Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Indeterminate Beam Problem- Mechanics Of Solids A beam ABC rests on su.docx

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige

Hier ansehen

1 von 2 Anzeige

Indeterminate Beam Problem- Mechanics Of Solids A beam ABC rests on su.docx

Herunterladen, um offline zu lesen

Indeterminate Beam Problem- Mechanics Of Solids
A beam ABC rests on supports A and B and is supported by a cable at C that has a length h = 2(m). The beam ABC with lengths L = 2(m) (shown in Figure 3 below) supports a uniform load q = 20 (kN/m) that acts over the entire distance \'
Solution
a)
moment of inertia of beam = 1/12 *d 4 = 520833.33 mm 4
E= 70kN/mm 2
EI = 520833.33 *70= 3.65*10 7 kN-mm 2
b)
axeal rigidity of cable EA= 210 *3.14*5 2 = 16493 .36 kN
C)
let tension in cable C = T
then balance moment about point A
T*4+ R B *2 = 20*4*2 = 160 OR R B +2T = 80 ----------1
BALANCE MOMENT ABOUT POINT C
R A *2 - 20*2*1 = T*2- 20*2*1 OR R A = T -------------- 2
R A + R B + T= 20*4 = 80
D)
deflection at C = T*2/(EA)
.

Indeterminate Beam Problem- Mechanics Of Solids
A beam ABC rests on supports A and B and is supported by a cable at C that has a length h = 2(m). The beam ABC with lengths L = 2(m) (shown in Figure 3 below) supports a uniform load q = 20 (kN/m) that acts over the entire distance \'
Solution
a)
moment of inertia of beam = 1/12 *d 4 = 520833.33 mm 4
E= 70kN/mm 2
EI = 520833.33 *70= 3.65*10 7 kN-mm 2
b)
axeal rigidity of cable EA= 210 *3.14*5 2 = 16493 .36 kN
C)
let tension in cable C = T
then balance moment about point A
T*4+ R B *2 = 20*4*2 = 160 OR R B +2T = 80 ----------1
BALANCE MOMENT ABOUT POINT C
R A *2 - 20*2*1 = T*2- 20*2*1 OR R A = T -------------- 2
R A + R B + T= 20*4 = 80
D)
deflection at C = T*2/(EA)
.

Anzeige
Anzeige

Weitere Verwandte Inhalte

Weitere von rtodd972 (20)

Aktuellste (20)

Anzeige

Indeterminate Beam Problem- Mechanics Of Solids A beam ABC rests on su.docx

  1. 1. Indeterminate Beam Problem- Mechanics Of Solids A beam ABC rests on supports A and B and is supported by a cable at C that has a length h = 2(m). The beam ABC with lengths L = 2(m) (shown in Figure 3 below) supports a uniform load q = 20 (kN/m) that acts over the entire distance ' Solution a) moment of inertia of beam = 1/12 *d 4 = 520833.33 mm 4 E= 70kN/mm 2 EI = 520833.33 *70= 3.65*10 7 kN-mm 2 b) axeal rigidity of cable EA= 210 *3.14*5 2 = 16493 .36 kN C) let tension in cable C = T then balance moment about point A T*4+ R B *2 = 20*4*2 = 160 OR R B +2T = 80 ----------1 BALANCE MOMENT ABOUT POINT C R A *2 - 20*2*1 = T*2- 20*2*1 OR R A = T -------------- 2 R A + R B + T= 20*4 = 80 D)
  2. 2. deflection at C = T*2/(EA)

×