SlideShare ist ein Scribd-Unternehmen logo
1 von 27
1
Spin Torque for DummiesSpin Torque for Dummies
Matt Pufall, Bill Rippard
Shehzu Kaka, Steve Russek, Tom Silva
National Institute of Standards and Technology,
Boulder, CO
J. A. Katine
Hitachi Global Storage Technologies
San Jose, CA
Mark Ablowitz, Mark Hoefer, Boaz Ilan
University of Colorado Applied Math Department
Boulder, CO
2
OutlineOutline
1) Spin dynamics
2) Magnetotransport
3) Spin momentum transfer
4) Spin torque nano-oscillators
3
But first… a puzzle!But first… a puzzle!
We start with a
polarized beam
of spin 1/2 Ag
ions…
… we pass the beam
through a magnetic
field gradient…
… and the beam
“diffracts” into two
beams, polarized
along the axis of
the magnetic field.
Q: What happened to the angular momentum in the original polarization direction???
(For more details, see Feynman’s Lectures on Physics, Vol. III, page 5-1)
The “Stern-Gerlach” experiment
… but
true!!!
Very
strange
…
H
4
Part 1: Spin dynamicsPart 1: Spin dynamics
5
Magnets are Gyroscopes!Magnets are Gyroscopes!
2
B
L
e
e
m
µ
γ = − = −
h
e-
r
v
z
2 B
s
µ
γ = −
h
For spin angular
momentum, extra
factor of 2 required.
“The gyromagnetic ratio”
L r p= ×
r r r
angular momentum
for atomic orbit:
L IAµ =
rr
magnetic moment
for atomic orbit:
( )2
ˆ
2
ev
r z
r
π
π
 
= − ÷
 
ˆ
2
evr
z= − ˆrmvz=
Classical model
for an atom:
2
e
evr
rm v
= −
z
L
zL
µ
γ B
6
Larmor EquationLarmor Equation
H
M
0T M Hµ= ×
r r r
T
dL
T
dt
=
r
r
L
µ
γ ≡
( )0
dM
T
dt
M H
γ
γµ
=
= ×
r
r
r r
(definition of torque) (gyromagnetic ratio)
Magnetic field exerts torque on magnetization.
Joseph Larmor
Magnets
make me
dizzy!
7
( )0
d
s
T
M M H
M
αµ
=
= × ×
r
r r r
damping torque
0
precession torquepT
M Hµ
=
= ×
r
r r
Landau & Lifshitz (1935):
( )
( )
0
0
p d
s
dM
T T T
dt
M H
M M H
M
γ γ
γ µ
α γ µ
= − = − +
= − ×
− × ×
r
r r r
r r
r r r
α = dimensionless
Landau-Lifshitz
damping parameter
Gyromagnetic precession with energy loss: TheGyromagnetic precession with energy loss: The
Landau-Lifshitz equationLandau-Lifshitz equation
L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 8, 153-169 (1935).
H
Lev Landau
Damping
happens!!
Lev Landau
8
Part 2: Charge transport in magnetic heterostructuresPart 2: Charge transport in magnetic heterostructures
(Magneto-transport)(Magneto-transport)
9
Ferromagnetism in Conductors: Band StructureFerromagnetism in Conductors: Band Structure
D(E)
E
“s-p band”
EF
spin-up spin-down
D(E)
E
“d band”
EF
“majority” states
“minority” states
“Density of States”
“exchange splitting”
s-band states (l = 0) have higher mobility than d-band states (l = 2) in
conductors due to the much lower effective mass of the s-band.
Minority band electrons scatter more readily from the s-p band to the d-band
due to the availability of hole states in the minority d-band.
10
Spin-dependent conductivity in ferromagnetic metalsSpin-dependent conductivity in ferromagnetic metals
“majority
band”
“minority
band”
M
JJ
Conductivities in ferromagnetic conductors are
different for majority and minority spins.
In an “ideal” ferromagnetic conductor, the conductivity for minority spins is zero.
Analogy: Like water flowing through pipes. Large conductivity = big pipe, etc…
11
Concept: interfacial spin-dependent scatteringConcept: interfacial spin-dependent scattering
M
“Majority” spins are preferentially transmitted.
”Minority” spins are preferentially reflected.
Normal metal Ferromagnet
12
Concept: ferromagnets as spin polarizersConcept: ferromagnets as spin polarizers
M
“Majority” spins are preferentially transmitted.
Normal metalFerromagnet
Ferromagnetic conductors are relatively permeable for majority spins.
Conversely, they are impermeable for minority spins.
13
Concept: spin accumulationConcept: spin accumulation
∆M
z
I
( ) sM z M M= + ∆
Non-equilibrium spin polarization “accumulates” near interfaces of
ferromagnetic and non-magnetic conductors.
“spin
diffusion
length”
14
Part 3: Spin momentum transferPart 3: Spin momentum transfer
15
Non-collinear spin transmissionNon-collinear spin transmission
M
θ
What if the spin is neither in the majority band nor the minority band???
????
????
Is the spin reflected or is it transmitted?
Quantum mechanical probabilities:
( )( )
( )( )
2
2
1
Pr 1 cos
2
1
Pr 1 cos
2
A
B
θ
θ
 ↑ = = + 
 ↓ = = − 
= +A B
θ
Quantum mechanics of spin:
cos
2
sin
2
A
B
θ
θ
  
=  ÷
  

  =  ÷  
An arbitrary spin state
is a coherent
superposition of “up”
and “down” spins.
16
Spin Momentum Transfer: Small Current LimitSpin Momentum Transfer: Small Current Limit
θ
M
+ =
-δT
+
Tdamp
θ
MPolarizer: At low electron flux,
damping torque compensates
spin torque: Magnetization is
stable.
e-
θ
M Mf
; 1Tδ θ θµ
r
=+ =
δT
Electrons:
17
Spin Momentum Transfer: Large Current LimitSpin Momentum Transfer: Large Current Limit
δT is driven by spin accumulation in the Cu spacer.
Spin accumulation is proportional to current flowing
through the structure.
+ =
θ
M
+ =
δT
-δT
+
Tdamp
θ + δθ
M
Electrons:
Polarizer:
Spin torque exceeds
damping torque:
Polarizer reacts with
changing M. Torque
proportional to angle
θ: Unstable!Damping torque
18
Transverse torque via spin reorientation/reflectionTransverse torque via spin reorientation/reflection
Consider only reflection events...
For the electron:
( )
( )
( )
ˆ
ˆsin
2
ˆ ˆ ˆ
2
ˆ ˆ ˆ
2
transverse
transverse inc
inc
f
s
s s y
s
y
m m p
m m m
θ
∆
′∆ = −
′= −
= − × ×
= × ×
r
r r
r
h
h
h
θ
θ
transverses∆
r
incs
rrefs
r
AND
Consider only change in angular momentum
transverse to magnetization axis. (Equivalent to
assuming magnitude of M does not change.)
y′
x′
where
2
ˆ incp s=
r
h
θ ˆp
ˆm−
19
Newton’s Second LawNewton’s Second Law
( )ˆ ˆ ˆ
2
trans fs m m m∆ = × ×
hr
If…
…then…
( ) ( )ˆ ˆ ˆ
2
fM V m m mγ∆ = × ×
r h
…per electron.
For a flowing stream of electrons:
( )
( )( )2
ˆ ˆ ˆ
2
ˆ
2
f
f
s
m m m
dM I
dt V e
I
M M m
eM V
γ
γ
× ×   
= ÷  ÷
  
 
= × × ÷
 
hr
r rh
Total moment of
“free” magnetic
layer
Rate of electron
impingement on “free” layer
20
The Slonczewski Torque TermThe Slonczewski Torque Term
2
ˆ( )
2
Sloncewski f
s
J
T M M m
e M
ε
δ
= × ×
r r rh
J. Slonczewski, Journal of Magnetism and Magnetic Materials, vol. 159, page L1 (1996)
J M Mf
δ
efficiency* ~ 0.2 - 0.3
*Accounts for all those messy details:
Polarization of ferromagnet, band
structure mismatch at interface, spin
decoherence, etc…
21
The “FAQ Page”The “FAQ Page”
Q: What if the spin is transmitted through the “free” layer rather than reflected?
A: Doesn’t matter. Quantum mechanically, there is an amplitude for both transmission
and reflection, but only for spin along the axis of magnetization. The transverse
component of spin for the incident electrons is “lost” once the electron wavefunction is
split into the transmitted and reflected components. Conservation of angular momentum
dictates that the transverse component is transferred to the magnetic layer. This is a
purely quantum mechanical phenomenon: There is no classical analog!
Q: Don’t the reflected spins affect the spin accumulation in the spacer layer?
A: Yes, they do. There are several theories that take this “back-action” on the spin
accumulation into account. See J. C. Slonczewski, J. Magn. Magn. Mater. 247, 324
(2002); A. A. Kovalev, et al., Phys. Rev. B 66, 224424 (2002); J. Xiao, et al., Phys. Rev.
B 70, 172405 (2004); A. Fert, et al., J Magn. Magn. Mater. 69, 184406 (2004).
( )
0 1 0 1cos cos
q q
B B B B
ε θ
θ θ
+ −
= +
+ −
Tsmt
ε = constant
ε (θ )
22
Back to the puzzle…Back to the puzzle…
A: The quantum equivalent of a card trick. If a card “vanishes” magically from one deck,
it must reappear somewhere else. No mechanism for the transfer of angular momentum
need be invoked!
The “Stern-Gerlach” experiment, revisited.
Once the linear
momentum for the two
spin components is split,
the transverse angular
momentum is “released”
to do work on the
magnet system.
H
“Up” spin current
“Down” spin current
0xS =
1
2
xS = +
x
y
z
23
( )Larmor damp smt
dM
T T T
dt
γ= + +
r
r r r
0 eff
dM
M H
dt
γµ= ×
r
r r
Larmor term:
precession
My
Mz
Mx
M
Heff
Tsmt ≅ -Tdamp
J ~ 107
A/cm2
Slonczewski 1996
My
Mz
Mx
Mi
Mf
Heff
Damping term:
aligns M with H
0
2
( )eff
s
M M H
M
αγµ
− × ×
r r r
Precession
Heff
Spin Torque
Damping
M
Spin Torque Term
2
ˆ( )
2
B
f
s
Jg
M M m
e M
µ ε
δ
+ × ×
r r
Spin torque can
counteract damping
mf
Magnetodynamics: Three TorquesMagnetodynamics: Three Torques
24
How Can We See This?
Torque ∝ to current density: must have high current densities
to produce large torques
1 mm
10 µm
I = 0.1 MA≈
I = 10 A≈
100 nm I = 1 mA≈
We will use nanopillar and nanocontact structures
Typical wire
Size of a human hair
500 atoms across≈
X
Required Idc Possible
X
25
Part 4: Spin torque nano-oscillators
26
• Step DC current
• Measure DC R, microwave
power output
5 6 7 8 9
24.8
25.0
25.2
25.4
dV/dI(Ω)
Current (mA)
9.6 9.7 9.8 9.9 10.0
0.0
0.1
0.2
0.3
0.4
9 mA
8.5 mA8 mA
7.5 mA
7 mA
6.5 mA
6 mA
5.5 mA
Power(pW)
Frequency (GHz)
Devices are nanoscale
current-controlled
microwave oscillators
Au
Cu
“Fixed” layer
“Free” layer
~40 nm
0.7 T,
θ = 10o
θT = 300K
Nanocontact DynamicsNanocontact Dynamics
27
SummarySummary
Magnetization dynamics tutorial: Magnets are gyroscopes.
Magnetotransport tutorial: Magnets are spin filters.
Spin momentum transfer: Back action of spin polarized carriers on magnet.
Spin torque nano-oscillator: Spin torque compensates damping.
An excellent review article!!
M. D. Stiles and J. Miltat, “Spin Transfer Torque and Dynamics,”
Topics in Applied Physics 101, 225-308 (2006).

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

Spintronics ( IEEE presentation )
Spintronics ( IEEE presentation )Spintronics ( IEEE presentation )
Spintronics ( IEEE presentation )
 
Spintronics Introduction (BASIC)
Spintronics Introduction (BASIC)Spintronics Introduction (BASIC)
Spintronics Introduction (BASIC)
 
Gmr
GmrGmr
Gmr
 
spintronics ppt
spintronics pptspintronics ppt
spintronics ppt
 
Report on Giant Magnetoresistance(GMR) & Spintronics
Report on Giant Magnetoresistance(GMR) & SpintronicsReport on Giant Magnetoresistance(GMR) & Spintronics
Report on Giant Magnetoresistance(GMR) & Spintronics
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Giant magnetoresistance ppt
Giant magnetoresistance pptGiant magnetoresistance ppt
Giant magnetoresistance ppt
 
Giant magnetoresistance
Giant magnetoresistanceGiant magnetoresistance
Giant magnetoresistance
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Spintronics
Spintronics Spintronics
Spintronics
 
CMR_Formal_Presentation2
CMR_Formal_Presentation2CMR_Formal_Presentation2
CMR_Formal_Presentation2
 
Introduction to Spintronics by Ch.Ravikumar
Introduction to Spintronics by Ch.RavikumarIntroduction to Spintronics by Ch.Ravikumar
Introduction to Spintronics by Ch.Ravikumar
 
MRAM & Its Applications
MRAM & Its ApplicationsMRAM & Its Applications
MRAM & Its Applications
 
Spintronics Technology
Spintronics TechnologySpintronics Technology
Spintronics Technology
 
Substrate / wafers and Basic concepts Of Mems & microsystems
Substrate / wafers and Basic concepts Of Mems & microsystemsSubstrate / wafers and Basic concepts Of Mems & microsystems
Substrate / wafers and Basic concepts Of Mems & microsystems
 
Presentation STT-RAM Survey
Presentation STT-RAM SurveyPresentation STT-RAM Survey
Presentation STT-RAM Survey
 
Spintronics
SpintronicsSpintronics
Spintronics
 
2 d materials
2 d materials2 d materials
2 d materials
 
Spintronics : New Era in Nano Tecnology technology
Spintronics : New Era in Nano Tecnology technologySpintronics : New Era in Nano Tecnology technology
Spintronics : New Era in Nano Tecnology technology
 

Ähnlich wie Spin torque tutorial

Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
oriolespinal
 
Quantum Nanomagetism
Quantum NanomagetismQuantum Nanomagetism
Quantum Nanomagetism
oriolespinal
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
oriolespinal
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
oriolespinal
 
Lecture 7 pseudogap
Lecture 7 pseudogapLecture 7 pseudogap
Lecture 7 pseudogap
AllenHermann
 

Ähnlich wie Spin torque tutorial (20)

Mri
MriMri
Mri
 
Grade 12, U7 L10-Magnetic & E Fields
Grade 12, U7 L10-Magnetic & E Fields Grade 12, U7 L10-Magnetic & E Fields
Grade 12, U7 L10-Magnetic & E Fields
 
Relaxation in NMR
Relaxation in NMR Relaxation in NMR
Relaxation in NMR
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Single Molecular Magnets: A very Basic Approach to Understand
Single Molecular Magnets: A very Basic Approach to UnderstandSingle Molecular Magnets: A very Basic Approach to Understand
Single Molecular Magnets: A very Basic Approach to Understand
 
nmr
nmrnmr
nmr
 
Quantum Nanomagetism
Quantum NanomagetismQuantum Nanomagetism
Quantum Nanomagetism
 
Quantum Nanomagnetism
Quantum  NanomagnetismQuantum  Nanomagnetism
Quantum Nanomagnetism
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
Eema magnetic properties of materials
Eema magnetic properties of materialsEema magnetic properties of materials
Eema magnetic properties of materials
 
Frustration and Low Dimenionality
Frustration and Low DimenionalityFrustration and Low Dimenionality
Frustration and Low Dimenionality
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
diffraction.pdf
diffraction.pdfdiffraction.pdf
diffraction.pdf
 
Overview Of Spintronics
Overview Of SpintronicsOverview Of Spintronics
Overview Of Spintronics
 
Structure of atom plus one focus area notes
Structure of atom plus one focus area notesStructure of atom plus one focus area notes
Structure of atom plus one focus area notes
 
Paramagnetismo Quântico - Introdução.pdf
Paramagnetismo Quântico - Introdução.pdfParamagnetismo Quântico - Introdução.pdf
Paramagnetismo Quântico - Introdução.pdf
 
Raman Spectra 2nd ppt.pptx
Raman Spectra 2nd ppt.pptxRaman Spectra 2nd ppt.pptx
Raman Spectra 2nd ppt.pptx
 
Lecture 7 pseudogap
Lecture 7 pseudogapLecture 7 pseudogap
Lecture 7 pseudogap
 

Kürzlich hochgeladen

ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
Lecture_8-Digital implementation of analog controller design.pdf
Lecture_8-Digital implementation of analog controller design.pdfLecture_8-Digital implementation of analog controller design.pdf
Lecture_8-Digital implementation of analog controller design.pdf
mohamedsamy9878
 
Teachers record management system project report..pdf
Teachers record management system project report..pdfTeachers record management system project report..pdf
Teachers record management system project report..pdf
Kamal Acharya
 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdf
Kamal Acharya
 

Kürzlich hochgeladen (20)

"United Nations Park" Site Visit Report.
"United Nations Park" Site  Visit Report."United Nations Park" Site  Visit Report.
"United Nations Park" Site Visit Report.
 
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
 
Electrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission lineElectrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission line
 
Lecture_8-Digital implementation of analog controller design.pdf
Lecture_8-Digital implementation of analog controller design.pdfLecture_8-Digital implementation of analog controller design.pdf
Lecture_8-Digital implementation of analog controller design.pdf
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
An improvement in the safety of big data using blockchain technology
An improvement in the safety of big data using blockchain technologyAn improvement in the safety of big data using blockchain technology
An improvement in the safety of big data using blockchain technology
 
Dairy management system project report..pdf
Dairy management system project report..pdfDairy management system project report..pdf
Dairy management system project report..pdf
 
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxCloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
 
Teachers record management system project report..pdf
Teachers record management system project report..pdfTeachers record management system project report..pdf
Teachers record management system project report..pdf
 
Online book store management system project.pdf
Online book store management system project.pdfOnline book store management system project.pdf
Online book store management system project.pdf
 
internship exam ppt.pptx on embedded system and IOT
internship exam ppt.pptx on embedded system and IOTinternship exam ppt.pptx on embedded system and IOT
internship exam ppt.pptx on embedded system and IOT
 
Top 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering ScientistTop 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering Scientist
 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdf
 
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker project
 
İTÜ CAD and Reverse Engineering Workshop
İTÜ CAD and Reverse Engineering WorkshopİTÜ CAD and Reverse Engineering Workshop
İTÜ CAD and Reverse Engineering Workshop
 
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and VisualizationKIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
 
Electrical shop management system project report.pdf
Electrical shop management system project report.pdfElectrical shop management system project report.pdf
Electrical shop management system project report.pdf
 
Lect_Z_Transform_Main_digital_image_processing.pptx
Lect_Z_Transform_Main_digital_image_processing.pptxLect_Z_Transform_Main_digital_image_processing.pptx
Lect_Z_Transform_Main_digital_image_processing.pptx
 
Peek implant persentation - Copy (1).pdf
Peek implant persentation - Copy (1).pdfPeek implant persentation - Copy (1).pdf
Peek implant persentation - Copy (1).pdf
 

Spin torque tutorial

  • 1. 1 Spin Torque for DummiesSpin Torque for Dummies Matt Pufall, Bill Rippard Shehzu Kaka, Steve Russek, Tom Silva National Institute of Standards and Technology, Boulder, CO J. A. Katine Hitachi Global Storage Technologies San Jose, CA Mark Ablowitz, Mark Hoefer, Boaz Ilan University of Colorado Applied Math Department Boulder, CO
  • 2. 2 OutlineOutline 1) Spin dynamics 2) Magnetotransport 3) Spin momentum transfer 4) Spin torque nano-oscillators
  • 3. 3 But first… a puzzle!But first… a puzzle! We start with a polarized beam of spin 1/2 Ag ions… … we pass the beam through a magnetic field gradient… … and the beam “diffracts” into two beams, polarized along the axis of the magnetic field. Q: What happened to the angular momentum in the original polarization direction??? (For more details, see Feynman’s Lectures on Physics, Vol. III, page 5-1) The “Stern-Gerlach” experiment … but true!!! Very strange … H
  • 4. 4 Part 1: Spin dynamicsPart 1: Spin dynamics
  • 5. 5 Magnets are Gyroscopes!Magnets are Gyroscopes! 2 B L e e m µ γ = − = − h e- r v z 2 B s µ γ = − h For spin angular momentum, extra factor of 2 required. “The gyromagnetic ratio” L r p= × r r r angular momentum for atomic orbit: L IAµ = rr magnetic moment for atomic orbit: ( )2 ˆ 2 ev r z r π π   = − ÷   ˆ 2 evr z= − ˆrmvz= Classical model for an atom: 2 e evr rm v = − z L zL µ γ B
  • 6. 6 Larmor EquationLarmor Equation H M 0T M Hµ= × r r r T dL T dt = r r L µ γ ≡ ( )0 dM T dt M H γ γµ = = × r r r r (definition of torque) (gyromagnetic ratio) Magnetic field exerts torque on magnetization. Joseph Larmor Magnets make me dizzy!
  • 7. 7 ( )0 d s T M M H M αµ = = × × r r r r damping torque 0 precession torquepT M Hµ = = × r r r Landau & Lifshitz (1935): ( ) ( ) 0 0 p d s dM T T T dt M H M M H M γ γ γ µ α γ µ = − = − + = − × − × × r r r r r r r r r α = dimensionless Landau-Lifshitz damping parameter Gyromagnetic precession with energy loss: TheGyromagnetic precession with energy loss: The Landau-Lifshitz equationLandau-Lifshitz equation L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 8, 153-169 (1935). H Lev Landau Damping happens!! Lev Landau
  • 8. 8 Part 2: Charge transport in magnetic heterostructuresPart 2: Charge transport in magnetic heterostructures (Magneto-transport)(Magneto-transport)
  • 9. 9 Ferromagnetism in Conductors: Band StructureFerromagnetism in Conductors: Band Structure D(E) E “s-p band” EF spin-up spin-down D(E) E “d band” EF “majority” states “minority” states “Density of States” “exchange splitting” s-band states (l = 0) have higher mobility than d-band states (l = 2) in conductors due to the much lower effective mass of the s-band. Minority band electrons scatter more readily from the s-p band to the d-band due to the availability of hole states in the minority d-band.
  • 10. 10 Spin-dependent conductivity in ferromagnetic metalsSpin-dependent conductivity in ferromagnetic metals “majority band” “minority band” M JJ Conductivities in ferromagnetic conductors are different for majority and minority spins. In an “ideal” ferromagnetic conductor, the conductivity for minority spins is zero. Analogy: Like water flowing through pipes. Large conductivity = big pipe, etc…
  • 11. 11 Concept: interfacial spin-dependent scatteringConcept: interfacial spin-dependent scattering M “Majority” spins are preferentially transmitted. ”Minority” spins are preferentially reflected. Normal metal Ferromagnet
  • 12. 12 Concept: ferromagnets as spin polarizersConcept: ferromagnets as spin polarizers M “Majority” spins are preferentially transmitted. Normal metalFerromagnet Ferromagnetic conductors are relatively permeable for majority spins. Conversely, they are impermeable for minority spins.
  • 13. 13 Concept: spin accumulationConcept: spin accumulation ∆M z I ( ) sM z M M= + ∆ Non-equilibrium spin polarization “accumulates” near interfaces of ferromagnetic and non-magnetic conductors. “spin diffusion length”
  • 14. 14 Part 3: Spin momentum transferPart 3: Spin momentum transfer
  • 15. 15 Non-collinear spin transmissionNon-collinear spin transmission M θ What if the spin is neither in the majority band nor the minority band??? ???? ???? Is the spin reflected or is it transmitted? Quantum mechanical probabilities: ( )( ) ( )( ) 2 2 1 Pr 1 cos 2 1 Pr 1 cos 2 A B θ θ  ↑ = = +   ↓ = = −  = +A B θ Quantum mechanics of spin: cos 2 sin 2 A B θ θ    =  ÷       =  ÷   An arbitrary spin state is a coherent superposition of “up” and “down” spins.
  • 16. 16 Spin Momentum Transfer: Small Current LimitSpin Momentum Transfer: Small Current Limit θ M + = -δT + Tdamp θ MPolarizer: At low electron flux, damping torque compensates spin torque: Magnetization is stable. e- θ M Mf ; 1Tδ θ θµ r =+ = δT Electrons:
  • 17. 17 Spin Momentum Transfer: Large Current LimitSpin Momentum Transfer: Large Current Limit δT is driven by spin accumulation in the Cu spacer. Spin accumulation is proportional to current flowing through the structure. + = θ M + = δT -δT + Tdamp θ + δθ M Electrons: Polarizer: Spin torque exceeds damping torque: Polarizer reacts with changing M. Torque proportional to angle θ: Unstable!Damping torque
  • 18. 18 Transverse torque via spin reorientation/reflectionTransverse torque via spin reorientation/reflection Consider only reflection events... For the electron: ( ) ( ) ( ) ˆ ˆsin 2 ˆ ˆ ˆ 2 ˆ ˆ ˆ 2 transverse transverse inc inc f s s s y s y m m p m m m θ ∆ ′∆ = − ′= − = − × × = × × r r r r h h h θ θ transverses∆ r incs rrefs r AND Consider only change in angular momentum transverse to magnetization axis. (Equivalent to assuming magnitude of M does not change.) y′ x′ where 2 ˆ incp s= r h θ ˆp ˆm−
  • 19. 19 Newton’s Second LawNewton’s Second Law ( )ˆ ˆ ˆ 2 trans fs m m m∆ = × × hr If… …then… ( ) ( )ˆ ˆ ˆ 2 fM V m m mγ∆ = × × r h …per electron. For a flowing stream of electrons: ( ) ( )( )2 ˆ ˆ ˆ 2 ˆ 2 f f s m m m dM I dt V e I M M m eM V γ γ × ×    = ÷  ÷      = × × ÷   hr r rh Total moment of “free” magnetic layer Rate of electron impingement on “free” layer
  • 20. 20 The Slonczewski Torque TermThe Slonczewski Torque Term 2 ˆ( ) 2 Sloncewski f s J T M M m e M ε δ = × × r r rh J. Slonczewski, Journal of Magnetism and Magnetic Materials, vol. 159, page L1 (1996) J M Mf δ efficiency* ~ 0.2 - 0.3 *Accounts for all those messy details: Polarization of ferromagnet, band structure mismatch at interface, spin decoherence, etc…
  • 21. 21 The “FAQ Page”The “FAQ Page” Q: What if the spin is transmitted through the “free” layer rather than reflected? A: Doesn’t matter. Quantum mechanically, there is an amplitude for both transmission and reflection, but only for spin along the axis of magnetization. The transverse component of spin for the incident electrons is “lost” once the electron wavefunction is split into the transmitted and reflected components. Conservation of angular momentum dictates that the transverse component is transferred to the magnetic layer. This is a purely quantum mechanical phenomenon: There is no classical analog! Q: Don’t the reflected spins affect the spin accumulation in the spacer layer? A: Yes, they do. There are several theories that take this “back-action” on the spin accumulation into account. See J. C. Slonczewski, J. Magn. Magn. Mater. 247, 324 (2002); A. A. Kovalev, et al., Phys. Rev. B 66, 224424 (2002); J. Xiao, et al., Phys. Rev. B 70, 172405 (2004); A. Fert, et al., J Magn. Magn. Mater. 69, 184406 (2004). ( ) 0 1 0 1cos cos q q B B B B ε θ θ θ + − = + + − Tsmt ε = constant ε (θ )
  • 22. 22 Back to the puzzle…Back to the puzzle… A: The quantum equivalent of a card trick. If a card “vanishes” magically from one deck, it must reappear somewhere else. No mechanism for the transfer of angular momentum need be invoked! The “Stern-Gerlach” experiment, revisited. Once the linear momentum for the two spin components is split, the transverse angular momentum is “released” to do work on the magnet system. H “Up” spin current “Down” spin current 0xS = 1 2 xS = + x y z
  • 23. 23 ( )Larmor damp smt dM T T T dt γ= + + r r r r 0 eff dM M H dt γµ= × r r r Larmor term: precession My Mz Mx M Heff Tsmt ≅ -Tdamp J ~ 107 A/cm2 Slonczewski 1996 My Mz Mx Mi Mf Heff Damping term: aligns M with H 0 2 ( )eff s M M H M αγµ − × × r r r Precession Heff Spin Torque Damping M Spin Torque Term 2 ˆ( ) 2 B f s Jg M M m e M µ ε δ + × × r r Spin torque can counteract damping mf Magnetodynamics: Three TorquesMagnetodynamics: Three Torques
  • 24. 24 How Can We See This? Torque ∝ to current density: must have high current densities to produce large torques 1 mm 10 µm I = 0.1 MA≈ I = 10 A≈ 100 nm I = 1 mA≈ We will use nanopillar and nanocontact structures Typical wire Size of a human hair 500 atoms across≈ X Required Idc Possible X
  • 25. 25 Part 4: Spin torque nano-oscillators
  • 26. 26 • Step DC current • Measure DC R, microwave power output 5 6 7 8 9 24.8 25.0 25.2 25.4 dV/dI(Ω) Current (mA) 9.6 9.7 9.8 9.9 10.0 0.0 0.1 0.2 0.3 0.4 9 mA 8.5 mA8 mA 7.5 mA 7 mA 6.5 mA 6 mA 5.5 mA Power(pW) Frequency (GHz) Devices are nanoscale current-controlled microwave oscillators Au Cu “Fixed” layer “Free” layer ~40 nm 0.7 T, θ = 10o θT = 300K Nanocontact DynamicsNanocontact Dynamics
  • 27. 27 SummarySummary Magnetization dynamics tutorial: Magnets are gyroscopes. Magnetotransport tutorial: Magnets are spin filters. Spin momentum transfer: Back action of spin polarized carriers on magnet. Spin torque nano-oscillator: Spin torque compensates damping. An excellent review article!! M. D. Stiles and J. Miltat, “Spin Transfer Torque and Dynamics,” Topics in Applied Physics 101, 225-308 (2006).

Hinweis der Redaktion

  1. Larger font
  2. Clean up the arrows.