SlideShare ist ein Scribd-Unternehmen logo
1 von 26
PRESENTED BY:
RAMANDEEP KAUR BRAR
(PH.CHEMISTRY)
DEFINATION
 NMR is a phenomenon exhibited by when atomic nuclei
in a static magnetic field absorbs energy from
radiofrequency field of certain characteristic frequency. It
results to give a spectrum with frequency on x-axis and
intensity of absorption on y-axis.
PRINCIPLE & THEORY
 The nuclear magnetic resonance occurs when nuclei aligned
with an applied field are induced to absorb energy and change
their spin orientation with respect to the applied field.
 The energy absorption is a quantized process, and energy
absorbed must equal the energy difference between the two
states involved.
E absorbed = (E-1/2state- E+1/2state) =hv
 The stronger the applied magnetic field, greater the energy
difference between the possible spin states.
ΔE = ∫(B0)
 The magnitude of energy level separation also depends on
the particular nucleus involved. Each nucleus has a
different ratio of magnetic moment to angular momentum
since each has different charge and mass.
This ratio, is called the magnetogyric ratio ϒ, is a constant
for each nucleus and determines the energy dependence on
the magnetic field.
ΔE = ∫(ϒB0) = hv
The ϒ value for 13C is 67.28 Tesla and for 1H IS 267.53
ABUNDANCE
13C is difficult to record because of
1. The most abundant isotope of carbon that is
12C (99.1%) is not detected by nmr because it has
an even no of protons and neutrons 12C is nmr
inactive.
2. Magnetic resonance of 13C is much weaker.
Moreover, gyromagnectic ratio of 13C being only
one fourth that of proton, so the resonance
frequency of 13C is one fourth that of proton nmr.
Advantages of 13C- NMR over 1H- NMR
1. 13C- provides information about the backbone of
molecules rather than the periphery.
2. The chemical shifts range for 13C- NMR for most
organic compounds is 200 ppm compared to 10 –15
ppm for H, hence there is less overlap of peaks for
13C- NMR.
3. Homonuclear spin-spin coupling between carbon
atoms is not observed because the natural abundance
of 13C is too low for two 13C to be next to one
another.
Heteronuclear spin coupling between 13C and
12C does not occur because the spin quantum
number of 12C is zero.
4. There are a number of excellent methods for
decoupling the interaction between 13 C and 1H.
SPIN –SPIN SPLITTING OF 13C SIGNALS
 Splitting take place acc. to 2nI+1 rule
Where n= no. of nuclei
I=spin quantum number
CH3 = 3+1=4 quartet
CH2 = 2+1=3 triplet
CH = 1+1=2 doublet
C = 0+1=1 singlet
CDCl3 gives three peaks because its I=1 so acc. to 2nI+1
2 1 1+1=3 so it gives 1:1:1 peaks
Solvents used are CDCl3, DMSO, d6acetone, d6 benzene
13C chemical shifts
The most significant factors affecting the chemical shifts are:
Electro negativity of the groups attached to the C
Hybridization of C
The intensity (size) of each peak is NOT directly related to the
number of that type of carbon. Other factors contribute to the size
of a peak:
Peaks from carbon atoms that have attached hydrogen atoms are bigger than
those that don’t have hydrogens attached.
Carbon chemical shifts are usually reported as downfield from the
carbon signal of tetramethylsilane (TMS).
Predicting 13C Spectra
C H3 C H3
C C
C
C
C
CH3
plane of symmetry
4 lines
O
C H3
C H3
O
C H3
CH3
C
C
c
CH3
O
CH3 5 l ines
CH3
C
CH3
C
CH3
H
5 l ines
Predicting 13C SpectraC H3
C H3
H3C CH3
C C
C
CC
C
H3C CH3
4 l ines
C C
CH3
CH3
CH3
CH3
C C
CH3
CH3
CH3
CH3
2 l ines
Sym metry S implifies Spectra!!!
C
O
CD Cl3 (solve nt)
CH3CCH3
O
CH3
C
O
CH3COCH2CH3
O
CD Cl3 (solve nt)
OCH2
CH3
Proton Decoupling
Three types:
1. Broad band decoupling
2. Off-resonance decoupling
3. Pulse decoupling
Broad band decoupling
1. It avoid spin-spin splitting of 13C lines by 1H
nuclei.
2. In this, all the protons are simultaneously irradiated with a
broad band radiofrequency signal. Irradiation causes the protons to
become saturated and they undergo rapid upward downward
transition among all their possible spin state. This is produced by a
second coil located in the sample probe.
3. Without decoupling 13C spectra would show
complex overlapping multiplets that would be hard to
interpret.
4. The spin-spin information get lost, but
we can use off-resonance decoupling to get spin-spin
shifts back
Nuclear Overhauser Enhancement (NOE)
A. Under conditions of broad band decoupling it found that the area of the 13C
peaks are enhanced by a factor that is significantly greater than that which is
expected from the collapse of multiplets into single lines.
B. This is a manifestation of nuclear overhauser enhancement.
C. Arises from direct magnetic coupling between a decoupled proton and a
neighboring 13C nucleus that results in an increase in the population of the lower
energy state of the 13C nucleus than that predicted by the Boltzmann relation.
D. 13C signal may be enhanced by as much as a factor of 3 x
E. Disadvantage –
1. Lose the proportionality between peak areas and the number of nuclei of that
type of 13C.
Off-resonance decoupling
1. The coupling between each carbon atom and each hydrogen
attached directly to it, s observed acc to n+1 rule.
2. Apparent magnitude of the coupling constant is reduced and
overlap of the resulting multiplets is less frequent
3. Set decoupling frequency at 1000 to 2000 Hz above
the proton spectral region which leads to a partial
decoupled spectrum in which all but the largest spin spin
shifts are absent.
DEPT 13C NMR Spectroscopy
Distortionless Enhancement by Polarization Transfer (DEPT-
NMR) experiment
• Run in three stages
1. Ordinary broadband-decoupled spectrum
• Locates chemical shifts of all carbons
2. DEPT-90
• Only signals due to CH carbons appear
3. DEPT-135
• CH3 and CH resonances appear positive
• CH2 signals appear as negative signals (below the baseline)
• Used to determine number of hydrogens attached to each carbon
DEPT 13C NMR Spectroscopy
DEPT 13C NMR Spectroscopy
(a) Ordinary broadband-decoupled
spectrum showing signals for all
eight of 6-methylhept-5-en-2-ol
(b) DEPT-90 spectrum showing
signals only for the two C-H
carbons
(c) DEPT-135 spectrum showing
positive signals for the two CH
carbons and the three CH3
carbons and negative signals for
the two CH2 carbons
THANKYOU

Weitere ähnliche Inhalte

Was ist angesagt?

Chemical shift with c13 nmr
Chemical shift with c13 nmrChemical shift with c13 nmr
Chemical shift with c13 nmr
N K
 

Was ist angesagt? (20)

Chemical shift with c13 nmr
Chemical shift with c13 nmrChemical shift with c13 nmr
Chemical shift with c13 nmr
 
Comparison of 1H-NMR and 13C-NMR
Comparison of 1H-NMR and 13C-NMRComparison of 1H-NMR and 13C-NMR
Comparison of 1H-NMR and 13C-NMR
 
Factors and applications of IR Spectroscopy
Factors and applications of IR SpectroscopyFactors and applications of IR Spectroscopy
Factors and applications of IR Spectroscopy
 
Cosy,nosy
Cosy,nosyCosy,nosy
Cosy,nosy
 
Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
 
Chemical shift
Chemical shiftChemical shift
Chemical shift
 
C-13 NMR Spectroscopy ppt(10 Minute explanation)
C-13 NMR Spectroscopy ppt(10 Minute explanation)C-13 NMR Spectroscopy ppt(10 Minute explanation)
C-13 NMR Spectroscopy ppt(10 Minute explanation)
 
Spin spin splitting (n+1 Rule) NMR spectroscopy
Spin spin splitting (n+1 Rule) NMR spectroscopySpin spin splitting (n+1 Rule) NMR spectroscopy
Spin spin splitting (n+1 Rule) NMR spectroscopy
 
FT NMR
FT NMRFT NMR
FT NMR
 
Coupling constant
Coupling constantCoupling constant
Coupling constant
 
Mc lafferty rearrangement
Mc lafferty rearrangementMc lafferty rearrangement
Mc lafferty rearrangement
 
Nmr spectroscopy.
Nmr spectroscopy.Nmr spectroscopy.
Nmr spectroscopy.
 
FT- NMR
FT- NMRFT- NMR
FT- NMR
 
Nuclear overhauser effect
Nuclear overhauser effectNuclear overhauser effect
Nuclear overhauser effect
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
theory and principles of ft nmr
theory and principles of ft nmrtheory and principles of ft nmr
theory and principles of ft nmr
 
INTERPRETATION OF IR SPECTROSCOPY
INTERPRETATION OF IR SPECTROSCOPYINTERPRETATION OF IR SPECTROSCOPY
INTERPRETATION OF IR SPECTROSCOPY
 
Chemical Shift & Factors Affecting Chemical Shift
Chemical Shift & Factors Affecting Chemical ShiftChemical Shift & Factors Affecting Chemical Shift
Chemical Shift & Factors Affecting Chemical Shift
 
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
MASS SPECTROSCOPY ( Molecular ion, Base peak, Isotopic abundance, Metastable ...
 
NMR SPECTROSCOPY
NMR SPECTROSCOPYNMR SPECTROSCOPY
NMR SPECTROSCOPY
 

Andere mochten auch (11)

Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
 
Nmr spectroscopy of fluorine 19
Nmr spectroscopy of fluorine 19Nmr spectroscopy of fluorine 19
Nmr spectroscopy of fluorine 19
 
IR and NMR spectroscopy
IR and NMR spectroscopyIR and NMR spectroscopy
IR and NMR spectroscopy
 
use of nmr in structure ellucidation
 use of nmr in structure ellucidation use of nmr in structure ellucidation
use of nmr in structure ellucidation
 
13 - Nuclear Magnetic Resonance Spectroscopy - Wade 7th
13 - Nuclear Magnetic Resonance Spectroscopy - Wade 7th13 - Nuclear Magnetic Resonance Spectroscopy - Wade 7th
13 - Nuclear Magnetic Resonance Spectroscopy - Wade 7th
 
NMR spectroscopy
NMR spectroscopyNMR spectroscopy
NMR spectroscopy
 
NUCLEAR MAGNETIC RESONANCE
NUCLEAR MAGNETIC RESONANCENUCLEAR MAGNETIC RESONANCE
NUCLEAR MAGNETIC RESONANCE
 
Nuclear magnetic resonance proton nmr
Nuclear magnetic resonance   proton nmrNuclear magnetic resonance   proton nmr
Nuclear magnetic resonance proton nmr
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
Nmr2 pl
Nmr2 plNmr2 pl
Nmr2 pl
 
Infrared spectroscopy
Infrared spectroscopyInfrared spectroscopy
Infrared spectroscopy
 

Ähnlich wie 13C-NMR SPECTROSCOPY

Introduction-NMR.pdf
Introduction-NMR.pdfIntroduction-NMR.pdf
Introduction-NMR.pdf
Abid Zia
 
BT631-18-NMR_3
BT631-18-NMR_3BT631-18-NMR_3
BT631-18-NMR_3
Rajesh G
 

Ähnlich wie 13C-NMR SPECTROSCOPY (20)

C 13 NMR
C 13 NMRC 13 NMR
C 13 NMR
 
c13 nmr.pptx
c13 nmr.pptxc13 nmr.pptx
c13 nmr.pptx
 
13 C NMR Spectroscopy with examples by Dr Anthony Crasto
13 C NMR Spectroscopy with examples by Dr Anthony Crasto13 C NMR Spectroscopy with examples by Dr Anthony Crasto
13 C NMR Spectroscopy with examples by Dr Anthony Crasto
 
CARBON 13 NMR
CARBON 13 NMRCARBON 13 NMR
CARBON 13 NMR
 
NMR spectroscopy full details instrumental .ppt
NMR spectroscopy full details instrumental .pptNMR spectroscopy full details instrumental .ppt
NMR spectroscopy full details instrumental .ppt
 
Sana 13 nmr
Sana 13 nmrSana 13 nmr
Sana 13 nmr
 
NMR
NMRNMR
NMR
 
C13 nmr
C13 nmrC13 nmr
C13 nmr
 
c13ppt-150515121301-lva1-app6892 (1).pdf
c13ppt-150515121301-lva1-app6892 (1).pdfc13ppt-150515121301-lva1-app6892 (1).pdf
c13ppt-150515121301-lva1-app6892 (1).pdf
 
Introduction-NMR.pdf
Introduction-NMR.pdfIntroduction-NMR.pdf
Introduction-NMR.pdf
 
Seminar on c-13 Nuclear magnetic resonance Spectroscopy
Seminar on c-13 Nuclear magnetic resonance SpectroscopySeminar on c-13 Nuclear magnetic resonance Spectroscopy
Seminar on c-13 Nuclear magnetic resonance Spectroscopy
 
NMR SPECTROSCOPY AND SOME PROBLEMS BASED ON IT
NMR SPECTROSCOPY AND SOME PROBLEMS BASED ON ITNMR SPECTROSCOPY AND SOME PROBLEMS BASED ON IT
NMR SPECTROSCOPY AND SOME PROBLEMS BASED ON IT
 
Nuclear magnetic resonance effect, introduction, principles, applications
Nuclear magnetic resonance effect, introduction, principles, applicationsNuclear magnetic resonance effect, introduction, principles, applications
Nuclear magnetic resonance effect, introduction, principles, applications
 
BT631-18-NMR_3
BT631-18-NMR_3BT631-18-NMR_3
BT631-18-NMR_3
 
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPYNUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
 
Akj p pt carban 13
Akj p pt carban 13 Akj p pt carban 13
Akj p pt carban 13
 
Nmr 2
Nmr 2Nmr 2
Nmr 2
 
Wade13 nmr
Wade13 nmrWade13 nmr
Wade13 nmr
 
NMR Spectroscopy
NMR Spectroscopy NMR Spectroscopy
NMR Spectroscopy
 
Carbon 13
Carbon 13Carbon 13
Carbon 13
 

Kürzlich hochgeladen

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Kürzlich hochgeladen (20)

Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 

13C-NMR SPECTROSCOPY

  • 1. PRESENTED BY: RAMANDEEP KAUR BRAR (PH.CHEMISTRY)
  • 2. DEFINATION  NMR is a phenomenon exhibited by when atomic nuclei in a static magnetic field absorbs energy from radiofrequency field of certain characteristic frequency. It results to give a spectrum with frequency on x-axis and intensity of absorption on y-axis.
  • 3. PRINCIPLE & THEORY  The nuclear magnetic resonance occurs when nuclei aligned with an applied field are induced to absorb energy and change their spin orientation with respect to the applied field.  The energy absorption is a quantized process, and energy absorbed must equal the energy difference between the two states involved. E absorbed = (E-1/2state- E+1/2state) =hv  The stronger the applied magnetic field, greater the energy difference between the possible spin states. ΔE = ∫(B0)
  • 4.  The magnitude of energy level separation also depends on the particular nucleus involved. Each nucleus has a different ratio of magnetic moment to angular momentum since each has different charge and mass. This ratio, is called the magnetogyric ratio ϒ, is a constant for each nucleus and determines the energy dependence on the magnetic field. ΔE = ∫(ϒB0) = hv The ϒ value for 13C is 67.28 Tesla and for 1H IS 267.53
  • 5.
  • 6. ABUNDANCE 13C is difficult to record because of 1. The most abundant isotope of carbon that is 12C (99.1%) is not detected by nmr because it has an even no of protons and neutrons 12C is nmr inactive. 2. Magnetic resonance of 13C is much weaker. Moreover, gyromagnectic ratio of 13C being only one fourth that of proton, so the resonance frequency of 13C is one fourth that of proton nmr.
  • 7. Advantages of 13C- NMR over 1H- NMR 1. 13C- provides information about the backbone of molecules rather than the periphery. 2. The chemical shifts range for 13C- NMR for most organic compounds is 200 ppm compared to 10 –15 ppm for H, hence there is less overlap of peaks for 13C- NMR. 3. Homonuclear spin-spin coupling between carbon atoms is not observed because the natural abundance of 13C is too low for two 13C to be next to one another. Heteronuclear spin coupling between 13C and 12C does not occur because the spin quantum number of 12C is zero. 4. There are a number of excellent methods for decoupling the interaction between 13 C and 1H.
  • 8. SPIN –SPIN SPLITTING OF 13C SIGNALS  Splitting take place acc. to 2nI+1 rule Where n= no. of nuclei I=spin quantum number CH3 = 3+1=4 quartet CH2 = 2+1=3 triplet CH = 1+1=2 doublet C = 0+1=1 singlet CDCl3 gives three peaks because its I=1 so acc. to 2nI+1 2 1 1+1=3 so it gives 1:1:1 peaks Solvents used are CDCl3, DMSO, d6acetone, d6 benzene
  • 9. 13C chemical shifts The most significant factors affecting the chemical shifts are: Electro negativity of the groups attached to the C Hybridization of C The intensity (size) of each peak is NOT directly related to the number of that type of carbon. Other factors contribute to the size of a peak: Peaks from carbon atoms that have attached hydrogen atoms are bigger than those that don’t have hydrogens attached. Carbon chemical shifts are usually reported as downfield from the carbon signal of tetramethylsilane (TMS).
  • 10.
  • 11. Predicting 13C Spectra C H3 C H3 C C C C C CH3 plane of symmetry 4 lines O C H3 C H3 O C H3 CH3 C C c CH3 O CH3 5 l ines CH3 C CH3 C CH3 H 5 l ines
  • 12. Predicting 13C SpectraC H3 C H3 H3C CH3 C C C CC C H3C CH3 4 l ines C C CH3 CH3 CH3 CH3 C C CH3 CH3 CH3 CH3 2 l ines Sym metry S implifies Spectra!!!
  • 13. C O CD Cl3 (solve nt) CH3CCH3 O CH3
  • 15. Proton Decoupling Three types: 1. Broad band decoupling 2. Off-resonance decoupling 3. Pulse decoupling
  • 16.
  • 17.
  • 18. Broad band decoupling 1. It avoid spin-spin splitting of 13C lines by 1H nuclei. 2. In this, all the protons are simultaneously irradiated with a broad band radiofrequency signal. Irradiation causes the protons to become saturated and they undergo rapid upward downward transition among all their possible spin state. This is produced by a second coil located in the sample probe. 3. Without decoupling 13C spectra would show complex overlapping multiplets that would be hard to interpret. 4. The spin-spin information get lost, but we can use off-resonance decoupling to get spin-spin shifts back
  • 19.
  • 20. Nuclear Overhauser Enhancement (NOE) A. Under conditions of broad band decoupling it found that the area of the 13C peaks are enhanced by a factor that is significantly greater than that which is expected from the collapse of multiplets into single lines. B. This is a manifestation of nuclear overhauser enhancement. C. Arises from direct magnetic coupling between a decoupled proton and a neighboring 13C nucleus that results in an increase in the population of the lower energy state of the 13C nucleus than that predicted by the Boltzmann relation. D. 13C signal may be enhanced by as much as a factor of 3 x E. Disadvantage – 1. Lose the proportionality between peak areas and the number of nuclei of that type of 13C.
  • 21. Off-resonance decoupling 1. The coupling between each carbon atom and each hydrogen attached directly to it, s observed acc to n+1 rule. 2. Apparent magnitude of the coupling constant is reduced and overlap of the resulting multiplets is less frequent 3. Set decoupling frequency at 1000 to 2000 Hz above the proton spectral region which leads to a partial decoupled spectrum in which all but the largest spin spin shifts are absent.
  • 22.
  • 23. DEPT 13C NMR Spectroscopy Distortionless Enhancement by Polarization Transfer (DEPT- NMR) experiment • Run in three stages 1. Ordinary broadband-decoupled spectrum • Locates chemical shifts of all carbons 2. DEPT-90 • Only signals due to CH carbons appear 3. DEPT-135 • CH3 and CH resonances appear positive • CH2 signals appear as negative signals (below the baseline) • Used to determine number of hydrogens attached to each carbon
  • 24. DEPT 13C NMR Spectroscopy
  • 25. DEPT 13C NMR Spectroscopy (a) Ordinary broadband-decoupled spectrum showing signals for all eight of 6-methylhept-5-en-2-ol (b) DEPT-90 spectrum showing signals only for the two C-H carbons (c) DEPT-135 spectrum showing positive signals for the two CH carbons and the three CH3 carbons and negative signals for the two CH2 carbons

Hinweis der Redaktion

  1. Y