SlideShare ist ein Scribd-Unternehmen logo
1 von 55
VECTOR CALCULUS
1.10 GRADIENT OF A SCALAR
1.11 DIVERGENCE OF A VECTOR
1.12 DIVERGENCE THEOREM
1.13 CURL OF A VECTOR
1.14 STOKES’S THEOREM
1.15 LAPLACIAN OF A SCALAR
1.10 GRADIENT OF A
SCALAR
Suppose is the temperature at ,
and is the temperature at
as shown.
( )zyxT ,,1 ( )zyxP ,,1
2P( )dzzdyydxxT +++ ,,2
The differential distances are the
components of the differential distance
vector :
dzdydx ,,
zyx dzdydxd aaaL ++=
Ld
However, from differential calculus, the
differential temperature:
dz
z
T
dy
y
T
dx
x
T
TTdT
∂
∂
+
∂
∂
+
∂
∂
=−= 12
GRADIENT OF A SCALAR (Cont’d)
But,
z
y
x
ddz
ddy
ddx
aL
aL
aL
•=
•=
•=
So, previous equation can be rewritten as:
Laaa
LaLaLa
d
z
T
y
T
x
T
d
z
T
d
y
T
d
x
T
dT
zyx
zyx
•





∂
∂
+
∂
∂
+
∂
∂
=
•
∂
∂
+•
∂
∂
+•
∂
∂
=
GRADIENT OF A SCALAR (Cont’d)
The vector inside square brackets defines the
change of temperature corresponding to a
vector change in position .
This vector is called Gradient of Scalar T.
Ld
dT
GRADIENT OF A SCALAR (Cont’d)
For Cartesian coordinate:
zyx
z
V
y
V
x
V
V aaa
∂
∂
+
∂
∂
+
∂
∂
=∇
GRADIENT OF A SCALAR (Cont’d)
For Circular cylindrical coordinate:
z
z
VVV
V aaa
∂
∂
+
∂
∂
+
∂
∂
=∇ φρ
φρρ
1
For Spherical coordinate:
φθ
φθθ
aaa
∂
∂
+
∂
∂
+
∂
∂
=∇
V
r
V
rr
V
V r
sin
11
EXAMPLE
10
Find gradient of these scalars:
yxeV z
cosh2sin−
=
φρ 2cos2
zU =
φθ cossin10 2
rW =
(a)
(b)
(c)
SOLUTION TO EXAMPLE 10
(a) Use gradient for Cartesian coordinate:
z
z
y
z
x
z
zyx
yxe
yxeyxe
z
V
y
V
x
V
V
a
aa
aaa
cosh2sin
sinh2sincosh2cos2
−
−−
−
+=
∂
∂
+
∂
∂
+
∂
∂
=∇
SOLUTION TO EXAMPLE 10
(Cont’d)
(b) Use gradient for Circular cylindrical
coordinate:
z
z
zz
z
UUU
U
a
aa
aaa
φρ
φρφρ
φρρ
φρ
φρ
2cos
2sin22cos2
1
2
+
−=
∂
∂
+
∂
∂
+
∂
∂
=∇
SOLUTION TO EXAMPLE 10
(Cont’d)
(c) Use gradient for Spherical coordinate:
φ
θ
φθ
φθ
φθφθ
φθθ
a
aa
aaa
sinsin10
cos2sin10cossin10
sin
11
2
−
+=
∂
∂
+
∂
∂
+
∂
∂
=∇
r
r
W
r
W
rr
W
W
1.11 DIVERGENCE OF A VECTOR
Illustration of the divergence of a vector
field at point P:
Positive
Divergence
Negative
Divergence
Zero
Divergence
DIVERGENCE OF A VECTOR
(Cont’d)
The divergence of A at a given point P
is the outward flux per unit volume:
v
dS
div s
v ∆
•
=•∇=
∫
→∆
A
AA lim
0
DIVERGENCE OF A VECTOR
(Cont’d)
What is ??∫ •
s
dSA Vector field A at
closed surface S
Where,
dSdS
bottomtoprightleftbackfronts
•








+++++=• ∫∫∫∫∫∫∫ AA
And, v is volume enclosed by surface S
DIVERGENCE OF A VECTOR
(Cont’d)
For Cartesian coordinate:
z
A
y
A
x
A zyx
∂
∂
+
∂
∂
+
∂
∂
=•∇ A
For Circular cylindrical coordinate:
( ) z
AA
A z
∂
∂
+
∂
∂
+
∂
∂
=•∇
φρ
ρ
ρρ
φ
ρ
11
A
DIVERGENCE OF A VECTOR
(Cont’d)
For Spherical coordinate:
( ) ( )
φθθ
θ
θ
φθ
∂
∂
+
∂
∂
+
∂
∂
=•∇
A
r
A
r
Ar
rr
r
sin
1sin
sin
11 2
2
A
DIVERGENCE OF A VECTOR
(Cont’d)
EXAMPLE
11
Find divergence of these vectors:
zx xzyzxP aa += 2
zzzQ aaa φρφρ φρ cossin 2
++=
φθ θφθθ aaa coscossincos
1
2
++= r
r
W r
(a)
(b)
(c)
18
(a) Use divergence for Cartesian
coordinate:
SOLUTION TO EXAMPLE 11
( ) ( ) ( )
xxyz
xz
zy
yzx
x
z
P
y
P
x
P zyx
+=
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
+
∂
∂
+
∂
∂
=•∇
2
02
P
(b) Use divergence for Circular cylindrical
coordinate:
( )
( ) ( ) ( )
φφ
φρ
φρ
φρ
ρρ
φρ
ρ
ρρ
φ
ρ
cossin2
cos
1
sin
1
11
22
+=
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
+
∂
∂
+
∂
∂
=•∇ Q
z
z
z
z
QQ
Q z
SOLUTION TO EXAMPLE 11
(Cont’d)
SOLUTION TO EXAMPLE 11
(Cont’d)
(c) Use divergence for Spherical coordinate:
( ) ( )
( ) ( )
( )
φθ
θ
φθ
φθ
θθ
θ
φθθ
θ
θ
φθ
coscos2
cos
sin
1
cossin
sin
1
cos
1
sin
1sin
sin
11
2
2
2
2
=
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
+
∂
∂
+
∂
∂
=•∇ W
r
r
rrr
W
r
W
r
Wr
rr
r
It states that the total outward flux of
a vector field A at the closed surface S
is the same as volume integral of
divergence of A.
∫∫ •∇=•
VV
dVdS AA
1.12 DIVERGENCE THEOREM
EXAMPLE
12
A vector field exists in the region
between two concentric cylindrical surfaces
defined by ρ = 1 and ρ = 2, with both cylinders
extending between z = 0 and z = 5. Verify the
divergence theorem by evaluating:
ρρ aD 3
=
→
∫ •
S
dsD
∫ •∇
V
DdV
(a)
(b)
SOLUTION TO EXAMPLE 12
(a) For two concentric cylinder, the left side:
topbottomouterinner
S
d DDDDSD +++=•∫
Where,
πφρ
φρρ
π
φ
ρ
ρρ
π
φ
ρ
ρρ
10)(
)(
2
0
5
0
1
4
2
0
5
0
1
3
−=•−=
−•=
∫ ∫
∫ ∫
= =
=
= =
=
z
z
inner
dzd
dzdD
aa
aa
πφρ
φρρ
π
φ
ρ
ρρ
π
φ
ρ
ρρ
160)(
)(
2
0
5
0
2
4
2
0
5
0
2
3
=•=
•=
∫ ∫
∫ ∫
= =
=
= =
=
z
z
outer
dzd
dzdD
aa
aa
∫ ∫
∫ ∫
= =
=
= =
=
=•=
=−•=
2
1
2
0
5
3
2
1
2
0
0
3
0)(
0)(
ρ
π
φ
ρ
ρ
π
φ
ρ
ρφρρ
ρφρρ
z
ztop
z
zbottom
ddD
ddD
aa
aa
SOLUTION TO EXAMPLE 12
Cont’d)
Therefore
π
ππ
150
0016010
=
+++−=•∫ SD
S
d
SOLUTION TO EXAMPLE 12
Cont’d)
SOLUTION TO EXAMPLE 12
Cont’d)
(b) For the right side of Divergence Theorem,
evaluate divergence of D
( ) 23
4
1
ρρρ
ρρ
=
∂
∂
=•∇ D
So,
πρ
φρρρ
π
φ
π
φ ρ
150
4
5
0
2
0
2
1
4
5
0
2
0
2
1
2
=























=
=•∇
=
=
=
= = =
∫ ∫ ∫∫∫∫
z
r
z
dzdddVD
1.13 CURL OF A VECTOR
The curl of vector A is an axial
(rotational) vector whose magnitude is
the maximum circulation of A per unit
area tends to zero and whose direction
is the normal direction of the area
when the area is oriented so as to
make the circulation maximum.
maxlim
0
a
A
AA n
s
s s
dl
Curl










∆
•
=×∇=
∫
→∆
Where,
CURL OF A VECTOR (Cont’d)
dldl
dacdbcabs
•







+++=• ∫∫∫∫∫ AA
CURL OF A VECTOR (Cont’d)
The curl of the vector field is concerned
with rotation of the vector field. Rotation
can be used to measure the uniformity
of the field, the more non uniform the
field, the larger value of curl.
For Cartesian coordinate:
CURL OF A VECTOR (Cont’d)
zyx
zyx
AAA
zyx ∂
∂
∂
∂
∂
∂
=×∇
aaa
A
z
xy
y
xz
x
yz
y
A
x
A
z
A
x
A
z
A
y
A
aaaA 





∂
∂
−
∂
∂
+



∂
∂
−
∂
∂
−





∂
∂
−
∂
∂
=×∇
z
z
AAA
z
φρ
φρ
ρ
φρ
ρ
ρ ∂
∂
∂
∂
∂
∂
=×∇
aaa
A
1
( )
z
zz
AA
z
AA
z
AA
a
aaA






∂
∂
−
∂
∂
+






∂
∂
−
∂
∂
−





∂
∂
−
∂
∂
=×∇
φρ
ρ
ρ
ρφρ
ρφ
φ
ρ
ρ
φ
1
1
For Circular cylindrical coordinate:
CURL OF A VECTOR (Cont’d)
CURL OF A VECTOR (Cont’d)
For Spherical coordinate:
( ) φθ
φθ
θ
φθθ
ArrAA
rr
r
r
sin
sin
1
2
∂
∂
∂
∂
∂
∂
=×∇
aaa
A
( ) ( )
( )
φ
θ
θ
φθφ
θ
φθφθ
θ
θ
a
aaA






∂
∂
−
∂
∂
+






∂
∂
−
∂
∂
+





∂
∂
−
∂
∂
=×∇
r
r
r
A
r
rA
r
r
rAA
r
AA
r
)(1
sin
11sin
sin
1
EXAMPLE
13
zx xzyzxP aa += 2
zzzQ aaa φρφρ φρ cossin 2
++=
φθ θφθθ aaa coscossincos
1
2
++= r
r
W r
(a)
(b)
(c)
Find curl of these vectors:
SOLUTION TO EXAMPLE 13
(a) Use curl for Cartesian coordinate:
( ) ( ) ( )
( ) zy
zyx
z
xy
y
xz
x
yz
zxzyx
zxzyx
y
P
x
P
z
P
x
P
z
P
y
P
aa
aaa
aaaP
22
22
000
−−=
−+−+−=






∂
∂
−
∂
∂
+



∂
∂
−
∂
∂
−





∂
∂
−
∂
∂
=×∇
(b) Use curl for Circular cylindrical coordinate
( )
( )
( )
( ) ( ) z
z
z
zz
zz
z
z
y
Q
x
QQ
z
Q
z
QQ
aa
a
aa
aaaQ
φρρφ
ρ
φρρ
ρ
ρφ
ρ
ρ
ρρφρ
ρ
φρ
ρφ
φ
ρ
ρ
φ
cos3sin
1
cos3
1
00sin
11
3
2
2
−++−=
−+
−+





−
−
=






∂
∂
−
∂
∂
+





∂
∂
−
∂
∂
+





∂
∂
−
∂
∂
=×∇
SOLUTION TO EXAMPLE 13
(Cont’d)
(c) Use curl for Spherical coordinate:
( ) ( )
( )
( ) ( ) ( )
φ
θ
φ
θ
θ
φθφ
θ
θ
φθ
θ
φ
θ
θφ
φθ
θ
θθ
θ
θ
φθφθ
θ
θ
a
aa
a
aaW










∂




∂
−
∂
∂
+










∂
∂
−
∂




∂
+





∂
∂
−
∂
∂
=






∂
∂
−
∂
∂
+






∂
∂
−
∂
∂
+





∂
∂
−
∂
∂
=×∇
22
2
cos
)cossin(1
cos
cos
sin
11cossinsincos
sin
1
)(1
sin
11sin
sin
1
r
r
r
r
r
rr
r
r
r
W
r
rW
r
r
rWW
r
WW
r
r
r
r
r
SOLUTION TO EXAMPLE 13
(Cont’d)
SOLUTION TO EXAMPLE 13
(Cont’d)
( ) ( )
a
aa
a
aa
φ
θ
φ
θ
θφ
θ
φ
θ
θ
θ
φθ
θφθθ
θ
sin
1
cos2
cos
sin
sin
2cos
sin
cossin2
1
cos0
1
sinsin2cos
sin
1
3
2






++
+





+=






++
−++=
r
rr
r
r
r
r
r
r
r
r
1.14 STOKE’S THEOREM
The circulation of a vector field A around
a closed path L is equal to the surface
integral of the curl of A over the open
surface S bounded by L that A and curl
of A are continuous on S.
( )∫∫ •×∇=•
SL
dSdl AA
STOKE’S THEOREM (Cont’d)
EXAMPLE
14
By using Stoke’s Theorem, evaluate
for
∫ • dlA
φρ φφρ aaA sincos +=
→
EXAMPLE 14 (Cont’d)
SOLUTION TO EXAMPLE 14
Stoke’s Theorem,
( )∫∫ •×∇=•
SL
dSdl AA
where, andzddd aS ρφρ=
Evaluate right side to get left side,
( ) zaA φρ
ρ
sin1
1
+=×∇
SOLUTION TO EXAMPLE 14
(Cont’d)
( ) ( )
941.4
sin1
1
0
0
60
30
5
2
=
+=•×∇ ∫ ∫∫
= =
aA z
S
dddS ρφφρρ
ρφ ρ
EXAMPLE
15
Verify Stoke’s theorem for the vector field
for given figure by evaluating:φρ φφρ aaB sincos +=
→
(a) over the
semicircular contour.
∫ • LB d
(b) over the
surface of semicircular
contour.
( )∫ •×∇ SB d
SOLUTION TO EXAMPLE 15
(a) To find∫ • LB d
∫∫∫∫ •+•+•=•
321 LLL
dddd LBLBLBLB
Where,
( ) ( )
φφρρφρ
φρρφφρ φρφρ
dd
dzddd z
sincos
sincos
+=
++•+=• aaaaaLB
So
20
2
1
sincos
2
0
2
0
0
0
0,0
2
01
=+





=








+








=•
=
=
=
==
=
∫∫∫
ρ
φφρ
ρ
φφρρφρLB
zz
L
ddd
( ) 4cos20
sincos
0
0,2
0
0
2
22
=−+=








+








=•
=
==
=
=
=
∫∫∫
π
φ
ρ
π
φρ
φ
φφρρφρLB
zz
L
ddd
SOLUTION TO EXAMPLE 15
(Cont’d)
20
2
1
sincos
0
2
2
00,0
0
23
=+





−=








+








=•
=
=
=
==
=
∫∫∫
r
zz
L
ddd
ρ
φφρρφρ
π
πφφρ
LB
SOLUTION TO EXAMPLE 15
(Cont’d)
Therefore the closed integral,
8242 =++=•∫ LB d
SOLUTION TO EXAMPLE 15
(Cont’d)
(b) To find ( )∫ •×∇ SB d
( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )
z
z
z
zz
a
aaa
a
aa
aaB






+=
+++=






∂
∂
−
∂
∂
+






∂
∂
−
∂
∂
+





∂
∂
−
∂
∂
=
+×∇=×∇
ρ
φ
φρφ
ρ
φρ
φ
φρ
ρρ
ρ
φρφ
φρ
φφρ
φρ
φρ
φρ
1
1sin
sinsin
1
00
cossin
1
0cossin0
1
sincos
SOLUTION TO EXAMPLE 15
(Cont’d)
Therefore
( )
8
2
1
cos
1sin
1
1sin
0
2
0
2
0
2
0
0
2
0
=




















+−=
+=
•











+=•×∇
=
=
= =
= =
∫ ∫
∫ ∫∫∫
π
φ
ρ
π
φ ρ
π
φ ρ
ρρφ
φρρφ
φρρ
ρ
φ aaSB
dd
ddd zz
1.15 LAPLACIAN OF A SCALAR
The Laplacian of a scalar field, V
written as:
V2
∇
Where, Laplacian V is:






∂
∂
+
∂
∂
+
∂
∂
•





∂
∂
+
∂
∂
+
∂
∂
=
∇•∇=∇
zyxzyx
z
V
y
V
x
V
zyx
VV
aaaaaa
2
For Cartesian coordinate:
2
2
2
2
2
2
2
z
V
y
V
x
V
V
∂
∂
+
∂
∂
+
∂
∂
=∇
For Circular cylindrical coordinate:
2
22
2
2 11
z
VVV
V
∂
∂
+
∂
∂
+





∂
∂
∂
∂
=∇
φρρ
ρ
ρρ
LAPLACIAN OF A SCALAR (Cont’d)
LAPLACIAN OF A SCALAR (Cont’d)
For Spherical coordinate:
2
2
22
2
2
2
2
sin
1
sin
sin
11
φθ
θ
θ
θθ
∂
∂
+






∂
∂
∂
∂
+





∂
∂
∂
∂
=∇
V
r
V
rr
V
r
rr
V
EXAMPLE
16
Find Laplacian of these scalars:
yxeV z
cosh2sin−
=
φρ 2cos2
zU =
φθ cossin10 2
rW =
(a)
(b)
(c)
You should try this!!
SOLUTION TO EXAMPLE 16
yxeV z
cosh2sin22 −
−=∇
02
=∇ U
( )θ
φ
2cos21
cos102
+=∇
r
W
(a)
(b)
(c)
Yea, unto God belong all things in the
heavens and on earth, and enough is God
to carry through all affairs
Quran:4:132
END

Weitere ähnliche Inhalte

Was ist angesagt?

application of differential equations
application of differential equationsapplication of differential equations
application of differential equationsVenkata.Manish Reddy
 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applicationsDeepRaval7
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform 001Abhishek1
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its ApplicationChandra Kundu
 
Differential equations
Differential equationsDifferential equations
Differential equationsSeyid Kadher
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationRai University
 
divergence of vector and divergence theorem
divergence of vector and divergence theoremdivergence of vector and divergence theorem
divergence of vector and divergence theoremAbhishekLalkiya
 
Complex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationComplex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationHesham Ali
 
Applications of differential equations
Applications of differential equationsApplications of differential equations
Applications of differential equationsSohag Babu
 

Was ist angesagt? (20)

application of differential equations
application of differential equationsapplication of differential equations
application of differential equations
 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
Divrgence theorem with example
Divrgence theorem with exampleDivrgence theorem with example
Divrgence theorem with example
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
divergence of vector and divergence theorem
divergence of vector and divergence theoremdivergence of vector and divergence theorem
divergence of vector and divergence theorem
 
VECTOR FUNCTION
VECTOR FUNCTION VECTOR FUNCTION
VECTOR FUNCTION
 
Complex number
Complex numberComplex number
Complex number
 
Line integeral
Line integeralLine integeral
Line integeral
 
Vector Calculus.
Vector Calculus.Vector Calculus.
Vector Calculus.
 
CONVERGENCE.ppt
CONVERGENCE.pptCONVERGENCE.ppt
CONVERGENCE.ppt
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 
Power series
Power series Power series
Power series
 
Complex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationComplex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex Differentiation
 
Applications of differential equations
Applications of differential equationsApplications of differential equations
Applications of differential equations
 

Ähnlich wie Vector calculus

5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vectorshabdrang
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus garghanish
 
math vysh.pptx
math vysh.pptxmath vysh.pptx
math vysh.pptxVyshali6
 
Ultrasound lecture 1 post
Ultrasound lecture 1 postUltrasound lecture 1 post
Ultrasound lecture 1 postlucky shumail
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional spaceSolo Hermelin
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Prakash Dabhi
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma ediciónSohar Carr
 
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Sistemas de control para ingenieria  3ra edicion  norman s. nise solSistemas de control para ingenieria  3ra edicion  norman s. nise sol
Sistemas de control para ingenieria 3ra edicion norman s. nise solNielsy Quiroga
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arcLawrence De Vera
 

Ähnlich wie Vector calculus (20)

5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vector
 
EMI_Chapter3_p2.pdf
EMI_Chapter3_p2.pdfEMI_Chapter3_p2.pdf
EMI_Chapter3_p2.pdf
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
 
math vysh.pptx
math vysh.pptxmath vysh.pptx
math vysh.pptx
 
Ultrasound lecture 1 post
Ultrasound lecture 1 postUltrasound lecture 1 post
Ultrasound lecture 1 post
 
Divrgence theorem with example
Divrgence theorem with exampleDivrgence theorem with example
Divrgence theorem with example
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
 
Contour
ContourContour
Contour
 
Emfbook
EmfbookEmfbook
Emfbook
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
7
77
7
 
Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Shell theory
Shell theoryShell theory
Shell theory
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma edición
 
VECTOR CALCULUS
VECTOR CALCULUS VECTOR CALCULUS
VECTOR CALCULUS
 
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Sistemas de control para ingenieria  3ra edicion  norman s. nise solSistemas de control para ingenieria  3ra edicion  norman s. nise sol
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arc
 

Kürzlich hochgeladen

Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesBoston Institute of Analytics
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 

Kürzlich hochgeladen (20)

Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 

Vector calculus

  • 1. VECTOR CALCULUS 1.10 GRADIENT OF A SCALAR 1.11 DIVERGENCE OF A VECTOR 1.12 DIVERGENCE THEOREM 1.13 CURL OF A VECTOR 1.14 STOKES’S THEOREM 1.15 LAPLACIAN OF A SCALAR
  • 2. 1.10 GRADIENT OF A SCALAR Suppose is the temperature at , and is the temperature at as shown. ( )zyxT ,,1 ( )zyxP ,,1 2P( )dzzdyydxxT +++ ,,2
  • 3. The differential distances are the components of the differential distance vector : dzdydx ,, zyx dzdydxd aaaL ++= Ld However, from differential calculus, the differential temperature: dz z T dy y T dx x T TTdT ∂ ∂ + ∂ ∂ + ∂ ∂ =−= 12 GRADIENT OF A SCALAR (Cont’d)
  • 4. But, z y x ddz ddy ddx aL aL aL •= •= •= So, previous equation can be rewritten as: Laaa LaLaLa d z T y T x T d z T d y T d x T dT zyx zyx •      ∂ ∂ + ∂ ∂ + ∂ ∂ = • ∂ ∂ +• ∂ ∂ +• ∂ ∂ = GRADIENT OF A SCALAR (Cont’d)
  • 5. The vector inside square brackets defines the change of temperature corresponding to a vector change in position . This vector is called Gradient of Scalar T. Ld dT GRADIENT OF A SCALAR (Cont’d) For Cartesian coordinate: zyx z V y V x V V aaa ∂ ∂ + ∂ ∂ + ∂ ∂ =∇
  • 6. GRADIENT OF A SCALAR (Cont’d) For Circular cylindrical coordinate: z z VVV V aaa ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ φρ φρρ 1 For Spherical coordinate: φθ φθθ aaa ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ V r V rr V V r sin 11
  • 7. EXAMPLE 10 Find gradient of these scalars: yxeV z cosh2sin− = φρ 2cos2 zU = φθ cossin10 2 rW = (a) (b) (c)
  • 8. SOLUTION TO EXAMPLE 10 (a) Use gradient for Cartesian coordinate: z z y z x z zyx yxe yxeyxe z V y V x V V a aa aaa cosh2sin sinh2sincosh2cos2 − −− − += ∂ ∂ + ∂ ∂ + ∂ ∂ =∇
  • 9. SOLUTION TO EXAMPLE 10 (Cont’d) (b) Use gradient for Circular cylindrical coordinate: z z zz z UUU U a aa aaa φρ φρφρ φρρ φρ φρ 2cos 2sin22cos2 1 2 + −= ∂ ∂ + ∂ ∂ + ∂ ∂ =∇
  • 10. SOLUTION TO EXAMPLE 10 (Cont’d) (c) Use gradient for Spherical coordinate: φ θ φθ φθ φθφθ φθθ a aa aaa sinsin10 cos2sin10cossin10 sin 11 2 − += ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ r r W r W rr W W
  • 11. 1.11 DIVERGENCE OF A VECTOR Illustration of the divergence of a vector field at point P: Positive Divergence Negative Divergence Zero Divergence
  • 12. DIVERGENCE OF A VECTOR (Cont’d) The divergence of A at a given point P is the outward flux per unit volume: v dS div s v ∆ • =•∇= ∫ →∆ A AA lim 0
  • 13. DIVERGENCE OF A VECTOR (Cont’d) What is ??∫ • s dSA Vector field A at closed surface S
  • 15. For Cartesian coordinate: z A y A x A zyx ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ A For Circular cylindrical coordinate: ( ) z AA A z ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ φρ ρ ρρ φ ρ 11 A DIVERGENCE OF A VECTOR (Cont’d)
  • 16. For Spherical coordinate: ( ) ( ) φθθ θ θ φθ ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ A r A r Ar rr r sin 1sin sin 11 2 2 A DIVERGENCE OF A VECTOR (Cont’d)
  • 17. EXAMPLE 11 Find divergence of these vectors: zx xzyzxP aa += 2 zzzQ aaa φρφρ φρ cossin 2 ++= φθ θφθθ aaa coscossincos 1 2 ++= r r W r (a) (b) (c)
  • 18. 18 (a) Use divergence for Cartesian coordinate: SOLUTION TO EXAMPLE 11 ( ) ( ) ( ) xxyz xz zy yzx x z P y P x P zyx += ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ 2 02 P
  • 19. (b) Use divergence for Circular cylindrical coordinate: ( ) ( ) ( ) ( ) φφ φρ φρ φρ ρρ φρ ρ ρρ φ ρ cossin2 cos 1 sin 1 11 22 += ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ Q z z z z QQ Q z SOLUTION TO EXAMPLE 11 (Cont’d)
  • 20. SOLUTION TO EXAMPLE 11 (Cont’d) (c) Use divergence for Spherical coordinate: ( ) ( ) ( ) ( ) ( ) φθ θ φθ φθ θθ θ φθθ θ θ φθ coscos2 cos sin 1 cossin sin 1 cos 1 sin 1sin sin 11 2 2 2 2 = ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ W r r rrr W r W r Wr rr r
  • 21. It states that the total outward flux of a vector field A at the closed surface S is the same as volume integral of divergence of A. ∫∫ •∇=• VV dVdS AA 1.12 DIVERGENCE THEOREM
  • 22. EXAMPLE 12 A vector field exists in the region between two concentric cylindrical surfaces defined by ρ = 1 and ρ = 2, with both cylinders extending between z = 0 and z = 5. Verify the divergence theorem by evaluating: ρρ aD 3 = → ∫ • S dsD ∫ •∇ V DdV (a) (b)
  • 23. SOLUTION TO EXAMPLE 12 (a) For two concentric cylinder, the left side: topbottomouterinner S d DDDDSD +++=•∫ Where, πφρ φρρ π φ ρ ρρ π φ ρ ρρ 10)( )( 2 0 5 0 1 4 2 0 5 0 1 3 −=•−= −•= ∫ ∫ ∫ ∫ = = = = = = z z inner dzd dzdD aa aa
  • 24. πφρ φρρ π φ ρ ρρ π φ ρ ρρ 160)( )( 2 0 5 0 2 4 2 0 5 0 2 3 =•= •= ∫ ∫ ∫ ∫ = = = = = = z z outer dzd dzdD aa aa ∫ ∫ ∫ ∫ = = = = = = =•= =−•= 2 1 2 0 5 3 2 1 2 0 0 3 0)( 0)( ρ π φ ρ ρ π φ ρ ρφρρ ρφρρ z ztop z zbottom ddD ddD aa aa SOLUTION TO EXAMPLE 12 Cont’d)
  • 26. SOLUTION TO EXAMPLE 12 Cont’d) (b) For the right side of Divergence Theorem, evaluate divergence of D ( ) 23 4 1 ρρρ ρρ = ∂ ∂ =•∇ D So, πρ φρρρ π φ π φ ρ 150 4 5 0 2 0 2 1 4 5 0 2 0 2 1 2 =                        = =•∇ = = = = = = ∫ ∫ ∫∫∫∫ z r z dzdddVD
  • 27. 1.13 CURL OF A VECTOR The curl of vector A is an axial (rotational) vector whose magnitude is the maximum circulation of A per unit area tends to zero and whose direction is the normal direction of the area when the area is oriented so as to make the circulation maximum.
  • 28. maxlim 0 a A AA n s s s dl Curl           ∆ • =×∇= ∫ →∆ Where, CURL OF A VECTOR (Cont’d) dldl dacdbcabs •        +++=• ∫∫∫∫∫ AA
  • 29. CURL OF A VECTOR (Cont’d) The curl of the vector field is concerned with rotation of the vector field. Rotation can be used to measure the uniformity of the field, the more non uniform the field, the larger value of curl.
  • 30. For Cartesian coordinate: CURL OF A VECTOR (Cont’d) zyx zyx AAA zyx ∂ ∂ ∂ ∂ ∂ ∂ =×∇ aaa A z xy y xz x yz y A x A z A x A z A y A aaaA       ∂ ∂ − ∂ ∂ +    ∂ ∂ − ∂ ∂ −      ∂ ∂ − ∂ ∂ =×∇
  • 32. CURL OF A VECTOR (Cont’d) For Spherical coordinate: ( ) φθ φθ θ φθθ ArrAA rr r r sin sin 1 2 ∂ ∂ ∂ ∂ ∂ ∂ =×∇ aaa A ( ) ( ) ( ) φ θ θ φθφ θ φθφθ θ θ a aaA       ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ +      ∂ ∂ − ∂ ∂ =×∇ r r r A r rA r r rAA r AA r )(1 sin 11sin sin 1
  • 33. EXAMPLE 13 zx xzyzxP aa += 2 zzzQ aaa φρφρ φρ cossin 2 ++= φθ θφθθ aaa coscossincos 1 2 ++= r r W r (a) (b) (c) Find curl of these vectors:
  • 34. SOLUTION TO EXAMPLE 13 (a) Use curl for Cartesian coordinate: ( ) ( ) ( ) ( ) zy zyx z xy y xz x yz zxzyx zxzyx y P x P z P x P z P y P aa aaa aaaP 22 22 000 −−= −+−+−=       ∂ ∂ − ∂ ∂ +    ∂ ∂ − ∂ ∂ −      ∂ ∂ − ∂ ∂ =×∇
  • 35. (b) Use curl for Circular cylindrical coordinate ( ) ( ) ( ) ( ) ( ) z z z zz zz z z y Q x QQ z Q z QQ aa a aa aaaQ φρρφ ρ φρρ ρ ρφ ρ ρ ρρφρ ρ φρ ρφ φ ρ ρ φ cos3sin 1 cos3 1 00sin 11 3 2 2 −++−= −+ −+      − − =       ∂ ∂ − ∂ ∂ +      ∂ ∂ − ∂ ∂ +      ∂ ∂ − ∂ ∂ =×∇ SOLUTION TO EXAMPLE 13 (Cont’d)
  • 36. (c) Use curl for Spherical coordinate: ( ) ( ) ( ) ( ) ( ) ( ) φ θ φ θ θ φθφ θ θ φθ θ φ θ θφ φθ θ θθ θ θ φθφθ θ θ a aa a aaW           ∂     ∂ − ∂ ∂ +           ∂ ∂ − ∂     ∂ +      ∂ ∂ − ∂ ∂ =       ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ +      ∂ ∂ − ∂ ∂ =×∇ 22 2 cos )cossin(1 cos cos sin 11cossinsincos sin 1 )(1 sin 11sin sin 1 r r r r r rr r r r W r rW r r rWW r WW r r r r r SOLUTION TO EXAMPLE 13 (Cont’d)
  • 37. SOLUTION TO EXAMPLE 13 (Cont’d) ( ) ( ) a aa a aa φ θ φ θ θφ θ φ θ θ θ φθ θφθθ θ sin 1 cos2 cos sin sin 2cos sin cossin2 1 cos0 1 sinsin2cos sin 1 3 2       ++ +      +=       ++ −++= r rr r r r r r r r r
  • 38. 1.14 STOKE’S THEOREM The circulation of a vector field A around a closed path L is equal to the surface integral of the curl of A over the open surface S bounded by L that A and curl of A are continuous on S. ( )∫∫ •×∇=• SL dSdl AA
  • 40. EXAMPLE 14 By using Stoke’s Theorem, evaluate for ∫ • dlA φρ φφρ aaA sincos += →
  • 42. SOLUTION TO EXAMPLE 14 Stoke’s Theorem, ( )∫∫ •×∇=• SL dSdl AA where, andzddd aS ρφρ= Evaluate right side to get left side, ( ) zaA φρ ρ sin1 1 +=×∇
  • 43. SOLUTION TO EXAMPLE 14 (Cont’d) ( ) ( ) 941.4 sin1 1 0 0 60 30 5 2 = +=•×∇ ∫ ∫∫ = = aA z S dddS ρφφρρ ρφ ρ
  • 44. EXAMPLE 15 Verify Stoke’s theorem for the vector field for given figure by evaluating:φρ φφρ aaB sincos += → (a) over the semicircular contour. ∫ • LB d (b) over the surface of semicircular contour. ( )∫ •×∇ SB d
  • 45. SOLUTION TO EXAMPLE 15 (a) To find∫ • LB d ∫∫∫∫ •+•+•=• 321 LLL dddd LBLBLBLB Where, ( ) ( ) φφρρφρ φρρφφρ φρφρ dd dzddd z sincos sincos += ++•+=• aaaaaLB
  • 48. SOLUTION TO EXAMPLE 15 (Cont’d) (b) To find ( )∫ •×∇ SB d ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) z z z zz a aaa a aa aaB       += +++=       ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ +      ∂ ∂ − ∂ ∂ = +×∇=×∇ ρ φ φρφ ρ φρ φ φρ ρρ ρ φρφ φρ φφρ φρ φρ φρ 1 1sin sinsin 1 00 cossin 1 0cossin0 1 sincos
  • 49. SOLUTION TO EXAMPLE 15 (Cont’d) Therefore ( ) 8 2 1 cos 1sin 1 1sin 0 2 0 2 0 2 0 0 2 0 =                     +−= += •            +=•×∇ = = = = = = ∫ ∫ ∫ ∫∫∫ π φ ρ π φ ρ π φ ρ ρρφ φρρφ φρρ ρ φ aaSB dd ddd zz
  • 50. 1.15 LAPLACIAN OF A SCALAR The Laplacian of a scalar field, V written as: V2 ∇ Where, Laplacian V is:       ∂ ∂ + ∂ ∂ + ∂ ∂ •      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∇•∇=∇ zyxzyx z V y V x V zyx VV aaaaaa 2
  • 51. For Cartesian coordinate: 2 2 2 2 2 2 2 z V y V x V V ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ For Circular cylindrical coordinate: 2 22 2 2 11 z VVV V ∂ ∂ + ∂ ∂ +      ∂ ∂ ∂ ∂ =∇ φρρ ρ ρρ LAPLACIAN OF A SCALAR (Cont’d)
  • 52. LAPLACIAN OF A SCALAR (Cont’d) For Spherical coordinate: 2 2 22 2 2 2 2 sin 1 sin sin 11 φθ θ θ θθ ∂ ∂ +       ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ =∇ V r V rr V r rr V
  • 53. EXAMPLE 16 Find Laplacian of these scalars: yxeV z cosh2sin− = φρ 2cos2 zU = φθ cossin10 2 rW = (a) (b) (c) You should try this!!
  • 54. SOLUTION TO EXAMPLE 16 yxeV z cosh2sin22 − −=∇ 02 =∇ U ( )θ φ 2cos21 cos102 +=∇ r W (a) (b) (c)
  • 55. Yea, unto God belong all things in the heavens and on earth, and enough is God to carry through all affairs Quran:4:132 END