SlideShare ist ein Scribd-Unternehmen logo
1 von 12
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 1
Unit-IV: VECTOR DIFFERENTIATION
Sr. No. Name of the Topic Page No.
1 Scalar and Vector Point Function 2
2 Vector Differential Operator Del 3
3 Gradient of a Scalar Function 3
4 Normal and Directional Derivative 3
5 Divergence of a vector function 6
6 Curl 8
7 Reference Book 12
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 2
VECTOR DIFFERENTIATION
 Introduction:
If vector r is a function of a scalar variable t, then we write
π‘Ÿβƒ— = π‘Ÿβƒ—(𝑑)
If a particle is moving along a curved path then the position vector π‘Ÿβƒ— of the
particle is a function of 𝑑. If the component of 𝑓(𝑑) along π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠,
𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠, 𝑧 βˆ’ π‘Žπ‘₯𝑖𝑠 are𝑓1(𝑑), 𝑓2(𝑑), 𝑓3(𝑑) respectively.
Then,
𝑓(𝑑)βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— = 𝑓1(𝑑) 𝑖̂ + 𝑓2(𝑑) 𝑗̂ + 𝑓3(𝑑) π‘˜Μ‚
1.1 Scalar and Vector Point Function :
Point function: A variable quantity whose value at any point in a region of
space depends upon the position of the point, is called a point function.
There are two types of point functions.
1) Scalar point function:
If to each point 𝑃(π‘₯, 𝑦, 𝑧) of a region 𝑅 in space there corresponds a
unique scalar 𝑓(𝑃) , then 𝑓 is called a scalar point function.
For example:
The temperature distribution in a heated body, density of a body and
potential due to gravity are the examples of a scalar point function.
2) Vector point function:
If to each point 𝑃(π‘₯, 𝑦, 𝑧) of a region 𝑅 in space there corresponds a
unique vector 𝑓(𝑃) , then 𝑓 is called a vector point function.
For example:
The velocities of a moving fluid, gravitational force are the examples
of vector point function.
2.1 Vector Differential Operator Del π’Š. 𝒆. 𝛁
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 3
The vector differential operator Del is denoted by 𝛁. It is defined as
𝛁 = π’ŠΜ‚
𝝏
𝝏𝒙
+ 𝒋̂
𝝏
ππ’š
+ π’ŒΜ‚
𝝏
𝝏𝒛
Note: 𝛁 is read Del or nebla.
3.1 Gradient of a Scalar Function:
If βˆ…(π‘₯, 𝑦, 𝑧) be a scalar function then 𝑖̂
πœ•βˆ…
πœ•π‘₯
+ 𝑗̂
πœ•βˆ…
πœ•π‘¦
+ π‘˜Μ‚ πœ•βˆ…
πœ•π‘§
is called the gradient
of the scalar function βˆ….
And is denoted by grad βˆ….
Thus, grad βˆ… = π’ŠΜ‚
πβˆ…
𝝏𝒙
+ 𝒋̂
πβˆ…
ππ’š
+ π’ŒΜ‚ πβˆ…
𝝏𝒛
grad βˆ… = (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) βˆ…(π‘₯, 𝑦, 𝑧)
grad βˆ… = 𝛁 βˆ…
4.1 Normal and Directional Derivative:
1) Normal:
If βˆ…(π‘₯, 𝑦, 𝑧) = 𝑐 represents a family of surfaces for different values of
the constant 𝑐. On differentiating βˆ…, we get π‘‘βˆ… = 0
But π‘‘βˆ… = βˆ‡ βˆ… . π‘‘π‘Ÿβƒ—
So βˆ‡βˆ…. π‘‘π‘Ÿ = 0
The scalar product of two vectors βˆ‡βˆ… and π‘‘π‘Ÿβƒ— being zero, βˆ‡ βˆ… and π‘‘π‘Ÿβƒ—
are perpendicular to each other. π‘‘π‘Ÿβƒ— is in the direction of tangent to the
giving surface.
Thus βˆ‡βˆ… is a vector normal to the surface βˆ…(π‘₯, 𝑦, 𝑧) = 𝑐.
2) Directional derivative:
The component of βˆ‡βˆ… in the direction of a vector 𝑑⃗ is equal to βˆ‡βˆ…. 𝑑⃗
and is called the directional derivative of βˆ… in the direction of 𝑑⃗.
πœ•βˆ…
πœ•π‘Ÿ
= lim
π›Ώπ‘Ÿβ†’0
π›Ώβˆ…
π›Ώπ‘Ÿ
Where, π›Ώπ‘Ÿ = 𝑃𝑄
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 4
πœ•βˆ…
πœ•π‘Ÿ
is called the directional derivative of βˆ… at 𝑃 in the direction of 𝑃𝑄.
4.2 Examples:
Example 1: If βˆ… = 3π‘₯2
𝑦 βˆ’ 𝑦3
𝑧2
; find grad βˆ… at the point (1,-2, 1).
Solution:
grad βˆ… = βˆ‡βˆ…
= (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) (3π‘₯2
𝑦 βˆ’ 𝑦3
𝑧2
)
= 𝑖̂
πœ•
πœ•π‘₯
(3π‘₯2
𝑦 βˆ’ 𝑦3
𝑧2) + 𝑗̂
πœ•
πœ•π‘¦
(3π‘₯2
𝑦 βˆ’ 𝑦3
𝑧2) + π‘˜Μ‚ πœ•
πœ•π‘§
(3π‘₯2
𝑦 βˆ’ 𝑦3
𝑧2
)
= 𝑖̂(6π‘₯𝑦) + 𝑗̂(3π‘₯2
βˆ’ 3𝑦2
𝑧2) + π‘˜Μ‚(βˆ’2𝑦3
𝑧)
grad βˆ… at (1, βˆ’2,1)
= 𝑖̂(6)(1)(βˆ’2) + 𝑗̂[(3)(1) βˆ’ 3(4)(1)] + π‘˜Μ‚(βˆ’2)(βˆ’8)(βˆ’1)
= βˆ’12𝑖̂ βˆ’ 9𝑗̂ βˆ’ 16π‘˜Μ‚
Example 2: Find the directional derivative of π‘₯2
𝑦2
𝑧2
at the point (1, βˆ’1,1)
in the direction of the tangent to the curve
π‘₯ = 𝑒 𝑑
, 𝑦 = sin 2𝑑 + 1, 𝑧 = 1 βˆ’ π‘π‘œπ‘ π‘‘ π‘Žπ‘‘ 𝑑 = 0.
Solution: Let βˆ… = π‘₯2
𝑦2
𝑧2
Direction Derivative of βˆ… = βˆ‡βˆ…
= (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) (π‘₯2
𝑦2
𝑧2)
βˆ‡βˆ… = 2π‘₯𝑦2
𝑧2
𝑖̂ + 2𝑦π‘₯2
𝑧2
𝑗̂ + 2𝑧π‘₯2
𝑦2
π‘˜Μ‚
Directional Derivative of βˆ… at (1,1,-1)
= 2(1)(1)2
(βˆ’1)2
𝑖̂ + 2(1)(1)2
(βˆ’1)2
𝑗̂ + 2(βˆ’1)(1)2(1)2
π‘˜Μ‚
= 2𝑖̂ + 2𝑗̂ βˆ’ 2π‘˜Μ‚ _________ (1)
π‘Ÿβƒ— = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚ = 𝑒 𝑑
𝑖̂ + (𝑠𝑖𝑛2𝑑 + 1)𝑗̂ + (1 βˆ’ π‘π‘œπ‘ π‘‘)π‘˜Μ‚
𝑇⃗⃗ =
π‘‘π‘Ÿβƒ—
𝑑𝑑
= 𝑒 𝑑
𝑖̂ + 2 π‘π‘œπ‘ 2𝑑 𝑗̂ + 𝑠𝑖𝑛𝑑 π‘˜Μ‚
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 5
Tangent vector,
Tangent (π‘Žπ‘‘ 𝑑 = 0) = 𝑒0
𝑖̂ + 2 (cos 0)𝑗̂ + (𝑠𝑖𝑛0)π‘˜Μ‚
= 𝑖̂ + 2𝑗̂ __________ (2)
Required directional derivative along tangent = (2 𝑖̂ + 2𝑗̂ βˆ’ 2π‘˜Μ‚)
(𝑖̂+2𝑗̂)
√1+4
[π‘“π‘Ÿπ‘œπ‘š (1)π‘Žπ‘›π‘‘ (2)]
=
2+4+0
√5
=
6
√5
_______ Ans.
Example 3: Verify βˆ‡Μ… Γ— [𝑓(π‘Ÿ)π‘Ÿβƒ—] = 0
Solution:
βˆ‡Μ… Γ— [𝑓(π‘Ÿ)π‘Ÿβƒ—] = [𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
] Γ— [𝑓(π‘Ÿ)π‘Ÿβƒ—]
= [𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
] Γ— 𝑓(π‘Ÿ)(π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚)
= [𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
] Γ— [𝑓(π‘Ÿ)π‘₯𝑖̂ + 𝑓(π‘Ÿ)𝑦𝑗̂ + 𝑓(π‘Ÿ)π‘§π‘˜Μ‚]
= |
𝑖̂ 𝑗̂ π‘˜Μ‚
πœ•
πœ•π‘₯
πœ•
πœ•π‘¦
πœ•
πœ•π‘§
𝑓(π‘Ÿ)π‘₯ 𝑓(π‘Ÿ)𝑦 𝑓(π‘Ÿ)𝑧
|
= [𝑧
πœ•π‘“(π‘Ÿ)
πœ•π‘¦
βˆ’ 𝑦
πœ•
πœ•π‘§
𝑓(π‘Ÿ)] 𝑖̂ βˆ’ [𝑧
πœ•
πœ•π‘₯
𝑓(π‘Ÿ) βˆ’ π‘₯
πœ•
πœ•π‘§
𝑓(π‘Ÿ)] 𝑗̂ + [𝑦
πœ•
πœ•π‘₯
𝑓(π‘Ÿ) βˆ’ π‘₯
πœ•
πœ•π‘¦
𝑓(π‘Ÿ)] π‘˜Μ‚
= [𝑧
𝑑
π‘‘π‘Ÿ
𝑓(π‘Ÿ)
πœ•π‘Ÿ
πœ•π‘¦
βˆ’ 𝑦
𝑑
π‘‘π‘Ÿ
𝑓(π‘Ÿ)
πœ•π‘Ÿ
πœ•π‘§
] 𝑖̂ βˆ’ [𝑧
𝑑
π‘‘π‘Ÿ
𝑓(π‘Ÿ)
πœ•π‘Ÿ
πœ•π‘₯
βˆ’ π‘₯
𝑑
π‘‘π‘Ÿ
𝑓(π‘Ÿ)
πœ•π‘Ÿ
πœ•π‘§
] 𝑗̂ + [𝑦
𝑑
π‘‘π‘Ÿ
𝑓(π‘Ÿ)
πœ•π‘Ÿ
πœ•π‘₯
βˆ’
π‘₯
𝑑
π‘‘π‘Ÿ
𝑓(π‘Ÿ)
πœ•π‘Ÿ
πœ•π‘¦
] π‘˜Μ‚
=
𝑓′(π‘Ÿ)
π‘Ÿ
[(𝑦𝑧 βˆ’ 𝑦𝑧)𝑖̂ βˆ’ (π‘₯𝑧 βˆ’ π‘₯𝑧)𝑗̂ + (π‘₯𝑦 βˆ’ π‘₯𝑦)π‘˜Μ‚] = 0 ____ Proved.
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 6
4.3 Exercise:
1) Find a unit vector normal to the surface π‘₯2
+ 3𝑦2
+ 2𝑧2
=
6 π‘Žπ‘‘ 𝑃(2,0,1).
2) Find the direction derivative of
1
π‘Ÿ
in the direction π‘Ÿβƒ— where
π‘Ÿβƒ—βƒ—βƒ— = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚.
3) If π‘Ÿβƒ—βƒ—βƒ— = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚, show that
a) grad π‘Ÿ =
π‘Ÿβƒ—βƒ—βƒ—
π‘Ÿ
b) grad (
1
π‘Ÿ
) = βˆ’
π‘Ÿβƒ—βƒ—βƒ—
π‘Ÿ3
4) Find the rate of change of βˆ… = π‘₯𝑦𝑧 in the direction normal to the
surface π‘₯2
𝑦 + 𝑦2
π‘₯ + 𝑦𝑧2
= 3 at the point (1, 1, 1).
5.1 DIVERGENCE OF A VECTOR FUNCTION:
The divergence of a vector point function 𝐹⃗ is denoted by div 𝐹 and is
defined as below.
Let 𝐹⃗ = 𝐹1 𝑖̂ + 𝐹2 𝑗̂ + 𝐹3 π‘˜Μ‚
div 𝐹⃗ = βˆ‡βƒ—βƒ—βƒ—. 𝐹⃗ = (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) (𝑖̂ 𝐹1 + 𝑗̂ 𝐹2 + π‘˜Μ‚ 𝐹3)
=
πœ•πΉ1
πœ•π‘₯
+
πœ•πΉ2
πœ•π‘¦
+
πœ•πΉ3
πœ•π‘§
It is evident that div 𝐹 is scalar function.
Note: If the fluid is compressible, there can be no gain or loss in the volume
element. Hence
div 𝑽̅ = 𝟎
Here, V is called a Solenoidal vector function. And this equation is called
equation of continuity or conservation of mass.
Example 1: If 𝑒 = π‘₯2
+ 𝑦2
+ 𝑧2
, π‘Žπ‘›π‘‘ π‘ŸΜ… = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚, then find div (π‘’π‘ŸΜ…)
in terms of u.
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 7
Solution: div (π‘’π‘ŸΜ…) = (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) [(π‘₯2
+ 𝑦2
+ 𝑧2)(π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚)]
= (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) . [(π‘₯2
+ 𝑦2
+ 𝑧2)π‘₯𝑖̂ + (π‘₯2
+ 𝑦2
+ 𝑧2)𝑦𝑗̂ +
(π‘₯2
+ 𝑦2
+ 𝑧2)π‘§π‘˜Μ‚]
=
πœ•
πœ•π‘₯
(π‘₯3
+ π‘₯𝑦2
+ π‘₯𝑧2) +
πœ•
πœ•π‘¦
(π‘₯2
𝑦 + 𝑦3
+ 𝑦𝑧2) +
πœ•
πœ•π‘§
(π‘₯2
𝑧 + 𝑦2
𝑧 + 𝑧3)
= (3π‘₯2
+ 𝑦2
+ 𝑧2) + (π‘₯2
+ 3𝑦2
+ 𝑧2) + (π‘₯2
+ 𝑦2
+ 3𝑧2)
= 5(π‘₯2
+ 𝑦2
+ 𝑧2)
= 5𝑒 ___________ Ans.
Example 2: Find the directional derivative of the divergence of 𝑓̅( π‘₯, 𝑦, 𝑧) =
π‘₯𝑦𝑖̂ + π‘₯𝑦2
𝑗̂ + 𝑧2
π‘˜Μ‚ at the point (2, 1, 2) in the direction of the outer normal to
the sphere π‘₯2
+ 𝑦2
+ 𝑧2
= 9.
Solution: 𝑓̅( π‘₯, 𝑦, 𝑧) = π‘₯𝑦𝑖̂ + π‘₯𝑦2
𝑗̂ + 𝑧2
π‘˜Μ‚
Divergence of 𝑓̅( π‘₯, 𝑦, 𝑧) = βˆ‡.Μ… 𝑓̅ = (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) . (π‘₯𝑦𝑖̂ + π‘₯𝑦2
𝑗̂ + 𝑧2
π‘˜Μ‚)
= 𝑦 + 2π‘₯𝑦 + 2𝑧
Directional derivative of divergence of (𝑦 + 2π‘₯𝑦 + 2𝑧)
= (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) (𝑦 + 2π‘₯𝑦 + 2𝑧)
= 2𝑦𝑖̂ + (1 + 2π‘₯)𝑗̂ + 2π‘˜Μ‚ __________(i)
Directional derivative at the point (2,1,2) = 2𝑖̂ + 5𝑗̂ + 2π‘˜Μ‚
Normal to the sphere = (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) (π‘₯2
+ 𝑦2
+ 𝑧2
βˆ’ 9)
= 2π‘₯𝑖̂ + 2𝑦𝑗̂ + 2π‘§π‘˜Μ‚
Normal at the point (2,1,2) = 4𝑖̂ + 2𝑗̂ + 4π‘˜Μ‚ __________ (ii)
Directional derivative along normal at (2,1,2) = (2𝑖̂ + 5𝑗̂ + 2π‘˜Μ‚).
(4𝑖̂+2𝑗̂+4π‘˜Μ‚ )
√16+4+16
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 8
[πΉπ‘Ÿπ‘œπ‘š (𝑖), (𝑖𝑖)]
=
1
6
(8 + 10 + 8)
=
13
3
____________ Ans.
5.2 Exercise:
1) If 𝑣̅ =
π‘₯𝑖̂+ 𝑦𝑗̂+ π‘§π‘˜Μ‚
√π‘₯2+𝑦2+𝑧2
, find the value of div 𝑣̅.
2) Find the directional derivative of div (𝑒⃗⃗) at the point (1, 2, 2) in the
direction of the outer normal of the sphere π‘₯2
+ 𝑦2
+ 𝑧2
= 9 for 𝑒⃗⃗ =
π‘₯4
𝑖̂ + 𝑦4
𝑗̂ + 𝑧4
π‘˜Μ‚.
6.1 CURL:
The curl of a vector point function 𝐹 is defined as below
Curl 𝐹̅ = βˆ‡Μ… Γ— 𝐹̅ (𝐹̅ = 𝐹1 𝑖̂ + 𝐹2 𝑗̂ +
𝐹3 π‘˜Μ‚)
= (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) Γ— 𝐹1 𝑖̂ + 𝐹2 𝑗̂ + 𝐹3 π‘˜Μ‚
= |
𝑖̂ 𝑗̂ π‘˜Μ‚
πœ•
πœ•π‘₯
πœ•
πœ•π‘¦
πœ•
πœ•π‘§
𝐹1 𝐹2 𝐹3
|
= 𝑖̂ (
πœ•πΉ3
πœ•π‘¦
βˆ’
πœ•πΉ2
πœ•π‘§
) βˆ’ 𝑗̂ (
πœ•πΉ3
πœ•π‘₯
βˆ’
πœ•πΉ1
πœ•π‘§
) + π‘˜Μ‚ (
πœ•πΉ2
πœ•π‘₯
βˆ’
πœ•πΉ1
πœ•π‘¦
)
Curl 𝐹̅ is a vector quantity.
Note: Curl 𝑭̅ = 𝟎, the field 𝐹 is termed as irrotational.
Example 1: Find the divergence and curl of
𝑣̅ = (π‘₯𝑦𝑧)𝑖̂ + (3π‘₯2
𝑦)𝑗̂ + (π‘₯𝑧2
βˆ’ 𝑦2
𝑧)π‘˜Μ‚ π‘Žπ‘‘ (2, βˆ’1,1)
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 9
Solution: Here, we have
𝑣̅ = (π‘₯𝑦𝑧)𝑖̂ + (3π‘₯2
𝑦)𝑗̂ + (π‘₯𝑧2
βˆ’ 𝑦2
𝑧)π‘˜Μ‚
Div 𝑣̅ = βˆ‡βˆ…
Div 𝑣̅ =
πœ•
πœ•π‘₯
(π‘₯𝑦𝑧) +
πœ•
πœ•π‘¦
(3π‘₯2
𝑦) +
πœ•
πœ•π‘§
(π‘₯𝑧2
βˆ’ 𝑦2
𝑧)
= 𝑦𝑧 + 3π‘₯2
+ 2π‘₯𝑧 βˆ’ 𝑦2
𝑣̅(2,βˆ’1,1) = βˆ’1 + 12 + 4 βˆ’ 1 = 14
Curl 𝑣̅ = |
𝑖̂ 𝑗̂ π‘˜Μ‚
πœ•
πœ•π‘₯
πœ•
πœ•π‘¦
πœ•
πœ•π‘§
π‘₯𝑦𝑧 3π‘₯2
𝑦 π‘₯𝑧2
βˆ’ 𝑦2
𝑧
|
= βˆ’2𝑦𝑧𝑖̂ βˆ’ (𝑧2
βˆ’ π‘₯𝑦)𝑗̂ + (6π‘₯𝑦 βˆ’ π‘₯𝑧)π‘˜Μ‚
= βˆ’2𝑦𝑧𝑖̂ + (π‘₯𝑦 βˆ’ 𝑧2)𝑗̂ + (6π‘₯𝑦 βˆ’ π‘₯𝑧)π‘˜Μ‚
Curl at (2, -1, 1)
= 2(βˆ’1)(1)𝑖̂ + {2(βˆ’1) βˆ’ 1}𝑗̂ + {6(2)(βˆ’1) βˆ’ 2(1)}π‘˜Μ‚
= 2𝑖̂ βˆ’ 3𝑗̂ βˆ’ 14π‘˜Μ‚ __________ Ans.
Example 2: Prove that
(𝑦2
βˆ’ 𝑧2
+ 3𝑦𝑧 βˆ’ 2π‘₯)𝑖̂ + (3π‘₯𝑦 + 2π‘₯𝑦)𝑗̂ + (3π‘₯𝑦 βˆ’ 2π‘₯𝑧 + 2𝑧)π‘˜Μ‚ is both
Solenoidal and irrotational.
Solution:
Let 𝐹̅ = (𝑦2
βˆ’ 𝑧2
+ 3𝑦𝑧 βˆ’ 2π‘₯)𝑖̂ + (3π‘₯𝑦 + 2π‘₯𝑦)𝑗̂ + (3π‘₯𝑦 βˆ’ 2π‘₯𝑧 + 2𝑧)π‘˜Μ‚
For Solenoidal, we have to prove βˆ‡.Μ… 𝐹̅ = 0.
Now,
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 10
βˆ‡.Μ… 𝐹̅ = [𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
] . [(𝑦2
βˆ’ 𝑧2
+ 3𝑦𝑧 βˆ’ 2π‘₯)𝑖̂ + (3π‘₯𝑦 + 2π‘₯𝑦)𝑗̂ +
(3π‘₯𝑦 βˆ’ 2π‘₯𝑧 + 2𝑧)π‘˜Μ‚]
= βˆ’2 + 2π‘₯ βˆ’ 2π‘₯ + 2
= 0
Thus, 𝐹̅ is Solenoidal.
For irrotational, we have to prove Curl 𝐹̅ = 0
Now, Curl 𝐹̅ =
|
𝑖̂ 𝑗̂ π‘˜Μ‚
πœ•
πœ•π‘₯
πœ•
πœ•π‘¦
πœ•
πœ•π‘§
(𝑦2
βˆ’ 𝑧2
+ 3𝑦𝑧 βˆ’ 2π‘₯) (3π‘₯𝑦 + 2π‘₯𝑦) (3π‘₯𝑦 βˆ’ 2π‘₯𝑧 + 2𝑧)
|
= (3𝑧 + 2𝑦 βˆ’ 2𝑦 + 3𝑧)𝑖̂ βˆ’ (βˆ’2𝑧 + 3𝑦 βˆ’ 3𝑦 + 2𝑧)𝑗̂ + (3𝑧 + 2𝑦 βˆ’ 2𝑦 βˆ’ 3𝑧)π‘˜Μ‚
= 0𝑖̂ + 0𝑗̂ + 0π‘˜Μ‚
= 0
Thus, 𝐹̅ is irrotational.
Hence, 𝐹̅ is both Solenoidal and irrotational. __________ Proved.
Example 3: Find the scalar potential (velocity potential) function 𝑓 for 𝐴⃗ =
𝑦2
𝑖̂ + 2π‘₯𝑦𝑗̂ βˆ’ 𝑧2
π‘˜Μ‚.
Solution: We have, 𝐴⃗ = 𝑦2
𝑖̂ + 2π‘₯𝑦𝑗̂ βˆ’ 𝑧2
π‘˜Μ‚.
Curl 𝐴⃗ = βˆ‡ Γ— 𝐴⃗
= (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) Γ— (𝑦2
𝑖̂ + 2π‘₯𝑦𝑗̂ βˆ’ 𝑧2
π‘˜Μ‚).
= |
𝑖̂ 𝑗̂ π‘˜Μ‚
πœ•
πœ•π‘₯
πœ•
πœ•π‘¦
πœ•
πœ•π‘§
𝑦2
2π‘₯𝑦 βˆ’π‘§2
|
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 11
= 𝑖̂(0) βˆ’ 𝑗̂(0) + π‘˜Μ‚(2𝑦 βˆ’ 2𝑦)
= 0
Hence, 𝐴⃗ is irrotational.
To find the scalar potential function 𝑓.
𝐴⃗ = βˆ‡ 𝑓
𝑑𝑓 =
πœ•π‘“
πœ•π‘₯
𝑑π‘₯ +
πœ•π‘“
πœ•π‘¦
𝑑𝑦 +
πœ•π‘“
πœ•π‘§
𝑑𝑧
= (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) . (𝑖̂ 𝑑 π‘₯ + 𝑗̂ 𝑑 𝑦 + π‘˜Μ‚ 𝑑𝑧)
= (𝑖̂
πœ•
πœ•π‘₯
+ 𝑗̂
πœ•
πœ•π‘¦
+ π‘˜Μ‚ πœ•
πœ•π‘§
) 𝑓. π‘‘π‘Ÿβƒ—
= βˆ‡π‘“. π‘‘π‘Ÿβƒ—
= 𝐴⃗. π‘‘π‘Ÿβƒ— (𝐴 = βˆ‡ 𝑓)
= (𝑦2
𝑖̂ + 2π‘₯𝑦𝑗̂ βˆ’ 𝑧2
π‘˜Μ‚). (𝑖̂ 𝑑 π‘₯ + 𝑗̂ 𝑑 𝑦 + π‘˜Μ‚ 𝑑𝑧)
= 𝑦2
𝑑π‘₯ + 2π‘₯𝑦 𝑑𝑦 βˆ’ 𝑧2
𝑑𝑧
= 𝑑(π‘₯𝑦2) βˆ’ 𝑧2
𝑑𝑧
𝑓 = ∫ 𝑑(π‘₯𝑦2) βˆ’ ∫ 𝑧2
𝑑𝑧
∴ 𝑓 = π‘₯𝑦2
βˆ’
𝑧3
3
+ 𝑐 ________ Ans.
6.2 Exercise:
1) If a vector field is given by 𝐹⃗ = (π‘₯2
βˆ’ 𝑦2
+ π‘₯)𝑖̂ βˆ’ (2π‘₯𝑦 + 𝑦)𝑗̂. Is this
field irrotational? If so, find its scalar potential.
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 12
2) Determine the constants a and b such that the curl of vector 𝐴̅ =
(2π‘₯𝑦 + 3𝑦𝑧)𝑖̂ + (π‘₯2
+ π‘Žπ‘₯𝑧 βˆ’ 4𝑧2)𝑗̂ βˆ’ (3π‘₯𝑦 + 𝑏𝑦𝑧)π‘˜Μ‚ is zero.
3) A fluid motion is given by𝑣̅ = (𝑦 + 𝑧)𝑖̂ + (𝑧 + π‘₯)𝑗̂ + (π‘₯ + 𝑦)π‘˜Μ‚. Show
that the motion is irrotational and hence find the velocity potential.
4) Given that vector field 𝑉̅ = (π‘₯2
βˆ’ 𝑦2
+ 2π‘₯𝑧)𝑖̂ + (π‘₯𝑧 βˆ’ π‘₯𝑦 + 𝑦𝑧)𝑗̂ +
(𝑧2
+ π‘₯2
)π‘˜Μ‚ find curl 𝑉. Show that the vectors given by curl 𝑉 at
𝑃0(1,2, βˆ’3) π‘Žπ‘›π‘‘ 𝑃1(2,3,12) are orthogonal.
5) Suppose that π‘ˆβƒ—βƒ—βƒ—, 𝑉⃗⃗ and 𝑓 are continuously differentiable fields then
Prove that, div(π‘ˆβƒ—βƒ—βƒ— Γ— 𝑉⃗⃗) = 𝑉⃗⃗. π‘π‘’π‘Ÿπ‘™ π‘ˆβƒ—βƒ—βƒ— βˆ’ π‘ˆβƒ—βƒ—βƒ—. π‘π‘’π‘Ÿπ‘™ 𝑉⃗⃗.
7.1 REFERECE BOOKS:
1) Introduction to Engineering Mathematics
By H. K. DASS. & Dr. RAMA VERMA
S. CHAND
2) Higher Engineering Mathematics
By B.V. RAMANA
Mc Graw Hill Education
3) Higher Engineering Mathematics
By Dr. B.S. GREWAL
KHANNA PUBLISHERS
4) http://elearning.vtu.ac.in/P7/enotes/MAT1/Vector.pdf

Weitere Γ€hnliche Inhalte

Was ist angesagt?

Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
Β 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applicationsDeepRaval7
Β 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theoremAbhishek Chauhan
Β 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationRai University
Β 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applicationsPratik Gadhiya
Β 
03 truncation errors
03 truncation errors03 truncation errors
03 truncation errorsmaheej
Β 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONDhrupal Patel
Β 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and EigenvectorsVinod Srivastava
Β 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrationsitutor
Β 
Double Integrals
Double IntegralsDouble Integrals
Double Integralskishor pokar
Β 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl VishalVishwakarma59
Β 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsJaydev Kishnani
Β 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleMuhammadUsmanIkram2
Β 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
Β 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsmuhammadabullah
Β 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpointcanalculus
Β 

Was ist angesagt? (20)

Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
Β 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
Β 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
Β 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
Β 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
Β 
DIFFERENTIATION
DIFFERENTIATIONDIFFERENTIATION
DIFFERENTIATION
Β 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applications
Β 
Vector calculus
Vector calculusVector calculus
Vector calculus
Β 
03 truncation errors
03 truncation errors03 truncation errors
03 truncation errors
Β 
APPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATIONAPPLICATION OF PARTIAL DIFFERENTIATION
APPLICATION OF PARTIAL DIFFERENTIATION
Β 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
Β 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
Β 
Double Integrals
Double IntegralsDouble Integrals
Double Integrals
Β 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
Β 
Differential equations
Differential equationsDifferential equations
Differential equations
Β 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
Β 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with Example
Β 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
Β 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
Β 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
Β 

Andere mochten auch

Unit 1 Introduction
Unit 1 IntroductionUnit 1 Introduction
Unit 1 IntroductionRai University
Β 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
Β 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
Β 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-VKundan Kumar
Β 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IVKundan Kumar
Β 
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theoryBCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theoryRai University
Β 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Rai University
Β 
merged_document
merged_documentmerged_document
merged_documentKundan Kumar
Β 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-IIIKundan Kumar
Β 
B.Tech-II_Unit-I
B.Tech-II_Unit-IB.Tech-II_Unit-I
B.Tech-II_Unit-IKundan Kumar
Β 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSRai University
Β 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSRai University
Β 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Rai University
Β 
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSRai University
Β 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
Β 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSRai University
Β 
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and orderingBCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and orderingRai University
Β 
MCA_UNIT-4_Computer Oriented Numerical Statistical Methods
MCA_UNIT-4_Computer Oriented Numerical Statistical MethodsMCA_UNIT-4_Computer Oriented Numerical Statistical Methods
MCA_UNIT-4_Computer Oriented Numerical Statistical MethodsRai University
Β 
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical MethodsMCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical MethodsRai University
Β 
Diploma_Basic_Mathematics_Unit-III
Diploma_Basic_Mathematics_Unit-IIIDiploma_Basic_Mathematics_Unit-III
Diploma_Basic_Mathematics_Unit-IIIRai University
Β 

Andere mochten auch (20)

Unit 1 Introduction
Unit 1 IntroductionUnit 1 Introduction
Unit 1 Introduction
Β 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Β 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
Β 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
Β 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
Β 
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theoryBCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
Β 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
Β 
merged_document
merged_documentmerged_document
merged_document
Β 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
Β 
B.Tech-II_Unit-I
B.Tech-II_Unit-IB.Tech-II_Unit-I
B.Tech-II_Unit-I
Β 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
Β 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
Β 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
Β 
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
Β 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
Β 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
Β 
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and orderingBCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
Β 
MCA_UNIT-4_Computer Oriented Numerical Statistical Methods
MCA_UNIT-4_Computer Oriented Numerical Statistical MethodsMCA_UNIT-4_Computer Oriented Numerical Statistical Methods
MCA_UNIT-4_Computer Oriented Numerical Statistical Methods
Β 
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical MethodsMCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
Β 
Diploma_Basic_Mathematics_Unit-III
Diploma_Basic_Mathematics_Unit-IIIDiploma_Basic_Mathematics_Unit-III
Diploma_Basic_Mathematics_Unit-III
Β 

Γ„hnlich wie B.tech ii unit-4 material vector differentiation

Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
Β 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
Β 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiationSanthanam Krishnan
Β 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recapFarzad Javidanrad
Β 
graphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxgraphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxMeryAnnMAlday
Β 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULESNumanUsama
Β 
Z transforms
Z transformsZ transforms
Z transformssujathavvv
Β 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
Β 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Rai University
Β 
Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007Demetrio Ccesa Rayme
Β 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minimaSanthanam Krishnan
Β 
GraphTransformations.pptx
GraphTransformations.pptxGraphTransformations.pptx
GraphTransformations.pptxSrideviNagarjuna
Β 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisJAGARANCHAKMA2
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
Β 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4MAY NURHAYATI
Β 
Week_3-Circle.pptx
Week_3-Circle.pptxWeek_3-Circle.pptx
Week_3-Circle.pptxAndreaDaraug2
Β 
A05330107
A05330107A05330107
A05330107IOSR-JEN
Β 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
Β 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Kevin Johnson
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
Β 

Γ„hnlich wie B.tech ii unit-4 material vector differentiation (20)

Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
Β 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
Β 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
Β 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
Β 
graphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxgraphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptx
Β 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
Β 
Z transforms
Z transformsZ transforms
Z transforms
Β 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
Β 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
Β 
Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007
Β 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
Β 
GraphTransformations.pptx
GraphTransformations.pptxGraphTransformations.pptx
GraphTransformations.pptx
Β 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysis
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
Β 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
Β 
Week_3-Circle.pptx
Week_3-Circle.pptxWeek_3-Circle.pptx
Week_3-Circle.pptx
Β 
A05330107
A05330107A05330107
A05330107
Β 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
Β 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Β 

Mehr von Rai University

Brochure Rai University
Brochure Rai University Brochure Rai University
Brochure Rai University Rai University
Β 
Mm unit 2 point 1
Mm unit 2 point 1Mm unit 2 point 1
Mm unit 2 point 1Rai University
Β 
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,Rai University
Β 
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02Rai University
Β 
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri  2 pae  u-4.3 public expenditureBsc agri  2 pae  u-4.3 public expenditure
Bsc agri 2 pae u-4.3 public expenditureRai University
Β 
Bsc agri 2 pae u-4.2 public finance
Bsc agri  2 pae  u-4.2 public financeBsc agri  2 pae  u-4.2 public finance
Bsc agri 2 pae u-4.2 public financeRai University
Β 
Bsc agri 2 pae u-4.1 introduction
Bsc agri  2 pae  u-4.1 introductionBsc agri  2 pae  u-4.1 introduction
Bsc agri 2 pae u-4.1 introductionRai University
Β 
Bsc agri 2 pae u-3.3 inflation
Bsc agri  2 pae  u-3.3  inflationBsc agri  2 pae  u-3.3  inflation
Bsc agri 2 pae u-3.3 inflationRai University
Β 
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri  2 pae  u-3.2 introduction to macro economicsBsc agri  2 pae  u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.2 introduction to macro economicsRai University
Β 
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri  2 pae  u-3.1 marketstructureBsc agri  2 pae  u-3.1 marketstructure
Bsc agri 2 pae u-3.1 marketstructureRai University
Β 
Bsc agri 2 pae u-3 perfect-competition
Bsc agri  2 pae  u-3 perfect-competitionBsc agri  2 pae  u-3 perfect-competition
Bsc agri 2 pae u-3 perfect-competitionRai University
Β 

Mehr von Rai University (20)

Brochure Rai University
Brochure Rai University Brochure Rai University
Brochure Rai University
Β 
Mm unit 4point2
Mm unit 4point2Mm unit 4point2
Mm unit 4point2
Β 
Mm unit 4point1
Mm unit 4point1Mm unit 4point1
Mm unit 4point1
Β 
Mm unit 4point3
Mm unit 4point3Mm unit 4point3
Mm unit 4point3
Β 
Mm unit 3point2
Mm unit 3point2Mm unit 3point2
Mm unit 3point2
Β 
Mm unit 3point1
Mm unit 3point1Mm unit 3point1
Mm unit 3point1
Β 
Mm unit 2point2
Mm unit 2point2Mm unit 2point2
Mm unit 2point2
Β 
Mm unit 2 point 1
Mm unit 2 point 1Mm unit 2 point 1
Mm unit 2 point 1
Β 
Mm unit 1point3
Mm unit 1point3Mm unit 1point3
Mm unit 1point3
Β 
Mm unit 1point2
Mm unit 1point2Mm unit 1point2
Mm unit 1point2
Β 
Mm unit 1point1
Mm unit 1point1Mm unit 1point1
Mm unit 1point1
Β 
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Β 
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Β 
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri  2 pae  u-4.3 public expenditureBsc agri  2 pae  u-4.3 public expenditure
Bsc agri 2 pae u-4.3 public expenditure
Β 
Bsc agri 2 pae u-4.2 public finance
Bsc agri  2 pae  u-4.2 public financeBsc agri  2 pae  u-4.2 public finance
Bsc agri 2 pae u-4.2 public finance
Β 
Bsc agri 2 pae u-4.1 introduction
Bsc agri  2 pae  u-4.1 introductionBsc agri  2 pae  u-4.1 introduction
Bsc agri 2 pae u-4.1 introduction
Β 
Bsc agri 2 pae u-3.3 inflation
Bsc agri  2 pae  u-3.3  inflationBsc agri  2 pae  u-3.3  inflation
Bsc agri 2 pae u-3.3 inflation
Β 
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri  2 pae  u-3.2 introduction to macro economicsBsc agri  2 pae  u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.2 introduction to macro economics
Β 
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri  2 pae  u-3.1 marketstructureBsc agri  2 pae  u-3.1 marketstructure
Bsc agri 2 pae u-3.1 marketstructure
Β 
Bsc agri 2 pae u-3 perfect-competition
Bsc agri  2 pae  u-3 perfect-competitionBsc agri  2 pae  u-3 perfect-competition
Bsc agri 2 pae u-3 perfect-competition
Β 

KΓΌrzlich hochgeladen

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
Β 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
Β 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
Β 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
Β 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
Β 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
Β 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
Β 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
Β 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
Β 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
Β 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
Β 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
Β 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
Β 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
Β 

KΓΌrzlich hochgeladen (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
Β 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Β 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
Β 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Β 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
Β 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
Β 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
Β 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
Β 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
Β 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
Β 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Β 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
Β 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
Β 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
Β 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
Β 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
Β 

B.tech ii unit-4 material vector differentiation

  • 1. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 1 Unit-IV: VECTOR DIFFERENTIATION Sr. No. Name of the Topic Page No. 1 Scalar and Vector Point Function 2 2 Vector Differential Operator Del 3 3 Gradient of a Scalar Function 3 4 Normal and Directional Derivative 3 5 Divergence of a vector function 6 6 Curl 8 7 Reference Book 12
  • 2. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 2 VECTOR DIFFERENTIATION  Introduction: If vector r is a function of a scalar variable t, then we write π‘Ÿβƒ— = π‘Ÿβƒ—(𝑑) If a particle is moving along a curved path then the position vector π‘Ÿβƒ— of the particle is a function of 𝑑. If the component of 𝑓(𝑑) along π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠, 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠, 𝑧 βˆ’ π‘Žπ‘₯𝑖𝑠 are𝑓1(𝑑), 𝑓2(𝑑), 𝑓3(𝑑) respectively. Then, 𝑓(𝑑)βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— = 𝑓1(𝑑) 𝑖̂ + 𝑓2(𝑑) 𝑗̂ + 𝑓3(𝑑) π‘˜Μ‚ 1.1 Scalar and Vector Point Function : Point function: A variable quantity whose value at any point in a region of space depends upon the position of the point, is called a point function. There are two types of point functions. 1) Scalar point function: If to each point 𝑃(π‘₯, 𝑦, 𝑧) of a region 𝑅 in space there corresponds a unique scalar 𝑓(𝑃) , then 𝑓 is called a scalar point function. For example: The temperature distribution in a heated body, density of a body and potential due to gravity are the examples of a scalar point function. 2) Vector point function: If to each point 𝑃(π‘₯, 𝑦, 𝑧) of a region 𝑅 in space there corresponds a unique vector 𝑓(𝑃) , then 𝑓 is called a vector point function. For example: The velocities of a moving fluid, gravitational force are the examples of vector point function. 2.1 Vector Differential Operator Del π’Š. 𝒆. 𝛁
  • 3. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 3 The vector differential operator Del is denoted by 𝛁. It is defined as 𝛁 = π’ŠΜ‚ 𝝏 𝝏𝒙 + 𝒋̂ 𝝏 ππ’š + π’ŒΜ‚ 𝝏 𝝏𝒛 Note: 𝛁 is read Del or nebla. 3.1 Gradient of a Scalar Function: If βˆ…(π‘₯, 𝑦, 𝑧) be a scalar function then 𝑖̂ πœ•βˆ… πœ•π‘₯ + 𝑗̂ πœ•βˆ… πœ•π‘¦ + π‘˜Μ‚ πœ•βˆ… πœ•π‘§ is called the gradient of the scalar function βˆ…. And is denoted by grad βˆ…. Thus, grad βˆ… = π’ŠΜ‚ πβˆ… 𝝏𝒙 + 𝒋̂ πβˆ… ππ’š + π’ŒΜ‚ πβˆ… 𝝏𝒛 grad βˆ… = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) βˆ…(π‘₯, 𝑦, 𝑧) grad βˆ… = 𝛁 βˆ… 4.1 Normal and Directional Derivative: 1) Normal: If βˆ…(π‘₯, 𝑦, 𝑧) = 𝑐 represents a family of surfaces for different values of the constant 𝑐. On differentiating βˆ…, we get π‘‘βˆ… = 0 But π‘‘βˆ… = βˆ‡ βˆ… . π‘‘π‘Ÿβƒ— So βˆ‡βˆ…. π‘‘π‘Ÿ = 0 The scalar product of two vectors βˆ‡βˆ… and π‘‘π‘Ÿβƒ— being zero, βˆ‡ βˆ… and π‘‘π‘Ÿβƒ— are perpendicular to each other. π‘‘π‘Ÿβƒ— is in the direction of tangent to the giving surface. Thus βˆ‡βˆ… is a vector normal to the surface βˆ…(π‘₯, 𝑦, 𝑧) = 𝑐. 2) Directional derivative: The component of βˆ‡βˆ… in the direction of a vector 𝑑⃗ is equal to βˆ‡βˆ…. 𝑑⃗ and is called the directional derivative of βˆ… in the direction of 𝑑⃗. πœ•βˆ… πœ•π‘Ÿ = lim π›Ώπ‘Ÿβ†’0 π›Ώβˆ… π›Ώπ‘Ÿ Where, π›Ώπ‘Ÿ = 𝑃𝑄
  • 4. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 4 πœ•βˆ… πœ•π‘Ÿ is called the directional derivative of βˆ… at 𝑃 in the direction of 𝑃𝑄. 4.2 Examples: Example 1: If βˆ… = 3π‘₯2 𝑦 βˆ’ 𝑦3 𝑧2 ; find grad βˆ… at the point (1,-2, 1). Solution: grad βˆ… = βˆ‡βˆ… = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) (3π‘₯2 𝑦 βˆ’ 𝑦3 𝑧2 ) = 𝑖̂ πœ• πœ•π‘₯ (3π‘₯2 𝑦 βˆ’ 𝑦3 𝑧2) + 𝑗̂ πœ• πœ•π‘¦ (3π‘₯2 𝑦 βˆ’ 𝑦3 𝑧2) + π‘˜Μ‚ πœ• πœ•π‘§ (3π‘₯2 𝑦 βˆ’ 𝑦3 𝑧2 ) = 𝑖̂(6π‘₯𝑦) + 𝑗̂(3π‘₯2 βˆ’ 3𝑦2 𝑧2) + π‘˜Μ‚(βˆ’2𝑦3 𝑧) grad βˆ… at (1, βˆ’2,1) = 𝑖̂(6)(1)(βˆ’2) + 𝑗̂[(3)(1) βˆ’ 3(4)(1)] + π‘˜Μ‚(βˆ’2)(βˆ’8)(βˆ’1) = βˆ’12𝑖̂ βˆ’ 9𝑗̂ βˆ’ 16π‘˜Μ‚ Example 2: Find the directional derivative of π‘₯2 𝑦2 𝑧2 at the point (1, βˆ’1,1) in the direction of the tangent to the curve π‘₯ = 𝑒 𝑑 , 𝑦 = sin 2𝑑 + 1, 𝑧 = 1 βˆ’ π‘π‘œπ‘ π‘‘ π‘Žπ‘‘ 𝑑 = 0. Solution: Let βˆ… = π‘₯2 𝑦2 𝑧2 Direction Derivative of βˆ… = βˆ‡βˆ… = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) (π‘₯2 𝑦2 𝑧2) βˆ‡βˆ… = 2π‘₯𝑦2 𝑧2 𝑖̂ + 2𝑦π‘₯2 𝑧2 𝑗̂ + 2𝑧π‘₯2 𝑦2 π‘˜Μ‚ Directional Derivative of βˆ… at (1,1,-1) = 2(1)(1)2 (βˆ’1)2 𝑖̂ + 2(1)(1)2 (βˆ’1)2 𝑗̂ + 2(βˆ’1)(1)2(1)2 π‘˜Μ‚ = 2𝑖̂ + 2𝑗̂ βˆ’ 2π‘˜Μ‚ _________ (1) π‘Ÿβƒ— = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚ = 𝑒 𝑑 𝑖̂ + (𝑠𝑖𝑛2𝑑 + 1)𝑗̂ + (1 βˆ’ π‘π‘œπ‘ π‘‘)π‘˜Μ‚ 𝑇⃗⃗ = π‘‘π‘Ÿβƒ— 𝑑𝑑 = 𝑒 𝑑 𝑖̂ + 2 π‘π‘œπ‘ 2𝑑 𝑗̂ + 𝑠𝑖𝑛𝑑 π‘˜Μ‚
  • 5. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 5 Tangent vector, Tangent (π‘Žπ‘‘ 𝑑 = 0) = 𝑒0 𝑖̂ + 2 (cos 0)𝑗̂ + (𝑠𝑖𝑛0)π‘˜Μ‚ = 𝑖̂ + 2𝑗̂ __________ (2) Required directional derivative along tangent = (2 𝑖̂ + 2𝑗̂ βˆ’ 2π‘˜Μ‚) (𝑖̂+2𝑗̂) √1+4 [π‘“π‘Ÿπ‘œπ‘š (1)π‘Žπ‘›π‘‘ (2)] = 2+4+0 √5 = 6 √5 _______ Ans. Example 3: Verify βˆ‡Μ… Γ— [𝑓(π‘Ÿ)π‘Ÿβƒ—] = 0 Solution: βˆ‡Μ… Γ— [𝑓(π‘Ÿ)π‘Ÿβƒ—] = [𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ] Γ— [𝑓(π‘Ÿ)π‘Ÿβƒ—] = [𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ] Γ— 𝑓(π‘Ÿ)(π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚) = [𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ] Γ— [𝑓(π‘Ÿ)π‘₯𝑖̂ + 𝑓(π‘Ÿ)𝑦𝑗̂ + 𝑓(π‘Ÿ)π‘§π‘˜Μ‚] = | 𝑖̂ 𝑗̂ π‘˜Μ‚ πœ• πœ•π‘₯ πœ• πœ•π‘¦ πœ• πœ•π‘§ 𝑓(π‘Ÿ)π‘₯ 𝑓(π‘Ÿ)𝑦 𝑓(π‘Ÿ)𝑧 | = [𝑧 πœ•π‘“(π‘Ÿ) πœ•π‘¦ βˆ’ 𝑦 πœ• πœ•π‘§ 𝑓(π‘Ÿ)] 𝑖̂ βˆ’ [𝑧 πœ• πœ•π‘₯ 𝑓(π‘Ÿ) βˆ’ π‘₯ πœ• πœ•π‘§ 𝑓(π‘Ÿ)] 𝑗̂ + [𝑦 πœ• πœ•π‘₯ 𝑓(π‘Ÿ) βˆ’ π‘₯ πœ• πœ•π‘¦ 𝑓(π‘Ÿ)] π‘˜Μ‚ = [𝑧 𝑑 π‘‘π‘Ÿ 𝑓(π‘Ÿ) πœ•π‘Ÿ πœ•π‘¦ βˆ’ 𝑦 𝑑 π‘‘π‘Ÿ 𝑓(π‘Ÿ) πœ•π‘Ÿ πœ•π‘§ ] 𝑖̂ βˆ’ [𝑧 𝑑 π‘‘π‘Ÿ 𝑓(π‘Ÿ) πœ•π‘Ÿ πœ•π‘₯ βˆ’ π‘₯ 𝑑 π‘‘π‘Ÿ 𝑓(π‘Ÿ) πœ•π‘Ÿ πœ•π‘§ ] 𝑗̂ + [𝑦 𝑑 π‘‘π‘Ÿ 𝑓(π‘Ÿ) πœ•π‘Ÿ πœ•π‘₯ βˆ’ π‘₯ 𝑑 π‘‘π‘Ÿ 𝑓(π‘Ÿ) πœ•π‘Ÿ πœ•π‘¦ ] π‘˜Μ‚ = 𝑓′(π‘Ÿ) π‘Ÿ [(𝑦𝑧 βˆ’ 𝑦𝑧)𝑖̂ βˆ’ (π‘₯𝑧 βˆ’ π‘₯𝑧)𝑗̂ + (π‘₯𝑦 βˆ’ π‘₯𝑦)π‘˜Μ‚] = 0 ____ Proved.
  • 6. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 6 4.3 Exercise: 1) Find a unit vector normal to the surface π‘₯2 + 3𝑦2 + 2𝑧2 = 6 π‘Žπ‘‘ 𝑃(2,0,1). 2) Find the direction derivative of 1 π‘Ÿ in the direction π‘Ÿβƒ— where π‘Ÿβƒ—βƒ—βƒ— = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚. 3) If π‘Ÿβƒ—βƒ—βƒ— = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚, show that a) grad π‘Ÿ = π‘Ÿβƒ—βƒ—βƒ— π‘Ÿ b) grad ( 1 π‘Ÿ ) = βˆ’ π‘Ÿβƒ—βƒ—βƒ— π‘Ÿ3 4) Find the rate of change of βˆ… = π‘₯𝑦𝑧 in the direction normal to the surface π‘₯2 𝑦 + 𝑦2 π‘₯ + 𝑦𝑧2 = 3 at the point (1, 1, 1). 5.1 DIVERGENCE OF A VECTOR FUNCTION: The divergence of a vector point function 𝐹⃗ is denoted by div 𝐹 and is defined as below. Let 𝐹⃗ = 𝐹1 𝑖̂ + 𝐹2 𝑗̂ + 𝐹3 π‘˜Μ‚ div 𝐹⃗ = βˆ‡βƒ—βƒ—βƒ—. 𝐹⃗ = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) (𝑖̂ 𝐹1 + 𝑗̂ 𝐹2 + π‘˜Μ‚ 𝐹3) = πœ•πΉ1 πœ•π‘₯ + πœ•πΉ2 πœ•π‘¦ + πœ•πΉ3 πœ•π‘§ It is evident that div 𝐹 is scalar function. Note: If the fluid is compressible, there can be no gain or loss in the volume element. Hence div 𝑽̅ = 𝟎 Here, V is called a Solenoidal vector function. And this equation is called equation of continuity or conservation of mass. Example 1: If 𝑒 = π‘₯2 + 𝑦2 + 𝑧2 , π‘Žπ‘›π‘‘ π‘ŸΜ… = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚, then find div (π‘’π‘ŸΜ…) in terms of u.
  • 7. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 7 Solution: div (π‘’π‘ŸΜ…) = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) [(π‘₯2 + 𝑦2 + 𝑧2)(π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚)] = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) . [(π‘₯2 + 𝑦2 + 𝑧2)π‘₯𝑖̂ + (π‘₯2 + 𝑦2 + 𝑧2)𝑦𝑗̂ + (π‘₯2 + 𝑦2 + 𝑧2)π‘§π‘˜Μ‚] = πœ• πœ•π‘₯ (π‘₯3 + π‘₯𝑦2 + π‘₯𝑧2) + πœ• πœ•π‘¦ (π‘₯2 𝑦 + 𝑦3 + 𝑦𝑧2) + πœ• πœ•π‘§ (π‘₯2 𝑧 + 𝑦2 𝑧 + 𝑧3) = (3π‘₯2 + 𝑦2 + 𝑧2) + (π‘₯2 + 3𝑦2 + 𝑧2) + (π‘₯2 + 𝑦2 + 3𝑧2) = 5(π‘₯2 + 𝑦2 + 𝑧2) = 5𝑒 ___________ Ans. Example 2: Find the directional derivative of the divergence of 𝑓̅( π‘₯, 𝑦, 𝑧) = π‘₯𝑦𝑖̂ + π‘₯𝑦2 𝑗̂ + 𝑧2 π‘˜Μ‚ at the point (2, 1, 2) in the direction of the outer normal to the sphere π‘₯2 + 𝑦2 + 𝑧2 = 9. Solution: 𝑓̅( π‘₯, 𝑦, 𝑧) = π‘₯𝑦𝑖̂ + π‘₯𝑦2 𝑗̂ + 𝑧2 π‘˜Μ‚ Divergence of 𝑓̅( π‘₯, 𝑦, 𝑧) = βˆ‡.Μ… 𝑓̅ = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) . (π‘₯𝑦𝑖̂ + π‘₯𝑦2 𝑗̂ + 𝑧2 π‘˜Μ‚) = 𝑦 + 2π‘₯𝑦 + 2𝑧 Directional derivative of divergence of (𝑦 + 2π‘₯𝑦 + 2𝑧) = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) (𝑦 + 2π‘₯𝑦 + 2𝑧) = 2𝑦𝑖̂ + (1 + 2π‘₯)𝑗̂ + 2π‘˜Μ‚ __________(i) Directional derivative at the point (2,1,2) = 2𝑖̂ + 5𝑗̂ + 2π‘˜Μ‚ Normal to the sphere = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) (π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 9) = 2π‘₯𝑖̂ + 2𝑦𝑗̂ + 2π‘§π‘˜Μ‚ Normal at the point (2,1,2) = 4𝑖̂ + 2𝑗̂ + 4π‘˜Μ‚ __________ (ii) Directional derivative along normal at (2,1,2) = (2𝑖̂ + 5𝑗̂ + 2π‘˜Μ‚). (4𝑖̂+2𝑗̂+4π‘˜Μ‚ ) √16+4+16
  • 8. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 8 [πΉπ‘Ÿπ‘œπ‘š (𝑖), (𝑖𝑖)] = 1 6 (8 + 10 + 8) = 13 3 ____________ Ans. 5.2 Exercise: 1) If 𝑣̅ = π‘₯𝑖̂+ 𝑦𝑗̂+ π‘§π‘˜Μ‚ √π‘₯2+𝑦2+𝑧2 , find the value of div 𝑣̅. 2) Find the directional derivative of div (𝑒⃗⃗) at the point (1, 2, 2) in the direction of the outer normal of the sphere π‘₯2 + 𝑦2 + 𝑧2 = 9 for 𝑒⃗⃗ = π‘₯4 𝑖̂ + 𝑦4 𝑗̂ + 𝑧4 π‘˜Μ‚. 6.1 CURL: The curl of a vector point function 𝐹 is defined as below Curl 𝐹̅ = βˆ‡Μ… Γ— 𝐹̅ (𝐹̅ = 𝐹1 𝑖̂ + 𝐹2 𝑗̂ + 𝐹3 π‘˜Μ‚) = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) Γ— 𝐹1 𝑖̂ + 𝐹2 𝑗̂ + 𝐹3 π‘˜Μ‚ = | 𝑖̂ 𝑗̂ π‘˜Μ‚ πœ• πœ•π‘₯ πœ• πœ•π‘¦ πœ• πœ•π‘§ 𝐹1 𝐹2 𝐹3 | = 𝑖̂ ( πœ•πΉ3 πœ•π‘¦ βˆ’ πœ•πΉ2 πœ•π‘§ ) βˆ’ 𝑗̂ ( πœ•πΉ3 πœ•π‘₯ βˆ’ πœ•πΉ1 πœ•π‘§ ) + π‘˜Μ‚ ( πœ•πΉ2 πœ•π‘₯ βˆ’ πœ•πΉ1 πœ•π‘¦ ) Curl 𝐹̅ is a vector quantity. Note: Curl 𝑭̅ = 𝟎, the field 𝐹 is termed as irrotational. Example 1: Find the divergence and curl of 𝑣̅ = (π‘₯𝑦𝑧)𝑖̂ + (3π‘₯2 𝑦)𝑗̂ + (π‘₯𝑧2 βˆ’ 𝑦2 𝑧)π‘˜Μ‚ π‘Žπ‘‘ (2, βˆ’1,1)
  • 9. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 9 Solution: Here, we have 𝑣̅ = (π‘₯𝑦𝑧)𝑖̂ + (3π‘₯2 𝑦)𝑗̂ + (π‘₯𝑧2 βˆ’ 𝑦2 𝑧)π‘˜Μ‚ Div 𝑣̅ = βˆ‡βˆ… Div 𝑣̅ = πœ• πœ•π‘₯ (π‘₯𝑦𝑧) + πœ• πœ•π‘¦ (3π‘₯2 𝑦) + πœ• πœ•π‘§ (π‘₯𝑧2 βˆ’ 𝑦2 𝑧) = 𝑦𝑧 + 3π‘₯2 + 2π‘₯𝑧 βˆ’ 𝑦2 𝑣̅(2,βˆ’1,1) = βˆ’1 + 12 + 4 βˆ’ 1 = 14 Curl 𝑣̅ = | 𝑖̂ 𝑗̂ π‘˜Μ‚ πœ• πœ•π‘₯ πœ• πœ•π‘¦ πœ• πœ•π‘§ π‘₯𝑦𝑧 3π‘₯2 𝑦 π‘₯𝑧2 βˆ’ 𝑦2 𝑧 | = βˆ’2𝑦𝑧𝑖̂ βˆ’ (𝑧2 βˆ’ π‘₯𝑦)𝑗̂ + (6π‘₯𝑦 βˆ’ π‘₯𝑧)π‘˜Μ‚ = βˆ’2𝑦𝑧𝑖̂ + (π‘₯𝑦 βˆ’ 𝑧2)𝑗̂ + (6π‘₯𝑦 βˆ’ π‘₯𝑧)π‘˜Μ‚ Curl at (2, -1, 1) = 2(βˆ’1)(1)𝑖̂ + {2(βˆ’1) βˆ’ 1}𝑗̂ + {6(2)(βˆ’1) βˆ’ 2(1)}π‘˜Μ‚ = 2𝑖̂ βˆ’ 3𝑗̂ βˆ’ 14π‘˜Μ‚ __________ Ans. Example 2: Prove that (𝑦2 βˆ’ 𝑧2 + 3𝑦𝑧 βˆ’ 2π‘₯)𝑖̂ + (3π‘₯𝑦 + 2π‘₯𝑦)𝑗̂ + (3π‘₯𝑦 βˆ’ 2π‘₯𝑧 + 2𝑧)π‘˜Μ‚ is both Solenoidal and irrotational. Solution: Let 𝐹̅ = (𝑦2 βˆ’ 𝑧2 + 3𝑦𝑧 βˆ’ 2π‘₯)𝑖̂ + (3π‘₯𝑦 + 2π‘₯𝑦)𝑗̂ + (3π‘₯𝑦 βˆ’ 2π‘₯𝑧 + 2𝑧)π‘˜Μ‚ For Solenoidal, we have to prove βˆ‡.Μ… 𝐹̅ = 0. Now,
  • 10. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 10 βˆ‡.Μ… 𝐹̅ = [𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ] . [(𝑦2 βˆ’ 𝑧2 + 3𝑦𝑧 βˆ’ 2π‘₯)𝑖̂ + (3π‘₯𝑦 + 2π‘₯𝑦)𝑗̂ + (3π‘₯𝑦 βˆ’ 2π‘₯𝑧 + 2𝑧)π‘˜Μ‚] = βˆ’2 + 2π‘₯ βˆ’ 2π‘₯ + 2 = 0 Thus, 𝐹̅ is Solenoidal. For irrotational, we have to prove Curl 𝐹̅ = 0 Now, Curl 𝐹̅ = | 𝑖̂ 𝑗̂ π‘˜Μ‚ πœ• πœ•π‘₯ πœ• πœ•π‘¦ πœ• πœ•π‘§ (𝑦2 βˆ’ 𝑧2 + 3𝑦𝑧 βˆ’ 2π‘₯) (3π‘₯𝑦 + 2π‘₯𝑦) (3π‘₯𝑦 βˆ’ 2π‘₯𝑧 + 2𝑧) | = (3𝑧 + 2𝑦 βˆ’ 2𝑦 + 3𝑧)𝑖̂ βˆ’ (βˆ’2𝑧 + 3𝑦 βˆ’ 3𝑦 + 2𝑧)𝑗̂ + (3𝑧 + 2𝑦 βˆ’ 2𝑦 βˆ’ 3𝑧)π‘˜Μ‚ = 0𝑖̂ + 0𝑗̂ + 0π‘˜Μ‚ = 0 Thus, 𝐹̅ is irrotational. Hence, 𝐹̅ is both Solenoidal and irrotational. __________ Proved. Example 3: Find the scalar potential (velocity potential) function 𝑓 for 𝐴⃗ = 𝑦2 𝑖̂ + 2π‘₯𝑦𝑗̂ βˆ’ 𝑧2 π‘˜Μ‚. Solution: We have, 𝐴⃗ = 𝑦2 𝑖̂ + 2π‘₯𝑦𝑗̂ βˆ’ 𝑧2 π‘˜Μ‚. Curl 𝐴⃗ = βˆ‡ Γ— 𝐴⃗ = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) Γ— (𝑦2 𝑖̂ + 2π‘₯𝑦𝑗̂ βˆ’ 𝑧2 π‘˜Μ‚). = | 𝑖̂ 𝑗̂ π‘˜Μ‚ πœ• πœ•π‘₯ πœ• πœ•π‘¦ πœ• πœ•π‘§ 𝑦2 2π‘₯𝑦 βˆ’π‘§2 |
  • 11. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 11 = 𝑖̂(0) βˆ’ 𝑗̂(0) + π‘˜Μ‚(2𝑦 βˆ’ 2𝑦) = 0 Hence, 𝐴⃗ is irrotational. To find the scalar potential function 𝑓. 𝐴⃗ = βˆ‡ 𝑓 𝑑𝑓 = πœ•π‘“ πœ•π‘₯ 𝑑π‘₯ + πœ•π‘“ πœ•π‘¦ 𝑑𝑦 + πœ•π‘“ πœ•π‘§ 𝑑𝑧 = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) . (𝑖̂ 𝑑 π‘₯ + 𝑗̂ 𝑑 𝑦 + π‘˜Μ‚ 𝑑𝑧) = (𝑖̂ πœ• πœ•π‘₯ + 𝑗̂ πœ• πœ•π‘¦ + π‘˜Μ‚ πœ• πœ•π‘§ ) 𝑓. π‘‘π‘Ÿβƒ— = βˆ‡π‘“. π‘‘π‘Ÿβƒ— = 𝐴⃗. π‘‘π‘Ÿβƒ— (𝐴 = βˆ‡ 𝑓) = (𝑦2 𝑖̂ + 2π‘₯𝑦𝑗̂ βˆ’ 𝑧2 π‘˜Μ‚). (𝑖̂ 𝑑 π‘₯ + 𝑗̂ 𝑑 𝑦 + π‘˜Μ‚ 𝑑𝑧) = 𝑦2 𝑑π‘₯ + 2π‘₯𝑦 𝑑𝑦 βˆ’ 𝑧2 𝑑𝑧 = 𝑑(π‘₯𝑦2) βˆ’ 𝑧2 𝑑𝑧 𝑓 = ∫ 𝑑(π‘₯𝑦2) βˆ’ ∫ 𝑧2 𝑑𝑧 ∴ 𝑓 = π‘₯𝑦2 βˆ’ 𝑧3 3 + 𝑐 ________ Ans. 6.2 Exercise: 1) If a vector field is given by 𝐹⃗ = (π‘₯2 βˆ’ 𝑦2 + π‘₯)𝑖̂ βˆ’ (2π‘₯𝑦 + 𝑦)𝑗̂. Is this field irrotational? If so, find its scalar potential.
  • 12. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 12 2) Determine the constants a and b such that the curl of vector 𝐴̅ = (2π‘₯𝑦 + 3𝑦𝑧)𝑖̂ + (π‘₯2 + π‘Žπ‘₯𝑧 βˆ’ 4𝑧2)𝑗̂ βˆ’ (3π‘₯𝑦 + 𝑏𝑦𝑧)π‘˜Μ‚ is zero. 3) A fluid motion is given by𝑣̅ = (𝑦 + 𝑧)𝑖̂ + (𝑧 + π‘₯)𝑗̂ + (π‘₯ + 𝑦)π‘˜Μ‚. Show that the motion is irrotational and hence find the velocity potential. 4) Given that vector field 𝑉̅ = (π‘₯2 βˆ’ 𝑦2 + 2π‘₯𝑧)𝑖̂ + (π‘₯𝑧 βˆ’ π‘₯𝑦 + 𝑦𝑧)𝑗̂ + (𝑧2 + π‘₯2 )π‘˜Μ‚ find curl 𝑉. Show that the vectors given by curl 𝑉 at 𝑃0(1,2, βˆ’3) π‘Žπ‘›π‘‘ 𝑃1(2,3,12) are orthogonal. 5) Suppose that π‘ˆβƒ—βƒ—βƒ—, 𝑉⃗⃗ and 𝑓 are continuously differentiable fields then Prove that, div(π‘ˆβƒ—βƒ—βƒ— Γ— 𝑉⃗⃗) = 𝑉⃗⃗. π‘π‘’π‘Ÿπ‘™ π‘ˆβƒ—βƒ—βƒ— βˆ’ π‘ˆβƒ—βƒ—βƒ—. π‘π‘’π‘Ÿπ‘™ 𝑉⃗⃗. 7.1 REFERECE BOOKS: 1) Introduction to Engineering Mathematics By H. K. DASS. & Dr. RAMA VERMA S. CHAND 2) Higher Engineering Mathematics By B.V. RAMANA Mc Graw Hill Education 3) Higher Engineering Mathematics By Dr. B.S. GREWAL KHANNA PUBLISHERS 4) http://elearning.vtu.ac.in/P7/enotes/MAT1/Vector.pdf