SlideShare ist ein Scribd-Unternehmen logo
1 von 27
Downloaden Sie, um offline zu lesen
Problem
                                     Our approach
                                          Example
                                      Future work




          Closed formulae for distance functions
                    involving ellipses.

    F. Etayo1 , L. González-Vega1 , G. R. Quintana1 , W. Wang2

                1 Departamento      de Matemáticas, Estadística y Computación
                                     Universidad de Cantabria
                               2 Department   of Computer Science
                                      University of Hong Kong


     XI Encuentro de Álgebra Computacional y Aplicaciones,
                 Universidad de Granada 2008

F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Contents


  1   Problem

  2   Our approach

  3   Example

  4   Future work




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Introduction

  We want to compute the distance between two coplanar
  ellipses.


  The minimum distance between a given point and one ellipse is
  a positive algebraic number: our goal is to determine a
  polynomial with this number as a real root.


  That distance does not depend on the footpoint. It gives the
  distance directly. We can use this formula for analyzing the
  Ellipses Moving Problem (EMP).


  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Applications




  The EMP is a critical problem in Computer Graphics, with
  applications like:
        Collision detection
        Orbit analysis (non-coplanar ellipses)




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Previous works


        I. Z. E MIRIS , E. T SIGARIDAS , G. M. T ZOUMAS . The
        predicates for the Voronoi diagram of ellipses. Proc. ACM
        Symp. Comput. Geom., 2006.
        I. Z. E MIRIS , G. M. T ZOUMAS . A Real-time and Exact
        Implementation of the predicates for the Voronoi Diagram
        for parametric ellipses. Proc. ACM Symp. Solid Physical
        Modelling, 2007.
        C. L ENNERZ , E. S CHÖMER . Efficient Distance
        Computation for Quadratic Curves and Surfaces.
        Geometric Modelling and Processing Proceedings, 2002.



  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Previous works


        J.-K. S EONG , D. E. J OHNSON , E. C OHEN . A Higher
        Dimensional Formulation for Robust and Interactive
        Distance Queries. Proc. ACM Solid and Physical
        Modeling, 2006.
        K.A. S OHN , B. J ÜTTLER , M.S. K IM , W. WANG .
        Computing the Distance Between Two Surfaces via Line
        Geometry. Proc. Tenth Pacific Conference on Computer
        Graphics and Applications, 236-245, IEEE Press, 2002.
  Common aspect: the problem is always solved using foot
  points.


  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Our approach




  We do not make the minimum distance computation depending
  on the foot points. We study the ellipse separation problem by
  analyzing the univariate polynomial provided by the distance.


  Parameters of our problem: center coordinates, axes length...




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Our approach



  We do not make the minimum distance computation depending
  on the foot points. We study the ellipse separation problem by
  analyzing the univariate polynomial provided by the distance.


  Parameters of our problem: center coordinates, axes length...
  Is there any advantage?




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Our approach


  We do not make the minimum distance computation depending
  on the foot points. We study the ellipse separation problem by
  analyzing the univariate polynomial provided by the distance.


  Parameters of our problem: center coordinates, axes length...
  Is there any advantage?


  Yes: the distance behaves continuously but footpoints don’t.




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                        Our approach
                                             Example
                                         Future work


The distance of a point to an ellipse


  We consider the parametric equations of an ellipse, ε0 :
                   √            √
               x = a cos t, y = b sin t t ∈ [0, 2π)

  in order to construct a function fd which gives the distance
  between a point (x0 , y0 ) and the ellipse:
                         √                    √
             fd := (x0 − a cos t)2 + (y0 − b sin t)2 − d




   F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                        Our approach
                                             Example
                                         Future work


The distance of a point to an ellipse




  We want to solve a system of equations:

                                                  fd (t) = 0
                                                  ∂fd
                                                   ∂t (t) = 0




   F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                        Our approach
                                             Example
                                         Future work


The distance of a point to an ellipse


  We want to solve a system of equations:

                                                  fd (t) = 0
                                                  ∂fd
                                                   ∂t (t) = 0

  There are two posibilities:
         rational change of variable
         complex change of variable




   F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                        Our approach
                                             Example
                                         Future work


The distance of a point to an ellipse



  Rational change of variable:
                                                         1−t2
                                               cos t =   1+t2
                                                          2t
                                               sin t =   1+t2

  Disadvantage: more complicated.




   F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                        Our approach
                                             Example
                                         Future work


The distance of a point to an ellipse



  Rational change of variable:
                                                         1−t2
                                               cos t =   1+t2
                                                          2t
                                               sin t =   1+t2

  Disadvantage: more complicated.




   F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                        Our approach
                                             Example
                                         Future work


The distance of a point to an ellipse



                                                  1
  Since z = cos t + i sin t, z =                  z      and we can use the complex
  change of variable:
                                                                1
                                                            z− z
                                               sin t =       2i
                                                                1
                                                            z+ z
                                               cos t =       2




   F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                        Our approach
                                             Example
                                         Future work


The distance of a point to an ellipse


  The new system:

                       √        √            √       √
      (b − a)z 4 + 2(x0 a − iy0 √b)z 3 − 2(x0 a + iy0 b)z + a − b = 0      √
                       √                                           √
      (b − a)z 4 − 4(x0 a − iy0 b)z 3 − 2(2(x2 + y0 − d))z 2 + 4(x0 a + iy0 b)z + b − a = 0
                                              0
                                                  2




  Using resultants we eliminate the variable z
  (we also eliminate i).




   F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                        Our approach
                                             Example
                                         Future work


The distance of a point to an ellipse

  Theorem
  If d0 is the distance of a point (x0 , y0 ) to the ellipse ε0 with
  center (0, 0) and semiaxes a and b then d = d2 is the smallest
                                                       0
  nonnegative real root of the polynomial
        [x0 ,y ]
       F[a,b] 0 (d) =      (a − b)2 d4 + 2(a − b)(b2 + 2x2 b + y0 b − 2ay0 − a2 − x2 a)d3
                                                         0
                                                                2        2
                                                                                   0
                           +(y0 b2 − 8y0 ba2 − 6b2 a2 + 6a3 y0 − 2x2 a3 + a4 + 6x2 y0 b2 − 2y0 b3
                              4           2                       2
                                                                          0                0
                                                                                             2        2

                           +6y0 a2 + 4x2 a2 b + 2b3 a + 6x2 y0 a2 + 2a3 b − 6x4 ab + 4y0 b2 a
                              4
                                           0                 0
                                                                 2
                                                                                    0
                                                                                               2
                              4 2         4 2        3 2       2 2          4     2    2       4    2
                           +6x0 b + 4x0 a + 6b x0 − 10x0 y0 ab + b − 8x0 ab − 6y0 ab)d
                           −2(ab4 + y0 − a2 b3 + a4 b + 2y0 a2 + 2b2 x6 − a3 b2 − bx2 ay0
                                        4                      6
                                                                              0              0
                                                                                                  4

                           −bx4 ay0 + 3x2 ay0 b2 + 3x2 a2 y0 b − by0 a + b2 y0 x2 + 3x4 b3
                              0
                                   2
                                             0
                                                 2
                                                           0
                                                               2        6         4
                                                                                     0       0
                           +3y0 a3 + x2 b4 + x4 a2 y0 − bx6 a − 5x4 ab2 + 3b2 y0 x4 + 3y0 ab2
                              4
                                         0         0
                                                        2
                                                             0          0
                                                                                      2
                                                                                         0
                                                                                                 4

                           −2x2 a3 u2 + 3x4 a2 b + 3x2 b2 y0 − 2x2 ab3 − 2y0 a3 b − 3y0 ab3
                              0      0         0          0
                                                             2
                                                                      0
                                                                                2            2

                           −3x2 a3 b − 2x2 b3 y0 − 5y0 a2 b + 4x2 a2 b2 + 4y0 a2 b2 )d
                              0              0
                                                  2      4
                                                                    0
                                                                                2

                           +(x4 + 2x2 b + b2 − 2x2 a − 2ba + a2 + y0 + 2x2 y0 − 2y0 b + 2ay0 )·
                              0        0              0
                                                                           4
                                                                                 0
                                                                                     2       2        2
                                                                [a,b]
                           (bx2 + ay0 − ba)2 =
                              0
                                    2                    4
                                                         k=0   hk       (x0 , y0 )dk




   F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                             Our approach
                                                  Example
                                              Future work


Remarks to the theorem

                                                            [x ,y ]
        The biggest real root of F[a,b] 0 (d) is the square of the
                                     0


        maximum distance between (x0 , y0 ) and the points in ε0 .
        If x0 is a focus of ε0
                                    √
                                [       a−b,0]
                              F[a,b]  (d) = (a − b)2 d2 (d2 + 2(b − 2a)d + b2 )
                                     √    √           √      √
                              ⇒ d = ( a − a − b)2 , ( a + a − b)2


        In the case of a circumference a = b = R2 and if
        d = d20
                √
            [    a−b,0]
          F[a,b]          (d2 ) = R4 (y0 + x2 )2 (d2 + 2Rd0 + R2 − y0 − x2 )(d2 − 2Rd0 + R2 − y0 − x2 )
                            0
                                       2
                                            0      0
                                                                    2
                                                                         0    0
                                                                                               2
                                                                                                    0
          ⇒ d0 = |R −          y0 + x2 |
                                2
                                     0




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


The distance between two ellipses



  Let ε1 be an ellipse disjoint with ε0 , presented by the
  parametrization x = α(s), y = β(s), s ∈ [0, 2π). Then

       d(ε0 , ε1 ) = min{       (x1 − x0 )2 + (y1 − y0 )2 : (x0 , y0 ) ∈ ε0 , (x1 , y1 ) ∈ ε1 }


   is the square root of the smallest nonnegative real root of
                                         α(s),β(s)
  the family of univariate polynomials Fa,b        (d).




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


The distance between two ellipses


  In order to determine d(ε0 , ε1 ) we are analyzing two posibilities:
       d is determined as the smallest positive real number s.t.
       there exist s ∈ [0, 2π) solving
                         
                          F [α(s),β(s)] =         4    [a,b]
                                                              (α(s), β(s))dk = 0
                            [a,b]                  k=0 hk
                          F [α(s),β(s)] :=
                           ¯                        4   ∂   [a,b]
                                                                  (α(s), β(s))dk =
                            [a,b]                   k=0 ∂s hk                        0


        d is determined by analyzing the implicit curve
          [α(s),β(s)]
        F[a,b]        = 0.




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


First case

  Since α(s) and β(s) are linear forms on cos(s) and sin(s) this
  question is converted into an algebraic problem in the same
  way we have proceeded in the case point-ellipse, by performing
  the change of variable

                                 1             1                    1         1
                    cos s =            w+               , sin s =        w−
                                 2             w                    2i        w

  and then using resultants to eliminate w.
  We obtain a univariate polynomial of degree 60, Gε1 , whose
                                                          ε0
  smallest positive real root is the square of d(ε0 , ε1 ).
  Gε1 depends polynomially on the parameters of ε0 and ε1 .
   ε0



  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Second case

                                                                         [α(s),β(s)]
  d is determined by analyzing the implicit curve F[a,b]      = 0 in
  the region d ≥ 0 and s ∈ [0, 2π). In order to aply the algorithm
  by L. G ONZÁLEZ -V EGA , I. N ÉCULA , Efficient topology
  determination of implicitly defined algebraic plane curves.
  Computer Aided Geometric Design, 19: 719-743, 2002, we use
  the change of coordinates:

                                            1 − u2           2u
                              cos s =            2
                                                   sin s =
                                            1+u            1 + u2
                                                        [α(s),β(s)]
  and the real algebraic plane curve F[a,b]                           = 0 is analyzed in
  d ≥ 0, u ∈ R.


  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Example




 We consider ε0 and ε1 . E1 with center (0, 0) and semi-axes of
 length 3 and 2. E2 centered in (2, −3) and with semi-axes,
 parallel to the coordinate axes, of length 2 and 1.




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Example




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Example


 In this case the minimum distance is given by computing the
 real roots of the polynomial:
 Gε1 (d) = k1 d4 (d12 −216d11 +...)(d2 −54d+1053)2 (d2 −52d+1700)2 (k2 d12 +k3 d11 +...)3
  ε0


  where ki are real numbers.

 The non multiple factor of degree 12 is the one providing
 the smallest and the biggest real roots of Gε1 (d). It is not
                                                ε0
 still clear if this pattern appears in a general way.



  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                       Our approach
                                            Example
                                        Future work


Future work




        Continue studying the continuous motion case.
        Generalize to ellipsoids.
        Non-coplanar ellipses.
        Other conics.




  F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
Problem
                                     Our approach
                                          Example
                                      Future work




                                         Thank you!




F. Etayo, L. González-Vega, G. R. Quintana, W. Wang

Weitere ähnliche Inhalte

Was ist angesagt?

Chapter 4 likelihood
Chapter 4 likelihoodChapter 4 likelihood
Chapter 4 likelihood
NBER
 
Invariant test
Invariant testInvariant test
Invariant test
gsangui
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
Matthew Leingang
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
Matthew Leingang
 
Irene Martelli - PhD presentation
Irene Martelli - PhD presentationIrene Martelli - PhD presentation
Irene Martelli - PhD presentation
Irene Martelli
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Matthew Leingang
 
Lesson 23: The Definite Integral (handout)
Lesson 23: The Definite Integral (handout)Lesson 23: The Definite Integral (handout)
Lesson 23: The Definite Integral (handout)
Matthew Leingang
 
Label propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLPLabel propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLP
David Przybilla
 
Lecture on nk [compatibility mode]
Lecture on nk [compatibility mode]Lecture on nk [compatibility mode]
Lecture on nk [compatibility mode]
NBER
 

Was ist angesagt? (19)

Chapter 4 likelihood
Chapter 4 likelihoodChapter 4 likelihood
Chapter 4 likelihood
 
Invariant test
Invariant testInvariant test
Invariant test
 
Tro07 sparse-solutions-talk
Tro07 sparse-solutions-talkTro07 sparse-solutions-talk
Tro07 sparse-solutions-talk
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
On Foundations of Parameter Estimation for Generalized Partial Linear Models ...
On Foundations of Parameter Estimation for Generalized Partial Linear Models ...On Foundations of Parameter Estimation for Generalized Partial Linear Models ...
On Foundations of Parameter Estimation for Generalized Partial Linear Models ...
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Linear Algebra
Linear AlgebraLinear Algebra
Linear Algebra
 
Irene Martelli - PhD presentation
Irene Martelli - PhD presentationIrene Martelli - PhD presentation
Irene Martelli - PhD presentation
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
 
Lesson 23: The Definite Integral (handout)
Lesson 23: The Definite Integral (handout)Lesson 23: The Definite Integral (handout)
Lesson 23: The Definite Integral (handout)
 
Desm s mathematics
Desm s mathematicsDesm s mathematics
Desm s mathematics
 
NTU_paper
NTU_paperNTU_paper
NTU_paper
 
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
 
Label propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLPLabel propagation - Semisupervised Learning with Applications to NLP
Label propagation - Semisupervised Learning with Applications to NLP
 
1Sem-Basic Electronics Notes-Unit8-Digital Logic
1Sem-Basic Electronics Notes-Unit8-Digital Logic1Sem-Basic Electronics Notes-Unit8-Digital Logic
1Sem-Basic Electronics Notes-Unit8-Digital Logic
 
2008 : A Case Study: How to Speed Up the Simplex Algorithms on Problems Minim...
2008 : A Case Study: How to Speed Up the Simplex Algorithms on Problems Minim...2008 : A Case Study: How to Speed Up the Simplex Algorithms on Problems Minim...
2008 : A Case Study: How to Speed Up the Simplex Algorithms on Problems Minim...
 
Lecture on nk [compatibility mode]
Lecture on nk [compatibility mode]Lecture on nk [compatibility mode]
Lecture on nk [compatibility mode]
 
Lesson 4: Continuity
Lesson 4: ContinuityLesson 4: Continuity
Lesson 4: Continuity
 
1Sem-Basic Electronics Notes-Unit7-Number System
1Sem-Basic Electronics Notes-Unit7-Number System1Sem-Basic Electronics Notes-Unit7-Number System
1Sem-Basic Electronics Notes-Unit7-Number System
 

Andere mochten auch

4iP Investment Workshop Karen UnLtd
4iP Investment Workshop Karen UnLtd4iP Investment Workshop Karen UnLtd
4iP Investment Workshop Karen UnLtd
Screen Yorkshire
 
Application for schengen_visa
Application for schengen_visaApplication for schengen_visa
Application for schengen_visa
Renita Rosa
 
Social Networks for Social Change (WSP 166)
Social Networks for Social Change (WSP 166)Social Networks for Social Change (WSP 166)
Social Networks for Social Change (WSP 166)
Working Wikily
 
2장 전략적+프로젝트+선정
2장 전략적+프로젝트+선정2장 전략적+프로젝트+선정
2장 전략적+프로젝트+선정
guestedf8c60
 
IG2011_Quartly_final.ppt
IG2011_Quartly_final.pptIG2011_Quartly_final.ppt
IG2011_Quartly_final.ppt
grssieee
 
Linear algebra
Linear algebraLinear algebra
Linear algebra
vevin1986
 
China 3-0-understanding-the-new-china
China 3-0-understanding-the-new-chinaChina 3-0-understanding-the-new-china
China 3-0-understanding-the-new-china
sanjaypnayak
 
ball A703681C-5942-4494-98E0-12B19BC5AE3F_4Q2008ConfCallTranscript_Ball
ball   A703681C-5942-4494-98E0-12B19BC5AE3F_4Q2008ConfCallTranscript_Ballball   A703681C-5942-4494-98E0-12B19BC5AE3F_4Q2008ConfCallTranscript_Ball
ball A703681C-5942-4494-98E0-12B19BC5AE3F_4Q2008ConfCallTranscript_Ball
finance31
 

Andere mochten auch (16)

Software savings world gaurantee
Software savings world gauranteeSoftware savings world gaurantee
Software savings world gaurantee
 
4iP Investment Workshop Karen UnLtd
4iP Investment Workshop Karen UnLtd4iP Investment Workshop Karen UnLtd
4iP Investment Workshop Karen UnLtd
 
Application for schengen_visa
Application for schengen_visaApplication for schengen_visa
Application for schengen_visa
 
Brand Layers
Brand LayersBrand Layers
Brand Layers
 
Social Networks for Social Change (WSP 166)
Social Networks for Social Change (WSP 166)Social Networks for Social Change (WSP 166)
Social Networks for Social Change (WSP 166)
 
International business law report
International business law reportInternational business law report
International business law report
 
2장 전략적+프로젝트+선정
2장 전략적+프로젝트+선정2장 전략적+프로젝트+선정
2장 전략적+프로젝트+선정
 
IG2011_Quartly_final.ppt
IG2011_Quartly_final.pptIG2011_Quartly_final.ppt
IG2011_Quartly_final.ppt
 
Offshore Software-Web Application Development
 Offshore Software-Web Application Development Offshore Software-Web Application Development
Offshore Software-Web Application Development
 
Presentation 2 17 938a 2
Presentation 2 17 938a 2Presentation 2 17 938a 2
Presentation 2 17 938a 2
 
Ci407 7 c-speil
Ci407 7 c-speilCi407 7 c-speil
Ci407 7 c-speil
 
Linear algebra
Linear algebraLinear algebra
Linear algebra
 
China 3-0-understanding-the-new-china
China 3-0-understanding-the-new-chinaChina 3-0-understanding-the-new-china
China 3-0-understanding-the-new-china
 
Beyond copyright
Beyond copyrightBeyond copyright
Beyond copyright
 
Ebook Guide To Data Centers
Ebook Guide To Data CentersEbook Guide To Data Centers
Ebook Guide To Data Centers
 
ball A703681C-5942-4494-98E0-12B19BC5AE3F_4Q2008ConfCallTranscript_Ball
ball   A703681C-5942-4494-98E0-12B19BC5AE3F_4Q2008ConfCallTranscript_Ballball   A703681C-5942-4494-98E0-12B19BC5AE3F_4Q2008ConfCallTranscript_Ball
ball A703681C-5942-4494-98E0-12B19BC5AE3F_4Q2008ConfCallTranscript_Ball
 

Ähnlich wie EACA08 (7)

ADG 2008
ADG 2008ADG 2008
ADG 2008
 
EACA2010
EACA2010EACA2010
EACA2010
 
SIAMGD09
SIAMGD09SIAMGD09
SIAMGD09
 
CGTA09
CGTA09CGTA09
CGTA09
 
Introduction of Inverse Problem and Its Applications
Introduction of Inverse Problem and Its ApplicationsIntroduction of Inverse Problem and Its Applications
Introduction of Inverse Problem and Its Applications
 
nonlinear_rmt.pdf
nonlinear_rmt.pdfnonlinear_rmt.pdf
nonlinear_rmt.pdf
 
In792(2)
In792(2)In792(2)
In792(2)
 

Mehr von Gema R. Quintana

Mehr von Gema R. Quintana (13)

Pechakucha Congreso DIMA 2018
Pechakucha Congreso DIMA 2018Pechakucha Congreso DIMA 2018
Pechakucha Congreso DIMA 2018
 
Motivos para el uso de Instagram en los Adolescentes
Motivos para el uso de Instagram en los AdolescentesMotivos para el uso de Instagram en los Adolescentes
Motivos para el uso de Instagram en los Adolescentes
 
Motivos para el uso de Instagram en los Adolescentes
Motivos para el uso de Instagram en los AdolescentesMotivos para el uso de Instagram en los Adolescentes
Motivos para el uso de Instagram en los Adolescentes
 
Creativity is...
Creativity is...Creativity is...
Creativity is...
 
Intersección medicina y matemáticas
Intersección medicina y matemáticasIntersección medicina y matemáticas
Intersección medicina y matemáticas
 
Introduction to Lie Groups
Introduction to Lie GroupsIntroduction to Lie Groups
Introduction to Lie Groups
 
Presentation of my Master's Thesis
Presentation of my Master's ThesisPresentation of my Master's Thesis
Presentation of my Master's Thesis
 
Master's Thesis: Closed formulae for distance functions involving ellipses.
Master's Thesis: Closed formulae for distance functions involving ellipses.Master's Thesis: Closed formulae for distance functions involving ellipses.
Master's Thesis: Closed formulae for distance functions involving ellipses.
 
VXC: Computer Vision Presentation
VXC: Computer Vision PresentationVXC: Computer Vision Presentation
VXC: Computer Vision Presentation
 
VXC: Computer Vision
VXC: Computer VisionVXC: Computer Vision
VXC: Computer Vision
 
Real Surfaces
Real SurfacesReal Surfaces
Real Surfaces
 
Real Surfaces
Real SurfacesReal Surfaces
Real Surfaces
 
CVC Seminar
CVC SeminarCVC Seminar
CVC Seminar
 

Kürzlich hochgeladen

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 

Kürzlich hochgeladen (20)

ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 

EACA08

  • 1. Problem Our approach Example Future work Closed formulae for distance functions involving ellipses. F. Etayo1 , L. González-Vega1 , G. R. Quintana1 , W. Wang2 1 Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria 2 Department of Computer Science University of Hong Kong XI Encuentro de Álgebra Computacional y Aplicaciones, Universidad de Granada 2008 F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 2. Problem Our approach Example Future work Contents 1 Problem 2 Our approach 3 Example 4 Future work F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 3. Problem Our approach Example Future work Introduction We want to compute the distance between two coplanar ellipses. The minimum distance between a given point and one ellipse is a positive algebraic number: our goal is to determine a polynomial with this number as a real root. That distance does not depend on the footpoint. It gives the distance directly. We can use this formula for analyzing the Ellipses Moving Problem (EMP). F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 4. Problem Our approach Example Future work Applications The EMP is a critical problem in Computer Graphics, with applications like: Collision detection Orbit analysis (non-coplanar ellipses) F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 5. Problem Our approach Example Future work Previous works I. Z. E MIRIS , E. T SIGARIDAS , G. M. T ZOUMAS . The predicates for the Voronoi diagram of ellipses. Proc. ACM Symp. Comput. Geom., 2006. I. Z. E MIRIS , G. M. T ZOUMAS . A Real-time and Exact Implementation of the predicates for the Voronoi Diagram for parametric ellipses. Proc. ACM Symp. Solid Physical Modelling, 2007. C. L ENNERZ , E. S CHÖMER . Efficient Distance Computation for Quadratic Curves and Surfaces. Geometric Modelling and Processing Proceedings, 2002. F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 6. Problem Our approach Example Future work Previous works J.-K. S EONG , D. E. J OHNSON , E. C OHEN . A Higher Dimensional Formulation for Robust and Interactive Distance Queries. Proc. ACM Solid and Physical Modeling, 2006. K.A. S OHN , B. J ÜTTLER , M.S. K IM , W. WANG . Computing the Distance Between Two Surfaces via Line Geometry. Proc. Tenth Pacific Conference on Computer Graphics and Applications, 236-245, IEEE Press, 2002. Common aspect: the problem is always solved using foot points. F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 7. Problem Our approach Example Future work Our approach We do not make the minimum distance computation depending on the foot points. We study the ellipse separation problem by analyzing the univariate polynomial provided by the distance. Parameters of our problem: center coordinates, axes length... F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 8. Problem Our approach Example Future work Our approach We do not make the minimum distance computation depending on the foot points. We study the ellipse separation problem by analyzing the univariate polynomial provided by the distance. Parameters of our problem: center coordinates, axes length... Is there any advantage? F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 9. Problem Our approach Example Future work Our approach We do not make the minimum distance computation depending on the foot points. We study the ellipse separation problem by analyzing the univariate polynomial provided by the distance. Parameters of our problem: center coordinates, axes length... Is there any advantage? Yes: the distance behaves continuously but footpoints don’t. F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 10. Problem Our approach Example Future work The distance of a point to an ellipse We consider the parametric equations of an ellipse, ε0 : √ √ x = a cos t, y = b sin t t ∈ [0, 2π) in order to construct a function fd which gives the distance between a point (x0 , y0 ) and the ellipse: √ √ fd := (x0 − a cos t)2 + (y0 − b sin t)2 − d F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 11. Problem Our approach Example Future work The distance of a point to an ellipse We want to solve a system of equations: fd (t) = 0 ∂fd ∂t (t) = 0 F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 12. Problem Our approach Example Future work The distance of a point to an ellipse We want to solve a system of equations: fd (t) = 0 ∂fd ∂t (t) = 0 There are two posibilities: rational change of variable complex change of variable F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 13. Problem Our approach Example Future work The distance of a point to an ellipse Rational change of variable: 1−t2 cos t = 1+t2 2t sin t = 1+t2 Disadvantage: more complicated. F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 14. Problem Our approach Example Future work The distance of a point to an ellipse Rational change of variable: 1−t2 cos t = 1+t2 2t sin t = 1+t2 Disadvantage: more complicated. F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 15. Problem Our approach Example Future work The distance of a point to an ellipse 1 Since z = cos t + i sin t, z = z and we can use the complex change of variable: 1 z− z sin t = 2i 1 z+ z cos t = 2 F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 16. Problem Our approach Example Future work The distance of a point to an ellipse The new system: √ √ √ √ (b − a)z 4 + 2(x0 a − iy0 √b)z 3 − 2(x0 a + iy0 b)z + a − b = 0 √ √ √ (b − a)z 4 − 4(x0 a − iy0 b)z 3 − 2(2(x2 + y0 − d))z 2 + 4(x0 a + iy0 b)z + b − a = 0 0 2 Using resultants we eliminate the variable z (we also eliminate i). F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 17. Problem Our approach Example Future work The distance of a point to an ellipse Theorem If d0 is the distance of a point (x0 , y0 ) to the ellipse ε0 with center (0, 0) and semiaxes a and b then d = d2 is the smallest 0 nonnegative real root of the polynomial [x0 ,y ] F[a,b] 0 (d) = (a − b)2 d4 + 2(a − b)(b2 + 2x2 b + y0 b − 2ay0 − a2 − x2 a)d3 0 2 2 0 +(y0 b2 − 8y0 ba2 − 6b2 a2 + 6a3 y0 − 2x2 a3 + a4 + 6x2 y0 b2 − 2y0 b3 4 2 2 0 0 2 2 +6y0 a2 + 4x2 a2 b + 2b3 a + 6x2 y0 a2 + 2a3 b − 6x4 ab + 4y0 b2 a 4 0 0 2 0 2 4 2 4 2 3 2 2 2 4 2 2 4 2 +6x0 b + 4x0 a + 6b x0 − 10x0 y0 ab + b − 8x0 ab − 6y0 ab)d −2(ab4 + y0 − a2 b3 + a4 b + 2y0 a2 + 2b2 x6 − a3 b2 − bx2 ay0 4 6 0 0 4 −bx4 ay0 + 3x2 ay0 b2 + 3x2 a2 y0 b − by0 a + b2 y0 x2 + 3x4 b3 0 2 0 2 0 2 6 4 0 0 +3y0 a3 + x2 b4 + x4 a2 y0 − bx6 a − 5x4 ab2 + 3b2 y0 x4 + 3y0 ab2 4 0 0 2 0 0 2 0 4 −2x2 a3 u2 + 3x4 a2 b + 3x2 b2 y0 − 2x2 ab3 − 2y0 a3 b − 3y0 ab3 0 0 0 0 2 0 2 2 −3x2 a3 b − 2x2 b3 y0 − 5y0 a2 b + 4x2 a2 b2 + 4y0 a2 b2 )d 0 0 2 4 0 2 +(x4 + 2x2 b + b2 − 2x2 a − 2ba + a2 + y0 + 2x2 y0 − 2y0 b + 2ay0 )· 0 0 0 4 0 2 2 2 [a,b] (bx2 + ay0 − ba)2 = 0 2 4 k=0 hk (x0 , y0 )dk F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 18. Problem Our approach Example Future work Remarks to the theorem [x ,y ] The biggest real root of F[a,b] 0 (d) is the square of the 0 maximum distance between (x0 , y0 ) and the points in ε0 . If x0 is a focus of ε0 √ [ a−b,0] F[a,b] (d) = (a − b)2 d2 (d2 + 2(b − 2a)d + b2 ) √ √ √ √ ⇒ d = ( a − a − b)2 , ( a + a − b)2 In the case of a circumference a = b = R2 and if d = d20 √ [ a−b,0] F[a,b] (d2 ) = R4 (y0 + x2 )2 (d2 + 2Rd0 + R2 − y0 − x2 )(d2 − 2Rd0 + R2 − y0 − x2 ) 0 2 0 0 2 0 0 2 0 ⇒ d0 = |R − y0 + x2 | 2 0 F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 19. Problem Our approach Example Future work The distance between two ellipses Let ε1 be an ellipse disjoint with ε0 , presented by the parametrization x = α(s), y = β(s), s ∈ [0, 2π). Then d(ε0 , ε1 ) = min{ (x1 − x0 )2 + (y1 − y0 )2 : (x0 , y0 ) ∈ ε0 , (x1 , y1 ) ∈ ε1 } is the square root of the smallest nonnegative real root of α(s),β(s) the family of univariate polynomials Fa,b (d). F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 20. Problem Our approach Example Future work The distance between two ellipses In order to determine d(ε0 , ε1 ) we are analyzing two posibilities: d is determined as the smallest positive real number s.t. there exist s ∈ [0, 2π) solving   F [α(s),β(s)] = 4 [a,b] (α(s), β(s))dk = 0 [a,b] k=0 hk  F [α(s),β(s)] := ¯ 4 ∂ [a,b] (α(s), β(s))dk = [a,b] k=0 ∂s hk 0 d is determined by analyzing the implicit curve [α(s),β(s)] F[a,b] = 0. F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 21. Problem Our approach Example Future work First case Since α(s) and β(s) are linear forms on cos(s) and sin(s) this question is converted into an algebraic problem in the same way we have proceeded in the case point-ellipse, by performing the change of variable 1 1 1 1 cos s = w+ , sin s = w− 2 w 2i w and then using resultants to eliminate w. We obtain a univariate polynomial of degree 60, Gε1 , whose ε0 smallest positive real root is the square of d(ε0 , ε1 ). Gε1 depends polynomially on the parameters of ε0 and ε1 . ε0 F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 22. Problem Our approach Example Future work Second case [α(s),β(s)] d is determined by analyzing the implicit curve F[a,b] = 0 in the region d ≥ 0 and s ∈ [0, 2π). In order to aply the algorithm by L. G ONZÁLEZ -V EGA , I. N ÉCULA , Efficient topology determination of implicitly defined algebraic plane curves. Computer Aided Geometric Design, 19: 719-743, 2002, we use the change of coordinates: 1 − u2 2u cos s = 2 sin s = 1+u 1 + u2 [α(s),β(s)] and the real algebraic plane curve F[a,b] = 0 is analyzed in d ≥ 0, u ∈ R. F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 23. Problem Our approach Example Future work Example We consider ε0 and ε1 . E1 with center (0, 0) and semi-axes of length 3 and 2. E2 centered in (2, −3) and with semi-axes, parallel to the coordinate axes, of length 2 and 1. F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 24. Problem Our approach Example Future work Example F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 25. Problem Our approach Example Future work Example In this case the minimum distance is given by computing the real roots of the polynomial: Gε1 (d) = k1 d4 (d12 −216d11 +...)(d2 −54d+1053)2 (d2 −52d+1700)2 (k2 d12 +k3 d11 +...)3 ε0 where ki are real numbers. The non multiple factor of degree 12 is the one providing the smallest and the biggest real roots of Gε1 (d). It is not ε0 still clear if this pattern appears in a general way. F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 26. Problem Our approach Example Future work Future work Continue studying the continuous motion case. Generalize to ellipsoids. Non-coplanar ellipses. Other conics. F. Etayo, L. González-Vega, G. R. Quintana, W. Wang
  • 27. Problem Our approach Example Future work Thank you! F. Etayo, L. González-Vega, G. R. Quintana, W. Wang