Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Dízimas periódicas (fração geratriz)

7.387 Aufrufe

Veröffentlicht am

slide de matemática

Veröffentlicht in: Bildung
  • Als Erste(r) kommentieren

Dízimas periódicas (fração geratriz)

  1. 1. MATEMÁTICA Fração Geratriz
  2. 2. Fração Geratriz : É aquela que dá origem a uma dízima periódica. Exemplo: 3 9 = 0,33333 … … (onde 3 9 é a fração geratriz, e 0,33.. é a dízima periódica) Dizimas Periódicas: São números decimais que não possuem representação exata, ou seja, são números que se repetem infinitamente. Exemplos: 0,333 … ( o número 3 é uma dízima periódica pois se repete infinitamente) 0,1212 … ( o número 12 é uma dízima periódica pois se repete infinitamente) A dízima também pode ser representada com um travessão sobre o número. __ _ Exemplos: 0,44 = 0,444444 … 0,3 = 0,333…
  3. 3. As dízimas periódicas são classificadas em simples ou compostas. Dizimas Periódicas Simples: São dízimas periódicas simples, uma vez que o período apresenta-se logo após a vírgula. Exemplos: 0,313131 … … ( o 31 é uma dízima periódica simples) 0,123 ( o 123 é uma dízima periódica simples) Também existem dízimas periódicas simples onde o número antes da virgula não é o zero, pois representa a soma de um número qualquer mais a dízima . Exemplos: 1,55555 … … 5,676767 … … (1 + 0,55555 … …) (5 + 0,676767 …) ___ __ 4,32    (4 + 0,323232 …)
  4. 4. Achando a Fração Geratriz das Dizimas Periódicas Simples Para isso coloca-se o período no numerador da fração e, para cada algarismo dele, coloca-se um algarismo 9 no denominador. a) 0,555 … … = 5 9  Numerador Como o período só possui um algarismo que é 5  Denominador só haverá um 9 no denominador. b) 0,12 = 12 99  Numerador Como o período possui dois algarismos que  Denominador são 1 e 2, haverá 99 no denominador. Façamos: __
  5. 5. c) 2,777 … … I. Separamos o número da dízima. 2,777.....  2 + 0,777..... II. Achamos a fração geratriz da dízima. 0,777..... = 7 9 III. Por ultimo somamos o número com fração geratriz da dízima. 7 9 2 + = 18+7 9 = 25 9  Esta é a fração geratriz do número 2,777......
  6. 6. Exercícios : 1. Encontre a fração geratriz das seguintes questões: a) 0,11111 … … __ b) 0,22 c) 0,345345 … … d) 1,2 _ b) 3,6464 … b) 2,123123 …
  7. 7. Dizimas Periódicas Composta: São dízimas periódicas compostas, uma vez que entre o período e a vírgula existe uma parte não periódica. Exemplos: 0,25555 … … ( o número 2 é a parte não periódica e o 5 é uma dízima periódica ) 0,1268 ( o número 12 é a parte não periódica e o 68 é uma dízima periódica) Também existem dízimas periódicas compostas onde o número antes da virgula não é o zero, pois representa a soma de um número qualquer mais a dízima . Exemplos: 1,677777 … … 5,384141 … … (1 + 0,677777 … …)   (5 + 0,384141 …) __ 2,548  (2 + 0,5484848 …) __
  8. 8. Achando a Fração Geratriz das Dizimas Periódicas Composta Para isso coloca-se o número composto por não período e período no numerador da fração e, para cada algarismo do período (número que se repete), coloca-se um algarismo 9 (nove) no denominador, e para cada algarismo do não período (número que não se repete), coloca-se um 0 (zero) no denominador além de subtrair o número composto pelo não período. a) 0,422 … = 42 − 4 90 O número possui um não período que é 4 e um período que é 2. Portanto haverá um 9 e um 0 (zero) no denominador. Numerador   Denominador b) 0,816 = 816 − 81 900 O número possui dois não períodos que são 8 e 1, e um período que é 6. Portanto haverá um 9 e dois 0 (zero) no denominador. Numerador   Denominador Façamos: _
  9. 9. c) 3,4111 … … I. Separamos o número da dízima. 3,4111.....  3 + 0,4111..... II. Achamos a fração geratriz da dízima. 0,4111..... = 41−4 90 III. Por ultimo somamos o número com fração geratriz da dízima. 37 90 3 + = 270+37 90 = 307 90 = 37 90
  10. 10. Exercícios : 1. Encontre a fração geratriz das seguintes questões: a) 0,2333 … … _ b) 0,123 c) 0,41515 … … _ d) 1,32 b) 5,21414 … b) 1,12333 …
  11. 11. Rua Agripino Ferreira Campos – Nº 96 – Atrás da Banca Fone: (87) 8824-2858 / (87) 9958-1948 Clique no link e siga nossa página: http://www.facebook.com/reforcoescolar1aopcao

×