SlideShare ist ein Scribd-Unternehmen logo
1 von 210
POLYNOMIALS 
Ms. Johnson 8th Grade Math
KEY VOCABULARY 
 Variable- A quantity that can change or vary, 
taking on different values
KEY VOCABULARY 
 Variable- A quantity that can change or vary, taking on 
different values 
Constant- A quantity having a fixed 
value that does not change or vary, such 
as a number. A constant term does not 
contain a variable. 
[( y= 5 + x ) in this example, 5 is a 
constant
KEY VOCABULARY 
 Variable- A quantity that can change or vary, taking 
on different values 
 Constant- A quantity having a fixed value that does 
not change or vary, such as a number. A constant term 
does not contain a variable. 
[( y= 5 + x ) in this example, 5 is a constant 
Coefficient- A number that multiplies a 
variable [ (4b) in this example, 4 is a 
coefficient]
KEY VOCABULARY 
 Variable- A quantity that can change or vary, taking on 
different values 
 Constant- A quantity having a fixed value that does not 
change or vary, such as a number. A constant term does not 
contain a variable. 
[( y= 5 + x ) in this example, 5 is a constant 
 Coefficient- A number that multiplies a variable [ (4b) in 
this example, 4 is a coefficient] 
 Like Terms- Terms whose variables and 
exponents are the same (the coefficients can 
be different) [5a + 8a ; or x2y + 3x2y]
KEY VOCABULARY 
 Monomial- a polynomial containing one term which 
may be a number, a variable, or a product of numbers 
and variables, with no negative or fractional exponents 
( -5, xy, 5x2, 5x2y3z )
KEY VOCABULARY 
 Monomial- a polynomial containing one term which 
may be a number, a variable, or a product of numbers 
and variables, with no negative or fractional exponents 
( -5, xy, 5x2, 5x2y3z ) 
 Binomial- a polynomial containing two unlike terms 
( x+ 5, xy + 5, 5x2 – x, 5x2 + y3)
KEY VOCABULARY 
 Monomial- a polynomial containing one term which 
may be a number, a variable, or a product of numbers 
and variables, with no negative or fractional exponents 
( -5, xy, 5x2, 5x2y3z ) 
 Binomial- a polynomial containing two unlike terms 
( x+ 5, xy +5, 5x2 – x, 5x2 + y3) 
 Trinomial- a polynomial containing three unlike 
terms 
(x+5+y, 5x2 –x+y, 5x2 + y3 – z)
KEY VOCABULARY 
 Monomial- a polynomial containing one term which may 
be a number, a variable, or a product of numbers and 
variables, with no negative or fractional exponents 
( -5, xy, 5x2, 5x2y3z ) 
 Binomial- a polynomial containing two unlike terms 
( x+ 5, xy+5, 5x2 – x, 5x2 + y3) 
 Trinomial- a polynomial containing three unlike terms 
(x+5+y, 5x2 –x+y, 5x2 + y3 – z) 
 Polynomial- an expression that is a monomial or the sum 
of monomials (xy, xy- 5 , 5x2 – x + y, 5x2 + y3 – z +3)
8.A.6 MULTIPLY MONOMIALS 
 Just remember the Product Law! 
12a3b2 (3a4b6) 
Product Law2 applies to the coefficients 
Product Law1 applies to the variables 
121a3b2 (31a4b6) =
8.A.6 MULTIPLY MONOMIALS 
 Just remember the Product Law! 
12a3b2 (3a4b6) 
Product Law2 applies to the coefficients 
Product Law1 applies to the variables 
121a3b2 (31a4b6) = 361a7b8 = 36a7b8
8.A.6 MULTIPLY MONOMIALS 
 Some examples: 
a. 5bc (4b3c2) = 
20b4c3 
*don’t forget about the hidden ones 
b. 4a3mr (6am4) = 
24a4m5r 
*if a variable only appears once, keep it in the final answer 
c. -2b3m4 (3b2m-2) = 
*don’t forget about integer rules! 
d. 12a4bg3 (-2abg3) = 
-6b5m2 
-24a5b2g6
8.A.6 MULTIPLY MONOMIALS 
 Now You Try Some! 
a) 4a3m (8a4m6) 
b) 5c4a3 (-3c2a) 
c) -6m4r-2 (3m0r6) 
d)2b6 (8b3c)
8.A.6 MULTIPLY MONOMIALS 
 Now You Try Some! 
a) 4a3m (8a4m6) = 32a7m7 
b) 5c4a3 (-3c2a) 
c) -6m4r-2 (3m0r6) 
d)2b6 (8b3c)
8.A.6 MULTIPLY MONOMIALS 
 Now You Try Some! 
a) 4a3m (8a4m6) = 32a7m7 
b) 5c4a3 (-3c2a) = -15a4c6 
c) -6m4r-2 (3m0r6) 
d)2b6 (8b3c)
8.A.6 MULTIPLY MONOMIALS 
 Now You Try Some! 
a) 4a3m (8a4m6) = 32a7m7 
b) 5c4a3 (-3c2a) = -15a4c6 
c) -6m4r-2 (3m0r6) = -18m4r4 
d)2b6 (8b3c)
8.A.6 MULTIPLY MONOMIALS 
 Now You Try Some! 
a) 4a3m (8a4m6) = 32a7m7 
b) 5c4a3 (-3c2a) = -15a4c6 
c) -6m4r-2 (3m0r6) = -18m4r4 
d)2b6 (8b3c) = 16b9c
8.A.6 DIVIDE MONOMIALS 
 Just remember the quotient laws! 
27a5b6 ÷ 9a2b 
Quotient Law2 let’s us divide 27 by 9 = 3 
Quotient Law1 lets us divide the variables
8.A.6 DIVIDE MONOMIALS 
 Just remember the quotient laws! 
27a5b6 ÷ 9a2b 
Quotient Law2 let’s us divide 27 by 9 = 3 
Quotient Law1 lets us divide the variables (which 
means subtract the exponents for each variable) 
= 3a3b5
8.A.6 DIVIDE MONOMIALS 
 Some Examples: 
a)4a6b3 ÷ 2a3b 
a)12m4n2 ÷ 4mn5 
a)2a5b3 ÷ 3a3 
b)5m7c4 ÷ 5m7c-9
8.A.6 DIVIDE MONOMIALS 
 Some Examples: 
a)4a6b3 ÷ 2a3b = 2a3b2 
a)12m4n2 ÷ 4mn5 
a)2a5b3 ÷ 3a3 
b)5m7c4 ÷ 5m7c-9
8.A.6 DIVIDE MONOMIALS 
 Some Examples: 
a)4a6b3 ÷ 2a3b = 2a3b2 
a)12m4n2 ÷ 4mn5 = 3m3n-3 
a)2a5b3 ÷ 3a3 
a)5m7c4 ÷ 5m7c-9
8.A.6 DIVIDE MONOMIALS 
 Some Examples: 
a)4a6b3 ÷ 2a3b = 2a3b2 
a)12m4n2 ÷ 4mn5 = 3m3n-3 
a)2a5b3 ÷ 3a3 = (2/3) a2b3 
a)5m7c4 ÷ 5m7c-9
8.A.6 DIVIDE MONOMIALS 
 Some Examples: 
a)4a6b3 ÷ 2a3b = 2a3b2 
a)12m4n2 ÷ 4mn5 = 3m3n-3 
a)2a5b3 ÷ 3a3 = (2/3) a2b3 
5m7c4 ÷ 5m7c-9 = 1m0c13
8.A.6 DIVIDE MONOMIALS 
 Some Examples: 
a)4a6b3 ÷ 2a3b = 2a3b2 
a)12m4n2 ÷ 4mn5 = 3m3n-3 
a)2a5b3 ÷ 3a3 = (2/3) a2b3 
a)5m7c4 ÷ 5m7c-9 = 1m0c13 = c13
8.A.6 DIVIDE MONOMIALS 
 Now You Try Some…Alone! 
a) 30a6 ÷ 5a 
a) 32b4m3 ÷ 8bm3 
a) 16a7c3 ÷ 4a9 
 9b6r5 ÷ 6b2r-4
8.A.6 DIVIDE MONOMIALS 
 Now You Try Some…Alone! 
a) 30a6 ÷ 5a = 6a5 
a) 32b4m3 ÷ 8bm3 
a) 16a7c3 ÷ 4a9 
 9b6r5 ÷ 6b2r-4
8.A.6 DIVIDE MONOMIALS 
 Now You Try Some…Alone! 
a) 30a6 ÷ 5a = 6a5 
a) 32b4m3 ÷ 8bm3 = 4b3m0 
a) 16a7c3 ÷ 4a9 
a) 9b6r5 ÷ 6b2r-4
8.A.6 DIVIDE MONOMIALS 
 Now You Try Some…Alone! 
a) 30a6 ÷ 5a = 6a5 
a) 32b4m3 ÷ 8bm3 = 4b3m0 = 4b3 
a) 16a7c3 ÷ 4a9 
a) 9b6r5 ÷ 6b2r-4
8.A.6 DIVIDE MONOMIALS 
 Now You Try Some…Alone! 
a) 30a6 ÷ 5a = 6a5 
a) 32b4m3 ÷ 8bm3 = 4b3m0 = 4b3 
a) 16a7c3 ÷ 4a9 = 4a-2c3 
a) 9b6r5 ÷ 6b2r-4
8.A.6 DIVIDE MONOMIALS 
 Now You Try Some…Alone! 
a) 30a6 ÷ 5a = 6a5 
a) 32b4m3 ÷ 8bm3 = 4b3m0 = 4b3 
a) 16a7c3 ÷ 4a9 = 4a-2c3 
a) 9b6r5 ÷ 6b2r-4 = (3/2)b4r9
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 This works a lot like Dividing a monomial by a 
monomial 
15a4b7 + 6a2b4 
3ab 
Break this into two separate fractions:
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 This works a lot like Dividing a monomial by a 
monomial 
15a4b7 + 6a2b4 
3ab 
Break this into two separate fractions:
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 This works a lot like Dividing a monomial by a 
monomial 
15a4b7 + 6a2b4 
3ab 
Break this into two separate fractions:
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
15a4b7 + 6a2b4 
3ab 
Break this into two separate fractions: 
15a4b7 = 6a2b4 = 
3ab 3ab
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
15a4b7 + 6a2b4 
3ab 
Now follow Quotient Laws! 
15a4b7 = 5a3b6 6a2b4 = 2ab3 
3ab 3ab
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
15a4b7 = 5a3b6 6a2b4 = 2ab3 
3ab 3ab 
Put these two parts together, using the 
operation from the original! In this case, it 
was an addition problem, so the answer is… 
5a3b6 + 2ab3
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 One more example: 
A. 18m6n9 − 24m4n7 
6m2n3
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 One more example: 
A. 18m6n9 − 24m4n7 
6m2n3 
*break into two fractions! 
18m6n9 = 24m4n7 = 
6m2n3 6m2n3
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 One more example: 
A. 18m6n9 − 24m4n7 
6m2n3 
Follow quotient laws! 
18m6n9 = 3m4n6 24m4n7 = 
6m2n3 6m2n3
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 One more example: 
A. 18m6n9 − 24m4n7 
6m2n3 
Follow quotient laws 
18m6n9 = 3m4n6 24m4n7 = 4m2n4 
6m2n3 6m2n3
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 One more example: 
A. 18m6n9 − 24m4n7 
6m2n3 
*follow quotient laws! 
18m6n9 = 3m4n6 24m4n7 = 4m2n4 
6m2n3 6m2n3 
*put it all together: 
3m4n6 − 4m2n4
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Now You Try Alone ! And don’t forget integer 
rules! 
A.30a6b2 − 27a4b6 
3a3b4 
B. 28m5n3p4 + 32m2n5p 
4mn7p3
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s Go Over Them! 
A.30a6b2 − 27a4b6 
3a3b4 
30a6b2 = 27a4b6 = 
3a3b4 3a3b4
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s Go Over Them! 
A.30a6b2 − 27a4b6 
3a3b4 
30a6b2 = 10a3b-2 27a4b6 = 
3a3b4 3a3b4
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s Go Over Them! 
A.30a6b2 − 27a4b6 
3a3b4 
30a6b2 = 10a3b-2 27a4b6 = 9ab2 
3a3b4 3a3b4
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s Go Over Them! 
A. 30a6b2 − 27a4b6 
3a3b4 
30a6b2 = 10a3b-2 27a4b6 = 9ab2 
3a3b4 3a3b 
10a3b-2 − 9ab2
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Now You Try! And don’t forget integer rules! 
B. 28m5n3p4 + 32m2n5p 
4mn7p3
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s Go Over Them! 
B. 28m5n3p4 + 32m2n5p 
4mn7p3 
*Break into 2 fractions 
28m5n3p4 32m2n5p 
4mn7p3 4mn7p3
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s Go Over Them! 
B. 28m5n3p4 + 32m2n5p 
4mn7p3 
*Break into 2 fractions 
28m5n3p4 = 7m4n-4p 32m2n5p = 
4mn7p3 4mn7p3
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s Go Over Them! 
B. 28m5n3p4 + 32m2n5p 
4mn7p3 
*Break into 2 fractions 
28m5n3p4 = 7m4n-4p 32m2n5p = 8mn-2p-2 
4mn7p3 4mn7p3
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s Go Over Them! 
B. 28m5n3p4 + 32m2n5p 
4mn7p3 
*Break into 2 fractions 
28m5n3p4 = 7m4n-4p 32m2n5p = 8mn-2p-2 
4mn7p3 4mn7p3 
7m4n-4p + 8mn-2p-2
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 On loose leaf! On your own! Show the broken up 
fractions! 
1. 36a5b7 + 12a3b4 
6ab4 
2. 21c8d4 − 35c9d 
7c8d3 
3. 40a6c5 + 60a2c7 
20ac4
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s go over them… 
1. 36a5b7 + 12a3b4 = 6a4b3 + 2a2 
6ab4 
2. 21c8d4 − 35c9d 
7c8d3 
3. 40a6c5 + 60a2c7 
20ac4
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s go over them… 
1. 36a5b7 + 12a3b4 = 6a4b3 + 2a2 
6ab4 
2. 21c8d4 − 35c9d = 3d − 5cd-2 
7c8d3 
3. 40a6c5 + 60a2c7 
20ac4
8.A.9- DIVIDE A POLYNOMIAL BY A 
MONOMIAL 
 Let’s go over them… 
1. 36a5b7 + 12a3b4 = 6a4b3 + 2a2 
6ab4 
2. 21c8d4 − 35c9d = 3d − 5cd-2 
7c8d3 
3. 40a6c5 + 60a2c7 = 2a5c + 3ac3 
20ac4
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 5(4 + 7) = 
There are two ways to evaluate this equation. 
1. PEMDAS 
1. Distributive Property 5(4+7)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 5(4 + 7) = 
There are two ways to evaluate this equation. 
1. PEMDAS 
Parentheses: 4+7 =11 
1. Distributive Property 5(4+7)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 5(4 + 7) = 
There are two ways to evaluate this equation. 
1. PEMDAS 
Parentheses: 4+7 =11 
Multiplication: 5(11) = 55 
1. Distributive Property 5(4+7)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 5(4 + 7) = 
There are two ways to evaluate this equation. 
1. PEMDAS 
Parentheses: 4+7 =11 
Multiplication: 5(11) = 55 
1.Distributive Property 5(4+7) = 5(4) +
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 5(4 + 7) = 
There are two ways to evaluate this equation. 
1. PEMDAS 
Parentheses: 4+7 =11 
Multiplication: 5(11) = 55 
1. Distributive Property 5(4+7) = 5(4) + 5(7)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 5(4 + 7) = 
There are two ways to evaluate this equation. 
1. PEMDAS 
Parentheses: 4+7 =11 
Multiplication: 5(11) = 55 
1. Distributive Property 5(4+7) = 5(4) + 5(7) 
= 20 + 35
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 5(4 + 7) = 
There are two ways to evaluate this equation. 
1. PEMDAS 
Parentheses: 4+7 =11 
Multiplication: 5(11) = 55 
1. Distributive Property 5(4+7) = 5(4) + 5(7) 
= 20 + 35 
= 55
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Remember the Distributive Property (the 
milkman delivers to each house separately): 
a(b + c) = ab +ac 
5(c − 6d) = 
-4a(7 + 6d) =
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Remember the Distributive Property (the 
milkman delivers to each house separately): 
a(b + c) = ab +ac 
5(c − 6d) = 5c 
-4a(7 + 6d) =
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Remember the Distributive Property (the 
milkman delivers to each house separately): 
a(b + c) = ab +ac 
5(c − 6d) = 5c − 30d 
and these are not like terms, so this is the 
final answer! 
-4a(7 + 6d) =
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Remember the Distributive Property (the 
milkman delivers to each house separately): 
a(b + c) = ab +ac 
5(c − 6d) = 5c − 30d 
and these are not like terms, so this is the 
final answer! 
-4a(7 + 6d) = -28a
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Remember the Distributive Property (the 
milkman delivers to each house separately): 
a(b + c) = ab +ac 
5(c − 6d) = 5c − 30d 
and these are not like terms, so this is the 
final answer! 
-4a(7 + 6d) = -28a − 24ad
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Some Examples: 
1.5z(a2 − 3b) 
1.4r3(8r + 7) 
1.6b2(7b + 3b)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Some Examples: 
1.5z(a2 − 3b) = 5za2 − 15zb 
1.4r3(8r + 7) 
1.6b2(7b + 3b)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Some Examples: 
1.5z(a2 − 3b) = 5za2 − 15zb 
2.4r3(8r + 7) = 32r4 + 28r3 
Don’t forget about product law! These aren’t like terms!! 
1.6b2(7b + 3b)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Some Examples: 
1.5z(a2 − 3b) = 5za2 − 15zb 
2.4r3(8r + 7) = 32r4 + 28r3 
Don’t forget about product law! These aren’t like terms!! 
1.6b2(7b + 3b)= 42b3 + 18b3
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Some Examples: 
1.5z(a2 − 3b) = 5za2 − 15zb 
2.4r3(8r + 7) = 32r4 + 28r3 
Don’t forget about product law! These aren’t like terms!! 
1.6b2(7b + 3b)= 42b3 + 18b3 = 60b3 
These are like terms!
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Now you try some… ALONE! 
1. -4c(7 − 6d) 
2.8m(6m4 + m5) 
3. -7a(4 − a) 
4.9b3 (7ab − 4ab4)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Now you try some… ALONE! 
1. -4c(7 − 6d) = -28c + 24cd 
2.8m(6m4 + m5) 
3. -7a(4 − a) 
4.9b3 (7ab − 4ab4)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Now you try some… ALONE! 
1. -4c(7 − 6d) = -28c + 24cd 
*NB: a negative times a negative is a positive 
1.8m(6m4 + m5) 
2. -7a(4 − a) 
3.9b3 (7ab − 4ab4)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Now you try some… ALONE! 
1. -4c(7 − 6d) = -28c + 24cd 
*NB: a negative times a negative is a positive 
 8m(6m4 + m5) = 48m5 + 8m6 
 -7a(4 − a) 
 9b3 (7ab − 4ab4)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Now you try some… ALONE! 
1. -4c(7 − 6d) = -28c + 24cd 
*NB: a negative times a negative is a positive 
1.8m(6m4 + m5) = 48m5 + 8m6 
2. -7a(4 − a) = -28a +7a2 
3.9b3 (7ab − 4ab4)
8.A.8- MULTIPLY A BINOMIAL BY A 
MONOMIAL 
 Now you try some… ALONE! 
1. -4c(7 − 6d) = -28c + 24cd 
*NB: a negative times a negative is a positive 
1.8m(6m4 + m5) = 48m5 + 8m6 
2. -7a(4 − a) = -28a +7a2 
3.9b3 (7ab − 4ab4) = 63ab4 − 36ab7
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(n+4) (n−5) 
For problems like this, we will learn 
about an important acronym : FOIL 
Basically you use the distributive 
property twice.
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(n+4) (n−5)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(n+4) (n−5) 
F- firsts n  n = n2
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(n+4) (n−5) 
F- firsts n  n = n2 
O- outers n  -5 = -5n
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(n+4) (n−5) 
F- firsts n  n = n2 
O- outers n  -5 = -5n 
I- inners 4  n = 4n
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(n+4) (n−5) 
F- firsts n  n = n2 
O- outers n  -5 = -5n 
I- inners 4  n = 4n 
L- lasts 4  -5 = -20
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(n+4) (n−5) 
F- firsts n  n = n2 
O- outers n  -5 = -5n like terms 
I- inners 4  n = 4n = -n 
L- lasts 4  -5 = -20
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
(n+4) (n−5) 
F- firsts n  n = n2 
O- outers n  -5 = -5n like terms 
I- inners 4  n = 4n = -n 
L- lasts 4  -5 = -20 
So final answer: n2 − n − 20 
(the signs become the operators!)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a+2) (a+6)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a+2) (a+6) 
F- firsts a  a= a2
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a+2) (a+6) 
F- firsts a  a = a2 
O- outers a  6 = 6a
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a+2) (a+6) 
F- firsts a  a = a2 
O- outers a  6 = 6a 
I- inners 2  a = 2a
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a+2) (a+6) 
F- firsts a  a = a2 
O- outers a  6 = 6a 
I- inners 2  a = 2a 
L- lasts 2  6 = 12
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a+2) (a+6) 
F- firsts a  a = a2 
O- outers a  6 = 6a like terms 
I- inners 2  a = 2a = 8a 
L- lasts 2  6 = 12
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a+2) (a+6) 
F- firsts a  a = a2 
O- outers a  6 = 6a like terms 
I- inners 2  a = 2a = 8a 
L- lasts 2  6 = 12 
So final answer: a2 + 8a + 12 
(the signs become the operators!)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
1. (a+3)(a−5) 
2. (b−4)(b−3) 
3. (c+6)(c−4) 
4. (d−5)(d+5) 
5. (3e+4)(2e−2)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
1. (a+3)(a−5) = a2 − 2a − 15 
2. (b−4)(b−3) 
3. (c+6)(c−4) 
4. (d−5)(d+5) 
5. (3e+4)(2e−2)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
1. (a+3)(a−5) = a2 − 2a − 15 
2. (b−4)(b−3) = b2 − 7b + 12 
3. (c+6)(c−4) 
4. (d−5)(d+5) 
5. (3e+4)(2e−2)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
1. (a+3)(a−5) = a2 − 2a − 15 
2. (b−4)(b−3) = b2 − 7b + 12 
3. (c+6)(c−4) = c2 + 2c − 24 
4. (d−5)(d+5) 
5. (3e+4)(2e−2)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
1. (a+3)(a−5) = a2 − 2a − 15 
2. (b−4)(b−3) = b2 − 7b + 12 
3. (c+6)(c−4) = c2 + 2c − 24 
4. (d−5)(d+5) = d2 − 25 
5. (3e+4)(2e−2)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
1. (a+3)(a−5) = a2 − 2a − 15 
2. (b−4)(b−3) = b2 − 7b + 12 
3. (c+6)(c−4) = c2 + 2c − 24 
4. (d−5)(d+5) = d2 − 25 
5. (3e+4)(2e−2)= 6e2 +2e −8
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
Different Method- Area Model 
(n + 7)(n+3) 
n + 7 
n 
+ 3
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
Different Method- Area Model 
(n + 7)(n+3) 
n + 7 
n 
+ 3 
n2
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
Different Method- Area Model 
(n + 7)(n+3) 
n + 7 
n 
+ 3 
n2 + 7n
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
Different Method- Area Model 
(n + 7)(n+3) 
n + 7 
n 
+ 3 
n2 + 7n 
+3n
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
Different Method- Area Model 
(n + 7)(n+3) 
n + 7 
n 
+ 3 
n2 + 7n 
+3n +21
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
Different Method- Area Model 
(n + 7)(n+3) 
n + 7 
n 
+ 3 
n2 + 7n 
+3n +21
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
Different Method- Area Model 
(n + 7)(n+3) 
n + 7 
n 
+ 3 
n2 + 7n 
+3n +21
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
Different Method- Area Model 
(n + 7)(n+3) 
n + 7 
n 
+ 3 
n2 + 7n 
+3n +21 
n2 + 10n + 21
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a-5)(a+4) 
a -5 
a 
+ 4
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a-5)(a+4) 
a -5 
a 
+ 4 
a2
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a-5)(a+4) 
a -5 
a 
+ 4 
a2 -5a
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a-5)(a+4) 
a -5 
a 
+ 4 
a2 -5a 
+4a
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a-5)(a+4) 
a -5 
a 
+ 4 
a2 -5a 
+4a -20
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a-5)(a+4) 
a -5 
a 
+ 4 
a2 -5a 
+4a -20
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a-5)(a+4) 
a -5 
a 
+ 4 
a2 -5a 
+4a -20
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a-5)(a+4) 
a -5 
a 
+ 4 
a2 -5a 
+4a -20 
a2 – 1a – 20
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a – 6)(a + 5) 
(b + 4)(b – 8) 
(c – 3)(4c + 5) 
(3d – 6)(4d + 2)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a – 6)(a + 5) = a2 – 1a – 30 
(b + 4)(b – 8) 
(c – 3)(4c + 5) 
(3d – 6)(4d + 2)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a – 6)(a + 5) = a2 – 1a – 30 
(b + 4)(b – 8) = b2 – 4b – 32 
(c – 3)(4c + 5) 
(3d – 6)(4d + 2)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a – 6)(a + 5) = a2 – 1a – 30 
(b + 4)(b – 8) = b2 – 4b – 32 
(c – 3)(4c + 5) = 4c2 – 7c – 15 
(3d – 6)(4d + 2)
8.A.8- MULTIPLY A BINOMIAL BY A 
BINOMIAL 
(a – 6)(a + 5) = a2 – 1a – 30 
(b + 4)(b – 8) = b2 – 4b – 32 
(c – 3)(4c + 5) = 4c2 – 7c – 15 
(3d – 6)(4d + 2) = 12d2 – 18d – 12
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 The main concept is Like Terms: matching 
variables (including their exponents) 
 LIKE: can be combined! Rules of exponents don’t 
come into play because you’re not x/÷. Leave 
variables as is!! 
ax + 5ax 
 NON-LIKE
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 The main concept is Like Terms: matching 
variables (including their exponents) 
 LIKE: can be combined! Rules of exponents don’t 
come into play because you’re not x/÷. Leave 
variables as is!! 
ax + 5ax = 6ax 
2b2 + 6b2 
 NON-LIKE
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 The main concept is Like Terms: matching 
variables (including their exponents) 
 LIKE: can be combined! Rules of exponents don’t 
come into play because you’re not x/÷. Leave 
variables as is!! 
ax + 5ax = 6ax 
2b2 + 6b2 = 8b2 
 NON-LIKE
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 The main concept is Like Terms: matching 
variables (including their exponents) 
 LIKE: can be combined! Rules of exponents don’t 
come into play because you’re not x/÷. Leave 
variables as is!! 
ax + 5ax = 6ax 
2b2 + 6b2 = 8b2 
-3acd − 4acd 
 NON-LIKE
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 The main concept is Like Terms: matching 
variables (including their exponents) 
 LIKE: can be combined! Rules of exponents don’t 
come into play because you’re not x/÷. Leave 
variables as is!! 
ax + 5ax = 6ax 
2b2 + 6b2 = 8b2 
-3acd − 4acd = -7acd 
 NON-LIKE
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 The main concept is Like Terms: matching 
variables (including their exponents) 
 LIKE: can be combined! Rules of exponents don’t 
come into play because you’re not x/÷. Leave 
variables as is!! 
ax + 5ax = 6ax 
2b2 + 6b2 = 8b2 
-3acd − 4acd = -7acd 
 NON-LIKE: can’t be combined!
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 The main concept is Like Terms: matching variables 
(including their exponents) 
 LIKE: can be combined! Rules of exponents don’t 
come into play because you’re not x/÷. Leave variables 
as is!! 
ax + 5ax = 6ax 
2b2 + 6b2 = 8b2 
-3acd − 4acd = -7acd 
 NON-LIKE: can’t be combined! 
5x – 4y
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 The main concept is Like Terms: matching variables 
(including their exponents) 
 LIKE: can be combined! Rules of exponents don’t 
come into play because you’re not x/÷. Leave variables 
as is!! 
ax + 5ax = 6ax 
2b2 + 6b2 = 8b2 
-3acd − 4acd = -7acd 
 NON-LIKE: can’t be combined! 
5x – 4y 
4a3 + 3a
COMBINING LIKE TERMS 
 Always simplify to the minimum number of 
terms 
 Constants can be combined
COMBINING LIKE TERMS 
 Always simplify to the minimum number of 
terms 
 Use the sign in front of the term as the operator 
 Constants can be combined 
 Examples: 
1) 5x – 6 + 2x =
COMBINING LIKE TERMS 
 Always simplify to the minimum number of 
terms 
 Use the sign in front of the term as the operator 
 Constants can be combined 
 Examples: 
1) 5x – 6 + 2x = 7x – 6
COMBINING LIKE TERMS 
 Always simplify to the minimum number of 
terms 
 Use the sign in front of the term as the operator 
 Constants can be combined 
 Examples: 
1) 5x – 6 + 2x = 7x – 6 
2) -8 + 4g – 5 + 2g=
COMBINING LIKE TERMS 
 Always simplify to the minimum number of 
terms 
 Use the sign in front of the term as the operator 
 Constants can be combined 
 Examples: 
1) 5x – 6 + 2x = 7x – 6 
2) -8 + 4g – 5 + 2g= 6g – 13
COMBINING LIKE TERMS 
 Always simplify to the minimum number of 
terms 
 Use the sign in front of the term as the operator 
 Constants can be combined 
 Examples: 
1) 5x – 6 + 2x = 7x – 6 
2) -8 + 4g – 5 + 2g= 6g – 13 
3) 3(5 + m) + 4 – 5m=
COMBINING LIKE TERMS 
 Always simplify to the minimum number of 
terms 
 Use the sign in front of the term as the operator 
 Constants can be combined 
 Examples: 
1) 5x – 6 + 2x = 7x – 6 
2) -8 + 4g – 5 + 2g= 6g – 13 
3) 3(5 + m) + 4 – 5m= 
15 + 3m + 4 – 5m =
COMBINING LIKE TERMS 
 Always simplify to the minimum number of 
terms 
 Use the sign in front of the term as the operator 
 Constants can be combined 
 Examples: 
1) 5x – 6 + 2x = 7x – 6 
2) -8 + 4g – 5 + 2g= 6g – 13 
3) 3(5 + m) + 4 – 5m= 
15 + 3m + 4 – 5m = 19 – 2m
COMBINING LIKE TERMS 
 You Try Some: 
 1) 5a + 8 – 7a + 2 
 2) 3p – 3p + 2 
 3) 5h + 4h + 7h – 16h 
 4) 7 – 4a + 3a – 10 
 5) 4 – 2(b – 4) + 4b
COMBINING LIKE TERMS 
 You Try Some: 
 1) 5a + 8 – 7a + 2 = -2a + 10 
 2) 3p – 3p + 2 
 3) 5h + 4h + 7h – 16h 
 4) 7 – 4a + 3a – 10 
 5) 4 – 2(b – 4) + 4b
COMBINING LIKE TERMS 
 You Try Some: 
 1) 5a + 8 – 7a + 2 = -2a + 10 
 2) 3p – 3p + 2 = 0p + 2 
 3) 5h + 4h + 7h – 16h 
 4) 7 – 4a + 3a – 10 
 5) 4 – 2(b – 4) + 4b
COMBINING LIKE TERMS 
 You Try Some: 
 1) 5a + 8 – 7a + 2 = -2a + 10 
 2) 3p – 3p + 2 = 0p + 2 = 2 
 3) 5h + 4h + 7h – 16h 
 4) 7 – 4a + 3a – 10 
 5) 4 – 2(b – 4) + 4b
COMBINING LIKE TERMS 
 You Try Some: 
 1) 5a + 8 – 7a + 2 = -2a + 10 
 2) 3p – 3p + 2 = 0p + 2 = 2 
 3) 5h + 4h + 7h – 16h = 0h = 0 
 4) 7 – 4a + 3a – 10 
 5) 4 – 2(b – 4) + 4b
COMBINING LIKE TERMS 
 You Try Some: 
 1) 5a + 8 – 7a + 2 = -2a + 10 
 2) 3p – 3p + 2 = 0p + 2 = 2 
 3) 5h + 4h + 7h – 16h = 0h = 0 
 4) 7 – 4a + 3a – 10 = -3 – 1a 
 5) 4 – 2(b – 4) + 4b
COMBINING LIKE TERMS 
 You Try Some: 
 1) 5a + 8 – 7a + 2 = -2a + 10 
 2) 3p – 3p + 2 = 0p + 2 = 2 
 3) 5h + 4h + 7h – 16h = 0h = 0 
 4) 7 – 4a + 3a – 10 = -3 – 1a 
 5) 4 – 2(b – 4) + 4b = 
4 – 2b + 8 + 4b =
COMBINING LIKE TERMS 
 You Try Some: 
 1) 5a + 8 – 7a + 2 = -2a + 10 
 2) 3p – 3p + 2 = 0p + 2 = 2 
 3) 5h + 4h + 7h – 16h = 0h = 0 
 4) 7 – 4a + 3a – 10 = -3 – 1a 
 5) 4 – 2(b – 4) + 4b = 
4 – 2b + 8 + 4b = 12 + 2b
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
(8a4 + 2a6) + (5a4 + 3a6) 
(6b3 + 2b) + (5b − 4b3)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
(8a4 + 2a6) + (5a4 + 3a6) 
+ 5a4 + 3a6 
(6b3 + 2b) + (5b − 4b3)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
(8a4 + 2a6) + (5a4 + 3a6) 
+ 5a4 + 3a6 
(6b3 + 2b) + (5b − 4b3)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
(8a4 + 2a6) + (5a4 + 3a6) 
+ 5a4 + 3a6 
13a4 + 5a6 
(6b3 + 2b) + (5b − 4b3)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
(8a4 + 2a6) + (5a4 + 3a6) 
+ 5a4 + 3a6 
13a4 + 5a6 This can’t be simplified further 
(6b3 + 2b) + (5b − 4b3)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
(8a4 + 2a6) + (5a4 + 3a6) 
+ 5a4 + 3a6 
13a4 + 5a6 This can’t be simplified further 
(6b3 + 2b) + (5b − 4b3)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
(8a4 + 2a6) + (5a4 + 3a6) 
+ 5a4 + 3a6 
13a4 + 5a6 This can’t be simplified further 
(6b3 + 2b) + (5b − 4b3) 
−4b3 + 5b
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
(8a4 + 2a6) + (5a4 + 3a6) 
+ 5a4 + 3a6 
13a4 + 5a6 This can’t be simplified further 
(6b3 + 2b) + (5b − 4b3) 
−4b3 + 5b It switches to line up like terms
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
(8a4 + 2a6) + (5a4 + 3a6) 
+ 5a4 + 3a6 
13a4 + 5a6 This can’t be simplified further 
(6b3 + 2b) + (5b − 4b3) 
−4b3 + 5b It switches to line up like terms 
2b3 + 7b
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (8c5 + 3c) + (-5c5 + 6c2)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (8c5 + 3c) + (-5c5 + 6c2)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (8c5 + 3c) + (-5c5 + 6c2) 
-5c5 + 6c2
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (8c5 + 3c) + (-5c5 + 6c2) 
-5c5 + 6c2
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (8c5 + 3c) + (-5c5 + 6c2) 
–5c5 + 6c2
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (8c5 + 3c) + (-5c5 + 6c2) 
–5c5 + 6c2 
3c5 + 3c + 6c2
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (8c5 + 3c) + (-5c5 + 6c2) 
–5c5 + 6c2 So if there’s no like term, leave 
3c5 + 3c + 6c2 a gap
8.A.7 ADD POLYNOMIALS 
 You Try! 
 1. (8a3 + 1a) + (6a + 7a3) 
 2. (6x2 + 11yz) + (8x2 – 9yz) 
 3. (3b4 – 2b2) + (6b4 + ba + 9b2)
8.A.7 ADD POLYNOMIALS 
 You Try! 
 1. (8a3 + 1a) + (6a + 7a3) 
15a3 + 7a 
 2. (6x2 + 11yz) + (8x2 – 9yz) 
 3. (3b4 – 2b2) + (6b4 + ba + 9b2)
8.A.7 ADD POLYNOMIALS 
 You Try! 
 1. (8a3 + 1a) + (6a + 7a3) 
15a3 + 7a 
 2. (6x2 + 11yz) + (8x2 – 9yz) 
14x2 + 2yz 
 3. (3b4 – 2b2) + (6b4 + ba + 9b2)
8.A.7 ADD POLYNOMIALS 
 You Try! 
 1. (8a3 + 1a) + (6a + 7a3) 
15a3 + 7a 
 2. (6x2 + 11yz) + (8x2 – 9yz) 
14x2 + 2yz 
 3. (3b4 – 2b2) + (6b4 + ba + 9b2) 
9b4 + 7b2 + ba
8.A.7 ADD POLYNOMIALS 
 Worksheet!
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (7c4 + 4c) + (5c3 + 2c) 
+ 2c + 5c3 
7c4 + 6c + 5c3 be careful to line up like terms 
only! 
 (d3 – 4d2 + 5) + (2d3 +6d2 + 8d)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (7c4 + 4c) + (5c3 + 2c) 
+ 2c + 5c3 
7c4 + 6c + 5c3 be careful to line up like terms 
only! 
 (d3 – 4d2 + 5) + (2d3 +6d2 + 8d)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (7c4 + 4c) + (5c3 + 2c) 
+ 2c + 5c3 
7c4 + 6c + 5c3 be careful to line up like terms 
only! 
 (d3 – 4d2 + 5) + (2d3 +6d2 + 8d) 
+2d3 +6d2 +8d)
8.A.7 ADD POLYNOMIALS 
Line up like terms vertically!! 
 (7c4 + 4c) + (5c3 + 2c) 
+ 2c + 5c3 
7c4 + 6c + 5c3 be careful to line up like 
terms only! 
 (d3 – 4d2 + 5) + (2d3 +6d2 + 8d) 
+2d3 +6d2 +8d) 
3d3 + 2d2 +5 + 8d
8.A.7 ADD POLYNOMIALS 
 You Try! 
1. (4x2y + 3y) + (8x2y +9y) 
2. (5a3 + 10a) + (-4a3 + 6a) 
3. (2b4 – 7b2) + (5b4 + 12ba + 9b2)
8.A.7 SUBTRACT POLYNOMIALS 
 (8a2b + 5a) – (5a2b + 2a) 
Remember! K C C 
The operator changes to addition and then all the signs of the 
terms on the inside change ! 
(8a2b + 5a) – (5a2b + 2a)
8.A.7 SUBTRACT POLYNOMIALS 
 (8a2b + 5a) – (5a2b + 2a) 
Remember! K C C 
The operator changes to addition and then all the signs of the 
terms on the inside change ! 
(8a2b + 5a) – (5a2b + 2a) 
+
8.A.7 SUBTRACT POLYNOMIALS 
 (8a2b + 5a) – (5a2b + 2a) 
Remember! K C C 
The operator changes to addition and then all the signs of the 
terms on the inside change ! 
(8a2b + 5a) – (5a2b + 2a) 
+ (-5a2b
8.A.7 SUBTRACT POLYNOMIALS 
 (8a2b + 5a) – (5a2b + 2a) 
Remember! K C C 
The operator changes to addition and then all the signs of the 
terms on the inside change ! 
(8a2b + 5a) – (5a2b + 2a) 
+ (-5a2b – 2a)
8.A.7 SUBTRACT POLYNOMIALS 
 (8a2b + 5a) – (5a2b + 2a) 
Remember! K C C 
The operator changes to addition and then all the signs of the 
terms on the inside change ! 
(8a2b + 5a) – (5a2b + 2a) 
+ (-5a2b – 2a)
8.A.7 SUBTRACT POLYNOMIALS 
 (8a2b + 5a) – (5a2b + 2a) 
Remember! K C C 
The operator changes to addition and then all the signs of the 
terms on the inside change ! 
(8a2b + 5a) – (5a2b + 2a) 
+ (-5a2b – 2a)
8.A.7 SUBTRACT POLYNOMIALS 
 (8a2b + 5a) – (5a2b + 2a) 
Remember! K C C 
The operator changes to addition and then all the signs of the 
terms on the inside change ! 
(8a2b + 5a) – (5a2b + 2a) 
+ (-5a2b – 2a) 
+ (-5a2b – 2a)
8.A.7 SUBTRACT POLYNOMIALS 
 (8a2b + 5a) – (5a2b + 2a) 
Remember! K C C 
The operator changes to addition and then all the signs of the 
terms on the inside change ! 
(8a2b + 5a) – (5a2b + 2a) 
+ (-5a2b – 2a) 
+ (-5a2b – 2a) 
3a2b
8.A.7 SUBTRACT POLYNOMIALS 
 (8a2b + 5a) – (5a2b + 2a) 
Remember! K C C 
The operator changes to addition and then all the signs of the 
terms on the inside change ! 
(8a2b + 5a) – (5a2b + 2a) 
+ (-5a2b – 2a) 
+ (-5a2b – 2a) 
3a2b + 3a
8.A.7 SUBTRACT POLYNOMIALS 
 Another example! 
(6b3 – 8bc) – (8b3 + 9bc)
8.A.7 SUBTRACT POLYNOMIALS 
 Another example! 
(6b3 – 8bc) – (8b3 + 9bc) 
K C C
8.A.7 SUBTRACT POLYNOMIALS 
 Another example! 
(6b3 – 8bc) – (8b3 + 9bc) 
K C C 
+
8.A.7 SUBTRACT POLYNOMIALS 
 Another example! 
(6b3 – 8bc) – (8b3 + 9bc) 
K C C 
+ (-8b3
8.A.7 SUBTRACT POLYNOMIALS 
 Another example! 
(6b3 – 8bc) – (8b3 + 9bc) 
K C C 
+ (-8b3 – 9bc)
8.A.7 SUBTRACT POLYNOMIALS 
 Another example! 
(6b3 – 8bc) – (8b3 + 9bc) 
K C C 
+ (-8b3 – 9bc)
8.A.7 SUBTRACT POLYNOMIALS 
 Another example! 
(6b3 – 8bc) – (8b3 + 9bc) 
K C C 
+ (-8b3 – 9bc)
8.A.7 SUBTRACT POLYNOMIALS 
 Another example! 
(6b3 – 8bc) – (8b3 + 9bc) 
K C C 
+ (-8b3 – 9bc) 
+ (-8b3 – 9bc)
8.A.7 SUBTRACT POLYNOMIALS 
 Another example! 
(6b3 – 8bc) – (8b3 + 9bc) 
K C C 
+ (-8b3 – 9bc) 
+ (-8b3 – 9bc) 
-2b3
8.A.7 SUBTRACT POLYNOMIALS 
 Another example! 
(6b3 – 8bc) – (8b3 + 9bc) 
K C C 
+ (-8b3 – 9bc) 
+ (-8b3 – 9bc) 
-2b3 – 17bc
8.A.7 SUBTRACT POLYNOMIALS 
 (15c3m – 4c2 + 8m) – (9c3m – 10m)
8.A.7 SUBTRACT POLYNOMIALS 
 (15c3m – 4c2 + 8m) – (9c3m – 10m) 
K C C 
+ (-9c3m +10m)
8.A.7 SUBTRACT POLYNOMIALS 
 (15c3m – 4c2 + 8m) – (9c3m – 10m) 
K C C 
+ (-9c3m +10m)
8.A.7 SUBTRACT POLYNOMIALS 
 (15c3m – 4c2 + 8m) – (9c3m – 10m) 
K C C 
+ (-9c3m +10m)
8.A.7 SUBTRACT POLYNOMIALS 
 (15c3m – 4c2 + 8m) – (9c3m – 10m) 
K C C 
+ (-9c3m +10m) 
+ (-9c3m +10m) Remember to line up like terms! 
6c3m – 4c2 + 18m
8.A.7 SUBTRACT POLYNOMIALS 
 You Try… On your own! 
(-5c3 – 4c4) – (2c3 + 5c4) 
(5a3 + 7b) – (6b – 4a3) 
(20v2 – 5m) – (12v2 – 4m + 2) 
(8g4 + 6a – 7) – (5g4 – 10) 
(9a2 – 5m) – (-6a2 + 8m)
8.A.7 SUBTRACT POLYNOMIALS 
 You Try… On your own! 
(-5c3 – 4c4) – (2c3 + 5c4) 
-7c3 – 9c4 
(5a3 + 7b) – (6b – 4a3) 
(20v2 – 5m) – (12v2 – 4m + 2) 
(8g4 + 6a – 7) – (5g4 – 10) 
(9a2 – 5m) – (-6a2 + 8m)
8.A.7 SUBTRACT POLYNOMIALS 
 You Try… On your own! 
(-5c3 – 4c4) – (2c3 + 5c4) 
-7c3 – 9c4 
(5a3 + 7b) – (6b – 4a3) 
9a3 + b 
(20v2 – 5m) – (12v2 – 4m + 2) 
(8g4 + 6a – 7) – (5g4 – 10) 
(9a2 – 5m) – (-6a2 + 8m)
8.A.7 SUBTRACT POLYNOMIALS 
 You Try… On your own! 
(-5c3 – 4c4) – (2c3 + 5c4) 
-7c3 – 9c4 
(5a3 + 7b) – (6b – 4a3) 
9a3 + b 
(20v2 – 5m) – (12v2 – 4m + 2) 
8v2 – m – 2 
(8g4 + 6a – 7) – (5g4 – 10) 
(9a2 – 5m) – (-6a2 + 8m)
8.A.7 SUBTRACT POLYNOMIALS 
 You Try… On your own! 
(-5c3 – 4c4) – (2c3 + 5c4) 
-7c3 – 9c4 
(5a3 + 7b) – (6b – 4a3) 
9a3 + b 
(20v2 – 5m) – (12v2 – 4m + 2) 
8v2 – m – 2 
(8g4 + 6a – 7) – (5g4 – 10) 
3g3 + 6a + 3 
(9a2 – 5m) – (-6a2 + 8m)
8.A.7 SUBTRACT POLYNOMIALS 
 You Try… On your own! 
(-5c3 – 4c4) – (2c3 + 5c4) 
-7c3 – 9c4 
(5a3 + 7b) – (6b – 4a3) 
9a3 + b 
(20v2 – 5m) – (12v2 – 4m + 2) 
8v2 – m – 2 
(8g4 + 6a – 7) – (5g4 – 10) 
3g3 + 6a + 3 
(9a2 – 5m) – (-6a2 + 8m) 
15a2 – 13m
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 1. (4a – 6a3) + (8a3 – 3a) 
 2. (7g + 2g2) – (7g2 + 2g) 
 3. (3m2 – 2m + 6) – (3m – 2m2) 
 4. (5c2 + 3c3) + (4c3 + 1) 
 5. (7x2 + 4) – (5 + 9x2) 
 6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 1. (4a – 6a3) + (8a3 – 3a) = a + 2a3 
 2. (7g + 2g2) – (7g2 + 2g) 
 3. (3m2 – 2m + 6) – (3m – 2m2) 
 4. (5c2 + 3c3) + (4c3 + 1) 
 5. (7x2 + 4) – (5 + 9x2) 
 6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 1. (4a – 6a3) + (8a3 – 3a) = a + 2a3 
 2. (7g + 2g2) – (7g2 + 2g) = 5g – 5g2 
 3. (3m2 – 2m + 6) – (3m – 2m2) 
 4. (5c2 + 3c3) + (4c3 + 1) 
 5. (7x2 + 4) – (5 + 9x2) 
 6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 1. (4a – 6a3) + (8a3 – 3a) = a + 2a3 
 2. (7g + 2g2) – (7g2 + 2g) = 5g – 5g2 
 3. (3m2 – 2m + 6) – (3m – 2m2) = 5m2 – 5m + 6 
 4. (5c2 + 3c3) + (4c3 + 1) 
 5. (7x2 + 4) – (5 + 9x2) 
 6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 1. (4a – 6a3) + (8a3 – 3a) = a + 2a3 
 2. (7g + 2g2) – (7g2 + 2g) = 5g – 5g2 
 3. (3m2 – 2m + 6) – (3m – 2m2) = 5m2 – 5m + 6 
 4. (5c2 + 3c3) + (4c3 + 1) = 7c3 + 5c2 + 1 
 5. (7x2 + 4) – (5 + 9x2) 
 6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 1. (4a – 6a3) + (8a3 – 3a) = a + 2a3 
 2. (7g + 2g2) – (7g2 + 2g) = 5g – 5g2 
 3. (3m2 – 2m + 6) – (3m – 2m2) = 5m2 – 5m + 6 
 4. (5c2 + 3c3) + (4c3 + 1) = 7c3 + 5c2 + 1 
 5. (7x2 + 4) – (5 + 9x2) = 2x2 – 1 
 6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
8.A.7 ADD AND SUBTRACT 
POLYNOMIALS 
 1. (4a – 6a3) + (8a3 – 3a) = a + 2a3 
 2. (7g + 2g2) – (7g2 + 2g) = 5g – 5g2 
 3. (3m2 – 2m + 6) – (3m – 2m2) = 5m2 – 5m + 6 
 4. (5c2 + 3c3) + (4c3 + 1) = 7c3 + 5c2 + 1 
 5. (7x2 + 4) – (5 + 9x2) = 2x2 – 1 
 6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2) = 4n2 – 7n3

Weitere ähnliche Inhalte

Andere mochten auch

Polynomial and Rational Jeopardy
Polynomial and Rational JeopardyPolynomial and Rational Jeopardy
Polynomial and Rational JeopardyRebecka Peterson
 
Maths polynomials
Maths polynomialsMaths polynomials
Maths polynomialsavimehta14
 
Polynomials CLASS 10
Polynomials CLASS 10Polynomials CLASS 10
Polynomials CLASS 10Nihas Nichu
 
POLYNOMIALS OF CLASS 10
POLYNOMIALS OF CLASS 10POLYNOMIALS OF CLASS 10
POLYNOMIALS OF CLASS 10Sanjay Mahto
 
Polynomials in the Real World
Polynomials in the Real WorldPolynomials in the Real World
Polynomials in the Real Worlddmidgette
 
Polynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two VariablesPolynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two VariablesAnkur Patel
 
3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functionsmath265
 
Ani agustina (a1 c011007) polynomial
Ani agustina (a1 c011007) polynomialAni agustina (a1 c011007) polynomial
Ani agustina (a1 c011007) polynomialAni_Agustina
 
Shubhanshu math project work , polynomial
Shubhanshu math project work ,  polynomialShubhanshu math project work ,  polynomial
Shubhanshu math project work , polynomialShubhanshu Bhargava
 
Introduction to the statistics project
Introduction to the statistics projectIntroduction to the statistics project
Introduction to the statistics projectpmakunja
 
Statistics Math project class 10th
Statistics Math project class 10thStatistics Math project class 10th
Statistics Math project class 10thRiya Singh
 
Statistics Project
Statistics ProjectStatistics Project
Statistics ProjectRonan Santos
 

Andere mochten auch (17)

Polynomial and Rational Jeopardy
Polynomial and Rational JeopardyPolynomial and Rational Jeopardy
Polynomial and Rational Jeopardy
 
Maths polynomials
Maths polynomialsMaths polynomials
Maths polynomials
 
Polynomials CLASS 10
Polynomials CLASS 10Polynomials CLASS 10
Polynomials CLASS 10
 
POLYNOMIALS OF CLASS 10
POLYNOMIALS OF CLASS 10POLYNOMIALS OF CLASS 10
POLYNOMIALS OF CLASS 10
 
Polynomials in the Real World
Polynomials in the Real WorldPolynomials in the Real World
Polynomials in the Real World
 
Polynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two VariablesPolynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two Variables
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Polynomials
PolynomialsPolynomials
Polynomials
 
3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions
 
Ani agustina (a1 c011007) polynomial
Ani agustina (a1 c011007) polynomialAni agustina (a1 c011007) polynomial
Ani agustina (a1 c011007) polynomial
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Maths project for class 10 th
Maths project for class 10 thMaths project for class 10 th
Maths project for class 10 th
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Shubhanshu math project work , polynomial
Shubhanshu math project work ,  polynomialShubhanshu math project work ,  polynomial
Shubhanshu math project work , polynomial
 
Introduction to the statistics project
Introduction to the statistics projectIntroduction to the statistics project
Introduction to the statistics project
 
Statistics Math project class 10th
Statistics Math project class 10thStatistics Math project class 10th
Statistics Math project class 10th
 
Statistics Project
Statistics ProjectStatistics Project
Statistics Project
 

Ähnlich wie Polynomials

Chapter4.4
Chapter4.4Chapter4.4
Chapter4.4nglaze10
 
Factoring Polynomials with Common Monomial Factor.pptx
Factoring Polynomials with Common Monomial Factor.pptxFactoring Polynomials with Common Monomial Factor.pptx
Factoring Polynomials with Common Monomial Factor.pptxJASMINANGIE2
 
Algebra 2 Section 0-3
Algebra 2 Section 0-3Algebra 2 Section 0-3
Algebra 2 Section 0-3Jimbo Lamb
 
Exponent & Logarithm
Exponent &  LogarithmExponent &  Logarithm
Exponent & Logarithmguest0ffcb4
 
Expansion and Factorisation of Algebraic Expressions 2.pptx
Expansion and Factorisation of Algebraic Expressions  2.pptxExpansion and Factorisation of Algebraic Expressions  2.pptx
Expansion and Factorisation of Algebraic Expressions 2.pptxMitaDurenSawit
 
Algebra Trigonometry Problems
Algebra Trigonometry ProblemsAlgebra Trigonometry Problems
Algebra Trigonometry ProblemsDon Dooley
 
9.6 Binomial Theorem
9.6 Binomial Theorem9.6 Binomial Theorem
9.6 Binomial Theoremsmiller5
 
Chapter3.4
Chapter3.4Chapter3.4
Chapter3.4nglaze10
 
just reference
just referencejust reference
just referenceSumin Kim
 
5th period review cart awithanswers
5th period review cart awithanswers5th period review cart awithanswers
5th period review cart awithanswersMaria
 
Algebraic expressions
Algebraic expressionsAlgebraic expressions
Algebraic expressionsManav Gupta
 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressionssmiller5
 

Ähnlich wie Polynomials (20)

1 rules for exponents
1 rules for exponents1 rules for exponents
1 rules for exponents
 
Chapter4.4
Chapter4.4Chapter4.4
Chapter4.4
 
Factoring Polynomials with Common Monomial Factor.pptx
Factoring Polynomials with Common Monomial Factor.pptxFactoring Polynomials with Common Monomial Factor.pptx
Factoring Polynomials with Common Monomial Factor.pptx
 
Algebra 2 Section 0-3
Algebra 2 Section 0-3Algebra 2 Section 0-3
Algebra 2 Section 0-3
 
Multiplication The Complement Method
Multiplication   The Complement MethodMultiplication   The Complement Method
Multiplication The Complement Method
 
Exponent & Logarithm
Exponent &  LogarithmExponent &  Logarithm
Exponent & Logarithm
 
Expansion and Factorisation of Algebraic Expressions 2.pptx
Expansion and Factorisation of Algebraic Expressions  2.pptxExpansion and Factorisation of Algebraic Expressions  2.pptx
Expansion and Factorisation of Algebraic Expressions 2.pptx
 
Algebra Trigonometry Problems
Algebra Trigonometry ProblemsAlgebra Trigonometry Problems
Algebra Trigonometry Problems
 
2 rules for radicals
2 rules for radicals2 rules for radicals
2 rules for radicals
 
3.3 Solving Multi-Step Equations
3.3 Solving Multi-Step Equations3.3 Solving Multi-Step Equations
3.3 Solving Multi-Step Equations
 
9.6 Binomial Theorem
9.6 Binomial Theorem9.6 Binomial Theorem
9.6 Binomial Theorem
 
Maths book2 Text book answer
Maths book2 Text book answerMaths book2 Text book answer
Maths book2 Text book answer
 
Chapter3.4
Chapter3.4Chapter3.4
Chapter3.4
 
basics
basicsbasics
basics
 
Basic math
Basic mathBasic math
Basic math
 
upload
uploadupload
upload
 
just reference
just referencejust reference
just reference
 
5th period review cart awithanswers
5th period review cart awithanswers5th period review cart awithanswers
5th period review cart awithanswers
 
Algebraic expressions
Algebraic expressionsAlgebraic expressions
Algebraic expressions
 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressions
 

Polynomials

  • 1. POLYNOMIALS Ms. Johnson 8th Grade Math
  • 2. KEY VOCABULARY  Variable- A quantity that can change or vary, taking on different values
  • 3. KEY VOCABULARY  Variable- A quantity that can change or vary, taking on different values Constant- A quantity having a fixed value that does not change or vary, such as a number. A constant term does not contain a variable. [( y= 5 + x ) in this example, 5 is a constant
  • 4. KEY VOCABULARY  Variable- A quantity that can change or vary, taking on different values  Constant- A quantity having a fixed value that does not change or vary, such as a number. A constant term does not contain a variable. [( y= 5 + x ) in this example, 5 is a constant Coefficient- A number that multiplies a variable [ (4b) in this example, 4 is a coefficient]
  • 5. KEY VOCABULARY  Variable- A quantity that can change or vary, taking on different values  Constant- A quantity having a fixed value that does not change or vary, such as a number. A constant term does not contain a variable. [( y= 5 + x ) in this example, 5 is a constant  Coefficient- A number that multiplies a variable [ (4b) in this example, 4 is a coefficient]  Like Terms- Terms whose variables and exponents are the same (the coefficients can be different) [5a + 8a ; or x2y + 3x2y]
  • 6. KEY VOCABULARY  Monomial- a polynomial containing one term which may be a number, a variable, or a product of numbers and variables, with no negative or fractional exponents ( -5, xy, 5x2, 5x2y3z )
  • 7. KEY VOCABULARY  Monomial- a polynomial containing one term which may be a number, a variable, or a product of numbers and variables, with no negative or fractional exponents ( -5, xy, 5x2, 5x2y3z )  Binomial- a polynomial containing two unlike terms ( x+ 5, xy + 5, 5x2 – x, 5x2 + y3)
  • 8. KEY VOCABULARY  Monomial- a polynomial containing one term which may be a number, a variable, or a product of numbers and variables, with no negative or fractional exponents ( -5, xy, 5x2, 5x2y3z )  Binomial- a polynomial containing two unlike terms ( x+ 5, xy +5, 5x2 – x, 5x2 + y3)  Trinomial- a polynomial containing three unlike terms (x+5+y, 5x2 –x+y, 5x2 + y3 – z)
  • 9. KEY VOCABULARY  Monomial- a polynomial containing one term which may be a number, a variable, or a product of numbers and variables, with no negative or fractional exponents ( -5, xy, 5x2, 5x2y3z )  Binomial- a polynomial containing two unlike terms ( x+ 5, xy+5, 5x2 – x, 5x2 + y3)  Trinomial- a polynomial containing three unlike terms (x+5+y, 5x2 –x+y, 5x2 + y3 – z)  Polynomial- an expression that is a monomial or the sum of monomials (xy, xy- 5 , 5x2 – x + y, 5x2 + y3 – z +3)
  • 10. 8.A.6 MULTIPLY MONOMIALS  Just remember the Product Law! 12a3b2 (3a4b6) Product Law2 applies to the coefficients Product Law1 applies to the variables 121a3b2 (31a4b6) =
  • 11. 8.A.6 MULTIPLY MONOMIALS  Just remember the Product Law! 12a3b2 (3a4b6) Product Law2 applies to the coefficients Product Law1 applies to the variables 121a3b2 (31a4b6) = 361a7b8 = 36a7b8
  • 12. 8.A.6 MULTIPLY MONOMIALS  Some examples: a. 5bc (4b3c2) = 20b4c3 *don’t forget about the hidden ones b. 4a3mr (6am4) = 24a4m5r *if a variable only appears once, keep it in the final answer c. -2b3m4 (3b2m-2) = *don’t forget about integer rules! d. 12a4bg3 (-2abg3) = -6b5m2 -24a5b2g6
  • 13. 8.A.6 MULTIPLY MONOMIALS  Now You Try Some! a) 4a3m (8a4m6) b) 5c4a3 (-3c2a) c) -6m4r-2 (3m0r6) d)2b6 (8b3c)
  • 14. 8.A.6 MULTIPLY MONOMIALS  Now You Try Some! a) 4a3m (8a4m6) = 32a7m7 b) 5c4a3 (-3c2a) c) -6m4r-2 (3m0r6) d)2b6 (8b3c)
  • 15. 8.A.6 MULTIPLY MONOMIALS  Now You Try Some! a) 4a3m (8a4m6) = 32a7m7 b) 5c4a3 (-3c2a) = -15a4c6 c) -6m4r-2 (3m0r6) d)2b6 (8b3c)
  • 16. 8.A.6 MULTIPLY MONOMIALS  Now You Try Some! a) 4a3m (8a4m6) = 32a7m7 b) 5c4a3 (-3c2a) = -15a4c6 c) -6m4r-2 (3m0r6) = -18m4r4 d)2b6 (8b3c)
  • 17. 8.A.6 MULTIPLY MONOMIALS  Now You Try Some! a) 4a3m (8a4m6) = 32a7m7 b) 5c4a3 (-3c2a) = -15a4c6 c) -6m4r-2 (3m0r6) = -18m4r4 d)2b6 (8b3c) = 16b9c
  • 18. 8.A.6 DIVIDE MONOMIALS  Just remember the quotient laws! 27a5b6 ÷ 9a2b Quotient Law2 let’s us divide 27 by 9 = 3 Quotient Law1 lets us divide the variables
  • 19. 8.A.6 DIVIDE MONOMIALS  Just remember the quotient laws! 27a5b6 ÷ 9a2b Quotient Law2 let’s us divide 27 by 9 = 3 Quotient Law1 lets us divide the variables (which means subtract the exponents for each variable) = 3a3b5
  • 20. 8.A.6 DIVIDE MONOMIALS  Some Examples: a)4a6b3 ÷ 2a3b a)12m4n2 ÷ 4mn5 a)2a5b3 ÷ 3a3 b)5m7c4 ÷ 5m7c-9
  • 21. 8.A.6 DIVIDE MONOMIALS  Some Examples: a)4a6b3 ÷ 2a3b = 2a3b2 a)12m4n2 ÷ 4mn5 a)2a5b3 ÷ 3a3 b)5m7c4 ÷ 5m7c-9
  • 22. 8.A.6 DIVIDE MONOMIALS  Some Examples: a)4a6b3 ÷ 2a3b = 2a3b2 a)12m4n2 ÷ 4mn5 = 3m3n-3 a)2a5b3 ÷ 3a3 a)5m7c4 ÷ 5m7c-9
  • 23. 8.A.6 DIVIDE MONOMIALS  Some Examples: a)4a6b3 ÷ 2a3b = 2a3b2 a)12m4n2 ÷ 4mn5 = 3m3n-3 a)2a5b3 ÷ 3a3 = (2/3) a2b3 a)5m7c4 ÷ 5m7c-9
  • 24. 8.A.6 DIVIDE MONOMIALS  Some Examples: a)4a6b3 ÷ 2a3b = 2a3b2 a)12m4n2 ÷ 4mn5 = 3m3n-3 a)2a5b3 ÷ 3a3 = (2/3) a2b3 5m7c4 ÷ 5m7c-9 = 1m0c13
  • 25. 8.A.6 DIVIDE MONOMIALS  Some Examples: a)4a6b3 ÷ 2a3b = 2a3b2 a)12m4n2 ÷ 4mn5 = 3m3n-3 a)2a5b3 ÷ 3a3 = (2/3) a2b3 a)5m7c4 ÷ 5m7c-9 = 1m0c13 = c13
  • 26. 8.A.6 DIVIDE MONOMIALS  Now You Try Some…Alone! a) 30a6 ÷ 5a a) 32b4m3 ÷ 8bm3 a) 16a7c3 ÷ 4a9  9b6r5 ÷ 6b2r-4
  • 27. 8.A.6 DIVIDE MONOMIALS  Now You Try Some…Alone! a) 30a6 ÷ 5a = 6a5 a) 32b4m3 ÷ 8bm3 a) 16a7c3 ÷ 4a9  9b6r5 ÷ 6b2r-4
  • 28. 8.A.6 DIVIDE MONOMIALS  Now You Try Some…Alone! a) 30a6 ÷ 5a = 6a5 a) 32b4m3 ÷ 8bm3 = 4b3m0 a) 16a7c3 ÷ 4a9 a) 9b6r5 ÷ 6b2r-4
  • 29. 8.A.6 DIVIDE MONOMIALS  Now You Try Some…Alone! a) 30a6 ÷ 5a = 6a5 a) 32b4m3 ÷ 8bm3 = 4b3m0 = 4b3 a) 16a7c3 ÷ 4a9 a) 9b6r5 ÷ 6b2r-4
  • 30. 8.A.6 DIVIDE MONOMIALS  Now You Try Some…Alone! a) 30a6 ÷ 5a = 6a5 a) 32b4m3 ÷ 8bm3 = 4b3m0 = 4b3 a) 16a7c3 ÷ 4a9 = 4a-2c3 a) 9b6r5 ÷ 6b2r-4
  • 31. 8.A.6 DIVIDE MONOMIALS  Now You Try Some…Alone! a) 30a6 ÷ 5a = 6a5 a) 32b4m3 ÷ 8bm3 = 4b3m0 = 4b3 a) 16a7c3 ÷ 4a9 = 4a-2c3 a) 9b6r5 ÷ 6b2r-4 = (3/2)b4r9
  • 32. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  This works a lot like Dividing a monomial by a monomial 15a4b7 + 6a2b4 3ab Break this into two separate fractions:
  • 33. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  This works a lot like Dividing a monomial by a monomial 15a4b7 + 6a2b4 3ab Break this into two separate fractions:
  • 34. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  This works a lot like Dividing a monomial by a monomial 15a4b7 + 6a2b4 3ab Break this into two separate fractions:
  • 35. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL 15a4b7 + 6a2b4 3ab Break this into two separate fractions: 15a4b7 = 6a2b4 = 3ab 3ab
  • 36. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL 15a4b7 + 6a2b4 3ab Now follow Quotient Laws! 15a4b7 = 5a3b6 6a2b4 = 2ab3 3ab 3ab
  • 37. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL 15a4b7 = 5a3b6 6a2b4 = 2ab3 3ab 3ab Put these two parts together, using the operation from the original! In this case, it was an addition problem, so the answer is… 5a3b6 + 2ab3
  • 38. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  One more example: A. 18m6n9 − 24m4n7 6m2n3
  • 39. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  One more example: A. 18m6n9 − 24m4n7 6m2n3 *break into two fractions! 18m6n9 = 24m4n7 = 6m2n3 6m2n3
  • 40. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  One more example: A. 18m6n9 − 24m4n7 6m2n3 Follow quotient laws! 18m6n9 = 3m4n6 24m4n7 = 6m2n3 6m2n3
  • 41. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  One more example: A. 18m6n9 − 24m4n7 6m2n3 Follow quotient laws 18m6n9 = 3m4n6 24m4n7 = 4m2n4 6m2n3 6m2n3
  • 42. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  One more example: A. 18m6n9 − 24m4n7 6m2n3 *follow quotient laws! 18m6n9 = 3m4n6 24m4n7 = 4m2n4 6m2n3 6m2n3 *put it all together: 3m4n6 − 4m2n4
  • 43. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Now You Try Alone ! And don’t forget integer rules! A.30a6b2 − 27a4b6 3a3b4 B. 28m5n3p4 + 32m2n5p 4mn7p3
  • 44. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s Go Over Them! A.30a6b2 − 27a4b6 3a3b4 30a6b2 = 27a4b6 = 3a3b4 3a3b4
  • 45. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s Go Over Them! A.30a6b2 − 27a4b6 3a3b4 30a6b2 = 10a3b-2 27a4b6 = 3a3b4 3a3b4
  • 46. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s Go Over Them! A.30a6b2 − 27a4b6 3a3b4 30a6b2 = 10a3b-2 27a4b6 = 9ab2 3a3b4 3a3b4
  • 47. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s Go Over Them! A. 30a6b2 − 27a4b6 3a3b4 30a6b2 = 10a3b-2 27a4b6 = 9ab2 3a3b4 3a3b 10a3b-2 − 9ab2
  • 48. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Now You Try! And don’t forget integer rules! B. 28m5n3p4 + 32m2n5p 4mn7p3
  • 49. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s Go Over Them! B. 28m5n3p4 + 32m2n5p 4mn7p3 *Break into 2 fractions 28m5n3p4 32m2n5p 4mn7p3 4mn7p3
  • 50. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s Go Over Them! B. 28m5n3p4 + 32m2n5p 4mn7p3 *Break into 2 fractions 28m5n3p4 = 7m4n-4p 32m2n5p = 4mn7p3 4mn7p3
  • 51. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s Go Over Them! B. 28m5n3p4 + 32m2n5p 4mn7p3 *Break into 2 fractions 28m5n3p4 = 7m4n-4p 32m2n5p = 8mn-2p-2 4mn7p3 4mn7p3
  • 52. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s Go Over Them! B. 28m5n3p4 + 32m2n5p 4mn7p3 *Break into 2 fractions 28m5n3p4 = 7m4n-4p 32m2n5p = 8mn-2p-2 4mn7p3 4mn7p3 7m4n-4p + 8mn-2p-2
  • 53. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  On loose leaf! On your own! Show the broken up fractions! 1. 36a5b7 + 12a3b4 6ab4 2. 21c8d4 − 35c9d 7c8d3 3. 40a6c5 + 60a2c7 20ac4
  • 54. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s go over them… 1. 36a5b7 + 12a3b4 = 6a4b3 + 2a2 6ab4 2. 21c8d4 − 35c9d 7c8d3 3. 40a6c5 + 60a2c7 20ac4
  • 55. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s go over them… 1. 36a5b7 + 12a3b4 = 6a4b3 + 2a2 6ab4 2. 21c8d4 − 35c9d = 3d − 5cd-2 7c8d3 3. 40a6c5 + 60a2c7 20ac4
  • 56. 8.A.9- DIVIDE A POLYNOMIAL BY A MONOMIAL  Let’s go over them… 1. 36a5b7 + 12a3b4 = 6a4b3 + 2a2 6ab4 2. 21c8d4 − 35c9d = 3d − 5cd-2 7c8d3 3. 40a6c5 + 60a2c7 = 2a5c + 3ac3 20ac4
  • 57. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  5(4 + 7) = There are two ways to evaluate this equation. 1. PEMDAS 1. Distributive Property 5(4+7)
  • 58. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  5(4 + 7) = There are two ways to evaluate this equation. 1. PEMDAS Parentheses: 4+7 =11 1. Distributive Property 5(4+7)
  • 59. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  5(4 + 7) = There are two ways to evaluate this equation. 1. PEMDAS Parentheses: 4+7 =11 Multiplication: 5(11) = 55 1. Distributive Property 5(4+7)
  • 60. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  5(4 + 7) = There are two ways to evaluate this equation. 1. PEMDAS Parentheses: 4+7 =11 Multiplication: 5(11) = 55 1.Distributive Property 5(4+7) = 5(4) +
  • 61. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  5(4 + 7) = There are two ways to evaluate this equation. 1. PEMDAS Parentheses: 4+7 =11 Multiplication: 5(11) = 55 1. Distributive Property 5(4+7) = 5(4) + 5(7)
  • 62. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  5(4 + 7) = There are two ways to evaluate this equation. 1. PEMDAS Parentheses: 4+7 =11 Multiplication: 5(11) = 55 1. Distributive Property 5(4+7) = 5(4) + 5(7) = 20 + 35
  • 63. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  5(4 + 7) = There are two ways to evaluate this equation. 1. PEMDAS Parentheses: 4+7 =11 Multiplication: 5(11) = 55 1. Distributive Property 5(4+7) = 5(4) + 5(7) = 20 + 35 = 55
  • 64. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Remember the Distributive Property (the milkman delivers to each house separately): a(b + c) = ab +ac 5(c − 6d) = -4a(7 + 6d) =
  • 65. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Remember the Distributive Property (the milkman delivers to each house separately): a(b + c) = ab +ac 5(c − 6d) = 5c -4a(7 + 6d) =
  • 66. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Remember the Distributive Property (the milkman delivers to each house separately): a(b + c) = ab +ac 5(c − 6d) = 5c − 30d and these are not like terms, so this is the final answer! -4a(7 + 6d) =
  • 67. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Remember the Distributive Property (the milkman delivers to each house separately): a(b + c) = ab +ac 5(c − 6d) = 5c − 30d and these are not like terms, so this is the final answer! -4a(7 + 6d) = -28a
  • 68. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Remember the Distributive Property (the milkman delivers to each house separately): a(b + c) = ab +ac 5(c − 6d) = 5c − 30d and these are not like terms, so this is the final answer! -4a(7 + 6d) = -28a − 24ad
  • 69. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Some Examples: 1.5z(a2 − 3b) 1.4r3(8r + 7) 1.6b2(7b + 3b)
  • 70. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Some Examples: 1.5z(a2 − 3b) = 5za2 − 15zb 1.4r3(8r + 7) 1.6b2(7b + 3b)
  • 71. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Some Examples: 1.5z(a2 − 3b) = 5za2 − 15zb 2.4r3(8r + 7) = 32r4 + 28r3 Don’t forget about product law! These aren’t like terms!! 1.6b2(7b + 3b)
  • 72. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Some Examples: 1.5z(a2 − 3b) = 5za2 − 15zb 2.4r3(8r + 7) = 32r4 + 28r3 Don’t forget about product law! These aren’t like terms!! 1.6b2(7b + 3b)= 42b3 + 18b3
  • 73. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Some Examples: 1.5z(a2 − 3b) = 5za2 − 15zb 2.4r3(8r + 7) = 32r4 + 28r3 Don’t forget about product law! These aren’t like terms!! 1.6b2(7b + 3b)= 42b3 + 18b3 = 60b3 These are like terms!
  • 74. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Now you try some… ALONE! 1. -4c(7 − 6d) 2.8m(6m4 + m5) 3. -7a(4 − a) 4.9b3 (7ab − 4ab4)
  • 75. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Now you try some… ALONE! 1. -4c(7 − 6d) = -28c + 24cd 2.8m(6m4 + m5) 3. -7a(4 − a) 4.9b3 (7ab − 4ab4)
  • 76. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Now you try some… ALONE! 1. -4c(7 − 6d) = -28c + 24cd *NB: a negative times a negative is a positive 1.8m(6m4 + m5) 2. -7a(4 − a) 3.9b3 (7ab − 4ab4)
  • 77. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Now you try some… ALONE! 1. -4c(7 − 6d) = -28c + 24cd *NB: a negative times a negative is a positive  8m(6m4 + m5) = 48m5 + 8m6  -7a(4 − a)  9b3 (7ab − 4ab4)
  • 78. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Now you try some… ALONE! 1. -4c(7 − 6d) = -28c + 24cd *NB: a negative times a negative is a positive 1.8m(6m4 + m5) = 48m5 + 8m6 2. -7a(4 − a) = -28a +7a2 3.9b3 (7ab − 4ab4)
  • 79. 8.A.8- MULTIPLY A BINOMIAL BY A MONOMIAL  Now you try some… ALONE! 1. -4c(7 − 6d) = -28c + 24cd *NB: a negative times a negative is a positive 1.8m(6m4 + m5) = 48m5 + 8m6 2. -7a(4 − a) = -28a +7a2 3.9b3 (7ab − 4ab4) = 63ab4 − 36ab7
  • 80. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (n+4) (n−5) For problems like this, we will learn about an important acronym : FOIL Basically you use the distributive property twice.
  • 81. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (n+4) (n−5)
  • 82. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (n+4) (n−5) F- firsts n  n = n2
  • 83. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (n+4) (n−5) F- firsts n  n = n2 O- outers n  -5 = -5n
  • 84. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (n+4) (n−5) F- firsts n  n = n2 O- outers n  -5 = -5n I- inners 4  n = 4n
  • 85. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (n+4) (n−5) F- firsts n  n = n2 O- outers n  -5 = -5n I- inners 4  n = 4n L- lasts 4  -5 = -20
  • 86. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (n+4) (n−5) F- firsts n  n = n2 O- outers n  -5 = -5n like terms I- inners 4  n = 4n = -n L- lasts 4  -5 = -20
  • 87. 8.A.7 ADD AND SUBTRACT POLYNOMIALS (n+4) (n−5) F- firsts n  n = n2 O- outers n  -5 = -5n like terms I- inners 4  n = 4n = -n L- lasts 4  -5 = -20 So final answer: n2 − n − 20 (the signs become the operators!)
  • 88. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a+2) (a+6)
  • 89. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a+2) (a+6) F- firsts a  a= a2
  • 90. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a+2) (a+6) F- firsts a  a = a2 O- outers a  6 = 6a
  • 91. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a+2) (a+6) F- firsts a  a = a2 O- outers a  6 = 6a I- inners 2  a = 2a
  • 92. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a+2) (a+6) F- firsts a  a = a2 O- outers a  6 = 6a I- inners 2  a = 2a L- lasts 2  6 = 12
  • 93. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a+2) (a+6) F- firsts a  a = a2 O- outers a  6 = 6a like terms I- inners 2  a = 2a = 8a L- lasts 2  6 = 12
  • 94. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a+2) (a+6) F- firsts a  a = a2 O- outers a  6 = 6a like terms I- inners 2  a = 2a = 8a L- lasts 2  6 = 12 So final answer: a2 + 8a + 12 (the signs become the operators!)
  • 95. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL 1. (a+3)(a−5) 2. (b−4)(b−3) 3. (c+6)(c−4) 4. (d−5)(d+5) 5. (3e+4)(2e−2)
  • 96. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL 1. (a+3)(a−5) = a2 − 2a − 15 2. (b−4)(b−3) 3. (c+6)(c−4) 4. (d−5)(d+5) 5. (3e+4)(2e−2)
  • 97. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL 1. (a+3)(a−5) = a2 − 2a − 15 2. (b−4)(b−3) = b2 − 7b + 12 3. (c+6)(c−4) 4. (d−5)(d+5) 5. (3e+4)(2e−2)
  • 98. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL 1. (a+3)(a−5) = a2 − 2a − 15 2. (b−4)(b−3) = b2 − 7b + 12 3. (c+6)(c−4) = c2 + 2c − 24 4. (d−5)(d+5) 5. (3e+4)(2e−2)
  • 99. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL 1. (a+3)(a−5) = a2 − 2a − 15 2. (b−4)(b−3) = b2 − 7b + 12 3. (c+6)(c−4) = c2 + 2c − 24 4. (d−5)(d+5) = d2 − 25 5. (3e+4)(2e−2)
  • 100. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL 1. (a+3)(a−5) = a2 − 2a − 15 2. (b−4)(b−3) = b2 − 7b + 12 3. (c+6)(c−4) = c2 + 2c − 24 4. (d−5)(d+5) = d2 − 25 5. (3e+4)(2e−2)= 6e2 +2e −8
  • 101. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL Different Method- Area Model (n + 7)(n+3) n + 7 n + 3
  • 102. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL Different Method- Area Model (n + 7)(n+3) n + 7 n + 3 n2
  • 103. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL Different Method- Area Model (n + 7)(n+3) n + 7 n + 3 n2 + 7n
  • 104. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL Different Method- Area Model (n + 7)(n+3) n + 7 n + 3 n2 + 7n +3n
  • 105. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL Different Method- Area Model (n + 7)(n+3) n + 7 n + 3 n2 + 7n +3n +21
  • 106. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL Different Method- Area Model (n + 7)(n+3) n + 7 n + 3 n2 + 7n +3n +21
  • 107. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL Different Method- Area Model (n + 7)(n+3) n + 7 n + 3 n2 + 7n +3n +21
  • 108. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL Different Method- Area Model (n + 7)(n+3) n + 7 n + 3 n2 + 7n +3n +21 n2 + 10n + 21
  • 109. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a-5)(a+4) a -5 a + 4
  • 110. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a-5)(a+4) a -5 a + 4 a2
  • 111. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a-5)(a+4) a -5 a + 4 a2 -5a
  • 112. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a-5)(a+4) a -5 a + 4 a2 -5a +4a
  • 113. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a-5)(a+4) a -5 a + 4 a2 -5a +4a -20
  • 114. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a-5)(a+4) a -5 a + 4 a2 -5a +4a -20
  • 115. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a-5)(a+4) a -5 a + 4 a2 -5a +4a -20
  • 116. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a-5)(a+4) a -5 a + 4 a2 -5a +4a -20 a2 – 1a – 20
  • 117. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a – 6)(a + 5) (b + 4)(b – 8) (c – 3)(4c + 5) (3d – 6)(4d + 2)
  • 118. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a – 6)(a + 5) = a2 – 1a – 30 (b + 4)(b – 8) (c – 3)(4c + 5) (3d – 6)(4d + 2)
  • 119. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a – 6)(a + 5) = a2 – 1a – 30 (b + 4)(b – 8) = b2 – 4b – 32 (c – 3)(4c + 5) (3d – 6)(4d + 2)
  • 120. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a – 6)(a + 5) = a2 – 1a – 30 (b + 4)(b – 8) = b2 – 4b – 32 (c – 3)(4c + 5) = 4c2 – 7c – 15 (3d – 6)(4d + 2)
  • 121. 8.A.8- MULTIPLY A BINOMIAL BY A BINOMIAL (a – 6)(a + 5) = a2 – 1a – 30 (b + 4)(b – 8) = b2 – 4b – 32 (c – 3)(4c + 5) = 4c2 – 7c – 15 (3d – 6)(4d + 2) = 12d2 – 18d – 12
  • 122. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  The main concept is Like Terms: matching variables (including their exponents)  LIKE: can be combined! Rules of exponents don’t come into play because you’re not x/÷. Leave variables as is!! ax + 5ax  NON-LIKE
  • 123. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  The main concept is Like Terms: matching variables (including their exponents)  LIKE: can be combined! Rules of exponents don’t come into play because you’re not x/÷. Leave variables as is!! ax + 5ax = 6ax 2b2 + 6b2  NON-LIKE
  • 124. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  The main concept is Like Terms: matching variables (including their exponents)  LIKE: can be combined! Rules of exponents don’t come into play because you’re not x/÷. Leave variables as is!! ax + 5ax = 6ax 2b2 + 6b2 = 8b2  NON-LIKE
  • 125. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  The main concept is Like Terms: matching variables (including their exponents)  LIKE: can be combined! Rules of exponents don’t come into play because you’re not x/÷. Leave variables as is!! ax + 5ax = 6ax 2b2 + 6b2 = 8b2 -3acd − 4acd  NON-LIKE
  • 126. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  The main concept is Like Terms: matching variables (including their exponents)  LIKE: can be combined! Rules of exponents don’t come into play because you’re not x/÷. Leave variables as is!! ax + 5ax = 6ax 2b2 + 6b2 = 8b2 -3acd − 4acd = -7acd  NON-LIKE
  • 127. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  The main concept is Like Terms: matching variables (including their exponents)  LIKE: can be combined! Rules of exponents don’t come into play because you’re not x/÷. Leave variables as is!! ax + 5ax = 6ax 2b2 + 6b2 = 8b2 -3acd − 4acd = -7acd  NON-LIKE: can’t be combined!
  • 128. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  The main concept is Like Terms: matching variables (including their exponents)  LIKE: can be combined! Rules of exponents don’t come into play because you’re not x/÷. Leave variables as is!! ax + 5ax = 6ax 2b2 + 6b2 = 8b2 -3acd − 4acd = -7acd  NON-LIKE: can’t be combined! 5x – 4y
  • 129. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  The main concept is Like Terms: matching variables (including their exponents)  LIKE: can be combined! Rules of exponents don’t come into play because you’re not x/÷. Leave variables as is!! ax + 5ax = 6ax 2b2 + 6b2 = 8b2 -3acd − 4acd = -7acd  NON-LIKE: can’t be combined! 5x – 4y 4a3 + 3a
  • 130. COMBINING LIKE TERMS  Always simplify to the minimum number of terms  Constants can be combined
  • 131. COMBINING LIKE TERMS  Always simplify to the minimum number of terms  Use the sign in front of the term as the operator  Constants can be combined  Examples: 1) 5x – 6 + 2x =
  • 132. COMBINING LIKE TERMS  Always simplify to the minimum number of terms  Use the sign in front of the term as the operator  Constants can be combined  Examples: 1) 5x – 6 + 2x = 7x – 6
  • 133. COMBINING LIKE TERMS  Always simplify to the minimum number of terms  Use the sign in front of the term as the operator  Constants can be combined  Examples: 1) 5x – 6 + 2x = 7x – 6 2) -8 + 4g – 5 + 2g=
  • 134. COMBINING LIKE TERMS  Always simplify to the minimum number of terms  Use the sign in front of the term as the operator  Constants can be combined  Examples: 1) 5x – 6 + 2x = 7x – 6 2) -8 + 4g – 5 + 2g= 6g – 13
  • 135. COMBINING LIKE TERMS  Always simplify to the minimum number of terms  Use the sign in front of the term as the operator  Constants can be combined  Examples: 1) 5x – 6 + 2x = 7x – 6 2) -8 + 4g – 5 + 2g= 6g – 13 3) 3(5 + m) + 4 – 5m=
  • 136. COMBINING LIKE TERMS  Always simplify to the minimum number of terms  Use the sign in front of the term as the operator  Constants can be combined  Examples: 1) 5x – 6 + 2x = 7x – 6 2) -8 + 4g – 5 + 2g= 6g – 13 3) 3(5 + m) + 4 – 5m= 15 + 3m + 4 – 5m =
  • 137. COMBINING LIKE TERMS  Always simplify to the minimum number of terms  Use the sign in front of the term as the operator  Constants can be combined  Examples: 1) 5x – 6 + 2x = 7x – 6 2) -8 + 4g – 5 + 2g= 6g – 13 3) 3(5 + m) + 4 – 5m= 15 + 3m + 4 – 5m = 19 – 2m
  • 138. COMBINING LIKE TERMS  You Try Some:  1) 5a + 8 – 7a + 2  2) 3p – 3p + 2  3) 5h + 4h + 7h – 16h  4) 7 – 4a + 3a – 10  5) 4 – 2(b – 4) + 4b
  • 139. COMBINING LIKE TERMS  You Try Some:  1) 5a + 8 – 7a + 2 = -2a + 10  2) 3p – 3p + 2  3) 5h + 4h + 7h – 16h  4) 7 – 4a + 3a – 10  5) 4 – 2(b – 4) + 4b
  • 140. COMBINING LIKE TERMS  You Try Some:  1) 5a + 8 – 7a + 2 = -2a + 10  2) 3p – 3p + 2 = 0p + 2  3) 5h + 4h + 7h – 16h  4) 7 – 4a + 3a – 10  5) 4 – 2(b – 4) + 4b
  • 141. COMBINING LIKE TERMS  You Try Some:  1) 5a + 8 – 7a + 2 = -2a + 10  2) 3p – 3p + 2 = 0p + 2 = 2  3) 5h + 4h + 7h – 16h  4) 7 – 4a + 3a – 10  5) 4 – 2(b – 4) + 4b
  • 142. COMBINING LIKE TERMS  You Try Some:  1) 5a + 8 – 7a + 2 = -2a + 10  2) 3p – 3p + 2 = 0p + 2 = 2  3) 5h + 4h + 7h – 16h = 0h = 0  4) 7 – 4a + 3a – 10  5) 4 – 2(b – 4) + 4b
  • 143. COMBINING LIKE TERMS  You Try Some:  1) 5a + 8 – 7a + 2 = -2a + 10  2) 3p – 3p + 2 = 0p + 2 = 2  3) 5h + 4h + 7h – 16h = 0h = 0  4) 7 – 4a + 3a – 10 = -3 – 1a  5) 4 – 2(b – 4) + 4b
  • 144. COMBINING LIKE TERMS  You Try Some:  1) 5a + 8 – 7a + 2 = -2a + 10  2) 3p – 3p + 2 = 0p + 2 = 2  3) 5h + 4h + 7h – 16h = 0h = 0  4) 7 – 4a + 3a – 10 = -3 – 1a  5) 4 – 2(b – 4) + 4b = 4 – 2b + 8 + 4b =
  • 145. COMBINING LIKE TERMS  You Try Some:  1) 5a + 8 – 7a + 2 = -2a + 10  2) 3p – 3p + 2 = 0p + 2 = 2  3) 5h + 4h + 7h – 16h = 0h = 0  4) 7 – 4a + 3a – 10 = -3 – 1a  5) 4 – 2(b – 4) + 4b = 4 – 2b + 8 + 4b = 12 + 2b
  • 146. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!! (8a4 + 2a6) + (5a4 + 3a6) (6b3 + 2b) + (5b − 4b3)
  • 147. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!! (8a4 + 2a6) + (5a4 + 3a6) + 5a4 + 3a6 (6b3 + 2b) + (5b − 4b3)
  • 148. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!! (8a4 + 2a6) + (5a4 + 3a6) + 5a4 + 3a6 (6b3 + 2b) + (5b − 4b3)
  • 149. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!! (8a4 + 2a6) + (5a4 + 3a6) + 5a4 + 3a6 13a4 + 5a6 (6b3 + 2b) + (5b − 4b3)
  • 150. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!! (8a4 + 2a6) + (5a4 + 3a6) + 5a4 + 3a6 13a4 + 5a6 This can’t be simplified further (6b3 + 2b) + (5b − 4b3)
  • 151. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!! (8a4 + 2a6) + (5a4 + 3a6) + 5a4 + 3a6 13a4 + 5a6 This can’t be simplified further (6b3 + 2b) + (5b − 4b3)
  • 152. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!! (8a4 + 2a6) + (5a4 + 3a6) + 5a4 + 3a6 13a4 + 5a6 This can’t be simplified further (6b3 + 2b) + (5b − 4b3) −4b3 + 5b
  • 153. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!! (8a4 + 2a6) + (5a4 + 3a6) + 5a4 + 3a6 13a4 + 5a6 This can’t be simplified further (6b3 + 2b) + (5b − 4b3) −4b3 + 5b It switches to line up like terms
  • 154. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!! (8a4 + 2a6) + (5a4 + 3a6) + 5a4 + 3a6 13a4 + 5a6 This can’t be simplified further (6b3 + 2b) + (5b − 4b3) −4b3 + 5b It switches to line up like terms 2b3 + 7b
  • 155. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (8c5 + 3c) + (-5c5 + 6c2)
  • 156. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (8c5 + 3c) + (-5c5 + 6c2)
  • 157. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (8c5 + 3c) + (-5c5 + 6c2) -5c5 + 6c2
  • 158. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (8c5 + 3c) + (-5c5 + 6c2) -5c5 + 6c2
  • 159. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (8c5 + 3c) + (-5c5 + 6c2) –5c5 + 6c2
  • 160. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (8c5 + 3c) + (-5c5 + 6c2) –5c5 + 6c2 3c5 + 3c + 6c2
  • 161. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (8c5 + 3c) + (-5c5 + 6c2) –5c5 + 6c2 So if there’s no like term, leave 3c5 + 3c + 6c2 a gap
  • 162. 8.A.7 ADD POLYNOMIALS  You Try!  1. (8a3 + 1a) + (6a + 7a3)  2. (6x2 + 11yz) + (8x2 – 9yz)  3. (3b4 – 2b2) + (6b4 + ba + 9b2)
  • 163. 8.A.7 ADD POLYNOMIALS  You Try!  1. (8a3 + 1a) + (6a + 7a3) 15a3 + 7a  2. (6x2 + 11yz) + (8x2 – 9yz)  3. (3b4 – 2b2) + (6b4 + ba + 9b2)
  • 164. 8.A.7 ADD POLYNOMIALS  You Try!  1. (8a3 + 1a) + (6a + 7a3) 15a3 + 7a  2. (6x2 + 11yz) + (8x2 – 9yz) 14x2 + 2yz  3. (3b4 – 2b2) + (6b4 + ba + 9b2)
  • 165. 8.A.7 ADD POLYNOMIALS  You Try!  1. (8a3 + 1a) + (6a + 7a3) 15a3 + 7a  2. (6x2 + 11yz) + (8x2 – 9yz) 14x2 + 2yz  3. (3b4 – 2b2) + (6b4 + ba + 9b2) 9b4 + 7b2 + ba
  • 166. 8.A.7 ADD POLYNOMIALS  Worksheet!
  • 167.
  • 168.
  • 169. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (7c4 + 4c) + (5c3 + 2c) + 2c + 5c3 7c4 + 6c + 5c3 be careful to line up like terms only!  (d3 – 4d2 + 5) + (2d3 +6d2 + 8d)
  • 170. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (7c4 + 4c) + (5c3 + 2c) + 2c + 5c3 7c4 + 6c + 5c3 be careful to line up like terms only!  (d3 – 4d2 + 5) + (2d3 +6d2 + 8d)
  • 171. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (7c4 + 4c) + (5c3 + 2c) + 2c + 5c3 7c4 + 6c + 5c3 be careful to line up like terms only!  (d3 – 4d2 + 5) + (2d3 +6d2 + 8d) +2d3 +6d2 +8d)
  • 172. 8.A.7 ADD POLYNOMIALS Line up like terms vertically!!  (7c4 + 4c) + (5c3 + 2c) + 2c + 5c3 7c4 + 6c + 5c3 be careful to line up like terms only!  (d3 – 4d2 + 5) + (2d3 +6d2 + 8d) +2d3 +6d2 +8d) 3d3 + 2d2 +5 + 8d
  • 173. 8.A.7 ADD POLYNOMIALS  You Try! 1. (4x2y + 3y) + (8x2y +9y) 2. (5a3 + 10a) + (-4a3 + 6a) 3. (2b4 – 7b2) + (5b4 + 12ba + 9b2)
  • 174. 8.A.7 SUBTRACT POLYNOMIALS  (8a2b + 5a) – (5a2b + 2a) Remember! K C C The operator changes to addition and then all the signs of the terms on the inside change ! (8a2b + 5a) – (5a2b + 2a)
  • 175. 8.A.7 SUBTRACT POLYNOMIALS  (8a2b + 5a) – (5a2b + 2a) Remember! K C C The operator changes to addition and then all the signs of the terms on the inside change ! (8a2b + 5a) – (5a2b + 2a) +
  • 176. 8.A.7 SUBTRACT POLYNOMIALS  (8a2b + 5a) – (5a2b + 2a) Remember! K C C The operator changes to addition and then all the signs of the terms on the inside change ! (8a2b + 5a) – (5a2b + 2a) + (-5a2b
  • 177. 8.A.7 SUBTRACT POLYNOMIALS  (8a2b + 5a) – (5a2b + 2a) Remember! K C C The operator changes to addition and then all the signs of the terms on the inside change ! (8a2b + 5a) – (5a2b + 2a) + (-5a2b – 2a)
  • 178. 8.A.7 SUBTRACT POLYNOMIALS  (8a2b + 5a) – (5a2b + 2a) Remember! K C C The operator changes to addition and then all the signs of the terms on the inside change ! (8a2b + 5a) – (5a2b + 2a) + (-5a2b – 2a)
  • 179. 8.A.7 SUBTRACT POLYNOMIALS  (8a2b + 5a) – (5a2b + 2a) Remember! K C C The operator changes to addition and then all the signs of the terms on the inside change ! (8a2b + 5a) – (5a2b + 2a) + (-5a2b – 2a)
  • 180. 8.A.7 SUBTRACT POLYNOMIALS  (8a2b + 5a) – (5a2b + 2a) Remember! K C C The operator changes to addition and then all the signs of the terms on the inside change ! (8a2b + 5a) – (5a2b + 2a) + (-5a2b – 2a) + (-5a2b – 2a)
  • 181. 8.A.7 SUBTRACT POLYNOMIALS  (8a2b + 5a) – (5a2b + 2a) Remember! K C C The operator changes to addition and then all the signs of the terms on the inside change ! (8a2b + 5a) – (5a2b + 2a) + (-5a2b – 2a) + (-5a2b – 2a) 3a2b
  • 182. 8.A.7 SUBTRACT POLYNOMIALS  (8a2b + 5a) – (5a2b + 2a) Remember! K C C The operator changes to addition and then all the signs of the terms on the inside change ! (8a2b + 5a) – (5a2b + 2a) + (-5a2b – 2a) + (-5a2b – 2a) 3a2b + 3a
  • 183. 8.A.7 SUBTRACT POLYNOMIALS  Another example! (6b3 – 8bc) – (8b3 + 9bc)
  • 184. 8.A.7 SUBTRACT POLYNOMIALS  Another example! (6b3 – 8bc) – (8b3 + 9bc) K C C
  • 185. 8.A.7 SUBTRACT POLYNOMIALS  Another example! (6b3 – 8bc) – (8b3 + 9bc) K C C +
  • 186. 8.A.7 SUBTRACT POLYNOMIALS  Another example! (6b3 – 8bc) – (8b3 + 9bc) K C C + (-8b3
  • 187. 8.A.7 SUBTRACT POLYNOMIALS  Another example! (6b3 – 8bc) – (8b3 + 9bc) K C C + (-8b3 – 9bc)
  • 188. 8.A.7 SUBTRACT POLYNOMIALS  Another example! (6b3 – 8bc) – (8b3 + 9bc) K C C + (-8b3 – 9bc)
  • 189. 8.A.7 SUBTRACT POLYNOMIALS  Another example! (6b3 – 8bc) – (8b3 + 9bc) K C C + (-8b3 – 9bc)
  • 190. 8.A.7 SUBTRACT POLYNOMIALS  Another example! (6b3 – 8bc) – (8b3 + 9bc) K C C + (-8b3 – 9bc) + (-8b3 – 9bc)
  • 191. 8.A.7 SUBTRACT POLYNOMIALS  Another example! (6b3 – 8bc) – (8b3 + 9bc) K C C + (-8b3 – 9bc) + (-8b3 – 9bc) -2b3
  • 192. 8.A.7 SUBTRACT POLYNOMIALS  Another example! (6b3 – 8bc) – (8b3 + 9bc) K C C + (-8b3 – 9bc) + (-8b3 – 9bc) -2b3 – 17bc
  • 193. 8.A.7 SUBTRACT POLYNOMIALS  (15c3m – 4c2 + 8m) – (9c3m – 10m)
  • 194. 8.A.7 SUBTRACT POLYNOMIALS  (15c3m – 4c2 + 8m) – (9c3m – 10m) K C C + (-9c3m +10m)
  • 195. 8.A.7 SUBTRACT POLYNOMIALS  (15c3m – 4c2 + 8m) – (9c3m – 10m) K C C + (-9c3m +10m)
  • 196. 8.A.7 SUBTRACT POLYNOMIALS  (15c3m – 4c2 + 8m) – (9c3m – 10m) K C C + (-9c3m +10m)
  • 197. 8.A.7 SUBTRACT POLYNOMIALS  (15c3m – 4c2 + 8m) – (9c3m – 10m) K C C + (-9c3m +10m) + (-9c3m +10m) Remember to line up like terms! 6c3m – 4c2 + 18m
  • 198. 8.A.7 SUBTRACT POLYNOMIALS  You Try… On your own! (-5c3 – 4c4) – (2c3 + 5c4) (5a3 + 7b) – (6b – 4a3) (20v2 – 5m) – (12v2 – 4m + 2) (8g4 + 6a – 7) – (5g4 – 10) (9a2 – 5m) – (-6a2 + 8m)
  • 199. 8.A.7 SUBTRACT POLYNOMIALS  You Try… On your own! (-5c3 – 4c4) – (2c3 + 5c4) -7c3 – 9c4 (5a3 + 7b) – (6b – 4a3) (20v2 – 5m) – (12v2 – 4m + 2) (8g4 + 6a – 7) – (5g4 – 10) (9a2 – 5m) – (-6a2 + 8m)
  • 200. 8.A.7 SUBTRACT POLYNOMIALS  You Try… On your own! (-5c3 – 4c4) – (2c3 + 5c4) -7c3 – 9c4 (5a3 + 7b) – (6b – 4a3) 9a3 + b (20v2 – 5m) – (12v2 – 4m + 2) (8g4 + 6a – 7) – (5g4 – 10) (9a2 – 5m) – (-6a2 + 8m)
  • 201. 8.A.7 SUBTRACT POLYNOMIALS  You Try… On your own! (-5c3 – 4c4) – (2c3 + 5c4) -7c3 – 9c4 (5a3 + 7b) – (6b – 4a3) 9a3 + b (20v2 – 5m) – (12v2 – 4m + 2) 8v2 – m – 2 (8g4 + 6a – 7) – (5g4 – 10) (9a2 – 5m) – (-6a2 + 8m)
  • 202. 8.A.7 SUBTRACT POLYNOMIALS  You Try… On your own! (-5c3 – 4c4) – (2c3 + 5c4) -7c3 – 9c4 (5a3 + 7b) – (6b – 4a3) 9a3 + b (20v2 – 5m) – (12v2 – 4m + 2) 8v2 – m – 2 (8g4 + 6a – 7) – (5g4 – 10) 3g3 + 6a + 3 (9a2 – 5m) – (-6a2 + 8m)
  • 203. 8.A.7 SUBTRACT POLYNOMIALS  You Try… On your own! (-5c3 – 4c4) – (2c3 + 5c4) -7c3 – 9c4 (5a3 + 7b) – (6b – 4a3) 9a3 + b (20v2 – 5m) – (12v2 – 4m + 2) 8v2 – m – 2 (8g4 + 6a – 7) – (5g4 – 10) 3g3 + 6a + 3 (9a2 – 5m) – (-6a2 + 8m) 15a2 – 13m
  • 204. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  1. (4a – 6a3) + (8a3 – 3a)  2. (7g + 2g2) – (7g2 + 2g)  3. (3m2 – 2m + 6) – (3m – 2m2)  4. (5c2 + 3c3) + (4c3 + 1)  5. (7x2 + 4) – (5 + 9x2)  6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
  • 205. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  1. (4a – 6a3) + (8a3 – 3a) = a + 2a3  2. (7g + 2g2) – (7g2 + 2g)  3. (3m2 – 2m + 6) – (3m – 2m2)  4. (5c2 + 3c3) + (4c3 + 1)  5. (7x2 + 4) – (5 + 9x2)  6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
  • 206. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  1. (4a – 6a3) + (8a3 – 3a) = a + 2a3  2. (7g + 2g2) – (7g2 + 2g) = 5g – 5g2  3. (3m2 – 2m + 6) – (3m – 2m2)  4. (5c2 + 3c3) + (4c3 + 1)  5. (7x2 + 4) – (5 + 9x2)  6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
  • 207. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  1. (4a – 6a3) + (8a3 – 3a) = a + 2a3  2. (7g + 2g2) – (7g2 + 2g) = 5g – 5g2  3. (3m2 – 2m + 6) – (3m – 2m2) = 5m2 – 5m + 6  4. (5c2 + 3c3) + (4c3 + 1)  5. (7x2 + 4) – (5 + 9x2)  6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
  • 208. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  1. (4a – 6a3) + (8a3 – 3a) = a + 2a3  2. (7g + 2g2) – (7g2 + 2g) = 5g – 5g2  3. (3m2 – 2m + 6) – (3m – 2m2) = 5m2 – 5m + 6  4. (5c2 + 3c3) + (4c3 + 1) = 7c3 + 5c2 + 1  5. (7x2 + 4) – (5 + 9x2)  6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
  • 209. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  1. (4a – 6a3) + (8a3 – 3a) = a + 2a3  2. (7g + 2g2) – (7g2 + 2g) = 5g – 5g2  3. (3m2 – 2m + 6) – (3m – 2m2) = 5m2 – 5m + 6  4. (5c2 + 3c3) + (4c3 + 1) = 7c3 + 5c2 + 1  5. (7x2 + 4) – (5 + 9x2) = 2x2 – 1  6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2)
  • 210. 8.A.7 ADD AND SUBTRACT POLYNOMIALS  1. (4a – 6a3) + (8a3 – 3a) = a + 2a3  2. (7g + 2g2) – (7g2 + 2g) = 5g – 5g2  3. (3m2 – 2m + 6) – (3m – 2m2) = 5m2 – 5m + 6  4. (5c2 + 3c3) + (4c3 + 1) = 7c3 + 5c2 + 1  5. (7x2 + 4) – (5 + 9x2) = 2x2 – 1  6. (6n2 – 3n3) – (4n3 – 2n2 + 4n2) = 4n2 – 7n3