SlideShare ist ein Scribd-Unternehmen logo
1 von 18
Unclouding Container Challenges
Apr 21st, 2021
Harpratap Singh Layal
Cloud Platform Department
Rakuten Group, Inc.
2
Background – Compute platforms
Bare metal as a Service (BMaaS)
16 core
32 GB
1 Gbps
16 core
32 GB
1 Gbps
32 core
128 GB
10 gbps
16 core
64 GB
10 gbps
Container as a Service (CaaS)
Cluster X
App 1 App 2
App 2
Cluster Y
App 3 App 2
App 4
3
Background – What is CaaS?
PaaS
(Heroku
12 factor
apps)
Managed K8s
control plane (GKE,
EKS, AKS Full
customization)
Simple
container
scheduler
(Fargate,
CloudRun)
Only expose
selected
K8s API
(CaaS)
Opioninated
(Less flexibility)
Developer control & Responsibility
Default Container Networking, CI/CD, monitoring, security for Stateless & Stateful apps, Cron, GPU workloads
4
Challenge #1 : Communication Cost
5
Challenge #1 : Communication Cost
Doing it the traditional way –
1. Communication lag – takes too long to formulate requirements from developers
2. XY problem – no idea what the real problem is
3. Validation and policy injection is manually done
6
Challenge #1 : Communication Cost
Solution: Create an opionated Internal Developer Platform and form an API based contract with
users
Philosophy :
• When you have APIs and their documentation users rarely need to communicate with you
• Easier to explicitly define what you provide and what you don’t
• Standardization = low re-invention of wheel, less pets, easier to propagate tech culture
Implementation :
• In CaaS we make use of K8s APIs to expose features to users. Custom Resource Definitions (CRDs)
and Operators fits us well.
• Admission control webhooks, podSecurityPolicy and networkPolicy
7
Challenge #1 : Communication Cost
Jiange : Validation without human communication
Jiange
etcd K8s API
8
Challenge #2: Day 2 Ops
9
Challenge #2 : Day 2 Ops
Day 1 Ops :
• Provisioning
• Step 1
• Step 2
• Step 3… N
• Procedural – easy to automate
Day 2 Ops:
• Maintainence
• Not always the same
• Improvements – need to keep an eye on various components
• Metrics
• Logs
• Traces
10
Challenge #2 : Day 2 Ops
Solution: Infrastructure as Data instead of Infrastructure as Code
Script
for X
Script
for Y
Script
for Z
IaC – run scripts one by one
Data
Store Infra
Infra
Control
Loop
Reconcile Spec
Reconcile Status
IaD – Store the state as Data and
reconcile until state is achieved
11
Challenge #2 : Day 2 Ops
Solution: Infrastructure as Data instead of Infrastructure as Code
In CaaS we have written controllers based on same approach
• Klone – Binary that provisions master nodes and system components based on git configs (written in
Go)
• Node operator – used for creating worker nodes
• Namespace operator – used for creating user namespaces with correct permissions, good defaults,
jenkins repositories, harbor projects etc when user on boards.
• Gateway controller – For creating istio ingress gateways
• Wildcard instant domain controller – For instantly creating simple domains to test out services
• Cloud controlller manager – for creating load balancers
• Endpoints controller – for creating container native load balancers
12
Challenge #3 : Day 2 Ops
Internet
Load Balancer
K8s API
Node
List
Cloud
Controller
Manager
K8s cluster nodes
13
Challenge #3: Container networks
14
Challenge #3 : Container Networks
• Kubernetes network != Host Network
• Pods are not first class citizens (not flat network)
• Pods are ephemeral
• Fair Load balancing does not happen when using NodePorts
• Additional hops (through K8s node Iptables)
• Source IP is not preserved
• Network is difficult to use
15
Challenge #3 : Container Networks
Solution: No one size fits all, provide all
solutions with good defaults and let users
choose
Shared Gateway +
Auto Assigned
Domain
Dedicated Gateway +
Custom Domain
Domain Auto Assigned Any Domain
Performance Not isolated Isolated
Maintainence (for
users)
Zero High
Customization Low Fully customizable
Cost Low High
16
Challenge #3 : Container Networks
Solution: Container Native Load balancing
Legacy Load
Balancer
Container Native
Load Balancer
Number of hops 2 1
IP preservation Remote IP lost Remote IP
preserved
Load Balancing Across nodes Across containers
Health checks Only for Nodes Application level
health checks
17
Future Challenges:
Multicluster CaaS -
Network
Deployments
IPv4 not enough (need IPv6 and/or VPCs)
Stateful apps -
Local persistence
Remote persistence
GPU
SRIOV
CPU pinning
Single Data proxy
 Unclouding  Container Challenges

Weitere ähnliche Inhalte

Was ist angesagt?

Automate Your Kafka Cluster with Kubernetes Custom Resources
Automate Your Kafka Cluster with Kubernetes Custom Resources Automate Your Kafka Cluster with Kubernetes Custom Resources
Automate Your Kafka Cluster with Kubernetes Custom Resources confluent
 
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...HostedbyConfluent
 
Supercharge Your Real-time Event Processing with Neo4j's Streams Kafka Connec...
Supercharge Your Real-time Event Processing with Neo4j's Streams Kafka Connec...Supercharge Your Real-time Event Processing with Neo4j's Streams Kafka Connec...
Supercharge Your Real-time Event Processing with Neo4j's Streams Kafka Connec...HostedbyConfluent
 
Delivering Cloud Native Batch Solutions - Dodd Pfeffer
Delivering Cloud Native Batch Solutions - Dodd PfefferDelivering Cloud Native Batch Solutions - Dodd Pfeffer
Delivering Cloud Native Batch Solutions - Dodd PfefferVMware Tanzu
 
The service mesh management plane
The service mesh management planeThe service mesh management plane
The service mesh management planeLibbySchulze
 
Gwen Shapira, Confluent | Kafka Summit 2020 Keynote | Kafka’s New Architecture
Gwen Shapira, Confluent | Kafka Summit 2020 Keynote | Kafka’s New ArchitectureGwen Shapira, Confluent | Kafka Summit 2020 Keynote | Kafka’s New Architecture
Gwen Shapira, Confluent | Kafka Summit 2020 Keynote | Kafka’s New Architectureconfluent
 
Beyond the Brokers | Emma Humber and Andrew Borley, IBM
Beyond the Brokers | Emma Humber and Andrew Borley, IBMBeyond the Brokers | Emma Humber and Andrew Borley, IBM
Beyond the Brokers | Emma Humber and Andrew Borley, IBMHostedbyConfluent
 
Kafka Deployment to Steel Thread
Kafka Deployment to Steel ThreadKafka Deployment to Steel Thread
Kafka Deployment to Steel Threadconfluent
 
Enhancing Apache Kafka for Large Scale Real-Time Data Pipeline at Tencent | K...
Enhancing Apache Kafka for Large Scale Real-Time Data Pipeline at Tencent | K...Enhancing Apache Kafka for Large Scale Real-Time Data Pipeline at Tencent | K...
Enhancing Apache Kafka for Large Scale Real-Time Data Pipeline at Tencent | K...HostedbyConfluent
 
Twitter’s Apache Kafka Adoption Journey | Ming Liu, Twitter
Twitter’s Apache Kafka Adoption Journey | Ming Liu, TwitterTwitter’s Apache Kafka Adoption Journey | Ming Liu, Twitter
Twitter’s Apache Kafka Adoption Journey | Ming Liu, TwitterHostedbyConfluent
 
One Click Streaming Data Pipelines & Flows | Leveraging Kafka & Spark | Ido F...
One Click Streaming Data Pipelines & Flows | Leveraging Kafka & Spark | Ido F...One Click Streaming Data Pipelines & Flows | Leveraging Kafka & Spark | Ido F...
One Click Streaming Data Pipelines & Flows | Leveraging Kafka & Spark | Ido F...HostedbyConfluent
 
The Road Most Traveled: A Kafka Story | Heikki Nousiainen, Aiven
The Road Most Traveled: A Kafka Story | Heikki Nousiainen, AivenThe Road Most Traveled: A Kafka Story | Heikki Nousiainen, Aiven
The Road Most Traveled: A Kafka Story | Heikki Nousiainen, AivenHostedbyConfluent
 
Taming a massive fleet of Python-based Kafka apps at Robinhood | Chandra Kuch...
Taming a massive fleet of Python-based Kafka apps at Robinhood | Chandra Kuch...Taming a massive fleet of Python-based Kafka apps at Robinhood | Chandra Kuch...
Taming a massive fleet of Python-based Kafka apps at Robinhood | Chandra Kuch...HostedbyConfluent
 
Distributed Enterprise Monitoring and Management of Apache Kafka (William McL...
Distributed Enterprise Monitoring and Management of Apache Kafka (William McL...Distributed Enterprise Monitoring and Management of Apache Kafka (William McL...
Distributed Enterprise Monitoring and Management of Apache Kafka (William McL...HostedbyConfluent
 
Deploying Kafka Streams Applications with Docker and Kubernetes
Deploying Kafka Streams Applications with Docker and KubernetesDeploying Kafka Streams Applications with Docker and Kubernetes
Deploying Kafka Streams Applications with Docker and Kubernetesconfluent
 
Event-driven Applications with Kafka, Micronaut, and AWS Lambda | Dave Klein,...
Event-driven Applications with Kafka, Micronaut, and AWS Lambda | Dave Klein,...Event-driven Applications with Kafka, Micronaut, and AWS Lambda | Dave Klein,...
Event-driven Applications with Kafka, Micronaut, and AWS Lambda | Dave Klein,...HostedbyConfluent
 
Migrating to Apache Spark at Netflix
Migrating to Apache Spark at NetflixMigrating to Apache Spark at Netflix
Migrating to Apache Spark at NetflixDatabricks
 
RedisConf17 - Dynomite - Making Non-distributed Databases Distributed
RedisConf17 - Dynomite - Making Non-distributed Databases DistributedRedisConf17 - Dynomite - Making Non-distributed Databases Distributed
RedisConf17 - Dynomite - Making Non-distributed Databases DistributedRedis Labs
 
Netflix Story of Embracing the Cloud
Netflix Story of Embracing the CloudNetflix Story of Embracing the Cloud
Netflix Story of Embracing the CloudKate Karniouchina
 

Was ist angesagt? (20)

Automate Your Kafka Cluster with Kubernetes Custom Resources
Automate Your Kafka Cluster with Kubernetes Custom Resources Automate Your Kafka Cluster with Kubernetes Custom Resources
Automate Your Kafka Cluster with Kubernetes Custom Resources
 
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...
 
Supercharge Your Real-time Event Processing with Neo4j's Streams Kafka Connec...
Supercharge Your Real-time Event Processing with Neo4j's Streams Kafka Connec...Supercharge Your Real-time Event Processing with Neo4j's Streams Kafka Connec...
Supercharge Your Real-time Event Processing with Neo4j's Streams Kafka Connec...
 
Delivering Cloud Native Batch Solutions - Dodd Pfeffer
Delivering Cloud Native Batch Solutions - Dodd PfefferDelivering Cloud Native Batch Solutions - Dodd Pfeffer
Delivering Cloud Native Batch Solutions - Dodd Pfeffer
 
The service mesh management plane
The service mesh management planeThe service mesh management plane
The service mesh management plane
 
Gwen Shapira, Confluent | Kafka Summit 2020 Keynote | Kafka’s New Architecture
Gwen Shapira, Confluent | Kafka Summit 2020 Keynote | Kafka’s New ArchitectureGwen Shapira, Confluent | Kafka Summit 2020 Keynote | Kafka’s New Architecture
Gwen Shapira, Confluent | Kafka Summit 2020 Keynote | Kafka’s New Architecture
 
Beyond the Brokers | Emma Humber and Andrew Borley, IBM
Beyond the Brokers | Emma Humber and Andrew Borley, IBMBeyond the Brokers | Emma Humber and Andrew Borley, IBM
Beyond the Brokers | Emma Humber and Andrew Borley, IBM
 
Kafka Deployment to Steel Thread
Kafka Deployment to Steel ThreadKafka Deployment to Steel Thread
Kafka Deployment to Steel Thread
 
Enhancing Apache Kafka for Large Scale Real-Time Data Pipeline at Tencent | K...
Enhancing Apache Kafka for Large Scale Real-Time Data Pipeline at Tencent | K...Enhancing Apache Kafka for Large Scale Real-Time Data Pipeline at Tencent | K...
Enhancing Apache Kafka for Large Scale Real-Time Data Pipeline at Tencent | K...
 
Twitter’s Apache Kafka Adoption Journey | Ming Liu, Twitter
Twitter’s Apache Kafka Adoption Journey | Ming Liu, TwitterTwitter’s Apache Kafka Adoption Journey | Ming Liu, Twitter
Twitter’s Apache Kafka Adoption Journey | Ming Liu, Twitter
 
One Click Streaming Data Pipelines & Flows | Leveraging Kafka & Spark | Ido F...
One Click Streaming Data Pipelines & Flows | Leveraging Kafka & Spark | Ido F...One Click Streaming Data Pipelines & Flows | Leveraging Kafka & Spark | Ido F...
One Click Streaming Data Pipelines & Flows | Leveraging Kafka & Spark | Ido F...
 
The Road Most Traveled: A Kafka Story | Heikki Nousiainen, Aiven
The Road Most Traveled: A Kafka Story | Heikki Nousiainen, AivenThe Road Most Traveled: A Kafka Story | Heikki Nousiainen, Aiven
The Road Most Traveled: A Kafka Story | Heikki Nousiainen, Aiven
 
Taming a massive fleet of Python-based Kafka apps at Robinhood | Chandra Kuch...
Taming a massive fleet of Python-based Kafka apps at Robinhood | Chandra Kuch...Taming a massive fleet of Python-based Kafka apps at Robinhood | Chandra Kuch...
Taming a massive fleet of Python-based Kafka apps at Robinhood | Chandra Kuch...
 
Distributed Enterprise Monitoring and Management of Apache Kafka (William McL...
Distributed Enterprise Monitoring and Management of Apache Kafka (William McL...Distributed Enterprise Monitoring and Management of Apache Kafka (William McL...
Distributed Enterprise Monitoring and Management of Apache Kafka (William McL...
 
Deploying Kafka Streams Applications with Docker and Kubernetes
Deploying Kafka Streams Applications with Docker and KubernetesDeploying Kafka Streams Applications with Docker and Kubernetes
Deploying Kafka Streams Applications with Docker and Kubernetes
 
Event-driven Applications with Kafka, Micronaut, and AWS Lambda | Dave Klein,...
Event-driven Applications with Kafka, Micronaut, and AWS Lambda | Dave Klein,...Event-driven Applications with Kafka, Micronaut, and AWS Lambda | Dave Klein,...
Event-driven Applications with Kafka, Micronaut, and AWS Lambda | Dave Klein,...
 
Migrating to Apache Spark at Netflix
Migrating to Apache Spark at NetflixMigrating to Apache Spark at Netflix
Migrating to Apache Spark at Netflix
 
dA Platform Overview
dA Platform OverviewdA Platform Overview
dA Platform Overview
 
RedisConf17 - Dynomite - Making Non-distributed Databases Distributed
RedisConf17 - Dynomite - Making Non-distributed Databases DistributedRedisConf17 - Dynomite - Making Non-distributed Databases Distributed
RedisConf17 - Dynomite - Making Non-distributed Databases Distributed
 
Netflix Story of Embracing the Cloud
Netflix Story of Embracing the CloudNetflix Story of Embracing the Cloud
Netflix Story of Embracing the Cloud
 

Ähnlich wie Unclouding Container Challenges

Kubernetes @ Squarespace (SRE Portland Meetup October 2017)
Kubernetes @ Squarespace (SRE Portland Meetup October 2017)Kubernetes @ Squarespace (SRE Portland Meetup October 2017)
Kubernetes @ Squarespace (SRE Portland Meetup October 2017)Kevin Lynch
 
The Good, the Bad and the Ugly of Migrating Hundreds of Legacy Applications ...
 The Good, the Bad and the Ugly of Migrating Hundreds of Legacy Applications ... The Good, the Bad and the Ugly of Migrating Hundreds of Legacy Applications ...
The Good, the Bad and the Ugly of Migrating Hundreds of Legacy Applications ...Josef Adersberger
 
Migrating Hundreds of Legacy Applications to Kubernetes - The Good, the Bad, ...
Migrating Hundreds of Legacy Applications to Kubernetes - The Good, the Bad, ...Migrating Hundreds of Legacy Applications to Kubernetes - The Good, the Bad, ...
Migrating Hundreds of Legacy Applications to Kubernetes - The Good, the Bad, ...QAware GmbH
 
2017 Microservices Practitioner Virtual Summit: Microservices at Squarespace ...
2017 Microservices Practitioner Virtual Summit: Microservices at Squarespace ...2017 Microservices Practitioner Virtual Summit: Microservices at Squarespace ...
2017 Microservices Practitioner Virtual Summit: Microservices at Squarespace ...Ambassador Labs
 
Kubernetes @ Squarespace: Kubernetes in the Datacenter
Kubernetes @ Squarespace: Kubernetes in the DatacenterKubernetes @ Squarespace: Kubernetes in the Datacenter
Kubernetes @ Squarespace: Kubernetes in the DatacenterKevin Lynch
 
Using Kubernetes to make cellular data plans cheaper for 50M users
Using Kubernetes to make cellular data plans cheaper for 50M usersUsing Kubernetes to make cellular data plans cheaper for 50M users
Using Kubernetes to make cellular data plans cheaper for 50M usersMirantis
 
Docker on docker leveraging kubernetes in docker ee
Docker on docker leveraging kubernetes in docker eeDocker on docker leveraging kubernetes in docker ee
Docker on docker leveraging kubernetes in docker eeDocker, Inc.
 
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at LyftSF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at LyftChester Chen
 
Container orchestration and microservices world
Container orchestration and microservices worldContainer orchestration and microservices world
Container orchestration and microservices worldKarol Chrapek
 
AWS and GKE Migration and Multicloud
AWS and GKE Migration and MulticloudAWS and GKE Migration and Multicloud
AWS and GKE Migration and MulticloudChris Gaun
 
Kubernetes Monitoring & Best Practices
Kubernetes Monitoring & Best PracticesKubernetes Monitoring & Best Practices
Kubernetes Monitoring & Best PracticesAjeet Singh Raina
 
Circonus: Design failures - A Case Study
Circonus: Design failures - A Case StudyCirconus: Design failures - A Case Study
Circonus: Design failures - A Case StudyHeinrich Hartmann
 
Microservices @ Work - A Practice Report of Developing Microservices
Microservices @ Work - A Practice Report of Developing MicroservicesMicroservices @ Work - A Practice Report of Developing Microservices
Microservices @ Work - A Practice Report of Developing MicroservicesQAware GmbH
 
Building a data pipeline to ingest data into Hadoop in minutes using Streamse...
Building a data pipeline to ingest data into Hadoop in minutes using Streamse...Building a data pipeline to ingest data into Hadoop in minutes using Streamse...
Building a data pipeline to ingest data into Hadoop in minutes using Streamse...Guglielmo Iozzia
 
RINA overview and ongoing research in EC-funded projects, ISO SC6 WG7
RINA overview and ongoing research in EC-funded projects, ISO SC6 WG7RINA overview and ongoing research in EC-funded projects, ISO SC6 WG7
RINA overview and ongoing research in EC-funded projects, ISO SC6 WG7Eleni Trouva
 
AOUG_11Nov2016_Challenges_with_EBS12_2
AOUG_11Nov2016_Challenges_with_EBS12_2AOUG_11Nov2016_Challenges_with_EBS12_2
AOUG_11Nov2016_Challenges_with_EBS12_2Sean Braymen
 
Containerized Hadoop beyond Kubernetes
Containerized Hadoop beyond KubernetesContainerized Hadoop beyond Kubernetes
Containerized Hadoop beyond KubernetesDataWorks Summit
 
IBM Bluemix Nice meetup #5 - 20170504 - Orchestrer Docker avec Kubernetes
IBM Bluemix Nice meetup #5 - 20170504 - Orchestrer Docker avec KubernetesIBM Bluemix Nice meetup #5 - 20170504 - Orchestrer Docker avec Kubernetes
IBM Bluemix Nice meetup #5 - 20170504 - Orchestrer Docker avec KubernetesIBM France Lab
 
Get Lower Latency and Higher Throughput for Java Applications
Get Lower Latency and Higher Throughput for Java ApplicationsGet Lower Latency and Higher Throughput for Java Applications
Get Lower Latency and Higher Throughput for Java ApplicationsScyllaDB
 

Ähnlich wie Unclouding Container Challenges (20)

Kubernetes @ Squarespace (SRE Portland Meetup October 2017)
Kubernetes @ Squarespace (SRE Portland Meetup October 2017)Kubernetes @ Squarespace (SRE Portland Meetup October 2017)
Kubernetes @ Squarespace (SRE Portland Meetup October 2017)
 
The Good, the Bad and the Ugly of Migrating Hundreds of Legacy Applications ...
 The Good, the Bad and the Ugly of Migrating Hundreds of Legacy Applications ... The Good, the Bad and the Ugly of Migrating Hundreds of Legacy Applications ...
The Good, the Bad and the Ugly of Migrating Hundreds of Legacy Applications ...
 
Migrating Hundreds of Legacy Applications to Kubernetes - The Good, the Bad, ...
Migrating Hundreds of Legacy Applications to Kubernetes - The Good, the Bad, ...Migrating Hundreds of Legacy Applications to Kubernetes - The Good, the Bad, ...
Migrating Hundreds of Legacy Applications to Kubernetes - The Good, the Bad, ...
 
2017 Microservices Practitioner Virtual Summit: Microservices at Squarespace ...
2017 Microservices Practitioner Virtual Summit: Microservices at Squarespace ...2017 Microservices Practitioner Virtual Summit: Microservices at Squarespace ...
2017 Microservices Practitioner Virtual Summit: Microservices at Squarespace ...
 
Kubernetes @ Squarespace: Kubernetes in the Datacenter
Kubernetes @ Squarespace: Kubernetes in the DatacenterKubernetes @ Squarespace: Kubernetes in the Datacenter
Kubernetes @ Squarespace: Kubernetes in the Datacenter
 
Using Kubernetes to make cellular data plans cheaper for 50M users
Using Kubernetes to make cellular data plans cheaper for 50M usersUsing Kubernetes to make cellular data plans cheaper for 50M users
Using Kubernetes to make cellular data plans cheaper for 50M users
 
Docker on docker leveraging kubernetes in docker ee
Docker on docker leveraging kubernetes in docker eeDocker on docker leveraging kubernetes in docker ee
Docker on docker leveraging kubernetes in docker ee
 
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at LyftSF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
 
Container orchestration and microservices world
Container orchestration and microservices worldContainer orchestration and microservices world
Container orchestration and microservices world
 
AWS and GKE Migration and Multicloud
AWS and GKE Migration and MulticloudAWS and GKE Migration and Multicloud
AWS and GKE Migration and Multicloud
 
Kubernetes Monitoring & Best Practices
Kubernetes Monitoring & Best PracticesKubernetes Monitoring & Best Practices
Kubernetes Monitoring & Best Practices
 
Circonus: Design failures - A Case Study
Circonus: Design failures - A Case StudyCirconus: Design failures - A Case Study
Circonus: Design failures - A Case Study
 
Santhosh Resume
Santhosh ResumeSanthosh Resume
Santhosh Resume
 
Microservices @ Work - A Practice Report of Developing Microservices
Microservices @ Work - A Practice Report of Developing MicroservicesMicroservices @ Work - A Practice Report of Developing Microservices
Microservices @ Work - A Practice Report of Developing Microservices
 
Building a data pipeline to ingest data into Hadoop in minutes using Streamse...
Building a data pipeline to ingest data into Hadoop in minutes using Streamse...Building a data pipeline to ingest data into Hadoop in minutes using Streamse...
Building a data pipeline to ingest data into Hadoop in minutes using Streamse...
 
RINA overview and ongoing research in EC-funded projects, ISO SC6 WG7
RINA overview and ongoing research in EC-funded projects, ISO SC6 WG7RINA overview and ongoing research in EC-funded projects, ISO SC6 WG7
RINA overview and ongoing research in EC-funded projects, ISO SC6 WG7
 
AOUG_11Nov2016_Challenges_with_EBS12_2
AOUG_11Nov2016_Challenges_with_EBS12_2AOUG_11Nov2016_Challenges_with_EBS12_2
AOUG_11Nov2016_Challenges_with_EBS12_2
 
Containerized Hadoop beyond Kubernetes
Containerized Hadoop beyond KubernetesContainerized Hadoop beyond Kubernetes
Containerized Hadoop beyond Kubernetes
 
IBM Bluemix Nice meetup #5 - 20170504 - Orchestrer Docker avec Kubernetes
IBM Bluemix Nice meetup #5 - 20170504 - Orchestrer Docker avec KubernetesIBM Bluemix Nice meetup #5 - 20170504 - Orchestrer Docker avec Kubernetes
IBM Bluemix Nice meetup #5 - 20170504 - Orchestrer Docker avec Kubernetes
 
Get Lower Latency and Higher Throughput for Java Applications
Get Lower Latency and Higher Throughput for Java ApplicationsGet Lower Latency and Higher Throughput for Java Applications
Get Lower Latency and Higher Throughput for Java Applications
 

Mehr von Rakuten Group, Inc.

コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話Rakuten Group, Inc.
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のりRakuten Group, Inc.
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Rakuten Group, Inc.
 
DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みRakuten Group, Inc.
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開Rakuten Group, Inc.
 
楽天における大規模データベースの運用
楽天における大規模データベースの運用楽天における大規模データベースの運用
楽天における大規模データベースの運用Rakuten Group, Inc.
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャーRakuten Group, Inc.
 
楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割Rakuten Group, Inc.
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Group, Inc.
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfRakuten Group, Inc.
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfRakuten Group, Inc.
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfRakuten Group, Inc.
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfRakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoRakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoRakuten Group, Inc.
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technologyRakuten Group, Inc.
 
100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情Rakuten Group, Inc.
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャーRakuten Group, Inc.
 

Mehr von Rakuten Group, Inc. (20)

コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり
 
What Makes Software Green?
What Makes Software Green?What Makes Software Green?
What Makes Software Green?
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
 
DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組み
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開
 
楽天における大規模データベースの運用
楽天における大規模データベースの運用楽天における大規模データベースの運用
楽天における大規模データベースの運用
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー
 
楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdf
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdf
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdf
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdf
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdf
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
 
OWASPTop10_Introduction
OWASPTop10_IntroductionOWASPTop10_Introduction
OWASPTop10_Introduction
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technology
 
100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー
 

Kürzlich hochgeladen

QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesBernd Ruecker
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
Software Security in the Real World w/Kelsey Hightower
Software Security in the Real World w/Kelsey HightowerSoftware Security in the Real World w/Kelsey Hightower
Software Security in the Real World w/Kelsey HightowerAnchore
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFMichael Gough
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
HCI Lesson 1 - Introduction to Human-Computer Interaction.pdf
HCI Lesson 1 - Introduction to Human-Computer Interaction.pdfHCI Lesson 1 - Introduction to Human-Computer Interaction.pdf
HCI Lesson 1 - Introduction to Human-Computer Interaction.pdfROWELL MARQUINA
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...Karmanjay Verma
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...Wes McKinney
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
WomenInAutomation2024: AI and Automation for eveyone
WomenInAutomation2024: AI and Automation for eveyoneWomenInAutomation2024: AI and Automation for eveyone
WomenInAutomation2024: AI and Automation for eveyoneUiPathCommunity
 
Bitdefender-CSG-Report-creat7534-interactive
Bitdefender-CSG-Report-creat7534-interactiveBitdefender-CSG-Report-creat7534-interactive
Bitdefender-CSG-Report-creat7534-interactivestartupro
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentPim van der Noll
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...BookNet Canada
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Mark Simos
 
Women in Automation 2024: Career session - explore career paths in automation
Women in Automation 2024: Career session - explore career paths in automationWomen in Automation 2024: Career session - explore career paths in automation
Women in Automation 2024: Career session - explore career paths in automationDianaGray10
 

Kürzlich hochgeladen (20)

QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architectures
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
Software Security in the Real World w/Kelsey Hightower
Software Security in the Real World w/Kelsey HightowerSoftware Security in the Real World w/Kelsey Hightower
Software Security in the Real World w/Kelsey Hightower
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDF
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
HCI Lesson 1 - Introduction to Human-Computer Interaction.pdf
HCI Lesson 1 - Introduction to Human-Computer Interaction.pdfHCI Lesson 1 - Introduction to Human-Computer Interaction.pdf
HCI Lesson 1 - Introduction to Human-Computer Interaction.pdf
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
WomenInAutomation2024: AI and Automation for eveyone
WomenInAutomation2024: AI and Automation for eveyoneWomenInAutomation2024: AI and Automation for eveyone
WomenInAutomation2024: AI and Automation for eveyone
 
Bitdefender-CSG-Report-creat7534-interactive
Bitdefender-CSG-Report-creat7534-interactiveBitdefender-CSG-Report-creat7534-interactive
Bitdefender-CSG-Report-creat7534-interactive
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
 
Women in Automation 2024: Career session - explore career paths in automation
Women in Automation 2024: Career session - explore career paths in automationWomen in Automation 2024: Career session - explore career paths in automation
Women in Automation 2024: Career session - explore career paths in automation
 

Unclouding Container Challenges

  • 1. Unclouding Container Challenges Apr 21st, 2021 Harpratap Singh Layal Cloud Platform Department Rakuten Group, Inc.
  • 2. 2 Background – Compute platforms Bare metal as a Service (BMaaS) 16 core 32 GB 1 Gbps 16 core 32 GB 1 Gbps 32 core 128 GB 10 gbps 16 core 64 GB 10 gbps Container as a Service (CaaS) Cluster X App 1 App 2 App 2 Cluster Y App 3 App 2 App 4
  • 3. 3 Background – What is CaaS? PaaS (Heroku 12 factor apps) Managed K8s control plane (GKE, EKS, AKS Full customization) Simple container scheduler (Fargate, CloudRun) Only expose selected K8s API (CaaS) Opioninated (Less flexibility) Developer control & Responsibility Default Container Networking, CI/CD, monitoring, security for Stateless & Stateful apps, Cron, GPU workloads
  • 4. 4 Challenge #1 : Communication Cost
  • 5. 5 Challenge #1 : Communication Cost Doing it the traditional way – 1. Communication lag – takes too long to formulate requirements from developers 2. XY problem – no idea what the real problem is 3. Validation and policy injection is manually done
  • 6. 6 Challenge #1 : Communication Cost Solution: Create an opionated Internal Developer Platform and form an API based contract with users Philosophy : • When you have APIs and their documentation users rarely need to communicate with you • Easier to explicitly define what you provide and what you don’t • Standardization = low re-invention of wheel, less pets, easier to propagate tech culture Implementation : • In CaaS we make use of K8s APIs to expose features to users. Custom Resource Definitions (CRDs) and Operators fits us well. • Admission control webhooks, podSecurityPolicy and networkPolicy
  • 7. 7 Challenge #1 : Communication Cost Jiange : Validation without human communication Jiange etcd K8s API
  • 9. 9 Challenge #2 : Day 2 Ops Day 1 Ops : • Provisioning • Step 1 • Step 2 • Step 3… N • Procedural – easy to automate Day 2 Ops: • Maintainence • Not always the same • Improvements – need to keep an eye on various components • Metrics • Logs • Traces
  • 10. 10 Challenge #2 : Day 2 Ops Solution: Infrastructure as Data instead of Infrastructure as Code Script for X Script for Y Script for Z IaC – run scripts one by one Data Store Infra Infra Control Loop Reconcile Spec Reconcile Status IaD – Store the state as Data and reconcile until state is achieved
  • 11. 11 Challenge #2 : Day 2 Ops Solution: Infrastructure as Data instead of Infrastructure as Code In CaaS we have written controllers based on same approach • Klone – Binary that provisions master nodes and system components based on git configs (written in Go) • Node operator – used for creating worker nodes • Namespace operator – used for creating user namespaces with correct permissions, good defaults, jenkins repositories, harbor projects etc when user on boards. • Gateway controller – For creating istio ingress gateways • Wildcard instant domain controller – For instantly creating simple domains to test out services • Cloud controlller manager – for creating load balancers • Endpoints controller – for creating container native load balancers
  • 12. 12 Challenge #3 : Day 2 Ops Internet Load Balancer K8s API Node List Cloud Controller Manager K8s cluster nodes
  • 14. 14 Challenge #3 : Container Networks • Kubernetes network != Host Network • Pods are not first class citizens (not flat network) • Pods are ephemeral • Fair Load balancing does not happen when using NodePorts • Additional hops (through K8s node Iptables) • Source IP is not preserved • Network is difficult to use
  • 15. 15 Challenge #3 : Container Networks Solution: No one size fits all, provide all solutions with good defaults and let users choose Shared Gateway + Auto Assigned Domain Dedicated Gateway + Custom Domain Domain Auto Assigned Any Domain Performance Not isolated Isolated Maintainence (for users) Zero High Customization Low Fully customizable Cost Low High
  • 16. 16 Challenge #3 : Container Networks Solution: Container Native Load balancing Legacy Load Balancer Container Native Load Balancer Number of hops 2 1 IP preservation Remote IP lost Remote IP preserved Load Balancing Across nodes Across containers Health checks Only for Nodes Application level health checks
  • 17. 17 Future Challenges: Multicluster CaaS - Network Deployments IPv4 not enough (need IPv6 and/or VPCs) Stateful apps - Local persistence Remote persistence GPU SRIOV CPU pinning Single Data proxy