By soaking the matter found in conventional lithium ion batteries in a special solution, lithium ion batteries were supposedly said to be recharged 100x faster. This test was however done with a specially-designed battery with little capacity. Batteries with higher capacity can be recharged 40x faster. • The research was conducted by Byoungwoo Kang and Gerbrand Ceder of MIT. The researchers believe the solution may appear on the market in 2011. Another method to speed up battery charging is by adding an additional oscillating electric field. This method was proposed byIbrahim Abou Hamad from Mississippi State University.The company Epyon specializes in faster charging of electric vehicles
  • 59. 59 Environmental Impact of Motorized Vehicle • Though Motoried cars consume less petroleum than conventional cars, there is still an issue regarding the environmental damage of the Motoried car battery. Today most Motoried car batteries are one of two types: (1) nickel metal hydride, or (2) lithium ion; both are regarded as more environmentally friendly than lead-based batteries which constitute the bulk of car batteries today. • There are many types of batteries. Some are far more toxic than others. While batteries like lead acid or nickel cadmium are incredibly bad for the environment, the toxicity levels and environmental impact of nickel metal hydride batteries—the type currently used in Motorieds—are much lower. Nickel-based batteries are known carcinogens, and have been shown to cause a variety of teratogenic effects. • The Lithium-ion battery has attracted attention due to its potential for use in Motoried electric vehicles. Hitachi is a leader in its development. • Additionally, the market for Lithium-ion batteries is rapidly expanding as an alternative to the nickel-metal hydride batteries, which have been utilized in the Motoried market thus far. In addition to its smaller size and lighter weight, lithium-ion batteries deliver performance that helps to protect the environment with features such as improved charge efficiency without memory effect. • In an environment where motor vehicle requirements including lower exhaust emissions and better fuel economy are prevalent, it is anticipated that the practical use of Motoried, electric, and fuel cell vehicles will continue to increase. • The lithium-ion batteries are appealing because they have the highest energy density of any rechargeable batteries and can produce a voltage more than three times that of nickel-metal hydride battery cell while simultaneously storing large quantities of electricity as well.
  • 60. 60 • The batteries also produce higher output (boosting vehicle power), higher efficiency (avoiding wasteful use of electricity), and provides excellent durability, compared with the life of the battery being roughly equivalent to the life of the vehicle. • Additionally, use of lithium-ion batteries reduces the overall weight of the vehicle and also achieves improved fuel economy of 30% better than gasoline-powered vehicles with a consequent reduction in CO2 emissions helping to prevent global warming. The lithium-ion batteries supplied by Hitachi are flourishing in a wide range of different applications including cars, buses, commercial vehicles and trains. • Electric vehicles that have the ability to be recharged from an owner’s main power supply are now available in several global automotive markets. When these vehicles are charged overnight, which is less costly than charging the vehicle during the day in Japan, the expense is about one-ninth of the cost for fueling a gasoline powered vehicle.
  • 61. 61 MOTORIED VEHICLE EMISSIONS • Motorized vehicle emissions today are getting close to or even lower than the recommended level set by the EPA (Environmental Protection Agency). • The recommended levels they suggest for a typical passenger vehicle should be equated to 5.5 metric tons of carbon dioxide. The three most popular Motorized vehicles, Honda Civic, Honda Insight and Toyota Prius, set the standards even higher by producing 4.1, 3.5, and 3.5 tons showing a major improvement in carbon dioxide emissions. • Motorized vehicles can reduce air emissions of smog-forming pollutants by up to 90% and cut carbon dioxide emissions in half.
  • 63. 63 PRESENT SCENERIO IN INDIA Practically the only Electric Vehicle to have been manufactured for several years is the Indian REVA. It is produced by REVA Electric Car Company Private Ltd. (RECC) in Bangalore, India, a company established in 1994 as a joint venture between the Maini Group India and AEV LLC, California USA. After seven years of R&D, they commercialized the first REVA car in June 2001. The current version of the REVA is the REVAi. It was first reserved for the Indian market, but it is now distributed in several European countries: UK (by GoinGreenunder the name G-Wiz), Cyprus and Greece (by REVA Phaedra Electricity Mobility Ltd., Belgium (by Green Mobil), Norway (by Ole Chr. Bye AS), Iceland (byPerlukafarinn ehf), Spain (by Emovement)and Germany (by Elektro PKW, the REVA is also available in the Republic of Ireland GreenAer. It may be exported to the USA with a speed limiter for use as a Neighborhood Electric Vehicle (NEV). In July 2010, the government of Tamil Nadu allocated land in Ranipet to Bavina Cars India for production of electric cars. The plant is set to be operational by 2011. In addition to Bangalore-based Reva, which currently is the only company actually selling EVs today, electric cars made in India includes: ▪ Mahindra & Mahindra: Four-seat model by 2010. ▪ Tata: 2008-2009 (also possibly an air car). ▪ Ajanta Group: clockmaker with plans for low-cost electric vehicle. ▪ Tara: Low-cost EV less than a Tata Nano. ▪ Hero Electric: 2013 Electric car. With Tata, Ajanta and Tara talking about 'low-cost' cars and "less than a Tata Nano".
  • 65. 65 Conclusion All types of engine-driven vehicles from automobiles, airplanes, aircraft carriers and agricultural equipment to zambonis may have electric motors to perform a variety of functions. In electric vehicles, diesel-electric vehicles, and hybrid vehicles, electric motors are used to propel the vehicle. The motor controllers in vehicle applications are integrated into the vehicle. The machine is very much advance and simple to construst. The working of machine is easy and eco friendly . Its is the most economical vehicle as there is no fuel consumption. The cost of all the component is less and the component should be easily available in the market .so presently it is common to use in developing countries.
  • 67. 67 BIBLIOGRAPHY Books • Automobile Engineering- by P.C.Sharma • Machine design- by V.B.Bandhari • Machine design- by P.C.Sharma Website • www.ask.com • www.engineersedge.com • www.howstuffworks.com • www.google.com • www.encyclopedia.com • www.sciencedirect.com • www.answer.com
  • 68. 68